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Abstract

Reinforcement Learning from Human Feed-001
back (RLHF) has been shown to effectively002
align large language models (LLMs) with hu-003
man knowledge. However, the lack of human004
preference labels remains a significant bottle-005
neck when applying RLHF to a downstream006
domain. Humans in RLHF play a critical role007
in injecting reasoning preferences into LLMs,008
and we assume the reasoning process under-009
lying human assessments may potentially be010
replaced by reasoning pathways derived from011
Knowledge Graphs (KGs). Inspired by this as-012
sumption, we propose Reinforcement Learning013
from Knowledge Graph Feedback (RLKGF),014
a novel method that leverages KG semantics015
and structure to derive RL rewards in the ab-016
sence of manual annotations. Unlike Reinforce-017
ment Learning from AI Feedback (RLAIF),018
RLKGF directly integrates human priors en-019
coded in KGs as the reward model, aligning020
LLM responses with expert knowledge without021
additional preference labeling or reward model022
training. RLKGF structures context-relevant023
facts into knowledge subgraphs and defines re-024
wards by simulating information flow across025
semantic and logical connections between ques-026
tion and candidate response entities. Experi-027
ments on three public and one private medical028
dialogue dataset demonstrate that RLKGF sig-029
nificantly outperforms the competitive RLAIF030
in improving LLM diagnostic accuracy.031

1 Introduction032

Large language models (LLMs) like ChatGPT033

(Ouyang et al., 2022) have shown remarkable po-034

tential in tasks such as knowledge-based question-035

and-answer (Q&A) (Liu et al., 2024) and intelligent036

decision-making (Wang et al., 2025). As LLMs ad-037

vance in specialized domains like medicine (Zhang038

et al., 2023a), agriculture (Peng et al., 2023), and039

law (Huang et al., 2023), the demand for factu-040

ally accurate and helpful responses grows. Rein-041

forcement learning from human feedback (RLHF),042
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Figure 1: Compared to RLHF and RLAIF, RLKGF
treats the knowledge graph (KG) as a reward model
(RM), directly providing rewards for LLM responses
without the need for preference labeling or reward
model training.

regarded as a key driver of ChatGPT’s success, 043

aligns LLM outputs with human preferences and 044

enhances generation quality (Bai et al., 2022a). Its 045

effectiveness has also been validated in domain- 046

specific LLM adaptations (Yang et al., 2024b). 047

However, RLHF involves a complex training pro- 048

cess. First, a reward model is learned from ranked 049

human preference data. Subsequently, scores gen- 050

erated by the reward model are used to apply policy 051

optimization (Schulman et al., 2017). Despite its 052

benefits, the high cost of human annotation, incon- 053

sistent annotation standards, and potential biases 054

from subjective judgments hinder the widespread 055

application of RLHF. 056

Both self-reflection (Asai et al., 2023) and CoT 057

(Wei et al., 2022; Chu et al., 2024) approach in 058

LLMs highlight the advantage of leveraging their 059

embedded knowledge to enhance task performance. 060

Meanwhile, several works mention LLMs have 061

demonstrated human-like judgment capabilities in 062

certain aspects (Gilardi et al., 2023; Ding et al., 063

2023). Thus, automating preference selection for 064

model responses through LLMs is a natural pro- 065

gression. Self-refine (Madaan et al., 2024) and 066

Refiner (Paul et al., 2024) employ LLMs to eval- 067
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uate and iteratively refine outputs through feed-068

