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1 INTRODUCTION

Figure 1: Visual overview of Transduc-
tive Confidence Minimization (TCM), our
method for training a model to make con-
servative predictions. We minimize cross-
entropy loss on labeled training data and min-
imize confidence on uncertainty data. The
uncertainty dataset is instantiated in differ-
ent ways for OOD detection (where we use
unlabeled data) and selective classification
(where we use misclassified validation data).

While deep networks have demonstrated impressive
performance, they often exhibit unexpected failures
on high-confidence inputs Simonyan & Zisserman
(2014); Zhang et al. (2017). Such errors can lead to
poor performance or even catastrophic failure, espe-
cially in safety-critical applications such as healthcare,
and may prevent the deployment of machine learning
altogether. This motivates the need for conservative
models that can abstain from making predictions on
inputs when likely to make an error. For example, a
model trained to predict a patient’s risk of developing
a disease may have low confidence on a rare variant
of the disease. In such scenarios, it may be preferable
to defer to a human expert.

A common approach to addressing this issue is
through out-of-distribution (OOD) detection, which
aims to detect when the model is facing an OOD in-
put. However, as noted in prior work (Tajwar et al.,
2021), no existing approach can consistently detect
OOD examples across different ID-OOD dataset pairs
due to the ill-defined nature of the problem setting. To
address this challenge, we introduce a transductive as-
sumption in which the model has access to an unla-
beled test set during training. While this assumption precludes some applications, there are real-
world settings such as unannotated medical data from a new hospital (Sagawa et al., 2021) where
unlabeled test examples are available in batch. Our key insight is that the effect of minimizing the
model’s confidence on all unlabeled datapoints can be “cancelled out” by the regular ID training
objective, which maximizes confidence on ID data.

We propose Transductive Confidence Minimization (TCM), a simple method for training a conser-
vative model that can refuse to make predictions on uncertain inputs (Figure 1). TCM minimizes
confidence on all examples in the unlabeled test set while minimizing standard cross-entropy loss
on the labeled training set. We empirically verify our approach through experiments on a variety of
standard benchmarks for OOD detection and selective classification. TCM outperforms recent OOD
detection methods, including a method that leverages a very large OOD set that is over 10, 000 times
larger than ours (Hendrycks et al., 2018), and one that shares our data assumptions but learns an en-
semble of multiple models (Tifrea et al., 2022). In selective classification settings, TCM consistently
outperforms the best prior methods (Binary Classifier and Fine-Tuning) when testing on data from
a previously unseen distribution.

2 PROBLEM SETUP

We consider two problem settings, out-of-distribution detection and selective classification, which
both test the extent to which a model’s predictive confidence can be used to determine if its prediction
is trustworthy. We denote input and label spaces as X ,Y , and we assume that the training dataset Dtr
is drawn from a distribution PID. Out-of-distribution detection considers situations where the model
may be tested on inputs for which no corresponding label in Y exists. In selective classification, all
inputs have a correct label within Y but the model may make errors due to e.g. overfitting. We next
describe the two problem settings; in Section 3, we describe the two corresponding instantiations of
our method.
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Out-of-distribution detection. In this problem setting, the model may be tested on datapoints from
a related but different distribution POOD, i.e. out-of-distribution (OOD) data. The test dataset is
sampled from a mixture distribution, i.e. αPID+(1−α)POOD, where the mixture coefficient α is not
known in advance. Because the two distributions are different, a model trained solely to minimize
loss on Dtr may be inaccurate when tested on novel inputs from POOD. To address this difficulty,
we assume access to an additional unlabeled set Du that is drawn from a mixture of PID and POOD,
where the ratio of this mixture is unknown to the model. Using held-out test data, we evaluate
the model on two aspects: (1) whether the model’s confidence is a good metric for distinguishing
whether an input is OOD; and in the case that datapoint is an ID input, (2) whether the model’s
prediction is accurate.

Selective classification. In the selective classification setting, we have labeled validation data Dval
in addition to training data. Unless otherwise noted, the validation set is assumed to be drawn
from PID, and therefore can be constructed by randomly partitioning an original training dataset
into training and validation splits. We do not necessarily assume that the validation data includes
anomalies. The model is evaluated on test data, which may include examples from a different
distribution. Even when some test inputs are from a different distribution, they correspond to a well-
defined ground-truth label. The model is evaluated on both accuracy (the ratio of correctly classified
inputs) and coverage (the ratio of inputs that the model did not reject). This problem can arise in
situations where an incorrect classification attempt has a disproportionately higher cost compared to
the benefit from being correct.

3 TRANSDUCTIVE CONFIDENCE MINIMIZATION

We aim to produce a model that achieves high accuracy on training data Dtr while having a predictive
confidence that reflects the degree to which its prediction will be reliable. The crux of the method
is to introduce a regularizer that minimizes confidence on a dataset that is disjoint from the training
dataset. We will refer to this dataset as the “uncertainty dataset,” since it is intended to contain
examples that the model should be uncertain about. The exact choice of uncertainty dataset depends
on the problem setting.

We first pre-train a model f : X → P(Y) on the training set using cross-entropy loss Lxent(f,Dtr) =
−E(x,y)∼Dtr [log f(y;x)]. However, a model trained solely to minimize cross-entropy can suffer
from overconfidence. We therefore fine-tune this model while introducing an additional regularizer
to minimize predictive confidence on such inputs. More specifically, in the fine-tuning stage, we
continue to minimize cross-entropy loss on a fine-tuning dataset, which the original training data
is a subset of (Dtr ⊆ Dft). Our additional regularizer minimizes confidence on the “uncertainty
set”; we define the corresponding regularization loss as Lconf(f,Dconf) = E [log f(yu;x

′)], where
the expectation is taken over x′ ∼ Dconf, yu ∼ U . Our final objective is a weighted sum of the
fine-tuning and confidence losses:

Lxent(f,Dft) + λLconf(f,Dconf), (1)

where U is the uniform distribution over labels and λ is a hyperparameter. The loss weight hyper-
parmeter is set to λ = 0.5 in all experiments unless otherwise specified. The two algorithm variants
differ only in how they select Dft and Dconf, as described below.

TCM for out-of-distribution detection. Our goal in this problem setting is to produce a model that
achieves high accuracy on the ID distribution PID while having low confidence on inputs from the
OOD distribution POOD. Recall that we assume access to an unlabeled dataset Du which includes
a both ID and OOD inputs, and use this entire dataset as the uncertainty dataset for reducing confi-
dence (Dconf = Du). Intuitively, minimizing confidence loss on discourages the model from making
overly confident predictions anywhere. We expect this regularization to have different effects on
ID and OOD inputs, because of its interaction with the original cross-entropy loss. In the ID data
distribution, the confidence loss is “averaged out” by the cross-entropy loss because maximizing the
log likelihood of the true label entails increasing the predictive confidence for that input. However,
in the OOD data distribution, the confidence loss is the only loss term, so the model is forced to out-
put low-confidence predictions. This difference in ID and OOD examples allows us to distinguish
between the two data distributions based on predictive confidence. For the out-of-distribution detec-
tion setting, the fine-tuning dataset is exactly the training dataset (Dft = Dtr), and the uncertainty
dataset is the unlabeled dataset (Dconf = Du).

TCM for selective classification. Recall that we aim to produce a model that achieves high accuracy
while having low confidence on inputs it is likely to misclassify, and that we assume a labeled

2



Under review at the Workshop on Understanding Foundation Models at ICLR 2023

ID Dataset Method FPR95 (↓) FPR99 (↓) AUROC (↑) AUPR-In (↑) AUPR-Out (↑) Rank (↓)

CIFAR-10

MSP 33.8 58.8 89.9 97.7 60.8 6.8
Outlier Exposure 11.0 24.3 97.4 99.5 92.8 3.6
Energy fine-tuning 8.5 21.3 98.0 99.6 92.8 2.6
TCM-softmax (ours) 12.3 24.9 97.2 99.2 91.7 2.2
TCM-energy (ours) 12.3 23.3 97.2 99.2 92.3 1.6

CIFAR-100

MSP 75.2 85.2 71.2 92.6 30.3 8.0
Outlier Exposure 60.2 76.3 79.9 95.1 44.1 5.4
Energy fine-tuning 59.3 75.6 80.7 94.9 46.5 5.0
TCM-softmax (ours) 13.7 33.4 95.5 98.9 87.3 2.0
TCM-energy (ours) 13.1 29.4 95.8 98.9 88.4 1.0

Table 1: OOD detection performance of a WideResNet-40-2 model, averaged across five OOD
datasets. The average rank is calculated by ranking each method among the 8 methods we compare
against for each (ID, OOD) pair according to the average AUROC, and then taking the average over
all OOD datasets for a certain ID dataset. TCM outperforms all other methods in 9 out of 10 ID-OOD
dataset pairs, as reflected in the average rank. TCM is outperformed by only one method (Energy)
in one setting (C10 to C100), but the difference in that dataset dominates the average statistics.

