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Abstract

Recent advances in large language models (LLMs) have shown great potential to1

accelerate drug discovery. However, the specialized nature of biochemical data2

often necessitates costly domain-specific fine-tuning, posing critical challenges.3

First, it hinders the application of more flexible general-purpose LLMs in cutting-4

edge drug discovery tasks. More importantly, it limits the rapid integration of5

the vast amounts of scientific data continuously generated through experiments6

and research. Compounding these challenges is the fact that real-world scientific7

questions are typically complex and open-ended, requiring reasoning beyond8

pattern matching or static knowledge retrieval. To address these challenges, we9

propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic10

system tailored to drug discovery tasks. Through the collaboration of multiple LLM11

agents, CLADD dynamically retrieves information from biomedical knowledge12

bases, contextualizes query molecules, and integrates relevant evidence to generate13

responses — all without the need for domain-specific fine-tuning. Crucially, we14

tackle key obstacles in applying RAG workflows to biochemical data, including15

data heterogeneity, ambiguity, and multi-source integration. We demonstrate the16

flexibility and effectiveness of this framework across a variety of drug discovery17

tasks, showing that it outperforms general-purpose and domain-specific LLMs as18

well as traditional deep learning approaches. Our code is publicly available at19

https://anonymous.4open.science/r/CLADD-EEDE.20

1 Introduction21

Large language models (LLM) have revolutionized the landscape of natural language process-22

ing, emerging as general-purpose foundation models with remarkable abilities across multiple23

domains [1, 60]. In particular, their application in biomolecular studies has recently gained significant24

interest, motivated by the potential to profoundly accelerate scientific innovation and drug discovery25

applications [75, 51, 13]. LLMs provide novel ways to understand and reason about molecular data,26

building on the wealth of available scientific literature. Additionally, their reasoning and zero-shot27

abilities help overcome the limitations of task-specific deep learning models, streamlining data needs28

and improving human-AI collaboration [22, 73].29

However, given the inherent complexity and specialized nature of the field, recent works emphasize30

the importance of domain-specific fine-tuning to boost tasks such as molecular captioning, property31

prediction, or binding affinity prediction [22, 13, 73, 19]. Consequently, rather than employing readily32

available general-purpose LLMs, most efforts in drug discovery have focused on fine-tuning LLMs33

using biochemical annotations or instruction-tuning datasets.34

While promising, solely relying on these approaches poses significant challenges that can limit35

applications. On one hand, the rapid emergence of new LLM architectures and techniques [47, 78]36
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complicates maintaining domain-specific models obtained through expensive fine-tuning. More37

importantly, drug discovery applications often require promptly incorporating new insights as they38

become available, for example, as a result of new experiments or through the scientific literature.39

In addition to being impractical, regular rounds of fine-tuning to keep LLMs up-to-date with the40

latest scientific advances also introduce challenges such as catastrophic forgetting [43], while not41

necessarily providing grounded answers [25]. Above all, real-world drug discovery questions are42

inherently complex, open-ended, and context-dependent, spanning heterogeneous data types [53]. As43

a consequence, static LLMs—either general-purpose or fine-tuned—may struggle to generalize to44

novel tasks or adapt to new evidence.45

From this perspective, retrieval-augmented generation (RAG) methods offer a promising direction that46

enables dynamic adaptation of the model’s knowledge without the need for continuous, expensive fine-47

tuning [24, 21]. However, applying this paradigm in the drug discovery domain presents important48

obstacles. First, retrieving relevant knowledge is difficult due to the limited domain expertise49

of general-purpose LLMs, combined with the vastness of the biochemical space [8] that renders50

exact retrieval ineffective. Second, biochemical data is extremely heterogeneous, spanning diverse51

modalities such as molecules, proteins, diseases, and complex relationships between them [62], which52

can also exist across multiple sources, introducing challenges in factual integration [28]. Finally,53

many real-world tasks are open-ended and require the LLM to extrapolate beyond the available54

external knowledge (which may also be ambiguous or partial [61]) while remaining grounded in it.55

In this study, we tackle these challenges by introducing a Collaborative framework of LLM Agents56

for Drug Discovery (CLADD). We assume a general setting where external knowledge is available as57

expert annotations associated with molecules or as knowledge graphs (KGs) that flexibly represent58

diverse biochemical entities and their relationships. CLADD is powered by general-purpose LLMs,59

while also integrating domain-specific LLMs, when necessary, to improve molecular understanding.60

Notably, external knowledge can be updated dynamically without LLM fine-tuning.61

The multi-agent collaborative framework enables each agent to specialize in a specific data source62

and/or role, offering a modular solution that can improve overall information processing [11]. In63

particular, CLADD includes a Planning Team to determine relevant data sources, a Knowledge Graph64

Team to retrieve external heterogeneous information in the KG and summarize it, also through a novel65

anchoring approach to retrieve related information when the query molecule is not present in the66

knowledge base, and a Molecule Understanding Team, which analyzes the query molecule based on67

its structure, along with summaries of external data and tools. The flexibility of the framework enables68

CLADD to address a wide range of tasks for drug discovery, including zero-shot and open-ended69

settings, while also improving interpretability through the transparent interaction of its agents.70

Overall, we highlight the following contributions:71

• We present CLADD, a multi-agent framework for RAG-based question-answering in drug discovery72

applications. The framework leverages generalist LLMs and dynamically integrates external73

heterogeneous biochemical data without requiring fine-tuning, while addressing zero-shot and74

open-ended settings.75

• We demonstrate the flexibility of the framework by tackling diverse applications, including drug-76

target prediction, property-specific molecular captioning, and biological activity prediction tasks.77

• We provide comprehensive experimental results showcasing the effectiveness of CLADD compared78

to both general-purpose and domain-specific LLMs, as well as standard deep learning approaches.79

A further appeal of CLADD is its flexibility and explainability, improving the interaction between80

scientists and AI.81

2 Methodology82

2.1 Problem Setup83

Given a query molecule gq and a textual prompt describing a task of interest I, we con-84

sider the general problem of generating a relevant response Agq . For instance, given gq =85

‘C1=CC(=C(C=C1CCN)O)O ’ and I = ‘Predict liver toxicity’, our model should be able to generate86

an answer stating that Agq = ‘this molecule does not have liver toxicity concerns’. Such a general87

QA setup can be flexibly adapted to multi-class classification, captioning, and set-based predictions.88
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Figure 1: Overview of CLADD.

We assume access to two types of external databases: (1) molecular annotation databases C, which89

include textual annotation about molecules (for example, detailing their functions and properties),90

and (2) knowledge graphs (KGs) connecting molecules to other biomedical entities. In particular, a91

KG G is composed of a set of heterogeneous entities E (such as drugs, proteins, and diseases) and a92

set of relations R connecting them. In this paper, we only assume that molecule (or drug) entities93

are present in KG, while any other types of entities can exist. Additionally, we assume access to94

pre-trained molecular captioning models that can be used as external tools to complement the external95

databases. In general, any predictive model on molecules can be considered a captioning model96

[18, 50], given that its output can be simply represented as text.97

2.2 CLADD98

Here, we introduce CLADD, a multi-agent framework for general molecular question-answering99

that supports multiple drug discovery tasks. Each agent is implemented by an off-the-shelf LLM100

prompted to elicit a particular behavior. Our framework is composed of three teams, each composed101

of several agents: the Planning Team, which identifies the most appropriate data sources and102

overall strategy given the task and the query molecule (Section 2.2.1); the Knowledge Graph103

(KG) Team, which retrieves relevant contextual information about the molecule from available104