back. Additionally, Anthropic (Bai et al., 2022b)069

and Google (Lee et al., 2023) directly use LLMs to070

filter response data and train reward models with071

the selected results to aid model training, essen-072

tially conducting reinforcement learning from AI073

feedback (RLAIF). Although RLAIF can distill the074

evaluation ability of advanced LLMs into reward075

models, its reliability remains limited by potential076

knowledge gaps and hallucinations, particularly in077

high-accuracy domains like medicine.078

Current evaluations of LLM-generated responses079

primarily emphasize the semantic relevance be-080

tween responses and question contexts and the081

correctness of logical reasoning chains (Li et al.,082

2024). These criteria align with the implicit se-083

mantic relationships and explicit structural connec-084

tions among entities in knowledge graphs (KGs).085

Since the inception of LLMs, KGs have been in-086

strumental in tasks such as evaluation (Li et al.,087

2024), knowledge injection (Wang et al., 2023),088

and knowledge augmentation (Wen et al., 2023;089

Zhang et al., 2023b), due to their structured fact090

storage and annotation-free advantages. However,091

these approaches predominantly treat KGs as static092

knowledge repositories and leave LLMs to filter093

and select relevant facts. This overlooks the se-094

mantic associations between facts and fails to fully095

exploit the structured connectivity of KGs.096

Considering that entities with high linkage crit-097

icality are more likely to reach each other during098

inference and engage in greater semantic interac-099

tions, both semantic relevance between factual en-100

tities and the strength of logical connections in101

KGs can serve as natural scoring mechanisms (Ya-102

sunaga et al., 2021; Lin et al., 2019; Luo et al.,103

2023). Building on this insight and inspired by104

RLAIF, we propose Reinforcement Learning from105

Knowledge Graph Feedback (RLKGF), which di-106

rectly derives reward signals from KGs without107

manual annotations. RLKGF treats the KG it-108

self as a reward model and assigns reinforcement109

learning (RL) rewards to LLM responses by simu-110

lating semantic information flow and logical link111

transmission between question and candidate re-112

sponse entities on relevant subgraphs—without the113

need for preference labeling or reward model train-114

ing. The scoring process integrates local seman-115

tic aggregation and global path reasoning among116

factual entities. At the semantic level, RLKGF117

employs graph neural networks (GNNs) for node-118

level information exchange and computes semantic119

relevance scores between question and candidate 120

response entities. Structurally, RLKGF initiates 121

reasoning from the question entities via random 122

walks across connected paths and transparently cal- 123

culates the criticality of path-connected entities 124

based on reachability probabilities. We validate 125

RLKGF in medical dialogue diagnosis tasks. Ex- 126

perimental results demonstrate that RLKGF out- 127

performs RLAIF in disease prediction accuracy, 128

which proves RLKGF’s effectiveness as a viable 129

alternative to RLHF. Further comparisons with su- 130

pervised fine-tuning and KG-based prompts high- 131

light RLKGF’s advantages in aligning LLMs with 132

knowledge. Besides, to eliminate potential contam- 133

ination from existing datasets, we also construct a 134

new medical dialogue diagnosis dataset (MED-D) 135

from unpublished electronic medical records. The 136

contributions of this study are1: 137

• We propose RLKGF, a novel method for de- 138

riving feedback on LLM outputs from knowl- 139

edge graphs by integrating local semantic 140

aggregation and global logical connections 141

among factual entities. 142

• We introduce a new medical dialogue diag- 143

nosis dataset, MED-D, constructed from Chi- 144

nese electronic medical records. MED-D in- 145

cludes 20 diseases, 351 symptoms, and 3992 146

dialogue samples. 147

• Experimental results demonstrate that 148

RLKGF significantly improves LLM diagnos- 149

tic accuracy compared to RLAIF. This proves 150

RLKGF is a competitive alternative to RLHF 151

for knowledge alignment. 152

2 Related Work 153

2.1 Reinforcement Learning from Feedback 154

in LLMs 155

RLHF trains reward models on human-labeled pref- 156

erences and optimizes policy gradients based on 157

reward scores (Ouyang et al., 2022). It has proven 158

effective in enhancing the helpfulness and knowl- 159

edge accuracy of LLM outputs and is one of the 160

key drivers behind LLM success (Bai et al., 2022a). 161

However, the high cost of human preference anno- 162

tation limits RLHF’s scalability (Lee et al., 2023). 163

As LLM capabilities evolve, models have demon- 164

strated human-like judgment in tasks such as sum- 165

marization (Stiennon et al., 2020), which prompts 166

1Code will be released after acceptance.
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researchers to leverage LLMs for output evalua-167