Task Method FPR95 (↓) FPR99 (↓) AUROC (↑) AUPR (↑)

CIFAR-10 [0:5]
→ CIFAR-10 [5:10]

Binary classifier 92.84 (2.44) 97.75 (0.71) 55.00 (4.24) 19.72 (2.10)
ERD 72.46 (3.85) 92.05 (1.83) 79.33 (0.62) 47.86 (3.48)
TCM-softmax (ours) 66.00 (5.68) 89.18 (2.27) 81.22 (0.67) 45.72 (1.32)
TCM-energy (ours) 67.34 (5.98) 89.10 (2.02) 81.44 (0.60) 46.32 (1.61)

CIFAR-100 [0:50]
→ CIFAR-100 [50:100]

Binary classifier 88.96 (11.45) 92.48 (13.17) 51.4 (2.89) 17.67 (1.82)
ERD 75.43 (1.93) 88.81 (1.04) 71.32 (0.63) 30.15 (1.18)
TCM-softmax (ours) 67.28 (1.01) 86.34 (1.36) 74.26 (0.45) 32.08 (1.77)
TCM-energy (ours) 66.70 (1.19) 87.56 (2.47) 73.88 (0.42) 32.08 (1.30)

Table 2: OOD detection performance on near-OOD detection setting (architecture: ResNet18).
Numbers in parenthesis represent the standard deviation over 5 seeds. TCM achieves similar perfor-
mance to ERD with one third of the computational resources.

held-out validation set, which may or may not be from the same distribution as the training data
Dtr. After training the model f on training data, we expect its errors on the (initially held-out)
validation set to reflect the failure modes of the original model. We obtain the set of correct and
misclassified validation examples D◦

val, D
×
val. The misclassified example set D×

val shows where the
model’s decision boundary conflicts with the true labeling function. We set the fine-tuning dataset to
be the union of the training dataset and the correct validation examples (Dft = Dtr∪D◦

val), and use the
misclassified validation examples as the uncertainty set (Dconf = D×

val) By minimizing confidence
on only the misclassified examples, we expect the model to have lower confidence on all examples
which share commonalities with samples which initially produced errors.

4 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of TCM for both OOD detection
and selective classification on several image classification datasets. We aim to empirically answer
the following questions: (1) Does TCM result in better calibration? (2) How does TCM compare to
existing methods for OOD detection and selective classification? We provide experimental details
and additional empirical results in the appendix.

4.1 OOD DETECTION

Comparisons. Our primary OOD detection experiments consider six OOD detection methods for
comparison: (1) MSP (Hendrycks & Gimpel, 2016), ODIN (Liang et al., 2017a), Mahalanobis (Lee
et al., 2018), Energy score Liu et al. (2020), Outlier exposure Hendrycks et al. (2018), and Energy
based fine-tuning Liu et al. (2020). We additionally compare to two state-of-the-art methods in more
challenging near-OOD detection settings: ERD and Binary Classifier Tifrea et al. (2022).

Results. We present results averaged across OOD datasets in Table 1, with complete results in
Appendix E. We find that our method provides the strongest performance on nine out of ten ID/OOD
pairs compared to six prior method. Table 2 reports the results of the near-OOD detection results. We
see that TCM outperforms binary classification and achieves similar performance as ERD. However,
ERD requires an ensemble of three networks, while TCM uses a single network, i.e. one third of the
computational resources.
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Method ECE (↓) AUC (↑) Acc@90 (↑) Acc@95 (↑) Acc@99 (↑) Cov@90 (↑) Cov@95 (↑) Cov@99 (↑)

Val = CIFAR-10, Test = CIFAR-10
MSP 0.45 99.3 98.4 97.2 95.7 100 100 87.0
Binary Classifier 1.42 99.3 98.4 97.2 95.7 100 100 87.0
Fine-Tuning 0.29 99.6 99.1 98.7 97.5 100 100 91.6
TCM (ours) 1.02 99.2 98.0 96.5 94.8 100 98.6 83.9

Val = CIFAR-10, Test = CIFAR-10-C
MSP 14.5 (5.7) 71.9 (20.0) 59.6 (19.9) 58.1 (19.3) 56.9 (18.8) 27.9 (30.0) 16.3 (24.9) 5.5 (16.2)
Binary Classifier 13.6 (5.8) 72.8 (18.2) 59.5 (19.7) 58.0 (19.2) 56.7 (18.7) 28.5 (29.5) 16.4 (24.3) 8.2 (19.1)
Fine-Tuning 12.8 (5.2) 75.4 (18.2) 61.9 (19.9) 60.3 (19.4) 59.0 (19.0) 33.8 (30.3) 22.7 (26.8) 9.8 (20.4)
TCM (ours) 12.4 (5.0) 77.3 (17.1) 63.6 (19.0) 61.9 (18.4) 60.4 (18.0) 36.0 (30.2) 25.0 (26.4) 11.2 (19.3)
Val = CIFAR-10, Test = CIFAR-10 + CIFAR-10-C
MSP 9.3 (3.9) 92.6 (4.0) 80.4 (9.4) 78.3 (9.5) 76.4 (9.4) 72.4 (15.3) 60.6 (15.0) 27.4 (19.7)
Binary Classifier 7.9 (3.2) 92.5 (4.0) 80.3 (9.4) 78.1 (9.5) 76.2 (9.4) 72.0 (15.3) 59.9 (15.1) 30.5 (17.8)
Fine-Tuning 8.3 (3.6) 93.3 (3.8) 81.3 (9.4) 79.0 (9.5) 77.7 (9.6) 74.1 (14.8) 63.3 (14.1) 43.4 (13.2)
TCM (ours) 8.0 (3.5) 93.6 (3.6) 82.0 (9.0) 79.7 (9.1) 77.7 (9.0) 75.2 (14.5) 63.8 (13.7) 43.6 (11.3)

Table 3: Selective classification performance on distribution shift tasks constructed from the
CIFAR-10 and CIFAR-10C datasets. Bold numbers represent superior results, and parentheses show
the standard deviation over 15 corruptions. TCM consistently outperforms MSP and Binary Classi-
fier, and outperforms Fine-Tuning when the validation and test sets are from different distributions.

Method ECE (↓) AUC (↑) Acc@90 (↑) Acc@95 (↑) Acc@99 (↑) Cov@90 (↑) Cov@95 (↑) Cov@99 (↑)

Val = Camelyon17 ID Val-1, Test = Camelyon17 ID Val-2)
MSP 33.4 (4.8) 65.6 (7.6) 65.2 (6.0) 64.7 (5.8) 64.2 (5.6) 2.5 (2.6) 2.1 (2.4) 1.5 (2.3)
Binary Classifier 34.6 (6.2) 66.9 (10.4) 63.7 (7.4) 63.0 (7.1) 62.6 (6.9) 3.4 (3.0) 2.9 (2.8) 2.2 (2.8)
Fine-Tuning 4.6 (2.8) 99.6 (0.1) 99.1 (0.3) 98.3 (0.3) 97.1 (0.4) 100 (0.0) 100 (0.0) 90.9 (2.5)
TCM (ours) 12.2 (1.4) 98.9 (0.3) 97.9 (0.4) 97.1 (0.4) 95.8 (0.5) 100 (0.0) 100 (0.0) 60.1 (16.3)

Val = Camelyon17 ID Val-1, Test = Camelyon17 OOD Test
MSP 31.8 (0.6) 64.9 (8.8) 59.8 (3.1) 59.3 (3.0) 58.9 (3.0) 5.8 (7.8) 4.0 (5.4) 1.6 (2.0)
Binary Classifier 31.3 (1.3) 72.2 (1.6) 62.8 (1.1) 62.2 (1.1) 61.7 (1.0) 12.0 (1.0) 8.8 (1.3) 3.9 (1.2)
Fine-Tuning 19.2 (1.9) 84.2 (4.6) 75.2 (5.3) 74.1 (4.9) 73.2 (4.7) 27.6 (30.4) 0.7 (0.6) 4.6 (6.3)
TCM (ours) 26.8 (1.6) 84.6 (2.5) 74.0 (1.3) 73.0 (1.5) 72.1 (1.5) 29.7 (17.5) 20.8 (13.5) 6.5 (0.6)
Val = Camelyon17 ID Val-1, Test = Camelyon17 ID Val-1 + Camelyon17 OOD
MSP 29.3 (0.3) 68.5 (6.8) 62.9 (1.9) 62.4 (1.9) 61.9 (1.8) 5.7 (4.7) 4.0 (3.2) 1.6 (1.2)
Binary Classifier 28.2 (1.6) 73.0 (0.9) 64.8 (1.3) 64.0 (0.9) 63.0 (0.2) 9.0 (0.8) 6.1 (0.4) 2.8 (0.8)
Fine-Tuning 15.0 (1.3) 91.2 (1.1) 81.3 (2.0) 80.0 (1.8) 78.9 (1.7) 62.5 (6.2) 40.1 (5.9) 11.7 (0.1)
TCM (ours) 16.5 (1.3) 91.8 (0.6) 81.6 (1.3) 80.2 (1.3) 79.1 (1.3) 59.2 (2.2) 43.4 (1.3) 23.8 (4.1)