KG databases (Section 2.2.2); and the Molecular Understanding (MU) Team, which retrieves105

and integrates information from molecular annotation databases and external tools for molecule106

description (Section 2.2.3). Finally, the Prediction Agent integrates the findings from the MU and107

KG teams to generate the final answer. In the following sub-sections, we describe each team in detail.108

The overall framework is depicted in Figure 1.109

2.2.1 Planning Team110

The Planning Team assesses the relevance of external knowledge for a given query molecule. The111

team separately assesses the molecular annotations database and the knowledge graph through the112

MolAnn Planner and the KG Planner agents, respectively.113

Molecule Annotation (MolAnn) Planner. This agent first retrieves annotations for the query114

molecule, cq , from the annotation database C. While these annotations can provide valuable biochem-115

ical knowledge [73], they are often sparse, with many molecules entirely missing or lacking sufficient116

details due to the vastness of the chemical space [36].117

To this end, the MolAnn Planner determines whether the retrieved annotations provide enough118

information for subsequent analyses. Specifically, given a query molecule gq, retrieved annotations119

cq , and the task instruction I, the agent is invoked as follows:120

oMAP = MolAnn Planner(gq, cq, I). (1)

oMAP indicates whether annotations should be complemented with additional information from tools.121

Knowledge Graph (KG) Planner. In parallel to analyzing the available description for the query122

molecule, we analyze the relevance of the contextual information present in the KG. While previous123
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works on general QA tasks focus on identifying entities in the knowledge graph that exactly match124

those in the query [3, 31], the vast chemical search space and the limited coverage of existing125

knowledge bases limit the effectiveness of such approaches in the field of drug discovery.126

To address this challenge, we propose leveraging the knowledge of drugs that are structurally similar127

to the query drug, building upon the well-established biochemical principle that structurally similar128

molecules often exhibit related biological activity [44]. Specifically, we define the anchor drug ga129

as the entity drug with the maximum cosine similarity between its embedding and that of the query130

molecule, among the set of all molecules in the KG (gG), ga = argmax
g∈gG

emb(gq)·emb(g)
∥emb(gq)∥∥emb(g)∥ , where emb131

is a representation produced by a graph neural network (GNN) pre-trained with 3D geometry [39],132

which outputs structure-aware molecular embeddings.133

Then, the KG Planner agent decides whether to use the KG based on the structural similarity between134

the query molecule and the retrieved anchor drug. To do so, we also provide the Tanimoto similarity1135

to the KG Planner, as this domain-specific metric can be leveraged by the LLM’s reasoning about136

chemical structural similarity as follows:137

oKGP = KG Planner(gq, ga, sq,a, I), (2)

where sq,a is the Tanimoto similarity between the query and anchor molecules. oKGP is a Boolean138

indicating whether the KG should be used for the prediction.139

2.2.2 Knowledge Graph Team140

This team aims to provide relevant contextual information about the query molecule by leveraging141

the KG, and it is only called if oKGP = TRUE. It consists of the Drug Relation (DrugRel) Agent142

and the Biological Relation (BioRel) Agent, both of which generate reports on the query molecule143

based on different aspects of the KG. Specifically, the DrugRel Agent focuses on related drug entities144

within the KG, primarily leveraging its internal knowledge, whereas the BioRel Agent focuses on145

summarizing and assessing contextual biological knowledge in the KG.146

Related Drugs Retrieval. The typical approach to leveraging a KG for QA tasks involves identifying147

multiple entities in the query and extracting the subgraph that encompasses those entities [3, 66].148

However, in molecular understanding for applications related to drug discovery tasks, the question149

often involves only a single entity, i.e., the query molecule gq, making it challenging to identify150

information in the KG relevant to the task.151

Here, we introduce a novel approach for extracting relevant information for the query molecule gq by152

utilizing the retrieved anchor drug ga, which exhibits high structural similarity to the query molecule.153

In particular, while the drug entities in the KG G are mainly connected to other types of biological154

entities (e.g., proteins, diseases), we can infer relationships among drugs by considering the biological155

entities they share. For example, we can determine the relatedness of the drugs Trastuzumab and156

Lapatinib by observing their connectivity to the protein HER2 in the KG, as both drugs specifically157

target and inhibit HER2 to treat HER2-positive breast cancer [16]. Therefore, to identify relevant158

related drugs, we first compute the 2-hop paths connecting the anchor drug ga to other drugs giG in the159

KG G, i.e., (ga, ra→e, e, ri→e, g
i
G), where r ∈ R, e ∈ E , and i denotes the index of the other drug.160

Then, we select the top-k related drugs, denoted as gr1 , . . . , grk , corresponding to the molecules161

that have the greatest number of 2-hop paths to the anchor drug. Note that while the anchor drug162

ga is selected based on its structural similarity to the query molecule gq, these reference drugs are163

semantically related to ga, reflecting the relationships captured within the KG.164

Drug Relation (DrugRel) Agent. The DrugRel Agent generates a report on the query molecule,165

contextualizing it in relation to relevant drugs present in the knowledge base for the specific task166

instruction. Given a query molecule gq , its anchor drug ga, and the set of related drugs gr1 , . . . , grk ,167

the DrugRel Agent generates a report as follows:168

oDRA = DrugRel Agent (gq, ga, gr1 , . . . , grk , T , I), (3)

where T = {sq,a, sq,r1 , . . . , sq,rk} is the set of Tanimoto similarities between the query molecule and169

the retrieved drugs. The agent leverages its internal knowledge about related drugs while effectively170

assessing the relatedness of the information to the target molecule based on the Tanimoto similarity.171

1We provide details on the Tanimoto similarity in Appendix C.
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Biological Relation (BioRel) Agent. The BioRel Agent summarizes how the anchor drug and the172

related drugs are biologically related, integrating additional biochemical entities present in the KG,173

such as targets, indications, side effects, etc. Specifically, given an anchor drug ga, a set of reference174

drugs gr1 , . . . , grk , the collection of all 2-hop paths P linking the anchor drug to the reference drugs,175

and the instruction I, the agent generates the report as follows:176

oBRA = BioRel Agent(P, I, gq, ga, sq,a). (4)

This enables us to obtain a task-relevant summary of the subgraph connected to the anchor drug.177

Importantly, while both the DrugRel Agent and BioRel Agent aim to reason about the query molecule178

in relation to other relevant entities in the KG for the specific task, they leverage distinct knowledge179

sources and perform different roles. Specifically, the BioRel Agent focuses on summarizing the180

network of relationships between drugs and other biological entities in the KG, contextualizing it with181

respect to the specific task at hand. In contrast, the DrugRel Agent primarily draws on its internal182

knowledge, triggered by the names of the related drug entities in the KG, and incorporates structural183

similarity between them. In Section 3, we demonstrate how these agents complement each other184

effectively, producing a synergistic effect when combined together.185

2.2.3 Molecular Understanding Team186

The Molecular Understanding (MU) Team compiles a report on the query molecule by leveraging187

external annotations and integrating them with structural information and reports from other agents.188

Molecule Annotations. Annotations from the external database are retrieved for the query molecule,189

denoted as cq. If the Planning Team decided to use external annotation tools (i.e., oMAP = TRUE),190

additional captions c̃q are generated with the external captioning tools as follows:191

c̃q = Captioning Tools(gq), (5)

and concatenated to the annotations retrieved from the database: cq = cq||c̃q. External captioning192

tools allow the system to easily harness recent advances in LLM-driven molecular understanding [50,193

73], and can potentially include any tools, given that the output can be transformed into text.194

