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Understanding creep suppression mechanisms
in polymer nanocomposites through machine
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While recent efforts have shown how local structure plays an essential role in the dynamic

heterogeneity of homogeneous glass-forming materials, systems containing interfaces such as thin films

or composite materials remain poorly understood. It is known that interfaces perturb the molecular

packing nearby, however, numerous studies show the dynamics are modified over a much larger range.

Here, we examine the dynamics in polymer nanocomposites (PNCs) using a combination of simulations

and experiments and quantitatively separate the role of polymer packing from other effects on the

dynamics, as a function of distance from the nanoparticle surfaces. After showing good qualitative

agreement between the simulations and experiments in glassy structure and creep compliance, we use

a machine-learned structure indicator, softness, to decompose polymer dynamics in our simulated

PNCs into structure-dependent and structure-independent processes. With this decomposition, the free

energy barrier for polymer rearrangement can be described as a combination of packing-dependent and

packing-independent barriers. We find both barriers are higher near nanoparticles and decrease with

applied stress, quantitatively demonstrating that the slow interfacial dynamics is not solely due to

polymer packing differences, but also the change of structure–dynamics relationships. Finally, we pre-

sent how this decomposition can be used to accurately predict strain-time creep curves for PNCs from

their static configuration, providing additional insights into the effects of polymer–nanoparticle interfaces

on creep suppression in PNCs.

1 Introduction

Due to the continuous growth of the world population, the
global construction market is predicted to increase 85% by
2030 compared to 2015.1 Flourishing construction will strain
materials supply streams, including wood, sand used for
cement, and iron ore for steel, challenging the sustainable
utilization of these limited natural resources. To fill the gap
in materials supply and demand within the infrastructure
sector, development of new materials for structural applica-
tions is desired. Polymer composites are a promising candidate
due to their light weight and corrosion resistance.2,3 However,
polymers, particularly recycling-friendly thermoplastics, tend to
creep under long-term external loads,4 limiting their application

as infrastructural materials, which typically require a service life of
50 to 100 years.5

Studies have shown that adding nanoparticles (NPs) with
neutral or attractive polymer–NP interactions can significantly
change the mechanical properties of polymer matrices, includ-
ing increasing tensile strength and average shear and Young’s
moduli, altering polymers’ nonaffine displacement field during
deformation, and rendering the material less fragile.6–10 While
some studies show that polymer nanocomposites (PNCs) have
a better resistance to creep,10–14 the mechanism of creep
suppression, including the role of NP size, loading, and poly-
mer–NP interactions, remains unclear.

The presence of an interfacial layer where polymers exhibit
decreased segmental mobility is known to be critical to mechan-
ical reinforcement in PNCs.7,15,16 In both experiments17–19 and
simulations,20–23 attractive NPs have been shown to create a layer
of slowed polymer dynamics, often several orders of magnitude
slower than in bulk polymers. Simulation studies have shown that
these local dynamical changes are not solely attributable to denser
packing near the NP surface, as evidenced by the thickness of
the structurally affected region decreasing with cooling while the
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thickness of the dynamically affected region increases.24 Recent
work also suggests that the presence of NPs can slow down the
polymer diffusion, which persists far beyond the length scale
where the polymer conformation are modified.25 Schweizer et al.
have formulated a force-level theory, which divides the free energy
of relaxation into a local barrier based on nonlinear Langevin
equation (NLE) theory26 and a long-range barrier described by an
elastic continuum, describing relaxation progress in both bulk
supercooled liquids and free-standing films.27–34 These results
suggest that changes in the segmental packing are not the only
factor controlling the dynamical gradient around NPs. Thus,
investigating the relationship between polymer dynamics and
structure and how the relationship changes as a function of
different conditions (such as applied stress, NP size, and poly-
mer–NP interaction) is important to understanding not only creep
suppression, but also the underlying mechanisms behind NP
reinforcement in PNCs.

Over the past several years, an application of machine
learning has been proposed in disordered materials to directly
connect a monomer’s local-structure features, termed as ’soft-
ness’, to its probability of rearrangement (defined as having a
relatively large non-affine local displacement. See Methods for
more details).35–37 This new method easily measures the struc-
ture in amorphous materials and estimates its effect on
monomer-level dynamics. Softness expanded our understand-
ing of glassy materials, including the universal yield strain,38

the brittle-ductile transition,39,40 the aging process,37 and the
structural initiation of shear banding.41,42 Using softness, Liu
and coworkers decomposed dynamics in both bulk glasses and
glassy polymer thin films36,43 into structure-dependent and
structure-independent components and found that the slowing
of dynamics near the glass transition in bulk glasses is asso-
ciated with structural changes, whereas enhanced dynamics
near free surfaces in glassy thin films are dominated by a
structure-independent mechanism. While most of these soft-
ness analyses are applied to homogeneous glassy systems, our
recent work has shown that softness can also be used in
quantifying the structural features (i.e., local packing) of poly-
mers in the interfacial region near nanoparticles,42 enabling us
to develop a dynamical decomposition model for polymers
in PNCs.

In this work, we simulated neat polymers and dispersed
nanoparticle PNCs with attractive polymer–NP interactions
(strong interaction) over a range of NP loadings and two NP
sizes. The creep suppression in these systems was compared to
experimental poly-2-vinylpyridine (P2VP) silica composites to
verify that the simulations qualitatively agree with real-world
systems. We also varied polymer–NP interactions in the model
PNCs with a 10 vol% loading of NPs to study the effect of
interaction strength on creep suppression.

