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ABSTRACT

Controlling and understanding the representations of large language models
(LLMs) remain central challenges as they become more powerful. In this pa-
per, we combine conceptor theory with recent advances in activation steering to
develop a novel framework that generalizes both approaches for provably optimal
affine steering. Conceptors characterize sets of neural network activations, rep-
resentable as ellipsoids, and they act as soft projection matrices, enabling precise
and flexible control over LLM activations while offering deeper insights into their
internal representations. Our framework derives optimal affine steering functions
from first principles, outperforming traditional additive steering methods across
in-context learning tasks. Additionally, we use a Boolean algebra over conceptor
matrices that allows for the composition of multiple steering objectives. Empirical
results demonstrate that this approach surpasses existing methods for combining
steering vectors. By uniting conceptor theory with activation steering, this work
provides not only a more powerful tool for controlling LLM outputs, but also a
principled approach for better understanding the internal mechanisms governing
model representations and behavior.

1 INTRODUCTION

Large language models (LLMs) have rapidly advanced Al capabilities (Xu & Pool 2023)), but their
potential to spread misinformation (Pan et al., 2023), reinforce biases (Gallegos et al.,2024)), and de-
velop harmful behaviors (Shevlane et al.,2023)) highlights the urgent need for methods to understand
their internal workings and reliably control their outputs. Various methods, including reinforcement
learning from human feedback (RLHF) (Ouyang et al.,|2024)), supervised fine-tuning (Devlin et al.,
2019), and prompt engineering (Liu et al., 2023)), have been proposed to steer LLM outputs toward
desired patterns. However, RLHF and fine-tuning are computationally expensive and struggle with
generalization (Bottou et al., [2018;|Amodei et al., 2016), while prompt engineering often produces
inconsistent results (Chen et al., [ 2023)).

Activation steering (Turner et al., 2023} [Li et al., 2023}, [Park et al.| [2024; |[Subramani et al., 2022
Singh et al.,2024) has recently been proposed as a new steering method that works by directly mod-
ifying the model’s activations at inference time without changing the model’s parameters or relying
on expensive optimization techniques. A steering vector that represents desired behavior can be
computed directly (Turner et al.,2023; Subramani et al., 2022} |L1 et al., 2023)) or contrastively from
positive and negative examples (Rimsky et al.| [2024b). It typically involves caching a set of token
activation vectors from an LLM’s forward pass on prompts that represent desired patterns (directly,
e.g. “wedding”, or contrastively, e.g. “love” - “hate”). These vectors are then subtracted or averaged
to form a steering vector which can then be added onto a new forward pass to steer the model to-
ward the desired pattern. This approach has shown to be effective at capturing and steering toward
a wide range of patterns describing things like concepts (e.g., weddings, love) (Turner et al., |2024)),
functions (e.g., antonyms, synonyms) (Todd et al.| 2024), and more complex behaviors (e.g., truth-
fulness, power-seeking) (Rimsky et al., [2024a). However, the performance of activation addition is
not always reliable (Turner et al.| [2024; |Price et al., 2024} Tan et al.| 2024} |/Cao et al.| 2024).
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This paper introduces a more general framework for steering LLMs using activation engineering.
Instead of averaging or subtracting a set of activation vectors to form a steering vector without much
theoretical grounding, we derive an optimal linear and affine steering function and connect our
results to existing work on conceptors (Jaeger, |2014b)). Instead of manipulating the LLM’s activa-
tions using vector addition, the activations are (softly) projected using a matrix-vector multiplication
with the steering matrix, and optionally translated by an additional steering bias vector. We further
present a Boolean algebra on linear steering matrices which allows arbitrary composition of our
proposed linear steering functions. We apply our new linear and affine steering mechanisms to a set
of tasks that are used in the literature on activation steering. We present results on function vectors
(Todd et al.|[2024) in Section@ and show how these functions can be combined using the Boolean
algebra on conceptors in Section

1.1 RELATED WORK

Early work in activation steering explored the potential for modifying the internal activations of pre-
trained language models (LLMs) to control their output at inference time, without requiring further
training. |Subramani et al.|(2022) introduced the concept of “steering vectors”, which, when added to
the hidden states of a language model decoder, could steer the generation towards a target sentence
with high accuracy. Their method involved optimizing a steering vector specific to each target sen-
tence, achieving near-perfect BLEU scores on various English sentences. They also demonstrate the
use of vector arithmetic for unsupervised style transfer. However, this approach’s reliance on gra-
dient descent for each sample limited its practical applicability to larger language models. Turner
et al.| (2023) proposed ~Activation Addition,” a more efficient method for calculating steering vec-
tors by computing the difference in activations between prompt pairs designed to elicit contrasting
behaviors. They demonstrated this technique’s effectiveness in steering GPT-2-XL’s output towards
desired sentiments, topics, and styles, showcasing the potential for controlling LLMs without ex-
tensive computational overhead. [Rimsky et al| (2024b)) further built on this method to propose
“Contrastive Activation Addition” where the steering vector would be formed using a dataset con-
taining a large set of contrasting pairs instead of a single pair, as in Activation Addition. |Li et al.
(2023) independently developed “Inference-Time Intervention” (ITI), which utilizes linear probes
to identify specific attention heads associated with truthful statements. By intervening on the acti-
vations of these heads, they were able to increase the model’s truthfulness. Compared to activation
addition, ITI focuses on causal interventions on specific components rather than a broader activation
space modification.