tion. Self-reflection uses LLMs to filter irrelevant168

information by assessing the relevance of generated169

responses to retrieved content (Asai et al., 2023).170

Self-refine employs LLMs for iterative feedback171

to improve output quality (Madaan et al., 2024),172

while Refiner uses an LLM-based critic to enhance173

logical consistency in chain-of-thought reasoning174

(Paul et al., 2024). Beyond these prompt-based175

approaches, RRHF (Yuan et al., 2023) and RLAIF176

(Lee et al., 2023) further explore utilizing LLM-177

generated feedback for model training. RRHF178

ranks responses from different sources using LLMs179

and optimizes models through Rank Loss. RLAIF180

introduces reinforcement learning (RL) from AI181

feedback, where a high-performing LLM annotates182

preferences across different responses and trains183

a reward model. Despite reducing the need for184

human labels, RLAIF faces challenges in special-185

ized fields like medicine, where the demand for186

accuracy clashes with LLMs’ knowledge gaps and187

hallucinations (Huang et al., 2025).188

2.2 LLMs with Knowledge Graphs189

KGs store factual evidence in a structured for-190

mat, which enables both evidence retrieval and191

semantic aggregation of key entities (Lin et al.,192

2019; Yasunaga et al., 2021; Yan et al., 2024).193

The utilization of KGs in LLMs spans multiple194

aspects, including supervised fine-tuning (SFT)195

(Wang et al., 2023), retrieval-augmented genera-196

tion (RAG) (Feng et al., 2023), and response evalu-197

ation (Li et al., 2024). Bencao (Wang et al., 2023)198

constructs Q&A pairs from medical KGs to supple-199

ment training data for fine-tuning medical LLMs.200

Several works (Zhang et al., 2023b; Wen et al.,201

2023; Jiang et al., 2023) retrieve relevant evidence202

from KGs prior as prompt to enhance response ac-203

curacy and knowledge richness. Greaselm (Zhang204

et al., 2022) integrates KG and textual informa-205

tion through prefix prompting to improve seman-206

tic fusion and correctness in Q&A tasks. Li et al.207

(Li et al., 2024) uses commonsense KGs to detect208

knowledge and logical errors in LLM-generated209

responses. These approaches show that leverag-210

ing KGs’ implicit semantics and explicit logical211

connections can enhance LLM performance. How-212

ever, most methods treat KGs merely as knowledge213

bases, failing to exploit their potential for semantic214

connectivity and logical link significance.215

3 Method 216

In this section, we define the task and describe our 217

method, which directly utilizes the structural and 218

semantic information among factual entities in KGs 219

to provide feedback on model responses. 220

3.1 Task Definition 221

The disease diagnosis via Q&A task requires the 222

model to predict a disease d in the answer A based 223

on a patient’s symptom description [s1, s2, ..., sn] 224

in the question Q. Our focus is on using a med- 225

ical knowledge graph (MKG) containing factual 226

entities as a reward model to automatically assign 227

feedback R to model responses, i.e., RLKGF. Af- 228

ter extracting the patient’s information from the 229

question, RLKGF first constructs a personalized 230

diagnostic subgraph g = (v, e) from the MKG, 231

where v includes disease entities and related symp- 232

toms, and e represents the corresponding triples. 233

RLKGF evaluates the correctness of the model’s re- 234

sponse through path reasoning and semantic aggre- 235

gation using graph-based random walk with restart 236

(RWR) (Tong et al., 2006) and GNNs, as detailed 237

in section 3.2 and section 3.3. After acquiring feed- 238

back, RLKGF optimizes the model’s policy using 239

the proximal policy optimization (PPO) (Schulman 240

et al., 2017) to align LLM responses with domain 241

knowledge, as described in section 3.4. 242

3.2 Link Criticality Score via Structural 243

Information 244

Evaluating model responses typically involves 245

determining whether the response entity can be 246

reached from the question entity through multi-step 247

path reasoning, i.e., the correctness of the knowl- 248

edge link. Additionally, the stronger the association 249

between the question and candidate response en- 250

tities along the path, the higher the probability of 251

reaching the response entity (Yasunaga et al., 2021). 252

Based on this, we apply RWR on the global paths 253

of the patient diagnosis subgraph. Starting from the 254

question entities, RWR calculates the probability of 255

reaching various candidate response entities, which 256

serves as their link criticality score. The calculation 257

process is as follows. 258

For a central entity i, we define the path connec- 259

tivity reachability from other entities in the knowl- 260

edge graph g = (v, e) as wi, where wi ∈ RN×1 261

and N = |v|. The value wi(j) is initialized by 262
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Question: I feel nauseous 
and vomiting, accompanied 
by fever, diarrhea, and loose 
stools. What’s going on?

Response: The patient’s 
nausea, vomiting, and loose 
stools suggest a 
gastrointestinal issue, likely 
gastroenteritis, given the fever 
and diarrhea.
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Figure 2: The framework of RLKG.

Gaussian kernel function:263

wi(j) = exp(−dis(i, j)2

2h2
) (1)264

where h is the Gaussian bandwidth and j ∈ v.265

The vector wi can be iteratively updated through266

RWR on the graph, as shown in Equation 2. Specif-267

ically, the random walk begins at the central en-268

tity i, with a probability of 1 − c to return to i269

and a probability of c to reach other entities along270

the connected path. After several iterations, until271

convergence, wi(j) represents the probability of272

reaching entity j. Thus, wi captures the path-based273

association weights of various factual entities in274

the KG g relative to the central entity.275

w
′
i = c · Ãiwi + (1− c) · ei (2)276

Ãi ∈ RN×N is the probability transition matrix for277

entity i, obtained by column normalization of the278

adjacency matrix Ai of g. The element in the i-th279

row and j-th column represents the connection flux280

from entity j to entity i, i.e., wij

wj
, where wj is the281

sum of weights of all paths associated with entity282

j, and wij is the weight between entities i and j.283

ei ∈ RN×1 is the starting node vector, with a value284

of 1 for the central entity and 0 for all other entities.285

For the patient-specific diagnostic subgraph g =286

(v, e) and the symptom entities in the question287

[s1, s2, ..., sn], we compute wsi for each symptom288

entity si to capture the link criticality scores W289

of each entity in g relative to the question entities,290

where W ∈ Rn×N . From this, we extract the link291

criticality matrix W ∗ between possible response 292

entities (diseases to be predicted) and question en- 293

tities, where W ∗ ∈ Rn×m. By normalization, we 294

acquire the structural path reasoning-based score 295

RP , which quantifies the correctness of the knowl- 296

edge links in the model’s response. 297

Rp = σ(W ∗) (3) 298

where Rp ∈ Rm, and m represents the number 299

of disease entities in the personalized diagnostic 300

subgraph g. σ(·) denotes the temperature softmax 301

(Hinton, 2015). 302

3.3 Semantic Relevance Score via Semantic 303

Aggregation 304

Semantic relevance between the model’s genera- 305

tion and the question is another important criterion 306

for evaluating response quality (Li et al., 2024). To 307

capture the semantic connections between factual 308

entities, we utilize graph convolutional networks 309

(GCNs) (Kipf and Welling, 2016), which induce 310

node representations via iterative message passing 311

between neighbors on the graph. Specifically, we 312

apply a 2-layer GCN to iteratively process the fea- 313

ture matrix X ∈ RN×F of the factual entities in 314

the graph g, where F is the feature dimension. The 315

information propagation between layers is updated 316

by Equation 4. 317

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (4) 318

where Ã = A + IN is the adjacency matrix with 319

self-connections, A ∈ RN×N is the adjacency ma- 320
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trix and IN is the identity matrix. D̃ii =
∑