After establishing good agreement between the simulated
and experimental nanocomposite systems, we demonstrated
how polymer dynamics in PNCs can be decomposed into
structure-dependent and structure-independent processes and
how this relation holds within the constant strain rate regime.
We refer to this relation as the dynamical decomposition model

in this work. With this decomposition, we showed that besides
the modified local packing, the relation between structure and
dynamics are also changed near NPs, leading to the slow
interfacial dynamics. Finally, we showed a potential application
of this decomposition model in predicting PNCs’ strain
response directly from the structure of an undeformed sample.

2 Methods and materials
2.1 Simulation methods

All simulations were performed using the LAMMPS molecular
dynamics package.44 A coarse-grained bead-spring model was
used to construct the polymer matrix.45 Each simulation system
contains 405 monodispersed polymer chains consisting of
128 Lennard-Jones (LJ) interaction sites, connected by flexible
harmonic bonds for a total of 51 840 polymer monomers. In other
words, each polymer monomer in the model PNCs is one LJ
interaction site. The standard 12-6 Lennard-Jones cut potential is
used to describe all non-bonded monomer interactions,

UnbðrijÞ ¼ 4eij
s
rij

� �12

� s
rij

� �6
" #

�Ucut; rij o 2:5s (1)

where Ucut is the value of the 12-6 potential at our cut-off distance,
rc = 2.5s, and s is the bead size, which can be roughly taken as one
nanometer.46,47 Both polymer–polymer (epp), and NP–NP (enn)
interactions are fixed at 1.0, while polymer–NP (epn) interactions
are set at 0.5, 1.0, and 2.0 representing weak, neutral, and strong
interactions respectively. Bonded monomer interactions are
described by the harmonic bonding potential,

Ub
ij = K(r � s)2 (2)

where K = 400e/s2, and s is the diameter of the monomers.
All units for quantities taken from the simulation are in LJ-
reduced unit notation. T is the reduced temperature, expressed
as T = kT*/e, the LJ-time, tLJ ¼ t�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
e=ms2

p
, k is the Boltzmann

constant, T* is temperature, m is the mass of a single LJ
interaction site, and t* is time. The asterisk indicates quantities
in laboratory units.

The NPs are modeled as amorphous, solid, and rigid spheres
of LJ sites, cut from a bulk LJ liquid at high temperature
(T = 10.0) and high density (r0 = 1.25) with nominal radii, Rp,
of 3.0 and 5.0 s for small and large NPs, respectively. The
resulting NP has the same density as the high temperature,
high pressure LJ liquid, ensuring an amorphous NP. Due to its
amorphous nature, the actual radius can be slightly smaller
than the nominal radius in some parts of the NP. For simpli-
city, we used the nominal radius to define the position of the
NP surface from the NP center of mass.

In addition to the neat polymer systems, we prepared PNCs
with four different NP volume fractions, 5 vol%, 10 vol%,
15 vol%, and 20 vol%. Strong polymer–NP interactions were
simulated at all NP loadings, while additional weak and neutral
interactions were simulated at 10 vol%. More details about
simulated composites, including NP loading, size, number, and
polymer–NP interactions can be found in Table S1 (ESI†).
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Systems were equilibrated in the NPT ensemble at T = 1.0
and P = 0 with a timestep of 0.002tLJ

�1. Connectivity altering
Monte Carlo moves (i.e. bond swap) were applied for the
purpose of reaching equilibrium.48–50 For a given system,
different configurations are separated by at least one polymer
diffusion time, tD, to guarantee their independence. tD is esti-
mated at the time where the slope of polymer monomer mean-
squared-displacement versus time is approximately unity. Next, all
the PNCs were quenched to different target temperatures (T = 0.2
to 0.5) with a cooling rate of G = 10�4tLJ

�1, followed by an aging
period of 104tLJ. Creep deformations at a series of stresses (sc = 0.3
to 0.9) were then performed at different temperatures (T = 0.35 to
0.50). For each configuration, the system was uniaxially deformed
in each dimension while maintaining constant pressure in the
transverse directions, and the strain responses were averaged.
Compliance vs. time curves at each temperature were shifted using
time temperature superposition (TTS) to generate a master curve at
Tref = 0.35. This reference temperature is below the glass transition
temperature, Tg, in all the PNCs. In this study, Tg in the model
PNCs is determined during the quenching process described
above, where the cooling rate is G = 10�4tLJ

�1. The system density
was monitored, and linear fits were performed above and below
the transition region. We took the corresponding temperature of
the intersection point between the two linear-fitted lines as the
glass transition temperature.

2.2 Softness calculation

Softness is a particle-level structural field, which measures
particles’ tendency of rearrangement over a given time period.
To calculate softness, we employ a set of structure functions and
form a feature vector to represent a polymer monomers’ local
environment. In other words, the structure functions describe
the distribution of other monomers around a central monomer.
These feature vectors represent the monomers’ coordinates in
high dimensional space (with the dimension equal to the
number of structure functions). By applying the support vector
machine (SVM) machine learning algorithm, we can find a
hyperplane that best separates the rearranging monomers from
the non-rearranging monomers. We then define softness as the
particle’s signed distance to this hyperplane, with a positive
value corresponding to the rearranging side of the hyperplane
and a negative value to the non-rearranging side. Here we
used the hyperplane trained in our previous work,42 which was
trained on a quiescent neat polymer system with two groups
of structure functions for each polymer monomer i. The
first group,

GRði; m;LÞ ¼
X
j

max exp � Rij � m
� �2

=L2
� �

� eR; 0
h i

; (3)

describes the radial structural characteristics while the second

GAði; x; l; zÞ ¼
X
j

X
k

max exp � Rij
2 þ Rik

2 þ Rjk
2

� �	
x2

� �


� 1þ l cos yijk
� �	

2
� �z�eA; 0i;

(4)

describes three-body orientation characteristics. Here, Rij is
the distance between particle i and particle j; yijk is the angle
between particle i, j, and k; and m, L, x, l, z are all parameters
varied to construct different structure functions.