Val = FMoW ID Val, Test = FMoW ID Test
MSP 1.6 (0.7) 81.8 (1.1) 63.4 (1.5) 61.1 (1.4) 59.2 (1.4) 37.5 (3.0) 20.9 (5.0) 3.3 (5.1)
Binary Classifier 1.9 (0.7) 82.3 (0.6) 64.3 (0.1) 62.0 (0.3) 60.2 (0.2) 37.6 (0.9) 20.9 (7.5) 3.7 (4.6)
Fine-Tuning 1.5 (0.8) 83.2 (1.1) 65.0 (0.9) 62.7 (0.8) 60.8 (0.8) 41.1 (2.3) 26.2 (5.3) 3.5 (5.6)
TCM (ours) 1.3 (0.8) 81.9 (2.5) 62.8 (2.8) 60.5 (2.8) 58.7 (2.8) 37.1 (6.2) 24.1 (9.2) 6.4 (4.8)
Val = FMoW ID Val, Test = FMoW OOD Test
MSP 2.8 (0.8) 75.6 (0.9) 56.8 (0.2) 54.9 (0.1) 53.3 (0.1) 21.1 (6.6) 7.5 (8.6) 0.8 (1.1)
Binary Classifier 2.8 (0.8) 75.6 (0.9) 56.8 (0.2) 54.9 (0.1) 53.3 (0.1) 21.1 (6.6) 7.6 (8.3) 1.0 (0.7)
Fine-Tuning 2.6 (0.8) 75.7 (0.3) 56.5 (0.4) 54.5 (0.4) 52.9 (0.2) 23.3 (0.2) 8.1 (0.2) 1.0 (0.6)
TCM (ours) 1.3 (0.1) 77.2 (0.4) 56.6 (0.6) 54.4 (0.6) 52.7 (0.5) 28.3 (0.3) 18.2 (0.1) 5.0 (0.4)
Val = FMoW ID Val, Test = FMoW ID Test + FMoW OOD Test
MSP 2.3 (0.6) 78.2 (0.5) 59.2 (0.3) 57.2 (0.2) 55.3 (0.4) 29.2 (0.2) 16.7 (0.3) 1.1 (1.6)
Binary Classifier 2.5 (0.8) 78.0 (0.7) 59.3 (0.1) 57.3 (0.0) 55.6 (0.0) 27.5 (2.5) 9.3 (10.7) 1.2 (1.5)
Fine-Tuning 2.2 (0.9) 78.6 (1.8) 59.2 (1.6) 57.1 (1.5) 55.4 (1.4) 30.1 (4.7) 16.2 (6.4) 2.7 (3.9)
TCM (ours) 1.1 (0.0) 79.2 (0.4) 58.9 (0.8) 56.7 (0.7) 55.0 (0.6) 32.6 (0.1) 21.5 (0.4) 5.7 (1.3)

Table 4: Selective classification performance on the Camelyon17 and FMoW datasets. Bold
numbers represent best performance, and parentheses show the standard deviation over 3 random
seeds. TCM consistently outperforms MSP and Binary Classifier on Camelyon17, and outperforms
Fine-Tuning when the validation and test sets are from different distributions.

4.2 SELECTIVE CLASSIFICATION

Comparisons. We consider three prior methods for comparison: (1) MSP (Hendrycks & Gimpel,
2016) uses a model trained solely on training data and uses the maximum softmax probability as its
confidence metric. (2) Binary Classifier (Kamath et al., 2020) trains a model on training data along
with a separate binary classifier which aims to predict which inputs in the validation set the first
model gets wrong. (3) Fine-Tuning, where we first train a model on training data and then fine-tune
on the misclassified subset of validation data.

Results. We report our main results in Table 3 and Table 4. We see that that TCM consistently out-
performs both MSP and Binary Classifier. The Fine-Tuning baseline outperforms TCM when the
training and validation datasets are from the same distribution. We note that Fine-Tuning uses the
ground-truth validation labels, which is strictly more information than TCM, which only observes
whether or not each example was correct. In the settings where the training and validation distribu-
tions are different, TCM outperforms Fine-Tuning on most metrics. This indicates that TCM, given
only labeled ID data, can learn a conservative classifier that is more effective than existing methods
for selective classification in conditions of distribution shift.
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ABSTRACT

Errors of machine learning models can be prohibitively costly, especially in safety-
critical settings such as healthcare. However, machine learning may be applicable
to such scenarios if the learned model can abstain and defer to a human on difficult
examples instead of making errors. In safety-critical settings, we prefer conserva-
tive models that defer to humans at the cost of some overall accuracy. Unfortu-
nately, selective classification and out-of-distribution detection are notably diffi-
cult as it is hard to anticipate all possible examples. To mitigate this challenge, we
focus on the transductive setting, where unlabeled examples from the test distribu-
tion are available during training. We propose Transductive Confidence Minimiza-
tion (TCM), which minimizes prediction confidence on unlabeled test examples
while simultaneously optimizing the training objective. We theoretically show that
TCM learns a lower bound on the true confidence, and that this property can be
leveraged to provably detect examples that are sufficiently different from training
examples, regardless of what distribution they came from. In our experiments,
TCM consistently shows high performance, achieving the highest OOD detection
performance compared to 6 other methods on 9 out of 10 ID→OOD pairs and
consistently outperforming methods for selective classification in settings where
we test on data from a previously unseen distribution.

A PSEUDOCODE FOR TCM

Algorithm 1 TCM for OOD Detection
Input: Training data Dtr, Unlabeled data Du,
Hyperparamter λ

Initialize weights θ ← θ0
while Not converged do

Sample mini-batch Btr ∼ Dtr
Update θ using∇θLxent(f,Btr)

while Not converged do
Sample mini-batches Btr ∼ Dtr, Bu ∼ Du
Update: ∇θLxent(f,Btr) + λLconf(f,Bu)

Algorithm 2 TCM for Selective Classification
Input: Training data Dtr, Validation data Dval,
Hyperparameter λ

Initialize weights θ ← θ0
while Not converged do

Sample mini-batch Btr ∼ Dtr
Update: ∇θLxent(Btr, f)

Get correct set D◦
val ← {(x, y) ∈ Dval | fθ(x) = y}

Get error set D×
val ← {(x, y) ∈ Dval | fθ(x) ̸= y}

while Not converged do
Sample mini-batches Btr ∼ Dtr ∪D◦

val, B
×
val ∼ D×

val
Update: ∇θLxent(Btr, f) + λLconf(B

×
val, f)

B RELATED WORK

Out-of-distribution detection and unlabeled data. Many existing methods for OOD detection
use a criterion based on the activations or predictions of a model trained on ID data (Hendrycks &
Gimpel, 2016; Liang et al., 2017b; Lee et al., 2018; Liu et al., 2020). However, as noted in Tajwar
et al. (2021), the performance of these methods are not consistent across different ID-OOD dataset
pairs, which suggests that the OOD detection problem may be too challenging in the absence of
additional information. Our method leverages an unlabeled dataset which contains a mix of ID and
OOD data, similarly to Ţifrea et al. (2020). However, this method requires an ensemble of models to
measure disagreement, while TCM only uses a single model. Similarly to our method, Hendrycks
et al. (2018) minimizes confidence on an unlabeled set, but they do so on one big dataset regardless
of the OOD data, and the support of this dataset is disjoint with the support of most OOD distribu-
tions. We additionally present theoretical results showing the benefit of minimizing confidence on
an unlabeled set that includes inputs from the OOD distribution. Our experiments provide further
support for this claim, showing that this transductive setting results in substantial performance gains,
even if the unlabeled set is a mixture of ID and OOD data. More generally, unlabeled data has been
shown to be beneficial for performance, especially in conditions of distribution shift (Sagawa et al.,
2021; Lee et al., 2022).