Molecule Understanding (MU) Agent. The MU agent then analyzes the structure of the molecule,195

combining it with annotations and reports generated by the KG Team and generating a comprehensive196

report as follows:197

oMUA = MU Agent(gq, cq, oDRA, oBRA, I). (6)

2.2.4 Prediction Agent198

Finally, the Prediction Agent performs the user-defined task by considering the reports from the199

various agents, including the MU and KG teams, as follows:200

Agq = Task Agent(gq, oMUA, oDRA, oBRA, I). (7)

By integrating this evidence, the Prediction Agent can perform a comprehensive analysis of the query201

molecule. Importantly, the output of the Prediction Agent can be flexibly adjusted based on the202

specific task requirements. For instance, it can be a descriptive caption, a simple yes/no response for203

binary classification, or an open-ended answer. Such behavior leverages the zero-shot capabilities of204

LLMs [34] and does not require additional fine-tuning. Therefore, a key advantage of CLADD is its205

flexibility, which enhances scientist-AI interactions.206

3 Experiments207

We assess the effectiveness of CLADD by conducting a range of drug discovery applications spanning208

different predictive tasks, including drug-target prediction (Section 3.1), property-specific molecular209

captioning (Section 3.2), and drug biological activity prediction (Section 3.3).210

Implementation Details. In all experiments, we utilize GPT-4o mini through the OpenAI API for211

each agent. We use PrimeKG [12] as the KG, PubChem [32] as an annotation database, and MolT5212

[18] as an external captioning tool. Additional implementation details and agent templates can be213

found in Appendix F and H, respectively.214
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Table 1: Performance in drug-target prediction
tasks (Precision @ 5). Bold and underline indi-
cate best and second-best language model-based
methods.

(a) Overlap (b) No overlap
Activate Inhibit Activate Inhibit

GNNs (Fine-tune)
GraphMVP 1.76 1.03 1.67 0.73
MoleculeSTM 1.66 0.89 1.48 0.65

General LLMs (Zero-shot)
GPT-4o mini 1.15 1.02 1.13 0.87
GPT-4o 0.62 0.79 0.68 0.65

Domain LMs (Zero-shot) N/A N/A N/A N/A

Domain LMs (Fine-tune)
Galactica 125M 1.36 1.03 0.86 0.69
Galactica 1.3B 1.65 1.09 1.37 0.80
Galactica 6.7B 1.52 0.97 1.22 0.71

CLADD (Zero-Shot) 3.04 4.83 2.67 3.24

Table 2: Performance in molecular captioning
tasks, mean AUROC with standard deviation
(in parentheses). Bold and underline indicate
the best and second-best language model-based
methods.

BBBP Sider ClinTox BACE
GNNs
GraphMVP 69.59 (1.29) 60.88 (0.41) 87.57 (3.26) 80.24 (2.92)
MoleculeSTM 70.14 (0.90) 58.69 (0.89) 92.19 (2.79) 79.24 (3.40)

Only SMILES 70.95 (1.14) 60.80 (1.18) 91.62 (2.18) 74.21 (1.32)

General LLMs
GPT-4o mini 67.85 (1.50) 58.18 (1.55) 90.74 (1.91) 74.22 (1.95)
GPT-4o 66.43 (1.47) 60.41 (1.21) 88.13 (1.74) 67.82 (4.14)

Domain LMs
MolT5 69.77 (1.89) 57.20 (0.98) 87.91 (1.25) 74.28 (4.00)
LlasMol 68.12 (1.48) 61.50 (1.66) 89.67 (0.57) 75.42 (2.98)
BioT5 69.68 (1.23) 64.65 (2.01) 92.80 (2.92) 77.23 (1.95)

CLADD 72.28 (1.04) 66.42 (1.31) 93.80 (2.30) 77.74 (3.15)

3.1 Drug-Target Prediction Task215

Accurately predicting a drug’s protein target is essential for understanding its mechanism of action216

and optimizing its therapeutic efficacy while minimizing off-target effects [56, 6]. Here, we evaluate217

the models’ ability to accurately identify which proteins a given molecule is most likely to activate or218

inhibit in a set prediction setting.219

Datasets. We use molecular targets present in the Drug Repurposing Hub [15], DrugBank [67], and220

STITCH v5.0 [57], as preprocessed in Zheng et al. [79], including 13,688 molecules in total (details221

are presented in Appendix D).222

Methods Compared. We evaluate two pre-trained GNNs, GraphMVP and MoleculeSTM, along with223

two general-purpose LLMs—GPT-4o mini and GPT-4o, and the domain-specific language model224

Galactica [58] (details are presented in Appendix E).225

Evaluation Protocol. We assess the performance of LLMs in a zero-shot setting. Specifically, for226

a given target molecule, we prompt the LLMs to generate the top 5 proteins that the molecule is227

most likely to activate or inhibit, and we calculate the precision with respect to ground truth data. As228

baseline GNNs cannot perform this task without training in a zero-shot setting, we fine-tune them in a229

few-shot setting using 10% of the data. For domain-specific LMs, we also present fine-tuning results230

on the specific task. To better assess generalization power, we separately report the performance on231

the test set for molecules present/not present in the external databases (“Overlap”/“No Overlap”).232

Experimental Results. Table 1 summarizes the results. We observe the following: 1) CLADD out-233

performs all the baselines, with a higher likelihood of correctly identifying proteins activated/inhibited234

by the input molecule. 2) Importantly, the superiority of CLADD is confirmed for molecules not235

present in the caption database or knowledge graph (Table 1 (b)), showcasing CLADD’s ability to236

leverage external knowledge to generalize to novel molecules. 3) We observe that domain-specific237

fine-tuned models, such as Galactica, GIMLET, and MolecularGPT, could not perform this task in a238

zero-shot setting when prompted to do so, likely because this task is not included in their fine-tuning239

instruction dataset. By specifically fine-tuning Galactica on the task, we were able to answer the240

specific question, outperforming general-purpose LLMs in most experiments, but results were still241

inferior to CLADD. This further highlights the flexibility of CLADD, which leverages the zero-shot242

abilities of general-purpose LLMs in its architecture.243

3.2 Property-Specific Molecular Captioning Task244

Earlier studies on molecular captioning tasks have primarily focused on generating general descrip-245

tions of molecules without targeting specific areas of interest, raising concerns about their practical246

applicability in real-world drug discovery tasks. Indeed, the usefulness of a molecular description247

is often task-dependent, and scientists may be interested in detailed explanations of specific charac-248

teristics of a molecule rather than a general description [27, 19]. Hence, in this paper, we introduce249

property-specific molecular captioning, where the model is required to generate a description for a250

given molecule customized to a particular task of interest.251
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Table 3: Performance in biological activity prediction
task including (a) toxicity and (b) antibacterial activity
(Macro-F1). Avg. indicates the average performance
over toxicity datasets. * indicates whether the model al-
ways outputs the same response, either “Yes" or “No".

(a) Toxicity (b) MLSMR
hERG DILI Skin Avg. Mtb

General LLMs
GPT-4o mini 28.42 33.47 41.84 34.58 33.33*
GPT-4o 40.45 25.76 54.51 40.24 36.68

Domain LLMs
Galactica 125M 40.78* 33.56 42.43 38.92 33.33*
Galactica 1.3B 48.57 34.37 42.43 41.79 33.33*
Galactica 6.7B 23.75* 57.67 40.41* 40.61 33.33*
GIMLET 36.50 35.51 42.28 38.09 39.81
LlasMol 23.75* 61.20 31.92 38.95 33.33*

CLADD 51.46 41.10 50.43 47.66 50.92

(b)(a)

Figure 2: Ablation studies. (a) On model
components. (b) On external knowledge.