Given the two types of particles in our systems, polymer and
NP sites, we make an approximation by treating the NP sites the
same as the polymer sites; this avoids creating a region of
artificially high softness near the NPs due to a decrease in
monomer density. Our recent work shows this method is able
to probe the structure change near the NP surface.42 In the
ESI,† we provide a detailed discussion and justification of this
assumption.

2.3 Dynamical measurement

For our dynamical decomposition model, we use PR(S), the
probability of rearrangement for particles with a given softness,
as the measurement of polymer dynamics. This method has
been employed in different glassy systems and can predict
particles’ relaxation time efficiently and robustly.36,37,43 Details
of the PR(S) calculation are presented below.

Since we are interested in composites under creep deforma-
tion, we use the quantity Dmin

2 as recommended in literature
to determine whether a monomer is rearranging,51 which
accounts for the monomer’s non-affine motion. Dmin

2 is
defined as

Dmin
2ði; tÞ ¼ 1

Ni

XNi

j

~rijðtþ dtÞ � ~LiðtÞ~rijðtÞ
h i2

; (5)

where -
rij is the displacement vector between particle i and j at

time t and ~LiðtÞ is the best fit local-affine transformation tensor
for particle i that minimizes Dmin

2(i;t). Ni is the number of
neighboring monomers around polymer monomer i, which is
within a cut-off distance of 2.5s. The choice of this cut-off
distance agrees with previous work in softness.38,40,42,52 In this
study, we choose a dt = 10tLJ and measure Dmin

2 for a time
range of 2000tLJ or within the low strain regime where the
strain rate is constant. A monomer is considered to be rearran-
ging if its value is larger than Dmin,0

2 = 0.1. As shown in both
previous work and our own tests,42,43 we find our results are
qualitatively insensitive to the choice of Dmin,0

2 over a reason-
able range of values (0.06 to 0.23).

After identifying the rearranging particles, we then bin both
rearranging particles and all particles based on their softness.
PR(S) can be calculated by dividing the number of rearranging
particles by the total number of particles with that softness.
In this work, we used softness values ranging from �2.75 to
1.25 (covering 97% of monomers in the system) with a resolu-
tion of 0.25 (our softness distribution follows a normal dis-
tribution with sS = 0.92) when calculating PR(S).

2.4 Materials and experimental details

Commercial grade poly(2-vinylpyrridine) (P2VP, Mn = 70 kg mol�1

and Mw/Mn = 2.4) was obtained from Scientific Polymer Products,
Inc. (Ontario, NY). Silica nanoparticles dispersed in 2-butanone
were obtained from Nissan Chemical (MEK-ST and MEK-ST-L).
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The nanoparticles diameters were measured via small angle X-ray
scattering (SAXS) and were found to be log-normally distributed
with average diameters of 13 nm and 52 nm, respectively, and
polydispersities of 0.30 and 0.29. For clarity, the small nano-
particles will be referred to as NP13 and the large nanoparticles
as NP52. Nanoparticles were transferred from 2-butanone to
methanol via a solvent exchange process using hexane to crash
the nanoparticles out of solution.

2.4.1 Polymer nanocomposite preparation. The P2VP
was dissolved in methanol at a concentration of approximately
50 g L�1. Pentaerythritol tetrakis (3-(3,5-di-tert-butyl-4-hydroxy-
phenyl) propionate) (Sigma-Aldrich), an antioxidant, was added
to the polymer solutions at a concentration of 0.1 wt% of the
polymer mass to prevent polymer decomposition during nano-
composite preparation and thermal processing.

The nanoparticle solutions were diluted to approximately
15 g L�1 with methanol prior to adding, dropwise, to the P2VP
solutions to target nanoparticle loadings equal to 5 vol%,
10 vol%, 15 vol%, and 20 vol%. The nanocomposite solutions
were mixed for 24 h before casting on PTFE dishes at 120 1C to
remove the majority of the solvent. The samples were then
transferred to a vacuum oven where they were annealed for 24 h
at 150 1C to remove the remaining solvent.

After thermal annealing, the composites were hot pressed in
aluminum molds at 150 1C under 0.5 metric tons for 10 min,
creating samples with nominal dimensions of 35 � 3.0 �
0.5 mm. Samples were quenched and removed from the molds
before annealing for 12 h at 120 1C under vacuum followed by a
slow cool in the vacuum oven to a temperature of less than
40 1C. This process was used to remove residual stresses caused
by hot pressing and ensure a standard thermal treatment for
each set of samples. The hot pressed samples were used for all
subsequent analysis.

2.4.2 Thermogravimetric analysis (TGA). Nanoparticle
loadings were determined via TGA using a TA Instrument
Q600 SDT. For each sample, 10 mg of composite was heated
to 150 1C at a rate of 10 1C, held for 20 min, and then heated to
900 1C at a rate of 20 1C min�1 under flowing air. The volume
percent of silica was calculated using a silica nanoparticle
density of 2.2 g cm�3 and a P2VP density of 1.2 g cm�3.
A summary of the composite loadings is provided in Table S2
(ESI†).

2.4.3 Temperature modulated differential scanning calori-
metry (TMDSC). The glass transition temperature (Tg) of the
nanocomposites was measured via TMDSC using a TA Instru-
ment Q2000. Measurements were made upon cooling a 10 mg
sample at a rate of 5 1C min�1 with a modulation time of 30 s
and an amplitude of �0.5 1C from 40 1C to 170 1C. Tg was
defined as the inflection point of the heat flow thermograms. Tg

of the composite systems was within 1 1C of the neat polymer
Tg. See Table S2 (ESI†) for a full list of Tg.