Conservative prediction and selective classification. Prior works have studied selective classifi-
cation, also known as reject option, for many model classes including SVM, boosting, and nearest
neighbors (Hellman, 1970; Fumera & Roli, 2002; Cortes et al., 2016). Because deep neural net-
works generalize well but are often overconfident (Guo et al., 2017; Nixon et al., 2019), mitigating
such overconfidence using selective classification while preserving its generalization properties is
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a promising problem setting (Geifman & El-Yaniv, 2017; Corbière et al., 2019; Feng et al., 2019;
Kamath et al., 2020; Fisch et al., 2022). Existing methods for learning conservative neural networks
rely on additional assumptions such as pseudo-labeling (Chan et al., 2020), multiple distinct vali-
dation sets (Gangrade et al., 2021), or adversarial OOD examples (Setlur et al., 2022). Uniformly
minimizing the confidence of a set that includes OOD inputs has been shown to result in a more con-
servative model in the offline reinforcement learning setting (Kumar et al., 2020), but this approach
has not been validated in supervised learning settings. TCM only requires a small validation set, and
our experiments in Section 4 demonstrate that its performance is competitive with state-of-the-art
methods for selective classification, especially when tested on images from a distribution not seen
during training.

C DISCUSSION AND FUTURE WORK

We presented an approach, transductive confidence minimization, which minimizes confidence on
an uncertainty dataset and can be used for both out-of-distribution detection and selective classifi-
cation. In the selective classification setting, TCM leverages an in-distribution validation dataset to
identify misclassified examples for the uncertainty dataset, whereas for OOD detection, it assumes
an unlabeled dataset that is representative of the target distribution. While we believe that access to
unlabeled target data in the OOD detection setting is reasonable in some settings, it is not be feasible
in all settings and TCM is only applicable to the settings where such data is available in the fine-
tuning stage. Fortunately, this limitation does not apply in the selective classification setting, since
ID validation data can be easily acquired by using a portion of the original training dataset. Overall,
the theoretical guarantees and strong empirical performance of TCM represents a promising step
towards building more robust and reliable machine learning systems.

D THEORETICAL ANALYSIS

In this section we provide a simple theoretical setup for our algorithm. First, we show our algorithm
achieves perfect OOD detection performance when the ID examples in the test set also appears in
this training set. Next, we show that under the assumptions of function smoothness and closeness of
ID train and test examples in the input space, this also holds for unseen ID and OOD examples.

D.1 PROBLEM SETTING

Let X be the input space and Y the label space. Let PID be a distribution over X × {1, . . . , C} ⊆
X × Y i.e., there are C classes, and let Dtr be a training dataset consisting of n datapoints sampled
from PID. We train a classifier fθ : X → [0, 1]C on the training data. We also consider a different
distribution POOD over X × Y that is different from PID (the OOD distribution). Let Du be an
unlabeled test set where half the examples are sampled from PID, the other half are sampled from
POOD. Our objective is to minimize the following loss function:

L(θ) = E
(x,y)∈Dtr

[Lxent(fθ(x), y)] + λ E
x′∈Du

[Lcon(fθ(x
′))] , (2)

where λ > 0, Lxent is the standard cross-entropy loss, and Lcon is a confidence loss which is cal-
culated as the cross-entropy with respect to the uniform distribution over the C classes. We focus
on the maximum softmax probability MSP(p) ≜ maxi pi as a measure of confidence in a given
categorical distribution p.

D.2 SIMPLIFIED SETTING: ID EXAMPLES SHARED BETWEEN TRAIN AND UNLABELED
SETS

We start with the following lemma which characterizes the interaction of our loss function (1) with
a single datapoint.
Proposition D.1 (Lower bound on true confidence). Let p be the true label distribution of input x.
The minimum of the objective function (1) is achieved when the predicted distribution is pλ ≜ p+λ 1

C

1+λ .
This optimal distribution pλ satisfies MSP(pλ) ≤ MSP(p), with equality iff λ = 0.

Proof. Denote the predicted logits for input x as z ∈ RC , and softmax probabilities as s =
ez/

∑
i e

zi ∈ [0, 1]C . The derivative of the logits with respect to the two loss terms have the closed-
form expressions ∂

∂zLxent = s− p, ∂
∂zLcon = s− 1

C1. Setting the derivative of the overall objective
to zero, we have

∂

∂z
(Lxent + λLcon) = s− p+ λ

(
s− 1

C

)
= 0 =⇒ s =

p+ λ 1
C

1 + λ
= pλ. (3)
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To check the lower bound property, note that pλ is a combination of p and the uniform distribution
U , where U is the uniform distribution over the C classes and has the lowest possible MSP among
all categorical distributions over C classes.

The resulting predictive distribution pλ can alternatively be seen as Laplace smoothing with pseudo-
count λ applied to the true label distribution p. This new distribution can be seen as “conservative”
in that it (1) has lower MSP than that of p, and (2) has an entropy greater than that of p.
Lemma D.2 (Pinsker’s inequality). If P and Q are two probability distributions, then

δTV(P,Q) ≤
√

1

2
DKL(P ∥ Q), (4)

where δTV(P,Q) is the total variation distance between P and Q.

Proof. Refer to (Pinsker, 1964; Canonne, 2022) for a detailed proof.

Lemma D.3 (Low loss implies separation, transductive case). Assume that all ID examples in Du
are also in Dtr, and that Din ∩ Dout = ∅. Let Dtest

in = {x ∈ Dtest : x ∼ Din}(= Dtrain) and
Dtest

out = {x ∈ Dtest : x ∼ Dout} = Dtest\Dtrain. Let L0 be the lowest achievable loss for the
objective (1) with λ > 0. Then there exists ϵ > 0 such that L(θ) − L0 < ϵ implies the following
relationship between the max probabilities holds:

min
x∈Dtest

in

MSP(f i
θ(x)) > max

x∈Dtest
out

MSP(f i
θ(x)) (5)

Proof. Since the training set is a subset of the unlabeled set, we can rearrange the objective (1) as
L(θ) = E

(x,y)∈Dtest
in

[Lxent(fθ(x), y) + λLcon(fθ(x))] + E
x∈Dtest

out

[λLcon(fθ(x
′))] . (6)

Note that the first term is the cross-entropy between fθ(x) and pλ ≜ p+λ 1
C

1+λ , and the second term is
the cross-entropy between fθ(x) and the uniform distribution U . We now rearrange to see that

L(θ)− L0 = E
(x,y)∈Dtest

in

[DKL(pλ ∥ fθ(x))] + E
x∈Dtest

out

[DKL(U ∥ fθ(x))] , (7)

where the lowest achievable loss L0 is obtained by setting fθ(x) = pλ for ID inputs and fθ(x) = U
for OOD inputs. Because L − L0 < ϵ, we know that DKL(pλ ∥ fθ(x)) < Nϵ for all ID inputs and
DKL(U ∥ fθ(x)) < Nϵ for all OOD inputs.

By Lemma D.2, we have for ID input x

δTV(pλ, fθ(x)) ≤
√

1

2
DKL(pλ ∥ fθ(x)) =

√
Nϵ

2
. (8)

By the triangle inequality and because MSP is 1-Lipschitz with respect to output probabilities, we
have for all ID inputs

MSP(fθ(x)) ≥ MSP(pλ)−
√

Nϵ

2
=

1

1 + λ
+

λ

1 + λ

1

M
−

√
Nϵ

2
. (9)

Similarly, by Lemma D.2, we have for OOD input x

δTV(U, fθ(x)) ≤
√

1

2
DKL(U ∥ fθ(x)) =

√
Nϵ

2
. (10)

By the triangle inequality and because MSP is 1-Lipschitz with respect to output probabilities, we
have for all OOD inputs

MSP(fθ(x)) ≤ MSP(U) +

√
Nϵ

2
=

1

M
+

√
Nϵ

2
. (11)

Letting ϵ < 1
2N

(
M−1

(1+λ)M

)2

, we have

min
x∈Dtest

in

MSP(f i
θ(x)) ≥

1

1 + λ
+

λ

1 + λ

1

M
−

√
Nϵ

2
>

1

M
+

√
Nϵ

2
≥ max

x∈Dtest
out

MSP(f i
θ(x)).

(12)
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Lemma D.3 shows that in the transductive setting, minimizing our objective L(θ) (1) below some
threshold provably leads to a separation between ID and OOD examples in terms of the maximum
predicted probability for each example.