j Ãij321

represents the degree matrix of entities, which322

serves for normalization. W (l) denotes the weight323

matrix for feature mapping. H(l) ∈ RN×D is the324

input of the l-th layer of the neural network, with325

H(0) = X .326

Utilizing a 2-layer GCN to enable semantic infor-327

mation interaction between entities, the semantic328

feature representations of all entities are obtained329

as shown in Equation 5, where Z ∈ RN×F .330

Z = f(X,A) = σ(Â(ReLU(ÂXW 0)W 1)) (5)331

Â = D̃− 1
2 ÃD̃− 1

2 and σ(·) indicates softmax.332

We compute the semantic cosine similarity ma-333

trix S∗ between the diseases to be predicted and334

the symptom entities mentioned in the question335

through the semantic features of all entities, where336

S∗ ∈ Rn×m.337

S∗(si, dj) =
Zsi · Zdj

||Zsi || · ||Zdj ||
(6)338

si and dj represent the symptom entity mentioned339

in the question and the potential disease entities340

in the response, respectively. The relevance score341

of the response to the question, derived from the342

semantic aggregation of factual entities, is denoted343

as Rs ∈ Rm.344

Rs = σ(S∗) (7)345

The feedback reward for the response, directly346

obtained from the KG, is calculated based on both347

the link criticality of the structural paths and the348

semantic aggregation relevance, as shown in Equa-349

tion 8, where µ is a learnable parameter.350

R = µ(Rs) + (1− µ)(Rp) (8)351

3.4 Reinforcement Learning Training352

Framework353

We employ PPO to implement reinforcement learn-354

ing training for the LLMs. The policy πθold is ini-355

tialized from the off-the-shelf LLMs and then opti-356

mized to πθnew by maximizing the reward obtained357

from the knowledge graph. To avoid excessive pol-358

icy shifts that could lead to unreasonable responses,359

we use PPO-Clipped, which restricts model updates360

within a certain range. The optimization objective361

is given by Equation 9.362

LCLIP (θ) = E[min(r(θ)A∗, clip(r(θ), 1− ϵ, 1 + ϵ)A∗)] (9)363

where r(θ) = πθnew
πθold

, and A∗ is the advantage func-364

tion estimated for the model’s decisions. The hy-365

perparameter ϵ constrains the policy update ratio366

Dataset MZ DXY GMD MED-D

# Diseases 4 5 12 20
# Symptoms 66 41 118 351
# Dialogue Samples 710 526 2390 3992
# Avg. Symptoms/Q&A 5.61 4.77 5.47 17.57

Table 1: Medical Dialogue Datasets. "# Avg. Symp-
toms/Patient" signifies the average number of symptoms
per patient in the dataset.

within the range [1 − ϵ, 1 + ϵ] via clip(r(θ), 1 − 367

ϵ, 1 + ϵ). 368

4 Experiment 369

4.1 Experimental Setup 370

We implement the model based on the PyTorch 371

framework and conduct training and testing on 372

one A800 80G GPU. The meanings and specific 373

settings of each hyper-parameter involved in the 374

model are detailed in Table 7. 375

4.2 Baselines 376

Models. We select smaller-scale, open-source 377

LLMs that can be trained on a single 80G A100 378

GPU as the backbone. These include seven LLMs 379

from the Qwen1.5 (Bai et al., 2023), Qwen2.5 380

(Yang et al., 2024a), InternLM2 (Cai et al., 2024), 381

and InternLM2.5 (Wu et al., 2024) series. 382

Methods. To comprehensively evaluate the per- 383

formance of RLKGF, we compare it with RLAIF 384

(Lee et al., 2023) (using GPT-4o-mini for prefer- 385

ences (Achiam et al., 2023)), SFT (including full 386

parameter tuning and LoRA) (Hu et al., 2021), as 387

well as the knowledge graph-based prompt tech- 388

nique (Zhang et al., 2023b; Wen et al., 2023). 389

4.3 Datasets 390

We utilize three public medical dialogue diagnosis 391

datasets: MZ (Wei et al., 2018), DXY (Xu et al., 392

2019), and GMD (Liu et al., 2022). These datasets 393

are derived from real-world medical dialogue diag- 394

nosis records, with the number of diseases, symp- 395

toms, and dialogues summarized in Table 1. 396

To avoid potential data leakage, where pub- 397

lic data might have been used for LLM training, 398

we construct a new dataset, MED-D. MED-D is 399

collected from offline electronic medical records 400

(EMRs). These EMRs are sourced from cooperat- 401

ing hospitals and have been anonymized. We filter 402

14,277 EMRs and choose 20 diseases that could be 403

diagnosed through Q&A without additional tests. 404
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With the assistance of medical experts, we iden-405