2.4.4 Small angle X-ray scattering (SAXS). Particle disper-
sion was examined using SAXS performed on a Xenocs Xeuss
2.0 with a GeniX3D copper source (8 keV, 1.54 Å) and a
PILATUS3 1M detector. Sample to detector distances of 1.2 m
and 6.4 m were used, corresponding to a wave vector (q) range

of around 0.002 Å�1 to 0.2 Å�1. Two-dimensional scattering
patterns were azimuthally integrated to one dimension using
the Foxtrot software. Nanoparticle form factor scattering was
measured using a dilute solution of nanoparticles in methanol
(0.1 vol% and 0.5 vol% for NP13 and NP52 nanoparticles,
respectively) within a low-noise flow cell (Xenocs). The form
factors were fit with a polydisperse sphere model using the
SASView analysis software to determine average particle size
and polydispersity.

2.4.5 Scanning electron microscopy (SEM) & focused ion
beam (FIB). PNC samples were fractured at room temperature
to expose a fresh interior region. Cross-sectioning for two-
dimensional analysis was performed using a Zeiss Crossbeam
540 FIB/SEM.

2.4.6 Dynamic mechanical analysis (DMA). Oscillatory
DMA measurements were performed on a TA Instruments
RSAIII in tension mode. Strain-controlled frequency sweeps
(0.03 Hz to 30 Hz) were performed with a 0.05% strain (within
the linear viscoelastic regime) in 5 1C increments between 30 1C
and 110 1C. Three samples were measured for each composite
system and the results were averaged. DMA measurements were
shifted using time-temperature superposition with a reference
temperature of 105 1C. The choice of this reference temperature
is also consistent with our prior study of P2VP composites.10

The dynamic modulus, E*(o), obtained from the oscillatory
DMA experiments (where o is the frequency of the dynamic
loading), was converted to transient compliance, D*(t), using
known analytical relationships.53,54 As an approximation to
connect oscillatory DMA data to creep compliance measured
in the simulations, we used D* = 1/E* and t E 1/o to estimate
the transient compliance. We refer to D*(t) as the ‘complex
compliance’ in this work because it explicitly includes both the
storage and loss components of the DMA measurements. Using
D*(t) also enables us to directly compare the experimental work
to the simulation and better reveal the similarities. This
method has been used previously to examine creep in polymer
nanocomposites.10

3 Results and discussion
3.1 Nanoparticle dispersion

We begin our study from measuring NP dispersion state in both
experimental and simulated PNCs. Fig. 1(a) and (b) contain
small angle X-ray scattering (SAXS) measurements and scan-
ning electron microscope (SEM) images, demonstrating excel-
lent dispersion of the 13 nm diameter silica nanoparticles
(NP13) within the P2VP matrix (see Fig. S1 (ESI†) for 52 nm
diameter nanoparticles, NP52 composites). In both the NP13
and NP52 composites, scattering in the high-q regime (q 4
0.03 Å�1 and 0.007 Å�1, for NP13 and NP52 composites,
respectively) is identical for all silica loadings. Likewise, in
the low-q regime, the scattering intensity plateaus in all sys-
tems. This behavior is characteristic of well-dispersed NPs. The
structure factor scattering shown in the insets to Fig. 1(a) and
Fig. S1a (ESI†) further emphasize the well-dispersed nature of
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the composite systems, with the structure factor intensity
settling at 1 with no large or sharp peaks. The SEM images in
Fig. 1(b) and Fig. S1b (ESI†) visually confirm NP dispersion for
the 15 vol% NP13 and NP52 systems, respectively.

The well-dispersed NPs observed in the experimental com-
posite systems agree qualitatively with the nanoparticle disper-
sion observed in the strongly attractive (epn = 2.0) polymer–NP
interaction simulations. Fig. 1(c) shows the pair distribution
functions, g(r), of the small NPs within the composites while
Fig. 1(d) shows a visualization of the nanoparticle dispersion
within the simulation box. (See Fig. S1c and d for large NP
composites, ESI†) The single, relatively weak peak in g(r)
indicates weak ordering of the nanoparticles, suggesting good
overall dispersion. Additionally, we observed well-dispersed
NPs in composite simulations with neutral interactions (epn =
1.0) and significant aggregation in simulations with weak
interactions (epn = 0.5, weak attractions), as expected (see
Fig. S1e–h, ESI†).

3.2 Creep attenuation

Representative master curves of the complex dynamic compli-
ance (D*(t))) for the experimental and simulated PNCs are
shown in Fig. 2(a) and (b) for the smaller NP composites.
Master curves are shown with Tref = 105 1C for experimental
PNCs and Tref = 0.35 for simulation systems. This Tref for the
experimental PNCs was used in the recent creep study of the
P2VP composites and is near Tg.10 For the simulated PNCs,
Tref is below Tg (Tref/Tg E 0.76), because we are interested in
tracking the glassy dynamics change during creep and correlate
them to the strain response. At first glance, we observe several
similarities in the compliance curves for the experimental and
simulated PNCs. In each case, the compliance in the glassy

Fig. 1 (a) SAXS measurements of NP13 composites showing excellent NP
dispersion with an inset showing the NP structure factor. (b) Representa-
tive SEM image of the 15 vol% NP13 PNCs. (c) Pair distribution functions of
NPs in simulated PNCs with small attractive NPs (r = 3s) showing
good dispersion. (d) Visualization of the NP distribution in the simulated
PNCs with small attractive NPs (10 vol% NP). NPs are colored to ease
differentiation.