D.3 MORE GENERAL SETTING

We prove a more general version of the claim in Lemma D.3 which applies to datapoints outside of
the given dataset Dtest. Our theorem below depends only on a mild smoothness assumption on the
learned function.
Proposition D.4 (Low loss implies separation). Assume that all ID examples in Du are also in Dtr,
and that Din ∩ Dout = ∅. Let Dtest

in = {x ∈ Dtest : x ∼ Din}(= Dtrain) and Dtest
out = {x ∈

Dtest : x ∼ Dout} = Dtest\Dtrain. Assume that the classifier fθ : X → [0, 1]C is K-Lipschitz
continuous for all θ, i.e., for all x, x′ ∈ X , ||fθ(x) − fθ(x

′)||∞ ≤ Kd(x, x′) for some constant
K > 0. Let L0 be the lowest achievable loss for the objective (1) with λ > 0. For δ > 0, denote the
union of δ-balls around the ID and OOD datapoints as

Dδ
in ≜ {x|∃x′ ∈ Dtest

in s.t. d(x, x′) < δ}, Dδ
out ≜ {x|∃x′ ∈ Dtest

out s.t. d(x, x′) < δ}. (13)

Then there exists ϵ, δ > 0 such that L(θ) − L0 < ϵ implies the following relationship between the
max probabilities holds:

inf
x∈Dδ

in

MSP(f i
θ(x)) > sup

x∈Dδ
out

MSP(f i
θ(x)) (14)

Proof. By Lemma D.3, we have for some ϵ, minx∈Dtest
in

MSP(f i
θ(x)) > maxx∈Dtest

out
MSP(f i

θ(x)).
Fix ϵ and denote the difference of these two terms as

min
x∈Dtest

in

MSP(f i
θ(x))− max

x∈Dtest
out

MSP(f i
θ(x)) = ∆. (15)

For any xδ
in ∈ Dδ

in and xδ
out ∈ Dδ

out, let xin ∈ Dtest
in , xout ∈ Dtest

out satisfy d(xδ
in, xin) < δ and

d(xδ
out, xout) < δ. By the K-Lipschitz property, we have

MSP(f i
θ(x

δ
in)) ≥ MSP(f i

θ(xin))−Kδ, MSP(f i
θ(x

δ
out)) ≤ MSP(f i

θ(xout)) +Kδ. (16)

Setting δ < ∆
2K , we have

MSP(f i
θ(x

δ
in)) ≥ MSP(f i

θ(xin))−Kδ > MSP(f i
θ(xout)) +Kδ ≥ MSP(f i

θ(x
δ
out)). (17)

Since the choice of xδ
in and xδ

out was arbitrary, the equation above holds for all datapoints inside each
δ-ball. Therefore, we have

inf
x∈Dδ

in

MSP(f i
θ(x)) > sup

x∈Dδ
out

MSP(f i
θ(x)). (18)

E DETAILED OOD DETECTION RESULTS IN THE REGULAR SETTING

E.1 COMPARISONS

We compare our algorithm’s performance against several popular OOD detection methods:

• MSP (Hendrycks & Gimpel, 2016): A simple baseline for OOD detection, where we take
a network trained on ID samples and threshold on the network’s maximum softmax proba-
bility prediction on a test example to separate ID and OOD examples.

• ODIN (Liang et al., 2017a): This method uses temperature scaling and adding small noise
perturbations to the inputs to increase the separation of softmax probability between ID and
OOD examples.

• Mahalanobis (Lee et al., 2018): This method takes a pretrained softmax classifier and
uses the mahalanobis distance in the embedding space to separate ID examples from OOD
examples.

• Energy score Liu et al. (2020): Instead of the softmax probability, this method uses energy
scores to separate ID and OOD examples.
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• Outlier exposure Hendrycks et al. (2018): Since traditional neural networks can produce
high probabilities on anomalous examples, this method leverages examples from a pseudo-
OOD distribution, i.e., a distribution different from the in-distribution but maybe not the
same OOD distribution one would see during test-time, and fine-tunes a pre-trained network
to minimize confidence on this pseudo-OOD examples.

• Energy based fine-tuning Liu et al. (2020): Similar to outlier exposure, but minimizes
energy-based confidence score instead of softmax-based confidence score on the psuedo-
OOD examples.

E.2 ID DATASETS

We use the following ID datasets from common benchmarks:

• CIFAR-10 (Krizhevsky et al., 2009a): CIFAR-10 contains 50,000 train and 10,000 test
images, separated into 10 disjoint classes. The images have 3 channels and are of size 32 x
32. The classes are similar but disjoint from CIFAR-100.

• CIFAR-100 (Krizhevsky et al., 2009b): Similar to CIFAR-10 and contains 50,000 train
and 10,000 test images. However, the images are now separated into 100 fine-grained and
20 coarse (super) classes. Each super-class contains 5 fine-grained classes.

E.3 OOD DATASETS

In addition to CIFAR-10 and CIFAR-100, we follow prior work (Tajwar et al., 2021; Hendrycks &
Gimpel, 2016; Liu et al., 2020) and use the following benchmark OOD detection dataset:

• SVHN (Netzer et al., 2011): SVHN contains images of the 10 digits in English which
represent the 10 classes in the dataset. The dataset contains 73,257 train and 26,032 test
images. The original dataset also contains extra training images that we do not use for our
experiments. Each image in the dataset has 3 channels and has shape 32 x 32.

• TinyImageNet (resized) (Le & Yang, 2015; Deng et al., 2009; Liang et al., 2017a): Tiny-
ImageNet contains 10,000 test images divided into 200 classes and is a subset of the larger
ImageNet (Deng et al., 2009) dataset. The original dataset contains images of shape 64 x
64 and Liang et al. (2017a) further creates a dataset by randomly cropping and resizing the
images to shape 32 x 32. We use the resized dataset here for our experiments.

• LSUN (resized) (Yu et al., 2015; Liang et al., 2017a): The Large-scale Scene
UNderstanding dataset (LSUN) contains 10,000 test images divided into 10 classes. Simi-
lar to the TinyImageNet dataset above, Liang et al. (2017a) creates a dataset by randomly
cropping and resizing the images to shape 32 x 32. We use the resized dataset here for our
experiments.

• iSUN (Xu et al., 2015; Liang et al., 2017a): iSUN contains 6,000 training, 926 validation
and 2,000 test images. We use the same dataset used by Liang et al. (2017a).

Instructions on how to download the TinyImageNet, LSUN and iSUN datasets can be found here:
https://github.com/ShiyuLiang/odin-pytorch

E.4 ARCHITECTURE AND TRAINING DETAILS

• Architecture: For all experiments in this section, we use a WideResNet-40-2 (Zagoruyko
& Komodakis, 2016) network.

• Hyper-parameters: Outlier exposure and energy based fine-tuning uses 80 million tiny
images (Torralba et al., 2008) as the pseudo-OOD dataset which has been withdrawn
due to containing derogatory terms as categories. Since it is no longer available, for
fair comparison, we just use the pre-trained weights provided by these papers’ authors
for our experiments. For MSP, ODIN, Mahalanobis and energy score, we train our net-
works for 110 epochs with an initial learning rate of 0.1, weight decay of 5 × 10−4,
dropout 0.3 and batch size 128. ODIN and Mahalanobis require a small OOD vali-
dation set to tune hyper-parameters. Instead, we tune the hyper-parameters over the
entire test set and report the best numbers, since we only want an upper bound on
the performance of these methods. For ODIN, we try T ∈ {1, 10, 100, 1000} and
ϵ ∈ {0.0, 0.0005, 0.001, 0.0014, 0.002, 0.0024, 0.005, 0.01, 0.05, 0.1, 0.2} as our hyper-
parameter search grid, and for Mahalanobis, we use the same hyper-parameter grid for

12

https://github.com/ShiyuLiang/odin-pytorch


Under review at the Workshop on Understanding Foundation Models at ICLR 2023

ϵ. For our method, we pre-train our network for 100 epochs with the same setup, and fine-
tune the network with our modified loss objective for 10 epochs using the same setting,
except we use a initial learning rate of 0.001, batch size 32 for ID train set and 64 for the
unlabeled set. During fine-tuning, we use 27,000 images per epoch, 9,000 of which are la-
beled ID train examples and the rest are from the unlabeled set. Finally, we use λ = 0.5 for
all experiments, similar to Hendrycks et al. (2018), without any additional hyper-parameter
tuning.

• Dataset train/val split: For all methods except outlier exposure and energy based fine-
tuning, we use 40,000 out of the 50,000 train examples for training and 10,000 train exam-
ples for validation. Note that outlier exposure and energy based fine-tuning uses weights
pre-trained with all 50,000 training examples, which puts our method in disadvantage.

• Unlabeled and test set construction: For our method, we use two disjoint sets of 6,000
images as the unlabeled set and test set. Each set contains 5,000 ID examples and 1,000
OOD examples.

• Augmentations: For all methods, we use the same standard random flip and random crop
augmentations during training/fine-tuning.

E.5 DETAILED RESULTS

Table 5 contains results on various OOD datasets when CIFAR-100 is used as the ID dataset, and
Table 6 corresponds to the similar table for CIFAR-10.

F SEMI-SUPERVISED NOVELTY DETECTION SETTING

For the sake of fair comparison, we also compare our algorithm’s performance to binary classifier
and ERD (Tifrea et al., 2022). These methods leverage an unlabeled dataset that contains both ID
and OOD examples drawn from the distribution that we will see during test-time.

• ERD: Generates an ensemble by fine-tuning an ID pre-trained network on a combined ID
+ unlabeled set (which is a mixture of ID and OOD examples and given one label for all
examples). Uses an ID validation set to early stop, and then uses the disagreement score
between the networks on the ensemble to separate ID and OOD examples.