Several follow-up papers have proposed improvements on the general activation addition methods.
Wang et al.| (2024) propose a method designed to improve the truthfulness of LLMs by adaptively
adjusting the intensity of activation steering based on the truthfulness of the generated text. |Stick-
land et al.[(2024) fine-tune the LLM to minimize the KL-divergence between the model with the
steering vector (as the student model) and the model without steering vector (as the teacher model)
in order to mitigate detrimental effects of the steering vector on general model capabilities. Jor-
gensen et al.| (2023b) focus on improving activation steering in language models by a technique
called “mean-centring” for generating steering vectors, which aims to incorporate dataset-specific
properties into the steering vectors. Various further papers have explored activation steering for
different applications. Wang & Shu| (2024) introduce “trojan steering vectors” to compromise the
safety of LLMs. [Rahn et al.[(2024) aim at improving the performance of LLM agents in various tasks
by learning a steering vector that encourages the agent to be more explorative. |Qian et al.| (2024)
trace trustworthiness representations during training and find that steering vectors extracted from
earlier pre-training checkpoints can be used to enhance the trustworthiness of models fine-tuned for
specific tasks. (Ghandeharioun et al.[(2024) discover that activation steering is effective in bypassing
safety filters. Price et al.| (2024) were able to reduce the likelihood of backdoor behavior in LLMs
using contrastive activation addition, but were unable to eliminate the vulnerability completely. |Lu
& Rimsky| (2024) examines bias representations in Llama-2-Chat, and uses activation addition to
steer the model’s responses toward or away from stereotypes. Although preliminary results from
activation addition are promising, the method’s shortcomings have also been investigated. [Tan et al.
(2024) show that while steering can work well in the right circumstances, there remain many tech-
nical difficulties of applying steering vectors to guide models’ behaviour at scale. |Cao et al.| (2024)
argue that existing methods for extracting steering vectors, which rely on directly calculating ac-
tivation differences from contrastive prompt pairs, can lead to suboptimal results, particularly in
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alignment-related scenarios. They propose optimizing the steering vectors to directly influence the
generation probability of contrastive human preference data pairs.

Most activation addition work has been empirical, but more theoretically grounded approaches to
activation steering are now emerging. [Todd et al.|(2024) introduce the concept of “function vectors”
(FVs) in large language models (LLMs), which represent specific input-output mappings within the
model’s activation space. They argue that these FVs are distinct from simple semantic vector offsets
and play a crucial role in the model’s ability to perform in-context learning (ICL). |Park et al.| (2024)
examine the Linear Representation Hypothesis, which posits that meaningful information in LLMs
is encoded in linear subspaces within the activation space. The authors argue for the importance
of the inner product as a key operation for understanding and manipulating these representations.
The paper aims to clarify the theoretical foundations of techniques like activation steering, and high-
lights the importance of linearity in understanding how models represent and process information.
Singh et al.| (2024) present a theoretical framework for understanding affine steering functions and
derive two optimal functions under different constraints. Interestingly, under their constraints of
“guardedness”, they show that the optimal affine steering mechanism is simple additive steering -
which provides theoretical justification for existing steering approaches. They empirically validate
the effectiveness of their proposed steering methods in mitigating bias and reducing toxicity.

It becomes clear from previous work that steering vectors alone are not expressive enough to reli-
ably steer model behavior. However, the evidence for the linear subspace representation (Park et al.,
2024) suggests that affine or linear methods should be sufficient to intervene on hidden representa-
tions with the effect of steering them towards certain behaviors. Furthermore, empirical evidence
from the literature on concept erasure has shown that affine interventions are effective even for deep
and nonlinear models (Ravfogel et al., 2022; Belrose et al., [2023)).

2 A THEORETICAL FRAMEWORK FOR ACTIVATION STEERING

2.1 PRELIMINARIES

We follow the formalism for steering functions that was introduced by |Singh et al.|(2024)). Let X be
an alphabet, i.e., a finite and non-empty set. A language model p is a distribution over X%, the set of
all strings over the alphabet 3.

We further introduce C as the set of concepts that may be active in the current text sequence s € 3*.
These concepts may correspond to functions as in [Todd et al.| (2024), binary concepts as in [Singh
et al.[(2024), or other, more complex, behaviors exhibited by language models.

Given a language model m, we define the following conditional distribution:
me(s) = m(s | C = c) cm(s)1{g(s) = c}, (1)
which expresses the probability of sampling a string s with concept ¢ present.

Let enc : ¥* — RP be a language encoder, a deterministic function from the set of strings to
real-valued vectors. This need not be a specialized module — it could be, for example, the hidden
activations of a decoder-only transformer model. With a fixed encoder function, we can define the
following R” random variable:

H(s) = enc(s) : ¥* —» R, )
which is distributed according to:
PH=h|C=c)=PH '(h)|C=c)= Y m(s)1{h=enc(s)} 3)
sEX*

We assume that H is of finite first and second moment and denote the concept-conditional means of
H with respect to c as y., the concept-conditional second moment as X, and the concept-conditional
covariance matrix as Y., all defined below:

Me = E[Hc], i:c = ]E[H(H(TL Y= E[HFH:] - :uc,uz 4)

for all concepts ¢ € C.
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Figure 1: Illustration showing the basic geometric difference between additive and conceptor steer-
ing using a set of activations for the antonym task.