Fig. 2 Characteristic creep compliance curves for several (a) experimental and (b) simulation composites containing NPs of strong polymer–NP
interactions. The dashed line represents the critical creep compliance value. Critical deformation times as a function of NP loading for (d) experimental
and (e) simulation composites. The qualitatively similar creep behavior in experimental and simulation systems suggests these simulations can capture
creep behavior in polymer nanocomposites. Results of different polymer–NP interactions in PNCs with 10 vol% NPs are presented in (c) and (f)
respectively.
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plateau modulus decreases with increasing NP loading and the fast
creep regime (upturn in D*) is shifted to longer times, demon-
strating the reinforcement and creep attenuation abilities of NPs.

We define the critical deformation time as the time to reach
a critical compliance value, D�crit at Tref. For experimental

systems, D�crit ¼ 2:5�9 Pa�1 (a 5% strain under a 20 MPa stress)

while for simulations D�crit ¼ 10�1 (a 4% strain under a stress of
0.4), as indicated by the dashed lines in Fig. 2(a)–(c). Fig. 2(d)
and (e) plot tcrit as a function of nanoparticle loading for all
experimental and simulation systems. In all cases, tcrit

increases exponentially with loading, with larger increases
observed for smaller NP sizes, demonstrating how even modest
loadings of small NPs with attractive polymer interactions can
significantly suppress creep deformation. Numerical values of
the average tcrit for different systems can be found in Table S1
in the ESI.† This method for quantifying creep attenuation has
been used previously and the exponential relation between
critical time and NP loading is not qualitatively sensitive to
the choice of critical compliance values.10 While the stress and
strain value in the experiments are same as the previous work,10

we selected a stress of 0.4 in the simulation systems given its dual
efficacy. Firstly, it is large enough to induce significant dynamical
enhancements, and secondly, it is also adequately small to hold
the PNCs within the constant-rate regime for a long enough time
(see Fig. S5, ESI†). We then chose a strain of 4% to arrive at a
compliance value of 0.1. We note that while tcrit is small (o100 s)
for this reference temperature, under ambient conditions (around
25 1C) tcrit may be on the order of several 10 s to 100 s of years due
to the time-temperature equivalence in polymer viscoelasticity.
These results are in qualitative agreement with previous measure-
ments of creep in P2VP-silica nanocomposites.10

We also study the effects of polymer–NP interactions on
creep suppression in simulation systems, by fixing the NP
loading at 10 vol% and varying the interaction parameters
between polymers and NPs. We find strongly interacting NPs
better suppress creep, as evidenced by the shift of the upturn in
compliance curves to a longer times and the increase in tcrit

with epn (Fig. 2(c) and (f)). For the simulated PNCs with
different interactions, no qualitative change in NPs distribution
has been observed within the TTS temperature range, which
further confirms the validity of our TTS results.

Overall, the qualitatively similar behavior observed in nano-
particle dispersion quality and creep attenuation for experi-
mental and simulated strong-interaction PNCs suggests that
the simulations performed in this work provide a good quali-
tative description of the behavior in the experimental compo-
sites and can be used to further probe the nanoscale behavior.

3.3 Dynamical decomposition in PNCs

To reveal the mechanism of NP reinforcement under creep
deformation, we extend the dynamical decomposition devel-
oped in homogeneous glass-forming materials36,43 to PNCs. A
monomer’s probability of rearranging at a given softness, PR(S),
is used as the measurement of local polymer dynamics and has
been shown to be proportional to the inverse of the segmental

relaxation time.36,37 Technical details of the PR(S) calculation
can be found in Methods.

In the work presented below, unless otherwise specified, we
present the dynamical decomposition results for PNCs with
10 vol% NPs and neutral polymer–NP interactions at T = 0.40.
This analysis can be applied to other temperatures and all
systems with dispersed NPs. More details about other simula-
tion conditions are provided in Table S1 (ESI†).

We begin with calculating the bulk-average dynamics in
PNCs, PR,avg(S), by examining polymer monomers at least 8s
away from one NP surface in the undeformed PNCs. In Fig. 3(a),
we plot PR,avg(S) as a function of T�1 for 8 different softness
values, ranging from S = �2.75 to 1.25 (covering 97% of
polymer monomers). For each softness, PR,avg(S) follows Arrhe-
nius behavior and the left-extended fitting curves all intersect at
the same point. Furthermore, the softness-dependent activa-
tion energy exhibits a linear dependence on S (Fig. 3(b)). These
two observations are similar to what has been seen in bulk
glassy systems36 and indicate that the bulk-average PR(S) in
PNCs can be expressed as the product of a structure-dependent
and a structure-independent term,

PR;avgðSÞ ¼ exp S� DE
T

� �
¼ exp S0 �

e0

T

� �

� exp � S1 �
e1

T

� �
S

� �
¼ PIðTÞ � PDðT ;SÞ:

(6)

Here, S and DE represent the entropic and enthalpic con-
tribution to the energy barriers, respectively. S0, S1, e0, e1 are

Fig. 3 Dynamical decomposition in PNCs. (a) Bulk-average probability of
rearrangement for a given softness, PR,avg(S), as a function of 1/T at eight
different softness values. The color gradient represents the gradient in
softness, ranging from light blue at S = �2.75 to dark blue at S = 1.25. (b)
The DE and S values as a function of softness, calculated by fitting the
results in (a) to PR,avg(S) = exp(S � DE/T). Error bars represent the standard
deviation of uncertainty. (c) Isothermal probability of rearrangement as a
function of S at five distances from the NP surface (rpos) and within the
bulk-average region, at T = 0.40. (d) Isothermal Pnp as a function of S at
five rpos and the bulk-average region, for T = 0.40. These simulations use
r = 3s, epn = 1.0, and 10 vol% PNCs.
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constants determined through linear fitting with softness, as
shown in Fig. 3(b), and are independent of temperature.
Through the softness analysis, we can separate the structure-
dependent components out from both S and DE by combining
terms involving S (forming PD(T,S)), and the other terms left form
the structure-independent term, PI(T). The shared intersection
point represents the temperature, T0, where softness dependence
of S exactly cancels DE/T in eqn (6). Previous softness work also
suggests that T0 scales with the onset temperature of glassy
dynamics in the simulated bulk glasses.36