tify 351 associated symptoms. Subsequently, we406

extract symptom and disease entities from the se-407

lected EMRs using named entity recognition to408

construct Q&A pairs. All extracted diseases and409

symptoms are manually aligned with the corre-410

sponding ICD-9 terms and reviewed by domain411

experts. We use the accuracy of disease prediction412

as the evaluation metric.413

4.4 Main Results414

RLAIF vs. RLKGF. Table 2 shows the perfor-415

mance of different LLMs trained using only RLAIF416

and RLKGF. RLKGF Base represents the accu-417

racy achieved by directly selecting the response418

entity with the highest feedback score from the419

knowledge graph. From the experimental results,420

we observe the following. Detailed prompts and421

analysis can be found in Appendix A.2.422

i. Advantages of RLKGF. Our results demon-423

strate that RLKGF outperforms RLAIF by 5.67%,424

10.73%, 8.38%, and 1.21% across four datasets,425

respectively. This indicates the feasibility and ef-426

fectiveness of using KGs for feedback on model427

responses. It validates that leveraging KGs as re-428

ward models in the medical domain may be a more429

reliable approach than LLM-based preference la-430

beling.431

ii. Small models are limited by instruction432

adherence. Among different models, Qwen2.5-433

0.5b-instruct performs poorly, with only 32.39%434

on the MZ dataset. We anlyze its outputs before435

and after training and find that it has poor instruc-436

tion adherence and fails to make correct predic-437

tions from the given diseases. Although training438

improves its instruction-following ability, knowl-439

edge injection remains suboptimal. In section 4.6,440

we present the performance of models trained with441

supervised fine-tuning, where full-parameter SFT442

on Qwen2.5-0.5b-instruct achieves only 7.60% ac-443

curacy. Preliminary analysis suggests that the444

MZ dataset’s sparsity is insufficient to correct the445

initially learned model parameters. Additionally,446

smaller models may be more sensitive to loss de-447

sign, and how to better inject knowledge into them448

requires further investigation.449

iii. Explore more effective KG feedback meth-450

ods. Furthermore, by comparing the prediction ac-451

curacy of models using only the KG, KG feedback-452

trained models, GPT-4o-mini predictions, RLAIF,453

and SFT, we find that although trained LLMs show454

some performance improvement, they still fall far455

Backbone Method GMD DXY MZ MED-D

GPT-4o-mini Base 0.6460 0.4262 0.5289 0.5345

RLKGF Base 0.7908 0.8252 0.6846 0.805

Qwen2.5-3B
-Instruct

Base 0.6360 0.4531 0.3789 0.3553
RLAIF 0.6722 0.6537 0.5469 0.3600
RLKGF 0.7113 0.7314 0.6268 0.3767

Qwen2.5-1.5B
-Instruct

Base 0.4840 0.2359 0.1845 0.1982
RLAIF 0.5635 0.4595 0.4343 0.2908
RLKGF 0.6109 0.5890 0.5070 0.2992

Qwen2.5-0.5B
-Instruct

Base 0.2469 0.0981 0.0042 0.1273
RLAIF 0.3092 0.2135 0.0282 0.1350
RLKGF 0.3278 0.2654 0.3239 0.1458

Qwen1.5-4B
-Chat

Base 0.4038 0.4000 0.4176 0.1893
RLAIF 0.5816 0.3139 0.5610 0.2083
RLKGF 0.5914 0.6893 0.5986 0.2433

Qwen1.5-1.8B
-Chat

Base 0.3335 0.2291 0.0423 0.1342
RLAIF 0.4686 0.2783 0.3568 0.1650
RLKGF 0.4784 0.3366 0.3592 0.1858

InternLM2.5
-1.8B-Chat

Base 0.2092 0.3981 0.4507 0.1850
RLAIF 0.4393 0.4369 0.5493 0.1950
RLKGF 0.5356 0.4757 0.5704 0.2000

InternLM2.5
-1.8B-Chat

Base 0.3305 0.2718 0.2042 0.1667
RLAIF 0.2929 0.4078 0.4507 0.2175
RLKGF 0.4686 0.4272 0.5282 0.2250

Table 2: RLKGF vs. RLAIF. The bolded values repre-
sent the best performance of the current model on the
dataset.

short of the optimal target. Therefore, further ex- 456

ploration is needed on how to fully utilize factual 457

knowledge and construct reasonable feedback to 458

guide model training. 459

RLAIF with different LLMs With the optimiza- 460

tion and updates of LLMs, many open-source mod- 461

els have surpassed the GPT series in certain appli- 462

cations, such as Qwen2.5-72B (Yang et al., 2024a), 463

and DeepSeek (Liu et al., 2024). We replace GPT- 464

4o-mini with these two models for response pref- 465

erence labeling and compare their potential advan- 466

tages. The model comparison results are shown in 467

Table 3. 468

The results indicate that GPT-4o-mini outper- 469

forms other competitive open-source LLMs in the 470

medical domain. Although high-capacity open 471

LLMs enhance performance, leveraging existing 472

knowledge bases for feedback presents a viable and 473

effective alternative, particularly when considering 474

resource efficiency and performance. 475

4.5 Ablation Study 476

Component Ablation. As shown in Figure 3, ab- 477

lating the link criticality scores derived from struc- 478

tural information via RWR leads to an average per- 479

formance decrease of 1.73%, 1.67%, and 2.28% 480
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Figure 3: "w/o RWR" refers to the ablation of the link criticality score. "w/o GCN" refers to the ablation of the
semantic relevance score.

Backbone Method GMD DXY MZ

Qwen2.5-3B
-Instruct

GPT-4o-mini 0.6722 0.6537 0.5469
Qwen2.5-72B 0.6792 0.6408 0.4671
DeepSeekV3 0.6778 0.6505 0.3850

Qwen2.5-1.5B
-Instruct

GPT-4o-mini 0.5635 0.4595 0.4343
Qwen2.5-72B 0.5563 0.5275 0.2371
DeepSeekV3 0.5593 0.3042 0.4108

Qwen1.5-4B
-Chat

GPT-4o-mini 0.5816 0.3139 0.5610
Qwen2.5-72B 0.6025 0.6246 0.5822
DeepSeekV3 0.5816 0.5599 0.5822

InternLM2.5
-1.8B-Chat

GPT-4o-mini 0.4393 0.4369 0.5493
Qwen2.5-72B 0.3096 0.3010 0.5423
DeepSeekV3 0.3305 0.3010 0.5563

InternLM2
-1.8B-Chat

GPT-4o-mini 0.2929 0.4078 0.4507
Qwen2.5-72B 0.4519 0.4078 0.4577
DeepSeekV3 0.4477 0.3883 0.1972

Table 3: RLAIF with different LLMs.

on the GMD, DXY, and MZ. Similarly, remov-481

ing the semantic relevance feedback from semantic482

features results in a performance drop of 1.76%,483

1.49%, and 2.65%. These findings highlight the484

importance of both global structural and semantic485

information from the knowledge graph in evaluat-486

ing LLM responses. From the results, it can be487

seen that, in general, structural information plays a488

more significant role compared to semantic infor-489

mation. We preliminarily attribute this to the fact490

that KGs inherently extract factual knowledge into491

structured information, which results in two key492

characteristics: 1) Structural features are its distin-493

guishing advantage over contextual knowledge; 2)494

The semantic information contained in the KGs is495

not as rich as that in medical textbooks.496

Figure 4 illustrates a case where structural or497

semantic features dominate. GCN relies on lo-498

cal neighbor interactions for representation learn-499

ing. When the question entity is more strongly500

connected to a candidate response entity in its lo-501

cal neighborhood, it has a greater influence on the502

Disease Probability (RWR)

Disease Probability (GCN)

Q: The patient felt discomfort in the pharynx for 3 days, usually sweat 
profusely, no history of hypertension, diabetes. What disease has he got?