Datasets. We leverage four widely recognized molecular property prediction datasets from the252

MoleculeNet benchmark [68]: BBBP, Sider, ClinTox, and BACE (further details in Appendix D).253

Methods Compared. We consider different baseline approaches. First, we compare recent molecular254

captioning methods designed to generate general descriptions of molecules, including MolT5 [18],255

LlasMol [73], and BioT5 [50]. Furthermore, we assess general-purpose LLMs, namely GPT-4o mini256

and GPT-4o. Finally, we consider standard molecular property prediction baselines for references,257

including two GNNs pre-trained with different methodologies: GraphMVP [39] and MoleculeSTM258

[40]. We provide further details on the baseline models in Appendix E.259

Evaluation Protocol. Although property-specific captions are practical, no ground truth property-260

specific captions exist for individual molecules, rendering traditional text generation evaluation261

methods inapplicable. Thus, in line with recent works [69, 27, 19], we assess whether the gener-262

ated captions can drive a classification model that categorizes molecules based on their properties.263

Specifically, we pose this evaluation as a molecular property prediction problem, and fine-tune a264

SciBERT model [7] on the generated caption concatenated to the SMILES representation to predict265

the property of interest. The “Only SMILES" model utilizes only the SMILES string as input for the266

SciBERT classifier. For baseline GNNs, each SMILES string is converted into a molecular graph.267

For all the experiments, we use a scaffold splitting strategy to simulate realistic distribution shifts,268

following previous work [40] (train/validation/test data split as 80/10/10%, with five independent269

runs). This evaluation protocol is further illustrated in Appendix D.2.270

Experimental Results. Table 2 summarizes the results. 1) While domain-specific models outperform271

general-purpose LLMs, their performance remains suboptimal, occasionally falling behind the “Only272

SMILES" approach. This means that the generated captions occasionally reduce model performance273

compared to using only the SMILES representation of the molecule. This aligns with previous work274

that found that general descriptors may lack property-specific relevance [27, 19]. 2) On the other275

hand, CLADD-generated captions consistently outperform all the baseline captioners and successfully276

improve over “Only SMILES" across all datasets. We attribute this improvement to the ability of277

CLADD to draw on external biochemical knowledge to ground its generation and its task-specificity.278

3) Moreover, CLADD consistently outperforms pre-trained GNN baselines, except on the BACE279

dataset. Interestingly, this is also the only dataset for which the “Only SMILES” baseline falls short280

compared to GNN models, thus highlighting the critical role of 2D topological and 3D geometric281

information in this case. This paves the way for future research on injecting essential aspects of282

molecules, such as topological and geometric information, into LLM understanding.283

3.3 Biological Activity Prediction: Toxicity and Antibacterial Activity284

Accurately predicting molecular bioactivity is a cornerstone of drug discovery, which is often hindered285

by the existence of countless biological contexts and sparse experimental data. We therefore explore286

the zero-shot characterization of biological activity for unseen compounds. To this goal, we focus on287

drug toxicity [5] and antibacterial activity [46] prediction.288

Datasets. For drug toxicity prediction, we use three benchmark datasets: hERG [65], DILI [71],289

and Skin [2]. For antibacterial activity prediction, we use the dataset published in Eke et al. [20],290
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hereafter referred to as MLSMR_Mtb. In addition to its relevance, we selected MLSMR_Mtb for its291

recency, as it was published after GPT-4o training and in parallel to the preparation of this study,292

therefore avoiding the risk of pre-training data leakage. Dataset details are presented in Appendix D.293

Methods Compared. We compare five domain-specific LLMs—Galactica 125M, Galactica 1.3B,294

Galactica 6.7B [58], LlasMol [73], and GIMLET [77], alongside two general-purpose LLMs, GPT-4o295

and GPT-4o mini (details in Appendix E).296

Evaluation Protocol. Evaluation follows a zero-shot QA setting. The input includes a SMILES-297

based structural description of the molecule and the task description. Using the text-formatted output298

generated by each model, we compute the Macro-F1 score [49] as the evaluation metric.299

Experimental Results. Table 3 summarizes the results. 1) Both on toxicity datasets (average300

score) and the recently published antibacterial activity dataset, CLADD outperforms all the baselines.301

This highlights its ability to perform zero-shot predictions without domain-specific fine-tuning by302

effectively incorporating external knowledge into general-purpose LLMs at inference time. 2) Notably,303

for three datasets (hERG, Skin and MLSMR_Mtb), several baseline models often output the same304

response, either “Yes" or “No", indicating their inability to perform the given task. In contrast,305

CLADD did not suffer from this limitation.306

3.4 Ablation studies307

Model Components Ablations. In Figure 2 (a), we report the results of ablations on the components308

of CLADD. We observe: 1) The knowledge graph and the molecular annotations are important and309

complementary data sources, as shown by the lower performance when only Molecular Understanding310

or Knowledge Graph team is available (“Only MU”, “Only KG”). 2) Dynamically selecting the311

relevant data sources with Planning Team improves performance, leveraging their complementarity,312

as suggested by the lower performance of the “No Planning”. 3) The distributed architecture of the313

multi-agent system is a more effective way of processing the retrieved information, as highlighted by314

the lower performance of “Only Planning” where all the relevant data sources are directly included in315

the prompt of a single Prediction Agent, bypassing intermediate reports. Additional ablation studies316

are presented in Appendix G.1. Furthermore, we confirmed results across different LLMs, including317

open-source models, showcasing the LLM-agnostic nature of CLADD in Appendix G.2.318

External Knowledge Ablations. To further assess the impact of external knowledge on model319

performance, we evaluate the model after progressively pruning the available databases and present320

our results in Figure 2 (b). We observe the following: 1) Model performance depends on external321

knowledge size, validating the key role of the external knowledge to the framework. 2) Interestingly,322

we do not observe any performance plateau, indicating that further expanding the external knowledge323

could provide additional performance improvements. 3) From the bar plots, i.e., “No CT (No324

Captioning Tool)" and “Use KG (Call Knowledge Graph Team)", we observe that as the amount325

of external knowledge grows, the planning team increasingly depends on it. This indicates that326

CLADD actively leverages external knowledge more effectively during the decision-making process327

when such knowledge is more abundant. A more detailed analysis of how external knowledge is328

utilized and its impact on model performance is provided in Appendix G.3.329

4 Conclusion and Limitations330

In this work, we introduced CLADD, a RAG-enhanced multi-agent framework for zero-shot molecular331

question-answering that can support various drug discovery tasks. We showcased its flexibility and332

effectiveness across multiple real-world tasks, outperforming both general-purpose and domain-333

specific fine-tuned LLMs. Our analyses highlighted the complementarity of external knowledge334

sources, internal LLM reasoning, and multi-agent orchestration. CLADD’s chain of messages335

also provides insight into its decision-making process, fostering more interpretable scientist-AI336

interactions. While we focused on open-ended, set-based, and classification predictions, a limitation337

is the lack of focus on regression-based tasks, which would rely on the LLM’s ability to interpret assay338

details and numerical answers. Another limitation is the lack of uncertainty intervals, which could339

be tackled through recent orthogonal work. Beyond serving as a standalone tool, CLADD can also340

have a broader impact as a component of more complex agentic workflows, for example, combining341

computational and experimental systems [59], which will be the subject of future work.342
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This is an appendix for the paper RAG-Enhanced Collaborative LLM Agents for Drug Discovery.582

A Related Work583

LLMs for Molecules. Leveraging the extensive body of literature and string-based molecular584

representations such as SMILES, language models (LMs) have been successfully applied to molecular585

sciences. Inspired by the masked language modeling approach used in BERT training [17], KV-PLM586