However, eqn (6) breaks down near the NP interface because
the probability of rearrangement at a given softness decreases
as we approach the NP surface, as shown in Fig. 3(c) where
PR(S) is plotted at five distances from the NP surface (rpos) and
within the bulk-average region, for T = 0.40. The downward
shift in the PR � S curves leads to poor fit quality and no shared
intersection point when plotting PR(S) as a function of T�1 (see
Fig. S3, ESI†). The vanishing of the shared intersection point
further suggests the linear dependence between S (and DE) and
softness is no longer valid near NP surface. This is consistent
with the intuitive expectation that PR should be lower for the
same local packing (i.e., softness) when polymer monomers are
near NPs, because NPs can slow nearby monomer dynamics.

To isolate the effect of NP proximity, we introduce a new
quantity, Pnp, defined as the ratio of PR over PR,avg for a given
softness,

Pnp rposjSi

� �
¼

PR rpos;Si

� �
PR;avg Sið Þ

(7)

Thus, Pnp(S) is a measure of how much the NP slows down the
dynamics for a given local structure. We plot Pnp(S) at T = 0.40
for different distances from the NP surface in Fig. 3(d) and find
that Pnp follows an exponential relation with S at each distance,
indicating that Pnp can be expressed as Pnp = exp[a1(rpos)�S �
a0(rpos)], where both a0 and a1 depend on distance from the NP
surface. Note that, unlike Si and ei, which are temperature
independent, ai are temperature dependent (see Fig. S2d–g,
ESI†). This is consistent with the observation that thickness of
the dynamically different region generally decreases with
increasing temperature.24 It would be interesting to study the
temperature dependency of ai, which may help reveal a more
detailed mechanism of the different temperature dependency
between the structure-modified interfacial layer and the
dynamics-modified interfacial layer around nanoparticles.
Within the temperature range studied, we found that while a0

and a1 change modestly at low temperature, for the highest
temperature, T = 0.42, both parameters become larger.

Recalling that PR,avg can be written as a product of PI(T) and
PD(T,S) (eqn (6)), this together gives the new expression for PR in
PNCs near the NP surface:

PRðrpos;S;TÞ ¼ P�I rpos;T
� �

�P�D S;rpos;T
� �

¼ exp S0�
e0

T
þa0

� �� �
� exp � S1�

e1

T
þa1

� �� �
S

� �
(8)

where P�I and P�D are the new expressions for the structure-
independent and structure-dependent components, respectively.
Note that both a0 and a1 decays to zero in the bulk region,
recovering eqn (6) and making eqn (8) a general expression for
polymer dynamics throughout PNCs. To the best of our knowl-
edge, this is the first monomer-level expression which can quan-
tify the effect of structure on glassy dynamics in PNCs. It suggests
that structure affects glassy dynamics through two approaches in
PNCs. One is the local structure gradient in the polymer induced
by the NP surface, captured by the change of S. The other is the
change in the structure–dynamics relationship, which also
depends on S, as described by the P�D term. That is, while
polymers near the NPs can have different local structures, even
a monomer with the same local structure can also have different
dynamics near the NPs compared to the bulk.

We want to emphasize that eqn (8) is not a combination of
six random parameters aiming for better fitting, but with a
physical meanings on par with the activation energy associated
with the temperature dependence of viscosity in a simple fluid.
As shown in previous study,36 S0 and e0 represent the structure-
independent contributions in the entropic and enthalpic bar-
riers for the monomer rearrangements. In contrast, S1 and e1

measure how sensitive these two barriers are to the local
packing, respectively. The new parameters a0 and a1 are intro-
duced in this work. The former (a0) quantifies a constant
slowing down for polymer dynamics carried by NPs, which only
depends on distance to NP (at a given temperature), regardless
of polymers’ local structure. While the later a1 accounts the
dependency of NP slowing down effect on the local packing.

In Fig. 4(a), we plot P�I and P�D as functions of rpos, both
terms decrease near the NP surface, corresponding to slowed
dynamics. When calculating the term that depends on softness,
P�D, we use the average softness at that given rpos. The relative
effect of the polymer–NP interface on P�D and the thickness of
the affected region are less than the effect of the interface on
P�I , similar to the reported behavior near thin film interfaces.43

However, this behavior is not due solely to the presence of NPs,
but also fluctuations in softness (packing) caused by polymer–
NP interactions (see Fig. S4a, ESI†). The former effect can be
quantified by a0 and a1, which both decay exponentially
with rpos (see Fig. 4(b)). The exponential decay suggests that
log(Pnp) p exp(�rpos), which also agrees with the ‘double-
exponential’ relation of overall dynamical gradient near a hard
surface predicted in theory31 and observed in simulations.55–59

To determine if this decomposition could be expanded to
PNCs under creep deformation, we deformed the 10 vol% NP
composites using seven different stresses, sc = 0.3 to 0.9, and
measured the average softness as a function of time and rpos

within both the constant strain rate regime and the full range of
deformation (see Fig. S5 and S6, ESI†). All sc are lower than the
composites’ yield stress, which is greater than 1.0 for all the
systems. This stress range is also much larger compared to the
stress we used for the TTS analysis, sc = 0.4, thus it should be
sufficient to probe the regimes in which our model is valid.
Within the constant strain rate regime, the average softness
was stable, following a brief jump caused by the initial elastic
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response. A similar trend was reported in a recent work focused
on softness analysis of colloidal gels under creep, where system
average softness was found to depend on the strain rate.60

Examining PR(S) as a function of sc and rpos for both neutral
and strong interactions reveals that the probability of rearran-
gement for a given softness varies significantly less with
applied stress than with distance from the NP surface (see
Fig. S7, ESI†). Our recent work also indicates that the stress-
enhanced dynamics in polymer glasses can be described by an
Eyring-like model, which buttresses the validity of dynamical
decomposition under creep deformation.52 These observations
indicate that our new expression for polymer dynamics (eqn (8))
should still apply within the constant strain rate regime. Thus,
we perform the same dynamical decomposition analysis as
carried out in Fig. 3 for PNCs under several different stresses
(sc = 0.3 to 0.6) and find eqn (8) remains valid (see Fig. S8 and
S9, ESI†).