Thyroiditis

Rhinitis

Coronary 
Heart Disease

Pharyngeal 
Discomfort

Sweating 
Profusely

Giddy

Lose 
Weight

Nasal 
Obstruction

Runny Nose

Thyroiditis

Rhinitis

Coronary 
Heart Disease

Pharyngeal 
Discomfort

Sweating 
Profusely

Giddy

Lose 
Weight

Nasal 
Obstruction

Runny Nose

Question Entity Candidate Response Entity

Figure 4: A case demonstrating GCN’s local semantic
aggregation and RWR’s global reachability.

prediction. In contrast, RWR considers the global 503

topological structure of the knowledge graph. This 504

allows RWR to assign different weights to candi- 505

date response entities based on the global connec- 506

tions between them and the question entity, which 507

GCN does not capture. The complete experimental 508

results are presented in Appendix A.2. 509

Different Semantic Aggregation Models. As 510

discussed in section 4.4, the semantic information 511

in KGs is relatively concise. Therefore, further ex- 512

ploration for leveraging KG semantics is essential 513

for providing more accurate feedback on the se- 514

mantic relevance of LLMs responses. To preserve 515

the structured semantics of KGs and ensure the 516

generalizability of the method, we employ a dual- 517

head graph attention mechanism (GAT) (Veličković 518

et al., 2017) to dynamically assign weights to dif- 519

ferent neighbors and compute semantic relevance 520

scores between response entities and question enti- 521

ties using attention weights. The results are shown 522

in Table 4. 523

The results indicate that RLKGF with GAT out- 524

performs RLAIF 4.57%, 8.60%, and 5.23%, which 525

validates the advantage of using GAT to aggre- 526

7



Backbone Method GMD DXY MZ

Qwen2.5-3B
-Instruct

with GCN 0.7113 0.7314 0.6268
with GAT 0.6987 0.6990 0.5822

Qwen2.5-1.5B
-Instruct

with GCN 0.6109 0.5890 0.5070
with GAT 0.5914 0.5696 0.5305

Qwen2.5-0.5B
-Instruct

with GCN 0.3278 0.2654 0.3239
with GAT 0.3152 0.2233 0.2089

Qwen1.5-4B
-Chat

with GCN 0.5914 0.6893 0.5986
with GAT 0.5872 0.6246 0.5728

Qwen1.5-1.8B
-Chat

with GCN 0.4784 0.3366 0.3592
with GAT 0.714 0.3754 0.3850

InternLM2.5
-1.8B-Chat

with GCN 0.5356 0.4757 0.5704
with GAT 0.5356 0.4660 0.5704

InternLM2
-1.8B-Chat

with GCN 0.4686 0.4272 0.5282
with GAT 0.4477 0.4078 0.4437

Table 4: Aggregating Semantic Information using GCN
and GAT for LLMs Semantic Relevance Feedback.

gate structured semantics for feedback. However,527

RLKGF with GCN yields an average advantage528

of 1.10%, 2.13%, and 3.15% over GAT. We find529

that the overall prediction accuracy achieved with530

GAT-trained attention weights is lower than that of531

GCN. This may be due to GCN’s deeper learning532

of node representations.533
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Figure 5: RLKGF Base obtained with different restart
probabilities c.