We are interested in functions that map representation-valued random variables to other
representation-valued random variables. Such functions are called intervention functions (Singh
et al,|2024). We are specifically interested in steering functions f., which are intervention functions
that steer a given representation towards some concept c.

Definition 1 (¢-assisted steering function). We define a steering function f. to be ¢-assisted, if it is
of the form:

feH(s)) ifo(s) = ¢
H(s) ifo(s) =c,

where f!: RP s RP is a steering function and ¢ : ¥* + C is a concept encoding function.

f.(H(s)) = { )

Singh et al.[(2024)) investigate such ¢-assisted steering functions. For the present paper, we instead
consider unassisted steering functions which do not explicitly make use of a concept encoding func-
tion ¢ when steering the model at inference time, following prior work on activation steering Turner
et al. (2023)); [Li et al.| (2023)); Subramani et al.| (2022).

2.2 ADDITIVE STEERING FUNCTIONS

Additive steering functions have been the dominant approach to steering model behavior (Turner
et al.,[2023; Rimsky et al., [2024b; ivan der Wejj et al., 2024).

Definition 2 (additive steering function). We define a function f. to be an additive steering function
if it is of the form:
fe(H(s)) = be + H(s) (6)

where b, € RP is the steering vector that corresponds to concept c.

Typically, this additive steering vector is chosen to be b. = p. where . is, as defined above, the
concept-conditional representation mean (Turner et al.,|2023). In contrastive activation addition, the
steering vector is chosen to be b, = . — e where ¢ is the target concept and ¢’ is a contrastive
concept. Recent work by |Singh et al.| (2024) has shown that, when guardedness is required (see
Section[2.3)), the optimal affine steering method for binary concepts simplifies to contrastive additive
steering.

2.3 LINEAR STEERING FUNCTIONS

In the following, we will remove the constraint of guardedness that makes purely additive steering
optimal (Singh et al., 2024)), as we are interest purely in steering the behavior of a language model,
and not in corresponding debiasing or concept erasure. As our goal is to find a more performant
steering mechanism, we are now looking at the class of linear steering functions which we hypoth-
esize are more expressive than additive steering functions.

Definition 3 (linear steering function). We define a function f. to be a linear steering function if it
is of the form:
fe(H(s)) = CH(s) @)

where C € RP*D is the steering matrix that corresponds to concept c.
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As we do not want to rely on the concept function ¢ to apply our steering function, we instead rely
only on the concept-conditional covariance matrix .. We now derive the optimal linear steering
function that minimally changes the representation. |Singh et al| (2024) derive an optimal affine
steering function subject to the constraint that it also guards the representations against the concept
that is being steered. We find that this is not an essential requirement for our purposes. Instead,
we follow the approach by Jaeger| (2014b) to define a “conceptor” steering matrix C through an
objective function whose first component pushes C to act as a projection matrix for states that
exhibit the target concept ¢, and whose second component adjusts how many leading directions of
the covariance matrix X, should be effective for this projection.

Definition 4 (optimal linear steering function). We define the optimal linear steering function to
be the function f.(H(s)) = CH(s) where C is the conceptor matrix which solves the following
optimization problem:

C(X.,a) = argminE [HHC — C’HCHS] +a7?||C)% (8)
C

where h is the representation, || - || is the Frobenius norm, and « is the regularization parameter
also referred to as the conceptor’s aperture.

The aperture parameter o balances the trade-off between accurately representing the activation pat-
tern and maintaining a generalized representation. This parameter allows us to tune how much of the
concept’s signal variance is captured or filtered by the conceptor. This allows a formal investigation
into steering more general concepts beyond binary concepts.

When « is large, the eigenvalues p; approach 1 and C' approaches the identity matrix, causing the
conceptor to allow for more signal components to pass through the projection of the representations
with the conceptor matrix. Conversely, when « is small, the eigenvalues p; approach 0, causing the
conceptor to allow for less variability. In the extreme case of a = 0, the conceptor collapses to the
zero mapping. This minimization problem uniquely specifies the conceptor C(X., o), and can be
computed in closed form from >, and a.

Proposition 1. Let Y. be the concept-conditional second moment of the random variable H(s) and
a € (0,00). Then, the conceptor C(X., &) is uniquely defined and can be directly computed as:

- /- —1
C(ch a) =3 (Zc + a_21) 9
The matrix C(3., o) is positive semi-definite with eigenvalues in the range [0,1).

Proof. See Jaeger| (2014b).

Where the context is apparent, we drop the function notation and denote the conceptor matrix simply
by C. The conceptor matrix C' captures the principal directions and variances of a set of neural
activation vectors. This structure can be visualized as a high-dimensional ellipsoid that describes the
overall shape and spread of the activations’ “underlying pattern” or state space region, see Figure[4]

Because conceptors are computed from the cloud of activation vectors and encode the correlations
between activations, we expect that conceptors will be able to better capture the activation space of
complex patterns compared to additive methods, which discard information about correlations.

2.3.1 COMBINING LINEAR STEERING FUNCTIONS WITH BOOLEAN OPERATIONS

We can combine multiple steering matrices using the Boolean operations on conceptors, as defined
by [Jaeger| (2014b). These operations allow us to merge conceptors computed on different data
samples to construct more complex steering targets. We begin by defining the OR operation on
two conceptors, which is computed by summing the covariance matrices on which they are based.
This operation can be understood as merging the data from which each conceptor was derived. The
resulting conceptor is then computed based on the sum of these covariance matrices.