As suggested by previous work,36 the exponential terms of P�I
and P�D can represent the structure-dependent and structure-
independent free energy barriers, FD and FI respectively, which
needs to be overcome for polymer monomers to rearrange
(eqn (9)).

FD ¼ e0 � S0 � T þ a0 � T

FI ¼ � e1 � S1 � T þ a1 � Tð Þ � S
(9)

Thus, we can calculate the free energy barriers for monomer
rearrangement during creep and the results of which are shown
in Fig. 5. Starting from the undeformed systems, free energy
barriers near NPs are greater than the bulk-average energy
barrier during deformation, and both FI and FD decrease with
increasing stress. Comparing the free energy barriers for PNCs
with neutral and strong polymer–NP interactions, we observe a
greater decrease in both FI and FD with stress for composites
with neutral polymer–NP interactions, explaining the better
creep suppression observed for PNCs with strong polymer–NP
interactions. The increased free energy barriers in PNCs with
strong polymer–NP interactions hinder local polymer monomer
rearrangements, thereby suppressing creep deformation. This
further confirms that the increase in polymer packing density
near NPs is not the only source of NP reinforcement, because

only FD depends on structure. In contrast, the presence of NPs
alters the relationship between structure and glassy dynamics
(through a1 and a0), leading to the increase of free energy
barriers. Note that here FD consists of both local structure
gradient effect (average S is higher near surface) and the NP
slowing down effect (a1). However, it is still much smaller than
the FI term, even for the strong interaction NPs. This suggests
that for our model PNCs, the structure-independent process
dominates the overall creep suppression. Thus, we have pro-
vided direct quantitative evidence that the modified dynamics
is not solely originated from the change in structure (density
increase) near the NP surface. It is tempting to speculate that a1

and a0 are due to the presence of a stiffer phase (rigid NPs),
which increases the local stiffness of the interfacial layer and
blocks potential rearrangements in certain directions. We also
note that both FI and FD are just relative measurements of the
barriers, whose magnitude can vary depending on the choice
used to identify rearrangements (see Methods for more techni-
cal details). From our tests, the free energy barrier difference
between sc = 0 and sc = 0.6 presented in Fig. 5(a) leads to an
increase of approximately 47% in total number of rearrangements.

On a high level, our results are also consistent with
the recent advances of ECNLE theory, where Schweizer and
coworkers show that glassy dynamics can be described by a
combination of a local cage barrier and a long range elastic
barrier.27,28 Both barriers are higher near rough surfaces31 and
decrease with external stress,61 while the long range elastic
barrier is more sensitive to stress.29,31,33 However, the barriers
in our model have a distinct microscopic origin. In ECNLE, the
local cage and the elastic barrier are causally related, since
the elastic barrier originates from the local cage expansion.27

While our approach using the machine-learned structure field,
softness, enables us to effectively isolate the effect of structure,
which should be a combination of the structural dependence
in both the cage and elastic barriers proposed in ECNLE.
In addition, our analysis automatically excludes the effect of
surface-induced structure change, since all the analyses are

Fig. 4 (a) P�I and P�D as functions of the distance from the NP surface, rpos,
for T = 0.40. The dash lines represent the bulk-average values of these
quantities, PI,avg and PD,avg. (b) a0 and a1 as functions of rpos, for T = 0.40.
The dashed lines are exponential fits. Both a0 and a1 decay exponentially
with rpos. These simulations use r = 3s, epn = 1.0, and 10 vol% PNCs.

Fig. 5 Structure-independent (FI) and structure-dependent (FD) free
energy barriers as functions of rpos under different applied stresses for
PNCs containing 10 vol% (a) neutral polymer–NP interaction or (b) strong
polymer–NP interaction NPs. The color gradient represents the stress
gradient, where the lightest color represents sc = 0 and the darkest color
represents sc = 0.6. Dashed lines are the corresponding bulk-average
values. These simulations use r = 3s PNCs and T = 0.40.
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carried on polymer monomers with the same softness values,
which should approximately correspond to similar local
structures.

3.4 Predicting strain response

Plastic deformation in disordered solids happens through local
structural rearrangements.51 Thus, to connect the macroscopic
mechanical response to microscopic polymer dynamics, we can
examine the relationship between strain, e, and the accumu-
lated number of monomer rearrangements, Racc, within

the constant strain rate regime. In Fig. 6(a), we plot Racc

(Racc normalized by the total number of polymer monomers,
Npolymer) with time and find they follow a intriguing linear
relationship, with the slope decreasing as NP loading increases.
In other words, the ratio of monomer rearrangements to
Npolymer remains almost constant during deformation and is
determined by the NP loading (see Fig. S10, ESI†). As we are
within the constant-strain-rate regime, this implies the strain,
e, also increases approximately linearly with normalized Racc

after a brief initial transient, as shown in the inset of Fig. 6(a).