The Impact of Restart Probability c. In sec-534

tion 3.2, we iteratively update the reachability535

matrix of entities relative to the question entities536

through RWR. The parameter 1− c represents the537

probability of returning to the initial entity during538

each random walk. By setting different values of539

c, we investigate the impact of structural informa-540

tion, as described in Figure 5. The results show541

that setting a larger c helps improve the accuracy542

of reward feedback. This is because reducing the543

probability of returning to the initial node during544

RWR enables the model to explore a wider range545

of triple relationships, allowing for more compre-546

hensive use of the global structural information in 547

knowledge graphs and a more accurate assessment 548

of connection flux across knowledge links. 549

4.6 Analysis of Knowledge Injection Methods 550

To assess the performance of current mainstream 551

methods for integrating knowledge into LLMs, 552

we compare Full Fine-Tuning (FT), Low-Rank 553

Adaptation (LoRA) (Hu et al., 2021), and Prompt 554

techniques (Zhang et al., 2023b). The KG-based 555

prompt used in Table 6 does not involve retrieval; 556

instead, it directly provides the relevant patient 557

subgraph in triple format (i.e., containing accurate 558

information) to the LLMs. We include the results 559

and the prompt used in Appendix A.2 and A.1. 560

The results lead to several key observations: 1) 561

Supervised Fine-Tuning remains the most effective 562

method for knowledge injection, especially with 563

large datasets. 2) The performance gap between 564

LoRA and FT is minimal. 3) LLMs are capable 565

of capturing correct information from extensive 566

prompts, but this ability diminishes with sparse 567

data. Additionally, training on domain-specific data 568

improves comprehension of longer texts. As noted 569

in RLAIF (Lee et al., 2023), RLHF and RLAIF 570

typically achieve around 70% of the performance 571

of SFT. Our RLKGF method consistently meets 572

this standard, further validating its effectiveness. 573

5 Conclusion 574

The semantic correlations and link criticality in- 575

herent in KGs closely mirror the semantic and 576

logical relevance humans use to evaluate LLM re- 577

sponses. Building on this, we propose RLKGF, 578

which directly employs KGs as a reward model 579

to provide feedback to LLMs without the need 580

for human annotation or separate reward model 581

training. RLKGF utilizes both local semantic in- 582

teractions and global path reachability to define 583

reinforcement learning rewards. In the context of 584

medical dialogue diagnosis, RLKGF outperforms 585

RLAIF, which relies on model-embedded knowl- 586

edge. We also compare various knowledge injec- 587

tion methods, such as SFT and KG-based prompt, 588

offering valuable insights into the effective use of 589

KGs. Although this work highlights the potential 590

of RLKGF, several limitations remain. First, its 591

generalization to other tasks and domains has not 592

been explored. Additionally, we employ PPO to 593

train LLMs, and there may be more suitable reward 594

structures and training methods to explore. 595

8



6 Limitations596

Although this work demonstrates the potential of597

RLKGF, several issues need to be addressed. The598

quality of feedback derived from knowledge graphs599

depends heavily on the completeness and accuracy600

of the graph itself, particularly in open domains.601

Our experiments are limited to disease diagnosis602

tasks, without exploring RLKGF’s generalization603

to other tasks and domains. Additionally, due to604

data limitations, we do not conduct experiments605

across a broader medical framework.606

The current task format is single-turn Q&A, and607

future work should explore multi-turn dialogues to608

better leverage the potential advantages of knowl-609

edge graph structure and semantics in multi-step610

reasoning. Moreover, RLKGF currently focuses611

primarily on entity-level feedback for model re-612

sponses, with limited focus on overall response613

fluency. Furthermore, experimental comparisons614

show that although RLKGF improves consistency615

between model responses and knowledge, there616

is still significant room for enhancement. Design-617

ing appropriate reward ranges and investigating the618

impact of different methods on model parameter619

adjustments are crucial for continuous knowledge620

learning.621
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A Appendix856

A.1 Prompt857

The Prompts Applied for Model Generation.858

The prompt used for LLM generation is shown859

in Figure 6.860

KG-based Prompt. The knowledge graph as a861

prompt input to LLMs is shown in Figure 7.862

Model Generation
#01 你是一个专科医生。
#02 你的任务是模拟现实的专科医生进行疾病诊断。任务是根据患者症状信息进行诊断，诊断结果在给定的疾病
列表中选择一个进行输出。
#03 注意，只返回一个疾病作为预测结果，如果无法给出，输出UNKNOW。
#04 以下是你所在门诊涉及的疾病：

{{此处替换成疾病}}

#05 对话示例如下，请严格按照示例给出的输出格式进行输出，无需给出任何解释，如果列表中的疾病都不满足，
直接输出UNKNOW：

示例1：输入:患者恶心呕吐、解稀便、发热、腹泻，是怎么了？, 输出:应该是得了肠炎。
示例2：输入:患者老是心悸、头昏、胸闷、胸骨后疼痛，无背痛，怎么回事？, 输出:可能是冠心病。

Figure 6: The Prompts Applied for Model Generation.

KG-based Model Generation
#01 你是一个基于知识图谱进行诊断的专科医生。
#02 你的任务是模拟现实的专科医生进行疾病诊断。任务是根据患者症状信息、结合给出的知识图谱中包含的疾
病和症状的关系进行诊断，诊断结果在给定的疾病列表中选择一个进行输出。

#03 注意，只返回一个疾病作为预测结果，如果无法给出，输出UNKNOW。

#04 以下是背景知识图谱信息：

{{此处替换成KG三元组}}

#05 以下是你所在门诊涉及的疾病：

{{此处替换成疾病}}

#06 对话示例如下，请严格按照示例给出的输出格式进行输出，无需给出任何解释，如果列表中的疾病都不满足，
直接输出UNKNOW：

示例1：输入:患者恶心呕吐、解稀便、发热、腹泻，是怎么了？, 输出:应该是得了肠炎。
示例2：输入:患者老是心悸、头昏、胸闷、胸骨后疼痛，无背痛，怎么回事？, 输出:可能是冠心病。

Figure 7: KG-based Prompt.

A.2 Experiment Analysis 863

RLAIF vs. RLKGF. Model Parameters and 864

Version Iterations. Comparing LLMs within the 865

same series but with different parameter sizes (e.g., 866

Qwen1.5-3b vs. Qwen1.5-1.5b), larger models 867

consistently perform better and show more sub- 868

stantial improvements after training. This suggests 869

that larger parameter sizes help models learn more 870

knowledge. Additionally, newer versions within 871

the same series outperform older ones, likely due 872

to the inclusion of more knowledge and optimized 873

training methods. 874

The model struggles to solve more complex 875

problems. Across multiple datasets, we observe 876

that as dataset size increases, model performance 877

tends to decline. This not only indicates that LLMs 878

struggle to achieve high accuracy across broader 879

scenarios but also poses a challenge to KG-based 880

scoring. As the number of entities grows, questions 881

become longer, complicating the model’s ability to 882

learn from extended texts. Additionally, the gap 883

in scores between different entities from the KG 884

may shrink, which could lead to a more uniform 885

distribution, as shown in Figure 8. This is similar to 886

human preferences, where selecting the best option 887

from fewer answers is relatively easier. 888

Component Ablation The ablation results can 889

be found in Table 5. 890
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MZ DXY GMD MED-D

Decrease in the Score Gap

Figure 8: As the number of selectable responses in-
creases, the score gap narrows.