• Binary classifier: The approach learns to discriminate between labeled ID set and unla-
beled ID-OOD mixture set, with regularizations to prevent the entire unlabeled set to be
classified as OOD.

We use the same datasets as Appendix E.

F.1 ARCHITECTURE AND TRAINING DETAILS

• Architecture: For all experiments in this section, we use a ResNet-18 (He et al., 2015)
network, same as Tifrea et al. (2022).

• Hyper-parameters: For ERD and binary classifier, we use the hyper-parameters and learn-
ing rate schedule used by Tifrea et al. (2022). For ERD, we standardize the experiments
by using ensemble size = 3 for all experiments. The ensemble models are initialized with
weights pre-trained solely on the ID training set for 100 epochs, and then each is further
trained for 10 epochs. For binary classifier, we train all the networks from scratch for 100
epochs with a learning rate schedule described by Tifrea et al. (2022). For our method, we
use the same hyper-parameters as Appendix E.

We use the same dataset splits, augmentations, unlabeled and test sets as Appendix E.

F.2 DETAILED RESULTS

Table 8 contains OOD detection performance metrics when for various commonly used OOD
datasets when CIFAR-100 is used as the ID set, and Table 7 contains the same when CIFAR-10
is used as the ID set.
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OOD dataset FPR95 FPR99 AUROC AUPR-In AUPR-Out
↓ ↓ ↑ ↑ ↑

CIFAR-10 MSP 64.4 (1.4) 80.5 (0.7) 74.6 (0.7) 93.9 (0.2) 32.8 (1.7)
ODIN 67.6 (2.8) 85.8 (2.2) 75.8 (0.8) 93.9 (0.3) 34.7 (1.3)

Mahalanobis 86.7 (1.6) 96.3 (0.8) 62.9 (1.1) 89.2 (0.6) 21.8 (0.6)
Energy score 67.2 (3.2) 86.6 (1.6) 75.7 (0.9) 93.8 (0.3) 34.4 (1.0)

Outlier exposure 63.5 77.9 75.2 94.0 32.7
Energy fine-tuning 57.8 74.6 77.3 94.7 34.3

TCM-softmax (ours) 58.0 (1.7) 79.3 (2.4) 80.8 (1.2) 95.3 (0.3) 44.3 (2.1)
TCM-energy (ours) 60.3 (2.8) 80.4 (1.6) 81.0 (1.5) 95.3 (0.4) 47.6 (2.5)

SVHN MSP 58.0 (4.9) 73.6 (4.2) 77.7 (1.4) 94.8 (0.4) 37.1 (2.4)
ODIN 42.7 (8.4) 64.2 (5.9) 85.7 (6.5) 96.8 (1.5) 52.9 (15.1)

Mahalanobis 36.4 (4.3) 58.0 (5.8) 91.5 (2.1) 98.1 (0.5) 70.5 (8.1)
Energy score 51.3 (5.8) 70.4 (6.8) 81.7 (2.4) 95.9 (0.7) 38.9 (4.7)

Outlier exposure 40.4 53.1 88.2 97.5 54.4
Energy fine-tuning 12.6 27.6 96.8 99.4 70.7

TCM-softmax (ours) 0.6 (0.7) 12.6 (4.0) 99.6 (0.1) 99.9 (0.0) 98.8 (0.3)
TCM-energy (ours) 0.3 (0.3) 8.0 (1.7) 99.7 (0.1) 99.9 (0.0) 99.1 (0.2)

TinyImageNet MSP 77.0 (5.7) 90.9 (3.9) 68.0 (3.2) 91.4 (1.1) 27.4 (2.2)
ODIN 61.2 (11.9) 80.4 (7.7) 81.9 (3.7) 95.4 (1.2) 49.8 (5.4)

Mahalanobis 45.7 (9.2) 65.3 (8.7) 88.3 (4.0) 97.2 (0.9) 65.0 (12.2)
Energy score 73.5 (10.5) 88.5 (6.5) 73.1 (4.3) 92.7 (1.7) 34.3 (4.6)

Outlier exposure 71.6 86.9 75.7 93.7 38.5
Energy fine-tuning 85.2 100.0 70.9 91.4 35.6

TCM-softmax (ours) 5.9 (2.9) 35.2 (6.0) 98.7 (0.3) 99.7 (0.1) 96.9 (0.8)
TCM-energy (ours) 3.5 (2.5) 30.8 (7.5) 99.0 (0.3) 99.7 (0.1) 97.6 (0.8)

LSUN MSP 75.6 (3.7) 89.1 (5.4) 68.5 (1.5) 91.7 (0.6) 27.7 (1.4)
ODIN 57.0 (11.5) 74.8 (8.2) 83.3 (3.9) 95.9 (1.2) 51.2 (5.7)

Mahalanobis 41.0 (7.7) 62.6 (9.3) 89.2 (3.7) 97.5 (0.9) 65.0 (11.6)
Energy score 70.0 (8.7) 85.8 (8.6) 75.2 (4.9) 93.5 (1.8) 35.9 (5.1)

Outlier exposure 59.1 79.9 81.4 95.4 49.4
Energy fine-tuning 65.6 86.8 80.9 95.0 47.9

TCM-softmax (ours) 1.1 (1.0) 14.8 (6.7) 99.5 (0.2) 99.9 (0.0) 98.6 (0.5)
TCM-energy (ours) 0.5 (0.6) 7.0 (3.4) 99.7 (0.1) 99.9 (0.0) 99.1 (0.3)

iSUN MSP 77.6 (3.7) 91.7 (1.4) 67.1 (2.4) 91.2 (0.8) 26.4 (2.1)
ODIN 59.8 (9.1) 78.9 (5.9) 82.3 (3.0) 95.6 (1.0) 48.8 (4.2)

Mahalanobis 48.7 (5.7) 68.2 (5.4) 87.3 (2.8) 97.0 (0.7) 61.7 (8.9)
Energy score 72.0 (8.2) 88.1 (4.7) 73.8 (3.8) 93.2 (1.4) 33.3 (4.0)

Outlier exposure 66.4 83.6 79.2 94.7 45.3
Energy fine-tuning 75.1 89.0 77.4 93.9 43.9

TCM-softmax (ours) 2.74 (1.9) 25.1 (7.0) 99.1 (0.2) 99.8 (0.0) 97.8 (0.5)
TCM-energy (ours) 0.9 (0.6) 20.7 (7.1) 99.4 (0.2) 99.8 (0.0) 98.6 (0.3)

Table 5: OOD detection performance on common out-of-distribution datasets when the ID dataset
is CIFAR-100 (architecture: WideResNet-40-2). Bold numbers represent superior results. Numbers
in parenthesis represent the standard deviation over 5 seeds. ↓: lower is better, ↑: higher is better.
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OOD dataset FPR95 FPR99 AUROC AUPR-In AUPR-Out
↓ ↓ ↑ ↑ ↑

CIFAR-100 MSP 45.7 (2.5) 81.0 (5.6) 86.8 (0.3) 96.8 (0.1) 53.4 (1.0)
ODIN 59.6 (2.6) 89.0 (1.4) 86.1 (0.4) 96.2 (0.2) 58.9 (0.6)

Mahalanobis 65.7 (1.9) 85.2 (2.5) 80.3 (0.6) 94.9 (0.2) 46.0 (0.7)
Energy score 59.6 (2.6) 89.0 (1.4) 86.2 (0.4) 96.2 (0.2) 59.2 (0.5)

Outlier exposure 28.3 57.9 93.1 98.5 76.5
Energy fine-tuning 29.0 63.4 94.0 98.6 81.6

TCM-softmax (ours) 57.5 (6.1) 90.0 (2.8) 87.6 (0.7) 96.5 (0.4) 63.1 (0.7)
TCM-energy (ours) 60.4 (5.3) 90.5 (2.6) 87.0 (0.9) 96.3 (0.4) 64.3 (1.2)

SVHN MSP 43.4 (23.3) 71.4 (21.2) 87.2 (5.6) 96.7 (2.2) 54.0 (8.6)
ODIN 53.0 (13.9) 73.8 (5.8) 78.8 (10.0) 95.0 (2.7) 39.2 (17.1)

Mahalanobis 16.5 (4.5) 37.9 (5.7) 97.1 (0.8) 99.3 (0.2) 90.1 (2.4)
Energy score 59.7 (22.7) 86.8 (12.3) 82.8 (10.5) 94.5 (5.1) 50.4 (12.4)

Outlier exposure 4.8 15.6 98.5 99.7 90.3
Energy fine-tuning 2.1 13.3 99.3 99.8 96.2

TCM-softmax (ours) 0.4 (0.3) 8.4 (2.7) 99.7 (0.1) 99.9 (0.0) 99.1 (0.2)
TCM-energy (ours) 0.1 (0.1) 5.1 (2.7) 99.8 (0.1) 100.0 (0.1) 99.4 (0.2)