Definition 5 (OR Operation on Conceptors). Let C1 and Cy be two conceptors computed from co-
variance matrices ¥, and X, respectively. The OR operation, C1V Ca, combines these conceptors
by adding their covariance matrices and is given by:

CiVCy= (S + %) (Sey + By +a721)
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Using Equation[9) this can be rewritten as:

—1

v = (14 (T - )7 4 Gl = )™)Y

Next, we define the NOT operation. This operation inverts the covariance matrix, producing a
conceptor that captures data that co-varies inversely to the original conceptor.

Definition 6 (NOT Operation on Conceptors). Let C' be a conceptor derived from covariance matrix
Y. The NOT operation on a conceptor, denoted by —C, is computed by inverting the covariance
matrix. The NOT operation is defined as:

-C =318 o)t
Using Equation[9) this can be rewritten as:

~C=1-C

Using the NOT and OR operations, we can now define the AND operation using de Morgan’s law.
The AND operation captures the intersection between the two conceptors.

Definition 7 (AND Operation on Conceptors). Let C; and Cy be two conceptors. The AND opera-
tion, denoted by C1 N\ Ca, can be obtained using de Morgan’s law: Cy AN Cy = —(=C1 V =Cs). This
leads to the following formulation:

CiACy =+ ) (S 4+ +a )
Using Equation[9) this can be rewritten as:

Cl/\CQZ(Cfl-f—C{l—‘rI)_l

These Boolean operations can be used to combine multiple conceptor steering matrices into more
complex steering targets. Similar operations have been proposed for additive steering methods. [Todd
et al.| (2024) propose a task arithmetic on function vectors and demonstrate it on a some toy tasks,
while Subramani et al.| (2022)) use a vector arithmetic on steering vectors. The negation of additive
steering vectors has been used widely in contrastive steering as introduced by |Rimsky et al.|(2024b).
We note that the AND and OR operations on conceptor steering matrices do not clearly correspond
to the addition operation on steering vectors. In Section we compare combinations of steering
vectors against combinations of conceptor-based steering matrices.

2.4  AFFINE STEERING FUNCTIONS

We now turn to the class of affine steering functions, in order to generalize the results on conceptors
(Jaeger, 2014b)), affine steering functions (Singh et al.,|2024)), and additive steering functions (Turner
et al.,[2023;|Subramani et al.,[2022; |Li et al | 2023)) into a more general framework of affine activation
engineering.

Definition 8 (affine steering function). We define a function f. to be an affine steering function if it
is of the form:

fe(H(s)) =CH(s)+ b (10)
where C € RP*D s the steering matrix, and b € RP is the steering vector, both of which corre-
sponding to concept c.

We define the optimal affine steering function in an analogous way to how we defined the optimal
linear steering function, as the solution to an optimization problem.

Definition 9 (optimal affine steering function). We define the optimal affine steering function to be
the function f.(H(s)) = CH(s) + b which solves the following optimization problem:

1 2 -2 2
cendlin, pp B [IIHe = CHe = BlI5] + o[l (1

In the following proposition, we derive the unique solution for the optimal affine steering function.
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Proposition 2. Let 3. be the concept-conditional covariance matrix of H(s), p. its concept-
conditional mean, and o € (0,00). Then, the optimal affine steering function f., as defined above,
can be directly computed as:

C(Ze,a) = Le(Ze 42072171 (12)
b(Ee, ) = pe — C(Ec, a)pue (13)
such that the final steering function is of the form:
fe(H(s))=Cz+b (14)
fe(H(s)) = C(z — pre) + pic (15)

where C' = C(Z., o) and b = b(Z,, o).

Proof. See Appendix [A.T]

In this resulting steering mechanism, we can see connections to existing work. Jorgensen et al.
(2023Db)) argue that mean centering the activations before applying the steering vector could improve
performance — a similar operation is applied in our optimal affine steering mechanism.

3  METHODS

Given a finite sample H € RP*" of n representations from H.., we can approximate the covariance
matrix with £, = HHT /n. We empirically found that the conceptor-based steering method works
best if it acts additively on the residual stream of a large language model (Elhage et al.| [2021). If we
consider the activation of the residual stream at layer ¢ right before the multi-head attention to be
he, and the conceptor C is computed using the covariance matrix on a sample of activation vectors
exhibiting concept c at layer ¢ becomes:

fe(he) = hg + BcCohy = (B.Cy + I)hy (16)

where 3. > 0 is a hyperparameter. We can think of this as a “soft projection”. A projection
matrix has eigenvalues that are either zero or unity, but the conceptor matrix has “soft” eigenvalues
between zero and unity. Thus, the conceptor “softly projects” the activation vector hy toward the
pattern represented by C by scaling its components according to the patterns’ principal directions.

The setup for affine conceptor-based steering is analogous to the linear case but with the conceptor C
being computed as described in Equation[I12]and the bias b being computed as described in Equation
The activations hy are then steered with:

Je(he) = hg + Be(Cehg +b) = hy + Be(Co(he — pic) + pic) (17)

where 1. is the concept-conditional mean computed on the sample H € RP*", We can think of
this operation as a soft projection on mean-centered data, similar to what was proposed by Jorgensen
et al.| (2023Db).