[74] introduces a method to train LMs by reconstructing masked SMILES and textual data. Similarly,587

MolT5 [18] adopts the “replace corrupted spans" objective [52] for pre-training on both SMILES588

strings and textual data, followed by fine-tuning for downstream tasks such as molecule captioning589

and generation. Building on this foundation, Pei et al. [50] and Christofidellis et al. [14] extend590

MolT5 with additional pre-training tasks, including protein FASTA reconstruction and chemical591

reaction prediction. Furthermore, GIMLET [77], Mol-Instructions [22], and MolecularGPT [42]592

adopt instruction tuning [76] to improve generalization across a wide range of molecular tasks. While593

these approaches demonstrate enhanced versatility, they still rely on expensive fine-tuning processes594

to enable molecule-specific tasks or to incorporate new data.595

LLM Agents for Science. An LLM agent is a system that leverages LLMs to interact with users or596

other systems, perform tasks, and make decisions autonomously [63]. Recently, LLM agents have597

attracted significant interest in scientific applications and biomedical discovery [23], with applications598

including literature search [35], experiment design [55], and hypothesis generation [64], among599

others. In particular, agents focusing on drug discovery applications have emerged. Systems like600

ChemCrow [10], CACTUS [45], and Coscientist [9] focus on automating cheminformatics tasks601

and experiments, streamlining computational and experimental pipelines. Other works leverage602

agent-based orchestration of tools and data to accelerate specific aspects of scientific workflows,603

such as search [48] or design [26]. In contrast to existing works, we investigate an agent-based604

framework that can effectively incorporate external knowledge to improve open-ended and zero-shot605

molecular QA. This could be used either independently or as part of a larger system for automated606

drug discovery [59].607

Multi-Agent Collaborations for Drug Discovery. Only a limited number of studies have explored608

multi-agent frameworks in the context of drug discovery. DrugAgent [29] introduces a multi-609

agent framework integrating multiple external data sources, but is limited to predicting drug-target610

interaction scores. Another study with the same name employs an agentic framework for automating611

machine learning programming for drug discovery tasks [41]. In contrast, our work seeks to tackle a612

diverse array of drug discovery tasks, grounding the agent capabilities in external knowledge.613

LLMs with Knowledge Graphs. While large language models (LLMs) have been successfully614

adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,615

LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a616

bottleneck for scientific applications, and are still persistent after fine-tuning [25]. A promising617

approach to mitigate these issues is the integration of external knowledge sources, such as knowledge618

graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3] proposes a619

method where relevant triplets are retrieved from KGs based on the input query. These triplets are620

then verbalized and provided as additional input to the LLM, enhancing its factual grounding and621

accuracy. KG-Rank [72] focuses on medical question-answering, leveraging a medical knowledge622

graph to match terms in the question and expand them. DALK [37] leverages an LLM to construct623

an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of624

LLM-generated responses. Although these methods retrieve entities from KGs that are related to625

those in the query, the virtually infinite number of potential molecules of interest in drug discovery,626

combined with the limited domain expertise of general-purpose LLMs, makes it challenging to627

directly apply existing techniques to molecular question-answering.628

B Additional Related Works629

LLMs with Knowledge Graphs. While large language models (LLMs) have been successfully630

adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,631

LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a632

bottleneck for scientific applications, and are still persistent after fine-tuning [25]. A promising633
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approach to mitigate these issues is the integration of external knowledge sources, such as knowledge634

graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3] proposes a635

method where relevant triplets are retrieved from KGs based on the input query. These triplets are636

then verbalized and provided as additional input to the LLM, enhancing its factual grounding and637

accuracy. KG-Rank [72] focuses on medical question-answering, leveraging a medical knowledge638

graph to match terms in the question and expand them. DALK [37] leverages an LLM to construct639

an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of640

LLM-generated responses. Although these methods retrieve entities from KGs that are related to641

those in the query, the virtually infinite number of potential molecules of interest in drug discovery,642

combined with the limited domain expertise of general-purpose LLMs, makes it challenging to643

directly apply existing techniques to molecular question-answering.644

C Preliminaries645

Tanimoto Similarity. The Tanimoto similarity is a widely accepted criterion for calculating the646

similarity between two molecules based on their molecular fingerprint [4], which are the binary647

sequences that denote the presence or absence of specific substructures [54]. Given two molecules gi648

and gj with fingerprints fpi and fpj , the Tanimoto similarity si,j is computed as follows:649

si,j =
|fpi ∩ fpj |

|fpi|+ |fpj | − |fpi ∩ fpj |
. (8)

Intuitively, the Tanimoto similarity is the intersection-over-union of the sets of molecular substructures650

of both molecules.651

D Datasets652

In this section, we provide further details on the datasets we used in Section 3. We provide a summary653

of data statistics in Table 4.654

Table 4: Data statistics.
hERG DILI Skin MLSMR_Mtb BBBP Sider ClinTox BACE ChemPert

Overlap No Overlap

# Molecules 648 475 404 200 2039 1427 1477 1513 7917 5771

# Tasks 1 1 1 1 1 27 2 1 2 2

D.1 Drug Biological Activity Prediction Task655

For the drug biological activity prediction task, we use four datasets: hERG, DILI, Skin, and656

MLSMR_Mtb.657

• The Human ether-a-go-go related gene (hERG) [65] plays a critical role in regulating the heart’s658

rhythm. Thus, accurately predicting hERG liability is essential in drug discovery. In this task, we659

assess the model’s ability to predict whether a drug blocks hERG.660

• Drug-induced liver injury (DILI) [71] is a severe liver condition caused by medications. In this661

task, we evaluate the model’s capability to predict whether a drug is likely to cause liver injury.662

• Repeated exposure to a chemical agent can trigger an immune response in inherently susceptible663

individuals, resulting in Skin [2] sensitization. In this task, we evaluate the model’s ability to664

predict whether the drug induces a skin reaction.665

• The Molecular Libraries Small Molecule Repository - Mycobacterium tuberculosis dataset666

(MLSMR_Mtb) has been released as part of Eke et al. [20]. Antimycobacterial activity against667

M. tuberculosis was measured in a dose-response assay and quantified as AUC. Following the668

original study, we used an AUC cutoff of 25 for classification. Out of the 935 molecules tested, we669

randomly selected 200 compounds with a balanced positive/negative ratio. For this task, we evaluate670

the model’s ability to predict antimycobacterial activity. In addition to its relevance, we selected671

this dataset for its recency, as it was published after GPT-4o and in parallel to the preparation672

of this study, ensuring no overlap with pre-training data and thus allowing benchmarking against673

leakage risks. To the best of our knowledge, our work is the first study leveraging this dataset.674
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D.2 Property-Specific Molecular Captioning Task675

For the property-specific molecular captioning task, we use four datasets in MoleculeNet [68]: BBBP,676

Sider, Clintox, BACE.677

• The blood-brain barrier penetration (BBBP) dataset consists of compounds categorized by their678

ability to penetrate the barrier, addressing a significant challenge in developing drugs targeting the679

central nervous system.680

• The side effect resource (Sider) dataset organizes the side effects of approved drugs into 27 distinct681

organ system categories.682

• The Clintox dataset includes two classification tasks: 1) predicting toxicity observed during clinical683

trials, and 2) determining FDA approval status.684

• The BACE dataset provides qualitative binding results for a set of inhibitors aimed at human685

β-secretase 1.686

Evaluation Protocol. While previous works on molecular captioning generate general molecule687

descriptions and evaluate them with standard NLP metrics like BLEU. However, because a molecule688

can be described in multiple ways (some more relevant to certain tasks [27, 19]), we focus on689

property-specific captioning. Here, the main challenge is the lack of ground-truth captions for each690

property. Therefore, similar to previous work [19], we use an evaluation protocol that checks how691

well the generated captions aid in property prediction by fine-tuning a language model (SciBERT) on692

them. Specifically, for a generated caption and the SMILES representation of the target molecule, we693

concatenate them using a [CLS] token, forming SMILES[CLS]caption, and fine-tune a SciBERT694

[7] model for property prediction. Importantly, fine-tuning SciBERT is only part of the evaluation695

protocol, as CLADD itself does not involve any fine-tuning. This process is illustrated in Figure 3.696

Scientist

Provide a detailed description of the molecule, 
including its potential blood-brain barrier permeability,
CC(=O)NCCC1=CNc2c1cc(OC)cc2

CLADD

The molecule's moderate molecular weight, balanced LogP, 
and TPSA suggest it may have the potential to cross the 
blood-brain barrier. However, the presence of the charged 
chloride ion could affect its overall permeability.