Backbone Method GMD DXY MZ

Qwen2.5-3B-Instruct
RLKGF 0.7113 0.7314 0.6268

w/o RWR 0.7071 0.6926 0.5728
w/o GCN 0.7071 0.6796 0.5775

Qwen2.5-1.5B-Instruct
RLKGF 0.6109 0.5890 0.5070

w/o RWR 0.5788 0.5696 0.5516
w/o GCN 0.5872 0.5825 0.4953

Qwen2.5-0.5B-Instruct
RLKGF 0.3278 0.2654 0.3239

w/o RWR 0.3180 0.2388 0.2653
w/o GCN 0.3180 0.2388 0.2512

Qwen1.5-4B-Chat
RLKGF 0.5914 0.6893 0.5986

w/o RWR 0.5886 0.6472 0.5798
w/o GCN 0.5844 0.6667 0.5822

Qwen1.5-1.8B-Chat
RLKGF 0.4784 0.3366 0.3592

w/o RWR 0.4603 0.3657 0.3286
w/o GCN 0.4756 0.3495 0.3592

InternLM2.5-1.8B-Chat
RLKGF 0.5356 0.4757 0.5704

w/o RWR 0.4812 0.4660 0.5775
w/o GCN 0.4644 0.4757 0.5704

InternLM2-1.8B-Chat
RLKGF 0.4686 0.4272 0.5282

w/o RWR 0.4686 0.4175 0.4789
w/o GCN 0.4644 0.4175 0.4930

Table 5: "w/o RWR" refers to the ablation of the link
criticality score obtained using structural information.
"w/o GCN" refers to the ablation of the semantic rele-
vance score obtained through semantic features.

Analysis of Knowledge Injection Methods. Ta-891

ble 6 shows the performance of different knowl-892

edge injection methods.893

A.3 Experimental Setup894

The meanings and specific settings of each hyper-895

parameter involved in the model are detailed in896

Table 7.897

Backbone Method GMD DXY MZ MED-D

GPT-4o-mini
Base 0.646 0.4262 0.5289 0.5345

KG Prompt 0.7569 0.7563 0.6275 0.6638

Qwen2.5-3B
-Instruct

Base 0.6360 0.4531 0.3789 0.3553
FT 0.7552 0.4951 0.4253 0.4823

LoRA 0.7334 0.5038 0.4591 0.4843
KG Prompt 0.7054 0.6495 0.6648 0.4671

RLKGF 0.7113 0.7314 0.6268 0.3767

Qwen2.5-1.5B
-Instruct

Base 0.4840 0.2359 0.1845 0.1982
FT 0.7066 0.438 0.4035 0.3863

LoRA 0.7041 0.3543 0.3929 0.3543
KG Prompt 0.6397 0.468 0.4352 0.3825

RLKGF 0.6109 0.5890 0.5070 0.2992

Qwen2.5-0.5B
-Instruct

Base 0.2469 0.0981 0.0042 0.1273
FT 0.4920 0.3388 0.0760 0.2510

LoRA 0.4209 0.1252 0.0240 0.1860
KG Prompt 0.4490 0.1515 0.0556 0.1525

RLKGF 0.3278 0.2654 0.3239 0.1458

Qwen1.5-4B
-Chat

Base 0.4038 0.4000 0.4176 0.1893
FT 0.6866 0.6067 0.5260 0.3956

LoRA 0.6485 0.6048 0.5556 0.3080
KG Prompt 0.5540 0.4350 0.4754 0.1722

RLKGF 0.5914 0.6893 0.5986 0.2433

Qwen1.5-1.8B
-Chat

Base 0.3335 0.2291 0.0423 0.1342
FT 0.5656 0.3320 0.2408 0.3233

LoRA 0.5364 0.2864 0.1795 0.2600
KG Prompt 0.2970 0.2786 0.0894 0.0392

RLKGF 0.4784 0.3366 0.3592 0.1858

InternLM2.5
-1.8B-Chat

Base 0.2092 0.3981 0.4507 0.1850
FT 0.7573 0.7184 0.5985 0.4683

LoRA 0.5828 0.5563 0.5859 0.3916
KG Prompt 0.2594 0.4757 0.4648 -

RLKGF 0.5356 0.4757 0.5704 0.2000

InternLM2
-1.8B-Chat

Base 0.3305 0.2718 0.2042 0.1667
FT 0.7280 0.7766 0.6760 0.4836

LoRA 0.7012 0.7116 0.6394 0.4080
KG Prompt 0.2971 0.3883 0.0634 -

RLKGF 0.4686 0.4272 0.5282 0.2250

Table 6: Comparison of Different Knowledge Injection
Methods.

Hyper-parameter Meaning Setting

batch size Batch size of training 16
update frequency Policy update frequency 50

ϵ PPO-Clipped parameter 0.2
γ Discount factor of RL 0.99
lr Initial learning rate 1.00E-05

train epochs Number of training epochs 5
hidden size Hidden neuron size of GCN 128

F Semantic feature dimension 100
c RWR restart probability 0.7

Table 7: Hyper-parameter settings. The meanings and
specific settings of each hyper-parameter.
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