4 EXPERIMENTS

For our experiments, we will use EleutherAI’'s GPT-J 6B, GPT-NeoX 20B, and GPT-2 Small models,
as done in previous works (Todd et al., 2024} Jorgensen et al.| [2023a). For all experiments, we find
optimal hyperparameters for each steering method at every layer. The details of our grid search for «
and (. for conceptor-based steering and 3,44 for additive steering can be found in Appendix

4.1 FUNCTION STEERING

We compare conceptor-based and additive steering mechanisms on their ability to steer a given
model towards correctly executing a set of functions. We test both methods on GPT-J with 6B
parameters and GPT-NeoX with 20B parameters. For each function, the described experiment
will be repeated 5 times with different random seeds, and all reported results are averaged across
across these five runs. The examples of the input-output functions come from the dataset by [Todd
et al.| (2024). We use the following subset of five functions (Jorgensen et al., 2023a): antonyms
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(e.g. good—bad), present-past (e.g. go—went), English-French (e.g. hello—bonjour), singular-
plural (e.g. mouse—mice), country-capital (e.g. Netherlands— Amsterdam), and capitalize (e.g.
word—Word). To ensure comparability of our results, we follow the work by |Todd et al.| (2024) as
closely as possible. For more details, see Appendix [A-3.1]

antonyms capitalize country-capital english-french present-past singular-plural
. 100% 1 1 1 1 1 — = baseline
% 75% - == conceptor
= 50% —— addition
5 25%
0% R R R R

0 510152025 0 510152025 0 5 10152025 0 510152025 0 5 10152025 0 5 10152025
)
S 100% A = = baseline
~ 75% q 1 1 1 == conceptor
§ 50% - 4 4 4 4 == addition
Z 25% 1 1 1 1
=
A i = e e e e e e e e e = e == e ==
Q
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Figure 2: Comparison of the accuracy on all six function tasks for conceptor-based steering against
additive steering across all layers for GPT-J and GPT-NeoX. For explanation, see main text.

The results in Figure [2] show that conceptor-based steering outperforms additive steering (the base-
line method reported by [Todd et al.| (2024)) for every task on both tested models. Results show the
best-performing model across a range of hyperparameters. It is clearly evident that conceptor steer-
ing is strictly more performant than additive steering across all tasks for most layers. Results for
the complete hyperparameter sweep are presented in Appendix [A3] In line with previous findings
(Todd et al.| 2024} Jorgensen et al.| [2023a)), steering is most effective across layers 9-16 for GPT-J
and layers 10-30 for GPT-NeoX.

Table 1: A comparison of affine conceptors, linear conceptors, activation vectors and mean-centered
(MC) activation vectors on the GPT-J (6B) model, across simple function vector tasks. Results show
the best performance across all hyperparameters and across all layers.

antonyms capitalize country-capital english-french present-past

Addition 20.54% 93.16% 32.04% 18.88% 69.66%
Addition (MC) 31.20% 95.00% 63.90% 34.32% 83.32%
Linear conceptor  52.14% 96.68 % 81.62% 59.02% 91.56%
Affine conceptor  52.82% 96.26% 85.32% 61.32% 91.88%

We also present results for affine conceptors that include a mean-centering operation as defined
in Equation [T7] and Section [3] The experiment is described in full detail in Appendix [A:4] The
results are shown in Table [I] The mean-centering improvement on additive steering, proposed by
Jorgensen et al.| (2023b)) yielded a relative improvement over additive steering of as much as 99%
on the country-capital task. Analogously, affine conceptors improved steering accuracy on some of
the tasks, but the relative improvement was limited to no more than 5% in accuracy.

4.2 STEERING COMPOSITE FUNCTIONS

We further conducted experiments where two
. i ) conceptors representing three different com-
english-french english-french singular-plural . . .

& antonyms & capitalize & capitalize pound functions were combined using the AND
operator. The input-output example dataset for
s0% | | | this function was generated using GPT-40 and
25% | | | A will be made available for the camera-ready

% | ﬁg < A | paper. To present the baseline for how well
0 510152025 0 510152025 0 510152025 non-combined steering mechanisms perform,

taver taver raver we show results for the conceptor C'12 and the

100%

75% A 1 B

GPT-J (6B)

Ccl?2 —— Clac? A2 — (A} + AP . 1,2
: — steering vector h,’” that were each computed on

Figure 3: Performance of additive steering and
conceptor steering on composite functions. 8
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the compound function directly. We then com-

bine the conceptors computed on the individual

functions C'! and C? using the AND operation
as C' A C?, and we combine the steering vectors h} and h? using their arithmetic mean 3 (h} + h2).
Figure [3] shows the performance of all compared methods across all layers of the GPT-J model. In
line with the results from Section the conceptor baseline outperformed the additive baseline
on all three tasks. The AND-combined conceptor outperformed the mean-combined steering vec-
tors. On one of the three tasks, english-french & antonyms, the AND-combined conceptor even
outperforms the additive baseline.

5 CONCLUSION

The integration of conceptor theory with activation steering provides a new lens through which to
understand and manipulate large language models (LLMs). By deriving an optimal affine steering
function from first principles, we establish a rigorous foundation for steering, addressing the limita-
tions of existing additive methods. Conceptors, represented as ellipsoids, enable more precise con-
trol by capturing the full covariance structure of neural activations, which allows them to generalize
beyond the simple vector offsets commonly used in additive steering. Moreover, the projection-
based steering is inherently adaptive without an additional mechanism such as the one proposed by
Wang et al.|(2024)), since activations residing within the conceptor’s region would experience mini-
mal change whereas activations outside of the conceptor’s region experience a more substatial shift.
The ability to project activation vectors softly through conceptors reveals how concepts are encoded
and how they can be influenced without requiring model retraining. This positions conceptor-based
steering not only as a tool for output manipulation but also as a method for interrogating and inter-
preting model behavior.