TinyImageNet MSP 32.8 (6.0) 57.1 (8.6) 90.3 (1.4) 97.9 (0.4) 60.7 (3.0)
ODIN 34.4 (10.9) 57.1 (11.8) 92.8 (2.4) 98.3 (0.6) 76.3 (7.1)

Mahalanobis 35.9 (6.4) 59.6 (4.8) 91.6 (2.7) 98.1 (0.6) 71.5 (10.0)
Energy score 34.0 (10.9) 61.1 (13.8) 92.0 (2.8) 98.1 (0.8) 72.0 (7.4)

Outlier exposure 13.0 25.3 97.4 99.5 88.7
Energy fine-tuning 7.0 18.8 98.2 99.6 92.1

TCM-softmax (ours) 2.6 (1.6) 15.1 (4.0) 99.3 (0.3) 99.8 (0.1) 98.1 (0.7)
TCM-energy (ours) 1.0 (0.8) 14.7 (3.2) 99.4 (0.2) 99.8 (0.1) 98.7 (0.5)

LSUN MSP 21.3 (2.6) 39.8 (5.9) 93.3 (0.9) 98.6 (0.2) 69.7 (3.1)
ODIN 15.2 (5.5) 35.4 (7.4) 96.8 (1.0) 99.3 (0.3) 88.1 (3.2)

Mahalanobis 28.2 (5.5) 48.8 (7.7) 93.0 (1.9) 98.5 (0.4) 72.1 (7.5)
Energy score 16.0 (5.0) 39.2 (10.2) 96.2 (1.2) 99.2 (0.3) 84.8 (3.9)

Outlier exposure 3.7 11.5 99.1 99.8 95.7
Energy fine-tuning 1.9 4.2 99.3 99.9 97.4

TCM-softmax (ours) 0.5 (0.4) 5 (2.8) 99.8 (0.1) 99.9 (0.1) 99.3 (0.4)
TCM-energy (ours) 0.1 (0.1) 2.1 (1.8) 99.9 (0.1) 100.0 (0.1) 99.7 (0.2)

iSUN MSP 25.9 (4.1) 44.8 (8.4) 92.0 (1.3) 98.3 (0.3) 66.0 (3.3)
ODIN 21.1 (7.7) 42.5 (11.8) 95.6 (1.6) 99.0 (0.4) 83.5 (5.0)

Mahalanobis 28.7 (4.8) 50.9 (7.3) 92.6 (1.9) 98.4 (0.4) 71.5 (7.4)
Energy score 23.2 (8.6) 44.7 (13.5) 94.9 (1.9) 98.9 (0.5) 80.6 (5.6)

Outlier exposure 5.0 11.3 99.1 99.8 95.2
Energy fine-tuning 2.6 6.8 99.4 99.9 96.9

TCM-softmax (ours) 0.6 (0.2) 6.2 (0.9) 99.7 (0.1) 99.9 (0.0) 99.1 (0.1)
TCM-energy (ours) 0.1 (0.1) 4.2 (0.8) 99.8 (0.1) 100.0 (0.1) 99.5 (0.1)

Table 6: OOD detection performance on common out-of-distribution datasets when the ID dataset
is CIFAR-10 (architecture: WideResNet-40-2). Bold numbers represent superior results. Numbers
in parenthesis represent the standard deviation over 5 seeds. ↓: lower is better, ↑: higher is better.
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OOD dataset FPR95 FPR99 AUROC AUPR
↓ ↓ ↑ ↑

SVHN ERD 2.33 (0.88) 31.18 (3.18) 99.01 (0.14) 97.78 (0.26)
Binary Classifier 25.76 (40.78) 56.41 (50.93) 95.10 (6.81) 93.26 (6.83)

TCM-softmax (ours) 2.48 (1.35) 21.10 (4.11) 99.28 (0.13) 98.04 (0.36)
TCM-energy (ours) 1.02 (0.64) 19.02 (3.77) 99.46 (0.13) 98.56 (0.27)

LSUN ERD 0.82 (0.38) 12.21 (3.45) 99.50 (0.13) 98.76 (0.28)
Binary Classifier 0.04 (0.05) 24.18 (28.89) 99.19 (0.40) 98.87 (0.61)

TCM-softmax (ours) 1.58 (1.46) 16.16 (5.85) 99.44 (0.24) 98.40 (0.72)
TCM-energy (ours) 0.78 (0.71) 10.96 (5.34) 99.64 (0.17) 98.88 (0.50)

TinyImageNet ERD 5.42 (1.85) 32.37 (9.44) 98.75 (0.25) 96.82 (0.70)
Binary Classifier 0.72 (0.57) 34.58 (32.64) 98.98 (0.67) 98.35 (0.83)

TCM-softmax (ours) 7.84 (2.47) 29.96 (3.64) 98.72 (0.26) 96.40 (0.80)
TCM-energy (ours) 4.90 (2.33) 27.78 (6.29) 98.96 (0.25) 97.22 (0.70)

iSUN ERD 1.66 (0.88) 21.77 (6.56) 99.22 (0.14) 98.17 (0.36)
Binary Classifier 3.98 (5.33) 59.98 (10.66) 98.26 (0.51) 97.24 (0.95)

TCM-softmax (ours) 6.26 (3.28) 26.84 (9.31) 98.82 (0.44) 96.84 (1.12)
TCM-energy (ours) 2.90 (1.65) 21.76 (6.98) 99.16 (0.28) 97.86 (0.67)

Table 7: OOD detection performance (Semi-supervised novelty detection setting) on common out-
of-distribution datasets when the ID dataset is CIFAR-100 (architecture: ResNet18). Numbers in
parenthesis represent the standard deviation over 5 seeds. ↓: lower is better, ↑: higher is better.

OOD dataset FPR95 FPR99 AUROC AUPR
↓ ↓ ↑ ↑

SVHN ERD 1.66 (1.24) 20.64 (6.70) 99.28 (0.20) 98.38 (0.45)
Binary Classifier 1.32 (0.97) 33.35 (5.76) 98.93 (0.23) 96.99 (59.69)

TCM-softmax (ours) 1.04 (0.55) 13.90 (5.77) 99.48 (0.16) 98.62 (0.36)
TCM-energy (ours) 0.60 (0.47) 14.09 (5.97) 99.50 (0.20) 98.80 (0.34)

LSUN ERD 0.18 (0.18) 8.93 (5.44) 99.71 (0.12) 99.23 (0.26)
Binary Classifier 0.31 (0.58) 37.29 (28.79) 99.01 (0.34) 98.53 (0.24)

TCM-softmax (ours) 0.90 (0.34) 7.50 (2.94) 99.72 (0.08) 99.02 (0.30)
TCM-energy (ours) 0.46 (0.21) 5.90 (2.86) 99.80 (0.07) 99.32 (0.24)

TinyImageNet ERD 1.65 (0.59) 17.71 (2.70) 99.34 (0.09) 98.32 (0.23)
Binary Classifier 1.83 (3.80) 49.83 (25.68) 98.68 (0.63) 97.91 (1.17)

TCM-softmax (ours) 4.14 (1.25) 23.26 (12.27) 99.10 (0.32) 97.52 (0.58)
TCM-energy (ours) 3.20 (0.96) 28.44 (13.94) 99.10 (0.32) 97.76 (0.50)

iSUN ERD 0.48 (0.35) 9.03 (4.40) 99.65 (0.17) 99.06 (0.34)
Binary Classifier 1.63 (2.50) 39.78 (22.81) 98.75 (0.83) 97.96 (1.05)

TCM-softmax (ours) 1.72 (0.36) 12.44 (2.56) 99.48 (0.08) 98.44 (0.22)
TCM-energy (ours) 1.20 (0.29) 13.44 (2.93) 99.48 (0.08) 98.60 (0.20)

Table 8: OOD detection performance (Semi-supervised novelty detection setting) on common out-
of-distribution datasets when the ID dataset is CIFAR-10 (architecture: ResNet18). Numbers in
parenthesis represent the standard deviation over 5 seeds. ↓: lower is better, ↑: higher is better.
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G NEAR-OOD DETECTION SETTING

G.1 ARCHITECTURE AND TRAINING DETAILS

• Datasets: Similar to Tifrea et al. (2022), we try two settings: (1) ID = first 5 classes of
CIFAR-10, OOD = last 5 classes of CIFAR-100, (2) ID = first 50 classes of CIFAR-100,
OOD = last 50 classes of CIFAR-100.

• Dataset splits: We use 20,000 train and 5,000 validation label-balanced images during
training.

• Unlabeled and test split construction: We use two disjoint datasets of size 3,000 as unla-
beled and test sets. Each dataset contains 2,500 ID and 500 OOD examples.

We use the same architecture, hyper-parameters and augmentations, as Appendix F.