(a) Property specific caption generation from CLADD

Generated Caption SciBERT

(b) Caption Evaluation

Evaluation

Figure 3: (a) After CLADD (or baseline models) generates a property-specific caption, (b) SciBERT
is used for evaluation. In other words, fine-tuning SciBERT is not part of CLADD; it is only used
for evaluation purposes.

D.3 Drug-Target Prediction Task697

We rely on annotated molecular targets present in the Drug Repurposing Hub [15], DrugBank [67],698

and STITCH v5.0 [57], as combined and preprocessed in 79. As we explained in Section 3, we699

separately report the performance on the test set for molecules based on their information availability700

in the external databases (“Overlap”/“No Overlap”). More specifically, for “No Overlap" cases, we701

exclude the molecules in the following criteria:702

• We exclude the molecules if they exist in the knowledge graph.703

• However, we noticed that many molecules have uninformative annotations, as also discussed in704

Section F. Consequently, we decided to exclude molecules from the test set only if they have705

sufficient annotations relevant to the task, as determined by GPT-4o mini.706

After this process, 5771 molecules remained in the test set for the “No Overlap" scenario.707
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E Baselines Setup708

This section provides further details on the baselines we used in Section 3. For all baseline models,709

we utilize the pre-trained checkpoints provided by the authors of the original papers.

Table 5: Links to baseline model checkpoints.
Model URL

Galactica 125M https://huggingface.co/facebook/galactica-125m
Galactica 1.3B https://huggingface.co/facebook/galactica-1.3b
Galactica 6.7B https://huggingface.co/facebook/galactica-6.7b
GIMLET https://huggingface.co/haitengzhao/gimlet
LlasMol https://huggingface.co/osunlp/LlaSMol-Mistral-7B
MolecularGPT https://huggingface.co/YuyanLiu/MolecularGPT

710

• Galactica [58] is a large language model designed to store, integrate, and reason over scientific711

knowledge. The authors demonstrate Galactica’s capabilities in simple molecule understanding712

tasks, such as predicting IUPAC names and performing binary classification for molecular property713

prediction. We also fine-tune Galactica for the Drug-Target Prediction task described in Section 3,714

using molecules and associated activated/inhibited proteins. For fine-tuning, we searched for the715

optimal hyperparameters (learning rate of {1e− 3, 1e− 4, 1e− 5, 1e− 6} and epoch number of716

{50, 100, 150, 200}), reporting the best performance achieved.717

• GIMLET [77] introduces a unified approach to leveraging language models for both graph and718

text data. The authors aim to enhance the generalization ability of language models for molecular719

property prediction through instruction tuning.720

• LlaSMol [73] presents a large-scale, comprehensive, and high-quality dataset designed for in-721

struction tuning of large language models. This dataset includes tasks such as name conversion,722

molecule description, property prediction, and chemical reaction prediction, and it is used to723

fine-tune different open-source LLMs.724

F Implementation Details725

In this section, we provide further details on the implementation of CLADD.726

Software Configuration. Our model is implemented using Python 3.11, PyTorch 2.5.1, Torch-727

Geometric 2.6.1, RDKit 2023.9.6, and LangGraph 0.2.59.728

Computational Resources. For LLMs, we utilize the OpenAI API, thereby leveraging OpenAI’s729

computational resources. All other computations, such as GNN retrievers, are performed on a 24GB730

NVIDIA GeForce RTX 3090 GPU.731

External Databases. In all experiments, we employ the PubChem database [32] as the annotation732

database C and PrimeKG [12] as the biological knowledge graph G.733

The PubChem database is one of the most extensive public molecular databases available. Pubchem734

database consists of multiple data sources, including DrugBank, CTD, PharmGKB, and more735

(https://pubchem.ncbi.nlm.nih.gov/sources/). The PubChem database used in this study736

includes 299K unique molecules and 336K textual descriptions associated with them (that is, a single737

molecule can have multiple captions sourced from different datasets associated with it). On average,738

each molecule has 1.115 descriptions, ranging from a minimum of one to a maximum of 17, as739

shown in Figure 4 (a). In this study, if a molecule had multiple captions, they were concatenated to740

form a single caption. On the other hand, as shown in Figure 4 (b), most captions consist of fewer741

than 20 words, underscoring the limited informativeness of human-generated captions. Even after742

concatenating multiple captions for each molecule, the majority still contain fewer than 50 words.743

PrimeKG is a widely used knowledge graph for biochemical research. The knowledge graph744

contains 4,037,851 triplets and encompasses 10 entity types, including {anatomy, biological745

processes, cellular components, diseases, drugs, effects/phenotypes,746

exposures, genes/proteins, molecular functions, and pathways}. Additionally,747

it includes 18 relationship types: {associated with, carrier, contraindication,748
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(a) Number of Captions (b) Number of Words 
in a Caption

(c) Number of Words 
after Concatenation

Figure 4: Data analysis on PubChem database.

(a) Entity Type (b) Relation Type

Figure 5: Data analysis on PrimeKG knowledge
graph.

enzyme, expression absent, expression present, indication, interacts with,749

linked to, off-label use, parent-child, phenotype absent, phenotype present,750

ppi, side effect, synergistic interaction, target, and transporter}. The751

number of triplets associated with each entity and relation type is shown in Figure 5 (a) and (b),752

respectively.753

F.1 KG Planner754

As explained in section 2.2.1, we utilize a pre-trained GNN (with 3D information) to retrieve755

molecules highly related to the query molecule. In particular, the model has a GIN architecture [70],756

which is pre-trained with the GraphMVP [39] approach. The checkpoint of the model is available757

at https://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_GraphMVP.758

G Additional Experimental Results759

In this section, we provide additional experimental results that can supplement our experimental760

results in Section 3.761

G.1 Additional Ablation Studies762

In Table 6, we conduct a model analysis by removing one component of the model at a time for the763

drug-target prediction task. We have the following observations: 1) By comparing “Only Expert764

Annotation” and “Only Generated Caption”, we observe that relying solely on expert annotations765

yields significantly better performance. This highlights the critical importance of human-generated766

annotations over machine-generated captions. Still, their combination leads to the best overall767

performance. 2) Among the three agents—DrugRel Agent, BioRel Agent, and MU Agent—we could768

not determine a clear superiority in their relative importance, as it was task-dependent (Activation769

or Inhibition). 3) Overall, we observe a decline in performance when any single component of770

CLADD is removed, emphasizing the significance of each module.771

We perform additional ablation studies in the property-specific molecule captioning task in Figure 6.772

Similarly, we observe that including all components (i.e., CLADD) leads to the best performance773

except for the BACE dataset. Our analysis showed that this is because, as illustrated in Figure774

10, the BACE dataset contains minimal relevant information in both the annotation database and775

the knowledge graph. Consequently, the model derives minimal benefit from external knowledge,776

highlighting the critical role of having relevant external information to boost performance.777

G.2 LLM-Agnostic Nature of CLADD778

Due to the expensive API costs, we mainly report the results using GPT-4o mini in the main779

manuscript to validate the proposed framework. In this section, we performed additional experiments780

replacing it with different LLMs, including Llama3.3-70b and DeepSeek-V3. As shown in Table 7,781

the proposed framework (+ CLADD) consistently improves each individual LLM, showcasing its782

LLM-agnostic advantage.783
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Table 6: Additional ablation studies in drug-target pre-
diction task (Precision @ 5). Bold and underline indi-
cate best and second-best methods.