Additionally, the compositional nature of conceptor operations, implemented through Boolean alge-
bra, offers a powerful mechanism for multi-task steering. By combining conceptors using operations
like AND and OR, we are able to create composite steering objectives that outperform traditional
methods of combining steering vectors. This demonstrates the versatility of our approach, allowing
for more sophisticated control of LLMs, especially in multi-task scenarios where steering objectives
may conflict or overlap.

In our experiments we show that conceptor-based steering outperformed addition-based methods
across functions and combined functions. Despite its strengths, conceptor-based steering introduces
additional complexity and computational cost. The need to compute covariance matrices, and the
tuning of hyperparameters like aperture, increases the overhead compared to simpler additive meth-
ods. However, these trade-offs are justified by the gains in precision and control, especially in tasks
where additive steering has proven insufficient. We mention also that the conceptor matrix can be
fused with the attention head weights to not impact model latency.

While our framework demonstrates success across a range of tasks, further exploration is needed
to understand its scalability to larger models and more diverse tasks. Investigating how concep-
tors interact with even more complex behaviors in LLMs, such as multi-turn dialogue or long-term
reasoning, could provide further insights into the flexibility of this approach.

Our work unites conceptor theory and activation steering, offering a robust framework for both con-
trolling and understanding LLMs. By deriving a provably optimal affine steering mechanism and
introducing composable Boolean operations, we provide a method that not only surpasses tradi-
tional steering approaches but also lays the groundwork for more advanced activation engineering
techniques. While challenges remain, the combination of theoretical rigor and empirical success po-
sitions conceptor-based steering as a powerful tool for the future of LLM control and interpretability.
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A APPENDIX

A.1 PROOF OF PROPOSITION[2]

We aim to minimize the cost function defined in Equation [T}
L(C,b) = E [|H, — CH, — b|3] + o 2||C||%

The first derivative of this function is:

0 0 _
S L(C,D) = o ( [llo = Co = B3] + a2 C})
=-E[(z—Cz—bz']+a2C'C
=-E [:cx—r — Czx — bJ;T] +a2CTC

= -3+ CZ. + bu! +2a72C

0 0 _
2 pc) = 2 (® o - Co—HE] +aICIB)
=—pe —Cpuc+b

The second derivative of this function is:

5 O (e e
=3, + 20 2]
0 0
%L(Cv b) - %(_Mc - OMC + b)
=1

(18)

(19)
(20)
2n
(22)
(23)
(24)

(25)
(26)
27)
(28)

Because both . + 2021 and T are positive-definite, the minimization problem is strictly convex,
and there exists a unique solution. To locate this unique minimum, we set the first derivative of

L(C,b) to zero:
0
0=—L(C,b
aO ( ) )
=%, +C% +bu' +2a7%C

=N, +C(Ee+2072) + b

0
0= %L(C,b)
= —pe —Cuc+0
b=(I—C)pe

We now plug Equation [34]into Equation [31] and solve for C:
0=—3.+CS + (I —-Cup" +2a72C
C=(Ec—pun")(Ee—pu’ +2a72)7"

By substituting 3. = Se —pup’ (as per Equation we obtain the final results:

C(Ze,a) = Xo(Be +2a721)71
b(Xe, ) =p—Cu

A.2 CONCEPTORS

(29)
(30)
€Y
(32)

(33)
(34)

(35)
(36)

(37
(38)

O

Conceptors are mathematical constructs that can be used for the management of neural activations
(Jaeger, |20144a). A conceptor can be visualized as a structure that describes the activational pattern,
or state cloud, of a set of high-dimensional activation points using an ellipsoid (see Figure ). This
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c1 c2 c3

Figure 4: 2D visualization of 3 Conceptors that describe the “underlying pattern” or state space
region of 3 different sets of neural activations.

conceptor is mathematically represented by a positive semi-definite matrix with eigenvalues between
zero and unity that can be used to (softly) project a new set of activations toward the described
ellipsoid.

Conceptors have been used to control pattern-generating RNNs effectively across various behaviors
(Jaeger], 2017), prevent catastrophic forgetting and enhance continual learning in feedforward net-
works (Hel 2023), remove bias subspaces in LLMs like BERT and GPT (Yifei et al., [2023)), and
distill linguistic abstractions into knowledge graphs from contextual embeddings (Kuiper, 2024;
Bricmanl 2022).

The eigenvalues p; of the conceptor matrix C' are defined as:

Ai
ita—?

forO0< A\; <land 0 < a < 00
forO< \; <landa=0
forO0 < \; <land o = ¢
for \; =0and 0 < a <
for \; =1land 0 < a <

Hi =

= O = Oy

where \; represents the eigenvalues of the correlation matrix R. These eigenvalues p; fall within
the interval [0, 1] and are influenced by the aperture parameter . When « is large, the eigenvalues
1; approach 1 and C approaches the identity matrix, causing the conceptor to allow for more signal
components to pass through the projection of the states with the conceptor matrix C'z. Conversely,
when « is small, the eigenvalues p; approach 0, causing the conceptor to allow for less variability.
In the extreme case of o = 0, the conceptor collapses to the zero mapping.