H SELECTIVE CLASSIFICATION EXPERIMENT DETAILS

H.1 BASELINES

• MSP (Hendrycks & Gimpel, 2016): A simple and strong baseline for selective classi-
fication, which directly uses the probability assigned by the base model as an estimate of
confidence. MSP has been shown to distinguish in-distribution test examples that the model
gets correct from the ones that it gets incorrect.

• Binary Classifier: Trains a classifier on the labeled training set and validation set to predict
when the base model is correct. The classifier takes as input the softmax probabilities
outputted by base model. For the Binary Classifier, we experimented with a random forest
classifier, MLP, softmax probabilities, and last-layer features, and found the MLP with
softmax probabilities to work best. In all experiments, we use a 2-layer MLP with hidden
layer size of 512, SGD and cosine learning rate scheduler with an initial learning rate of
1e-3 and weight decay 5× 10−4.

• Fine-tuning: Fine-tune the pretrained network on the validation set.

H.2 DATASETS

• CIFAR-10 → CIFAR-10-C Hendrycks & Dietterich (2019): The task is to classify images
into 10 classes, where the target distribution contains severely corrupted images. We run
experiments over 15 of the corruptions (brightness, contrast, defocus blur, elastic transform,
fog, frost, gaussian noise, glass blur, impulse noise, jpeg compression, motion blur, pixelate,
shot noise, snow, zoom blur) and use the data loading code from Croce et al. (2020).

• Waterbirds Welinder et al. (2010); Sagawa et al. (2019): The Waterbirds dataset con-
sists of images of landbirds and waterbirds on land or water backgrounds from the Places
dataset . The train set consists of 4,795 images, of which 3,498 are of waterbirds on water
backgrounds, and 1,057 are of landbirds on land backgrounds. There are 184 images of
waterbirds on land and 56 images of landbirds on water, which are the minority groups.

• Camelyon17 Koh et al. (2021); Bandi et al. (2018): The Camelyon17 dataset is a medi-
cal image classification task from the WILDS benchmark Koh et al. (2021). The dataset
consists of 450, 000 whole-slide images of breast cancer metastases in lymph node from 5
hospitals. The input is a 96× 96 image, and the label y indicates whether there is a tumor
in the image. The train set consists of lymph-node scans from 3 of the 5 hospitals, while
the OOD validation set and OOD test datasets consists of lymph-node scans from the 4th
and 5th hospitals, respectively.

• FMoW Koh et al. (2021): The FMoW dataset is a satellite image classification task from
the WILDS benchmark Koh et al. (2021). The dataset consists of satellite images in various
geographic locations from 2002 − 2018. The input is a 224 × 224 RGB satellite image,
and the label y is one of 62 building or land use categories. The train, validation, and test
splits are based on the year that the images were taken: the train, ID validation, and ID test
sets consist of images from 2002 − 2013, the OOD validation set consists of images from
2013− 2016, and the OOD test set consists of images from 2016− 2018.
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H.3 CIFAR-10 → CIFAR-10-C TRAINING DETAILS

• Architecture: We use the Standard model from Croce et al. (2020) (WideResNet-28-10),
which is trained on the source CIFAR-10 distribution and attains 94.78% source accuracy.

• Hyper-parameters: For TCM, Fine-tuning, and Binary Classifier, we fine-tune on the
validation set for 10 epochs. For TCM and Fine-tuning, we use an initial learning rate
of 0.001 and a cosine learning rate schedule, weight decay of 5 × 10−4, and batch sizes
of 128 and 256 for the fine-tuning set and misclassified validation sets, respectively. We
tune all baselines over the 3 learning rates {1e-3, 1e-4, 1e-5}. For TCM, we use a default
confidence weight of λ = 0.5 for all corruptions, as in Hendrycks et al. (2018).

• Validation and test set construction: We use the CIFAR-10 test set, and split it into
a validation set of 5000 images, a test set of 4000 images, and set aside 1000 images for
hyperparameter tuning. Similarly, for CIFAR-10-C, we use a validation set of 5000 images,
a test set of 4000 images, and set aside 1000 images for hyperparameter tuning.
Each of our settings merges the train/val/test splits from the corresponding datasets. For
example, Val = CIFAR-10, Test = CIFAR-10 + CIFAR-10-C uses a validation set of 5000
CIFAR-10 images for fine-tuning and a test set of 4000 CIFAR-10 and 4000 CIFAR-10-C
images. Note that our combined CIFAR-10 + CIFAR-10-C test sets have a 1:1 clean-to-
corrupted ratio.

• Augmentations: For TCM and fine-tuning, we use the same standard random horizontal
flip and random crop (32× 32).

H.4 WATERBIRDS TRAINING DETAILS

• Architecture: For our base model, we train a pretrained ResNet50 from torchvision
on a subset of the Waterbirds train set (details of the split are described below). We follow
the training details for the ERM baseline used by Sagawa et al. (2019), and use SGD with a
momentum term of 0.9, batch normalization, and no dropout. We use a fixed learning rate
of 0.001, a ℓ2 penalty of λ = 0.0001 and train for 300 epochs.

• Hyper-parameters: For TCM, Fine-tuning, and Binary Classifier, we fine-tune on the val-
idation set for 10 epochs. For TCM and Fine-tuning, we fine-tune on the validation set for
10 epochs with an initial learning rate of 0.001 and a cosine learning rate schedule, weight
decay of 5 × 10−4, and batch sizes of 64 for the fine-tuning and misclassified validation
sets. We tune all baselines over the 3 learning rates {1e-3, 1e-4, 1e-5}. For TCM, we use a
confidence weight of λ = 0.01 and tune over λ ∈ {0.005, 0.01, 0.5, 1.5}.

• Validation and test set construction: We split the Waterbirds train set from Sagawa et al.
(2019) into two sets, one which we use to pretrain a base ERM model, and the other which
we use as our ID validation set. We maintain group ratios: the ID train and validation sets
each contain 2,397 images, of which 1749 are of waterbirds on water, 528 are of landbirds
on land, 92 are of waterbirds on land, and 28 are of landbirds on water. Our test set is the
same test set from Sagawa et al. (2019).

• Augmentations: For TCM and fine-tuning, we use the same standard random horizontal
flip and random center crop (224× 224).

H.5 CAMELYON17 TRAINING DETAILS

• Architecture: We use a DenseNet121 pre-trained on the Camelyon17 train set from Koh
et al. (2021) as our base model. These models use a learning rate of 0.001, ℓ2 regularization
strength of 0.01, batch size of 32, and SGD with momentum set to 0.9.

• Hyper-parameters: For TCM, Fine-tuning, and Binary Classifier, we fine-tune on the
validation set for 1 epoch. For TCM and Fine-tuning, we use an initial learning rate of 1e-5
with a cosine learning rate schedule, weight decay of 5 × 10−4, and batch sizes of 64 for
the fine-tuning and misclassified validation sets. For the binary classifier MLP, we use an
initial learning rate of 0.001. For TCM, we use a default confidence weight of λ = 0.5 for
all corruptions, as in Hendrycks et al. (2018).

• Validation and test set construction: We use the train / ID val / OOD val / OOD test
splits from the WILDS benchmark to construct our validation and test sets. For our ID
validation set and ID test set, we split the Camelyon17 ID validation set into two equally-
sized subsets and maintain group ratios. The Camelyon17 ID validation consists of samples
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from the same 3 hospitals as the train set. We use the OOD test set as our target distribution,
which contains samples from the 5th hospital.

• Augmentations: Following Koh et al. (2021), we normalize and resize images to 224×224,
but use no random augmentations.

H.6 FMOW TRAINING DETAILS

• Architecture: We use FMoW ERM models from the WILDS benchmark Koh et al. (2021)
as our base model. These models use DenseNet121 pretrained on ImageNet with no ℓ2
regularization, Adam optimizer with an initial learning rate of 1e-4 that decays by 0.96 per
epoch, and train for 50 epochs with early stopping and batch size of 64.

• Hyper-parameters: For TCM, Fine-tuning, and Binary Classifier, we fine-tune on the
validation set for 10 epochs. For TCM and Fine-tuning, we use an initial learning rate of
1e-6 and a cosine learning rate schedule, weight decay of 5 × 10−4, and batch sizes of 64
for the fine-tuning and misclassified validation sets. For the binary classifier MLP, we use
an initial learning rate of 0.001. For TCM, we use a default confidence weight of λ = 0.5
for all corruptions, as in Hendrycks et al. (2018).

• Validation and test set construction: We use the train / ID val / OOD val / OOD test
splits from the WILDS benchmark as our validation and test sets. Specifically, we use the
ID validation set, ID test set, and OOD test sets. For example, the task Val = FmoW ID,
Test = FMoW ID + FMoW OOD uses the WILDS ID val set for validation, and the WILDS
ID and OOD test sets for testing.

• Augmentations: Following Koh et al. (2021), we use no random augmentations.
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