(a) Overlap (b) No overlap
Activate Inhibit Activate Inhibit

No MolAnn Planner
- Only Expert Annotation 2.99 4.80 2.63 3.20
- Only Generated Caption 2.72 3.96 2.61 2.80
No KG Planner 2.84 4.49 2.64 2.97
No DrugRel Agent 2.90 4.79 2.48 2.99
No BioRel Agent 2.96 4.50 2.63 3.00
No MU Agent 3.04 4.17 2.66 2.59

CLADD 3.04 4.83 2.67 3.24 Figure 6: Ablation studies in the property-
specific molecular captioning task.

Table 7: Performance of CLADD with each agent replaced by a different closed-source and open-
source LLM (drug-target prediction task).

Overlap No overlap
Activate Inhibit Activate Inhibit

GPT-4o mini 1.15 1.02 1.13 0.87
+ CLADD 3.04 4.83 2.67 3.24
Llama-3.3-70B 0.84 0.94 0.88 0.81
+ CLADD 3.13 6.40 2.73 4.14
DeepSeek-V3 1.91 1.46 1.90 1.11
+ CLADD 3.60 7.75 3.15 5.01

G.3 Additional External Knowledge Analysis784

In Table 7, we analyze how the retrieval accuracy affects the model performance. To do so, we785

investigated two settings: one where the anchor drug selection in the knowledge graph is done786

randomly, and another where annotations are randomly sampled from the annotation database. As787

expected, we observe that the performance of both these models is significantly lower compared to788

the original model. We also observe that there is still a significant performance gap when compared789

to GPT-4o mini. This is expected, as our model still includes a planning team that ensures that the790

anchor drug and annotations are only used when they are relevant to the query molecule and task.791

Moreover, we further investigate how the quality of retrieved knowledge affects the model perfor-792

mance. Firstly, we analyzed how performance changes as a function of the length of the annotation793

retrieved from the annotation database. In Figure 8(a), “Zero" indicates that no annotation is avail-794

able in the annotation database, while Q1, Q2, Q3, and Q4 represent the quartiles of the retrieved795

annotation length. We highlight two interesting trends: (1) in general, performance increases with the796

annotation length, which is in line with the intuition that longer annotations include more relevant797

information, and (2) on average, “no annotation” leads to better results than the shortest annotations,798

which could indicate that the shortest annotations are often not informative enough to boost perfor-799

mance. However, for all groups except the shortest annotations, the additional information provides a800

proportional improvement.801

Secondly, we analyzed how performance changes as a function of the similarity between the query802

molecule and the anchor molecule in the knowledge graph. In Figure 8 (b), Molecules with a803

Tanimoto similarity of 1 are excluded from the evaluation. “High": Tanimoto similarity between804

0.7∼1.0, “Middle": Tanimoto similarity between 0.3∼0.7, “Low": Tanimoto similarity between805

0.0∼0.3. Here, we found a very positive correlation, which is in line with the intuition that a higher806

similarity provides more relevant contextual information.807

In Figure 9, we analyze how external knowledge is used during the decision-making process for the808

drug-target prediction task. We have the following observations: 1) As shown in Figures 9(a) and 9(b),809

the average length of human descriptions is considerably longer in the “Correct" case, and the number810

of retrieved 2-hop paths is notably higher in the “Correct" case. This highlights the importance of811

having external information that is both high quality and abundant. 2) On the other hand, although we812

anticipated a higher proportion of 2-hop paths containing Gene/Protein entities in the “Correct" case,813

no significant difference was observed between the “Correct" and “Incorrect" cases in Figures 9(c)814
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Figure 7: Performance analysis on retrieval
errors.

Overlap No overlap
Activate Inhibit Activate Inhibit

GPT-4o mini 1.15 1.02 1.13 0.87
Random Anchor Drug in KG 2.49 4.46 1.86 2.31
Random Annotations in DB 2.62 4.08 2.51 2.85

CLADD 3.04 4.83 2.67 3.24

(a) Text Length (b) Tanimoto Similarity

Figure 8: Performance as a function of (a) the
length of the text retrieved from the annotation
database and (b) the Tanimoto similarity between
the anchor molecule and the knowledge graph.

and 9(d). From these results, we argue that CLADD’s performance is not solely reliant on retrieving815

external information that is directly linked to the correct answer, given that external information can816

be further processed and contextualized by the agents, integrating different sources of evidence and817

internal knowledge.

(a) (b) (c) (d)

InhibitionActivation

Figure 9: External knowledge analysis results. (a) The average length of retrieved human descriptions,
(b) the average number of retrieved 2-hop paths in the knowledge graph, and (c-d) the proportion of
entity types in 2-hop paths for correct and incorrect cases.

818

In Figure 10, we examine how the Planning Team determines the use of the captioning tool and819

collaborates with the Knowledge Graph Team based on the datasets. We observed that, in most cases,820

the KG was used for more than 50% of the query molecules, with the BACE and Skin Reaction821

datasets as significant exceptions. Furthermore, we observed that the BACE and hERG datasets822

lacked corresponding annotations for all query molecules.823
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Figure 10: Planning team decision analysis based on different datasets. “No CT" signifies that the
planning team has decided not to utilize the captioning tool, while “Use KG" indicates that the
planning team intends to involve the Knowledge Graph Team.
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G.4 Case Studies824

Figure 11 showcases how the agents in CLADD collaborate to identify “the top-5 protein targets a825

query molecule is most likely to activate”. First, the BioRel Agent extracts from the knowledge graph826

that the anchor drug, Naftopidil, is indicated for benign prostatic hyperplasia (BPH), implying the827

activation of related pathways. The DrugRel Agent complements these findings by 1) linking BPH to828

alpha-1 adrenergic receptors using its internal knowledge (which is confirmed in the literature [33]),829

and 2) analyzing related drugs in the knowledge graph (e.g., Hydroxyzine, Clopamine), to infer830

interaction with histamine and dopamine receptors. Finally, the MU agent integrates these findings831

with the analysis of the molecular structure to provide a summarized report of the activated protein832

targets. This example highlights the agents’ complementary strengths, which lead to interpretable833

and reliable predictions.834

The target molecule may act ivate or inhibit  several protein targets [...]: 
2. **Alpha-1 Adrenergic Receptors**: Due to its structural similarity to Naftopidil [..]. 
3. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to histamine receptors [...]. 
4. **Dopamine Receptors**: Similarit ies to Clozapine indicate possible interactions with dopaminergic pathways [...]. 

6. **BPH-related Proteins**: Given the link to Naftopidil [...], it  may influence pathways associated with this condition.