A.3 EXPERIMENTAL DETAILS

All experiments were run on NVIDIA GPUs. The GPT-NeoX model was run on one NVIDIA RTX
A6000 with 48GB of VRAM, the GPT-J model was run on one NVIDIA GeForce RTX 4090 with
24GB of VRAM, and the GPT-2 Small model was run on one NVIDIA L4 Tensor Core GPU with
24GB of VRAM. Each hyperparameter sweep took less than 18 hours of compute time per model
and per task.

A.3.1 FUNCTION STEERING

All the experimental configurations (number of experiments, number of ICL prompts and examples
per prompt, accuracy metric, etc.) were, unless mentioned otherwise, adopted from [Todd et al.
(2024) to ensure comparability of results.

For each experiment, to generate the 4 steering mechanisms, we first compile N, = 100 (ICL)
prompts that demonstrate the respective input-output function. The prompts are formed by randomly
sampling N = 10 input-output pairs from the function pairs dataset. If for a specific function,
the dataset contains less than IV, x N = 1000 input-output examples, this sampling is done with

replacement. For each prompt pf , the last input-output pair has the output stripped, resulting in the
format:

f_ . . . .
p; ="T1 Y1, T2 Y2, ., TN—1 S YN—1,TN

)
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where = represents the input tokens of a randomly sampled (input, output) pair, y represents
the corresponding output tokens, /N represents the number of sampled input-output pairs, and
i€ {1,...,N,}. A very simple example where N, = 3 and N = 3 can be seen in Figure

old:young, vanish:appear, darl{: I simple] +.: complex

awake:asleep, future:past, joyf]
top:bottom, tall:short, acceptf] encode]] +.7 decode

(a) Extraction of the antonym function (steering) vector h; at (b) Antonym steering vector in 2 zero-shot
layer [ using 3 ICL prompts. contexts.

Figure 5: Visualization of how an antonym function (steering) vector can be extracted and applied.
Example from |Todd et al.[(2024)

Formally, for each function f € F in our set of in-context learning (ICL) tasks, we have compiled a

set Py of ICL prompts plf € Py. Each prompt p{ is a sequence of tokens with /N input-output ex-
emplar pairs (z,y) that demonstrate the function f mapping between x and y. For each experiment,
we generate [V}, such prompts.

Now that the ICL prompts have been generated, we need to extract the relevant activations. [Todd
et al.| (2024) showed that the neural representations of the functions are encoded in the activation
vector of the last token (”:”’) of the prompt, right before the transformer would auto-regressively start
generating the output token(s). Moreover, the point in the residual stream A at which the functions
were most strongly encoded was shown to be at the beginning of layers L = {9,...,16}, right

before MHA and FFEN (Todd et al., [2024)).

Formally, for each function f € F' and each prompt plf € Py, the activation vectors h{ (pf ) are

extracted from the residual stream h at each relevant layer [ € L from the last token’s (:”") activation
vector.

For each function f € F' and each layer [ € L, we now have IV, cached activation vectors hf (pf )
aimed to encode the neural representation of f at layer [. Using this, we can generate the layer-
specific steering mechanisms for each function as described in Section 3]

To test the performance of the generated steering mechanisms, new sets of N; = 1000 input-output
pairs are randomly sampled from the function pairs dataset for each experiment. This is done with
replacement for functions where the dataset contains less than Ny pairs. An input prompt p; is
formatted as p; = ”x : 7, where z is a tokenized input from an input-output pair. The tokenized
output y from the pair is left out from p; as it will be used to test the accuracy of the steering
mechanisms. For each experiment, we now have Ny test input prompts p;.

To test the accuracy of the steering mechanisms, we apply the layer-specific steering mechanisms
on independent forward passes and record their subsequent output. This means that for our exper-
imental configuration, across the functions f € F, the 5 experiments, the 4 steering mechanisms
(excluding the baseline), the N; number of test prompts, and the number of layers [ € L, there will
be 6 x 5 x 4 x 1000 x 8 = 960, 000 forward passes, each with a steering intervention.

Each steering intervention will consist of a layer-specific steering mechanism modifying the residual
stream h at the mechanisms’ respective layer /. This modification can be defined as transforming the
unmodified residual stream activation vector h, into the steered activation vector hj. The steering
mechanisms’ modification are described in Section[3l

After the respective modifications have been made to the residual stream, the forward passes will
continue as usual. At the end of each forward pass, the final logits are converted into probabilities
using a softmax, and the token with the highest probability is selected. This means that at the end of
one experiment, we have IV, single-token outputs for each layer-specific steering mechanism. These
tokens can now be compared with the first token of output y that corresponds with the input x of the
initial prompt p;. Based on how many of the N; outputs were correctly identified, a top-1 accuracy
is calculated for each layer-specific steering mechanism. This experiment is repeated 5 times for
each function f € F' to account for variability caused by the random sampling for the generation of
the steering mechanisms and test sets.
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A.3.2 HYPERPARAMETER OPTIMIZATION

The performance of the steering mechanisms in the function vector experiments was optimized
through a grid search over all hyperparameters. Firstly, we try steering at each layer of the
model. For conceptor-based steering, we do a grid search for the aperture value o with possi-
ble values from {0.001, 0.0125,0.05,0.1} and the scaling coefficient 3. with possible values from
{0.5,1.0,2.0,3.0,4.0,5.0}. For additive steering, we run a grid search over the scaling coefficient
Bada With possible values from {0.5,1.0,1.5,2.0,2.5,3.0,4.0,5.0}. The results from these hyper-
parameter sweeps are shown in Appendix [A.3]