Therefore, e can be estimated from Racc using:

e ¼ k1Racc þ k0 (10)

Here, k0 and k1 are constants obtained through linear fitting,
representing initial elastic response and rearrangements
needed to reach 1% strain, respectively. This linear relationship
suggests that we can predict strain as a function of time from
the structure information (i.e. softness), because Racc can be
estimated by integrating the probability of rearranging,

Racc ¼
1

Npolymer

ðtime

0

ð1
0

ðS1
S0

NsPRdS drposdt: (11)

Here, Ns is the number of monomers with a given softness and
rpos. PR is the probability of rearranging and can be calculated
through our dynamical decomposition model (eqn (8)) given
the system’s softness distribution.

Having connected the number of rearrangements required
to reach a given strain, we can move to predict the strain
response from PR(S). We find that the softness distributions
remain unchanged after the initial elastic response and the
magnitude of the softness change due to the elastic response

grows linearly with stress. Therefore, the softness distribution
during creep can be estimated from the pre-deformation
sample, enabling us to directly predict strain responses within
the low strain regime where the strain rate is approximately
constant and spatially homogeneous from the structure in
the undeformed system (see more technical details in Fig. S11
and S12, ESI†).

In Fig. 6(b), we plot the measured strain (points) and the
predicted strain (dashed lines) as functions of time, for three
systems at T = 0.40, finding excellent agreement. Strain predic-
tions for other temperatures are also accurate and can be found
in Fig. S13 (ESI†). These predicted strains, combined with the
shift factors from TTS, can be used to estimate the critical
deformation time of different composites. In Fig. 2(e) and (f)
we predict tcrit for multiple composite systems (diamond
points) and demonstrate excellent agreement with the mea-
sured values. This strain prediction provides a microscopic
picture of the glassy dynamics that leads to creep. By connect-
ing the monomer-level structure to molecular rearrangements,
the model presented above decomposes the dynamics into a
product of a structure-dependent and a structure-independent
process and can be used to predict the creep response. This
approach can be applied not just in neat polymers but also
polymer nanocomposites. Future work will seek to understand
how the picture changes when the relationships between stress,
strain, and softness become nonlinear.

As shown in Fig. 2, a composite’s critical deformation time
increases exponentially with NP volume fraction. Based on our
dynamical decomposition model, we speculate that this exponen-
tial dependence is a collective outcome of several factors includ-
ing: (1) the exponential decay of NP slowing down effect on
dynamics versus rpos (described by a1 and a0); (2) the increase of
interfacial polymer ratio versus NP loading; (3) the magnitude of
the change in the TTS shift factors with changing NP loading; and
(4) the shift in softness distribution caused by both NPs and
stress. The first three factors help suppress creep, while the
impact of the last one depends on the sample conditions; NPs
typically reduce softness, but stress tends to increase it. A decrease
in softness would promote the suppression of creep. These factors
are all included in our prediction of strain response from static
structure information (Fig. 6(b)). The agreement between strain
prediction and direct measurements in simulation further sup-
port that the change of the critical time cannot be attributed to a
single factor. Our preliminary tests suggest that the relative
contribution of different factors depends on system conditions
(polymer–NP interactions, NP loadings, etc.) and a systematic
study by isolating these factors respectively is needed in the
future. It would also be insightful to experimentally study PNCs
with significantly different softness, either near nanoparticle
surfaces or for the polymer matrix itself.

4 Conclusions

In this work, we studied the ability of well-dispersed NPs to
suppress creep using both simulations and experiments,

Fig. 6 (a) Normalized Racc, as a function of time, for different NP loadings
at T = 0.40 and sc = 0.4. The inset shows the corresponding strain versus
Racc/Npolymer curves. (b) Predicted strain-time responses (dashed lines) of
three systems at T = 0.40; dots are the measured strain. These simulations
use neat polymers or r = 3s PNCs.
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demonstrating good qualitative agreement between the model
and experiments. We find that a composite’s critical deforma-
tion time increases exponentially with NP volume fraction in
both simulation and experiments, with smaller NPs having a
larger effect. Simulation results also suggest that this exponen-
tial dependence remains for different polymer–NP interactions,
while stronger interactions can better suppress creep. We then
proposed the dynamical decomposition model, which provides
an explicit relationship between structure and dynamics on the
particle level in PNCs, especially near the NP surface. Our
results suggest that, in addition to the structure change, the
modified structure–dynamics relation (PR(S)) is also responsi-
ble for the slow interfacial dynamics. The change of PR(S) can
be described by the product of two processes (PD and PI), one is
dependent on polymer packing (softness) and the other is not.
Both processes depend on the distance to the NP surface, rpos,
while PD increases with softness exponentially at each rpos. For
the same polymer packing, the NP slowing down effects on
dynamics (ai) decay exponentially with rpos in both components
(PI and PD). These together constitute the ’double exponential’
dynamical gradient predicted and observed before.31,55,56,58,59

The existence of the structure-independent process also explains
why the thickness of the dynamically-distinct region around NPs
can differ from the thickness of the region with an altered
monomer structure, as reported in previous studies.24,62

With the dynamical decomposition model, we show that the
free energy barriers of both processes in the strong interaction
PNCs are higher and less sensitive to the increasing external
stress, resulting in better creep suppression. It also enables us to
predict the overall strain response within the low strain regime
and, thus, the constant-strain-rate response limit of a given PNC
directly from the structure information of the pre-deformation
sample. We believe it provides additional insights in the mecha-
nism of creep suppression and will potentially reduce develop-
ment time when designing and screening PNCs for structural
applications. Further, the connection built between particle-level
softness and the overall mechanical response suggests that soft-
ness plays an important role as a structural descriptor for the
development of constitutive models of glasses that broadly predict
non-equilibrium behavior.63
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