A.4 AFFINE CONCEPTORS AND MEAN-CENTERED VECTORS FOR FUNCTION STEERING

An important improvement for additive steering is a technique called mean-centering, put forward
by Jorgensen et al.| (2023a)). This method enhances the effectiveness of steering vectors by reducing
the inherent bias present in the activation space of LLMs. Activation vectors in LLMs tend to be
anisotropic, meaning that they are not evenly distributed around the origin, but are instead offset in a
consistent direction. This can negatively impact the steering vector’s performance as the bias vector
b representing this offset, does not encode any specific task-related information, diluting the steering
vector’s effectiveness.

First, the steering vector Bg for a specific function f is computed by averaging the activations at

layer £ on a set of ICL prompts demonstrating the input-output function Pry. h{ now encodes the
task-specific behavior but may still be affected by biases in the model’s overall activation space.
Mean-centering attempts to mitigate this by subtracting the mean activation of a broader dataset that
represents the general activation space of the model. This is done by computing the mean activation
Vector fiy,in Over a large, representative set of prompts Dy, from the model’s training data.

The mean activation vector i, was calculated using the same procedure described by [Jorgensen
et al.| (2023a): A subset from the dataset used to train GPT-2 was compiled |Gokaslan et al.| (2019).
The subset was constructed by storing all entries from the folders urlsf_subset01-1/data
and urlsf_subset01-182/data. After this, only entries that contained less than 500 tokens
(using the GPT-2 Tokenizer) were retained. This resulted in 210 entries from which the final 10 were
removed, leaving a dataset of 200 entries. The mean activation vector fi,i, was then computed by
averaging the activations over this dataset.

Implementing the mean-centering performance enhancement for steering toward the execution of
functions can be done as follows:

1

_ he(d 39
|Dtrain| Z() ( )

de Diain

i_L(J; me — B,{ — frain With  figain =

where h{ is the activation vector at layer ¢, and Dy, is the dataset for which the mean-centered
Vector Liyain 1S computed. This refinement leads to a steering vector that can more effectively guide
the model toward the specific task and has been shown to have a positive impact on the overall
steering effectiveness (Jorgensen et al., [2023a)).

The analogous operation of mean centering for conceptor-based steering is given by the application
of affine conceptors, as derived in Section 2.4}

Table [T in the main text and Figure [ below show that the mean-centering mechanism provides a
good improvement for both additive steering, and affine conceptors provide a (relatively smaller)
improvement over linear conceptor steering. The experimental setup is as described in Appendix

A.5 HYPERPARAMETER SWEEP RESULTS
In the following section, we present results from the hyperparameter optimization described in Ap-

pendix[A.3.2] in order to assess the sensitivity of both steering mechanisms (additive and conceptor-
based) to the hyperparameters.
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Figure 6: A comparison of additive steering, mean-centered additive steering, linear conceptor steer-
ing, and affine conceptor steering on the GPT-J (6B) model across all layers, computed on five dif-
ferent function vector tasks. The line shows the best average performance across five runs for the
best hyperparameters for the given layer.

A.5.1 CONCEPTOR STEERING

Figure [/| shows that the optimal choice of aperture and beta parameters for the conceptor steering
mechanism is constant at « = 0.05 and Sc = 2.0 across all tasks for the GPT-J model (for the
layer with the maximum performance). Figure |8|shows similar behavior for the GPT-NeoX model,
although the optimal beta parameter is 5 = 1 and the optimal aperture parameter changes to o =
0.0125 for the country-capital task, and o = 0.1 for the english-french task, and o = 0.05 for
all other tasks. This shows that hyperparameter choices are robust for conceptor steering, but still
benefit from task-specific and model-specific optimization.

We further show the performance of conceptor-based steering across all layers and different beta
values (taking the best-performing aperture value) for the GPT-J model in Figure0)and for the GPT-
NeoX model in Figure [I0] For the GPT-J model, the best-performing layers are typically layers
12-14 with some variability (present-past being a few layers later at 14-17, and capitalize working
well across layers 9-19). For the GPT-NeoX model, conceptor steering reaches (near-)maximum
performance at layer 15 across all tasks, with layer 15 being at around one third of the depth of
the model. Figures|l1|and |12] show the performance of conceptor-based steering across all layers
and different aperture values (taking the best-performing beta value) for the GPT-J model and the
GPT-NeoX model, respectively, and show a similar pattern as described above.

A.5.2 ADDITIVE STEERING

Additive steering only has two hyperparameters that were being optimized: the layer on which
steering was done, and the beta value that determines the “steering strength”. Figure [I3] shows the
performance of additive steering on the GPT-J model across all layers and beta values. Similarly
to the results of conceptor-based steering, additive steering works best across layers 9-14 with peak
performance always between layers 12-14. The best-performing beta values are 2.0, 3.0, and 4.0,
although 2.0 is sufficient to reach peak performance for all tasks. Figure [14]{shows the performance
of additive steering on the GPT-NeoX model across all layers and beta values. Similar to the best-
performing conceptor-based steering hyperparameters, additive steering works best on layers 12-16.
The optimal beta values are 1.5 and 2.0.
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