BioRel
Agent

Prediction
Agent Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR2B, DRD1, DRD2, DRD3, DRD4]

The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, Naftopidil, which is indicated for benign prostatic hyperplasia (BPH) [...]
, the target molecule might also influence pathways related to this condition.

[...] Naftopidil is known to act as an antagonist  of alpha-1 adrenergic receptors. [...] The related drugs in the knowledge graph, such as Hydroxyzine and 
Clozapine, suggest potential interactions with histamine receptors and dopamine receptors, respectively.

Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4]

DrugRel
Agent

MU
Agent

Figure 11: Example of collaboration between agents in CLADD (on the drug-target prediction task).
Red represents adrenergic receptors, yellow represents histamine receptors, and green represents
dopamine receptors. The full version is available in Appendix G.

Moreover, in Figure 12, we observe that all three agents consistently predict dopamine-related and835

serotonin-related proteins as targets. Based on the reports, Prediction Agent prioritizes these proteins836

over Cytochrome P450-related enzymes in the prediction. Thus, we argue that our system can837

efficiently prioritize relevant information based on consensus, functioning similarly to a majority838

voting system.839

Ground Truth=[DRD3, DRD2, HTR1A] 

The target molecule, CN(C)C(=O)NC1CCC(CCN 2CCN(c3cccc(Cl)c3Cl)CC2)CC1.Cl, is l ikely to activate or inhibit several protein targets based on its structura
l similarity to Cariprazine. The high Tanimoto similarity (0.98) suggests it will  interact with dopamine D2 and D3 receptors (DRD2, DRD3) and serotonin r
eceptors (5-HT1A, 5-HT2A, 5-HT2B), which are critical  in treating schizophrenia and bipolar disorder. Additionally, the molecule may be metabolized by 
CYP2D6 and CYP3A4 enzymes, influencing its pharmacokinetics. Thus, the potential protein targets include DRD2, DRD3, HTR1A, HTR2A, HTR2B, CYP2D

6, and CYP3A4.

BioRel
Agent

Prediction
Agent

The target molecule shares a high Tanimoto similarity with Cariprazine, which is linked to several protein targets and enzymes. The relationships indica
te that Cariprazine, along with related drugs like Olanzapine, Chlorpromazine, and Aripiprazole, targets dopamine receptors (DRD2, DRD3) and serotoni
n receptors (HTR1A, HTR2A, HTR2B). Additionally, these drugs are metabolized by CYP2D6 and CYP3A4 enzymes. Given these connections, the potential 
protein targets for the target molecule may include DRD2, DRD3, HTR1A, HTR2A, and HTR2B, as well  as the CYP2D6 and CYP3A4 enzymes, which could i

nfluence its pharmacokinetics and therapeutic effects in conditions like bipolar disorder and schizophrenia.

The target molecule, CN(C)C(=O)NC1CCC(CCN 2CCN(c3cccc(Cl)c3Cl)CC2)CC1.Cl, exhibits a high Tanimoto similarity of 0.98 to Cariprazine, indicating a str
ong structural resemblance. Cariprazine is an atypical antipsychotic that primarily acts as a partial  agonist at dopamine D2 and D3 receptors, and also 
has affinity for serotonin receptors (5-HT1A and 5-HT2A). Given this similarity, the target molecule is likely to interact with similar protein targets, part
icularly dopamine and serotonin receptors. The presence of a piperazine moiety and a similar aromatic system suggests potential binding to these rec

eptors, which are critical in the treatment of psychiatric disorders. The lower similarities to related drugs like Aripiprazo le (0.35) and Olanzapine (0.17) 
suggest that while the target  may share some pharmacological properties, it could also exhibit unique interactions due to structural differences. There
fore, the target molecule may act ivate or inhibit  dopamine D2/D3 and serotonin 5-HT1A/5-HT2A receptors, potential ly leading to effects similar to tho
se of Cariprazine and its associated drugs. Further experimental validation would be necessary to confirm these predictions.

Activation=[DRD2, DRD3, HTR1A, HTR2A, HTR2B]

DrugRel
Agent

MU
Agent

Figure 12: Additional case studies. Red represents dopamine-related proteins, yellow represents
serotonin-related proteins, and green represents Cytochrome P450-related enzymes.
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The target molecule COc1ccccc1N1CCN (CCCCN C(=O)c2ccc3ccccc3c2)CC1 may act ivate or inhibit  several protein targets based on itsstructure and the re
ports from the Tanimoto and Summary Agents. 
1. **Histone Deacetylase (HDAC)**: As an identified HDAC inhibitor, it may modulate gene expression and influence cancer pathways. 
2. **Alpha-1 Adrenergic Receptors**: Due to its structural similarity to Naftopidil, it may interact with these receptors, affecting vasodilation and blood 

pressure. 
3. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to histamine receptors, influencing allergic responses. 
4. **Dopamine Receptors**: Similarit ies to Clozapine indicate possible interactions with dopaminergic pathways, relevant in psychiatric disorders. 
5. **CYP3A4**: The molecule may affect drug metabolism via interactions with this enzyme, impacting the pharmacokinetics of co-administered drugs. 
6. **BPH-related Proteins**: Given the link to Naftopidil and benign prostatic hyperplasia, it may influence pathways associated with this condition.

BioRel
Agent

Prediction
Agent Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR2B, DRD1, DRD2, DRD3, DRD4]

The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, Naftopidil, which is indicated for benign prostatic hyperplasia (BPH). Th
e relationships indicate that several drugs, including Hydroxyzine, Caffeine, and Clozapine, contraindicate BPH while also in teracting with the enzyme CY
P3A4, which is crucial for drug metabolism. Given these connections, the target molecule may potentially inhibit  or activate proteins related to CYP3A4, 
affecting the metabolism of drugs that  interact with this enzyme. Additionally, since Naftopidil is l inked to BPH, the target  molecule might also influence 

pathways related to this condition, possibly through interactions with proteins involved in the signaling or pathology of BPH . Thus, potential  protein tar
gets include CYP3A4 and proteins associated with BPH-related pathways.

The target molecule COc1ccccc1N1CCN (CCCCN C(=O)c2ccc3ccccc3c2)CC1 shows a Tanimoto similarity of 0.4117 with Naftopidil, indicating a moderate str
uctural resemblance. Naftopidil is known to act as an antagonist  of alpha-1 adrenergic receptors, which are involved in vasodilat ion and blood pressure 
regulation. Given this similarity, the target molecule may also interact with adrenergic receptors or related pathways. The r elated drugs in the knowled
ge graph, such as Hydroxyzine and Clozapine, suggest potential  interactions with histamine receptors and dopamine receptors, respectively. The target  

molecule's structural features, including the aromatic r ings and nitrogen-containing heterocycles, may facilitate binding to these receptors. Additionally
, the presence of a carbonyl group (C(=O)) in the target molecule could enhance its abil ity to form hydrogen bonds, potentially increasing affinity for var
ious protein targets. Overall , the target molecule may activate or inhibit adrenergic, histaminergic, or dopaminergic pathways, warranting further inves
tigation into its pharmacological profile.

Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4]

DrugRel
Agent

MU
Agent

Figure 13: Full version of Figure 11.
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H Agent Templates840

In this section, we provide the templates for each agent used in Section 2. We follow the previous841

work for designing the system prompt [38].842

Table 8: Prompts for Molecule Annotation Planner (Section 2.2.1).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to determine whether the provided description is enough for analyzing
the structure of the molecule.

Are you ready?

Description: {Retrieved Human Description}

You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 9: Prompts for Knowledge Graph Planner (Section 2.2.1).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to decide whether to utilize the knowledge graph structure by evaluating the structural
similarity between the target molecule and the anchor drug within the knowledge graph.
If the target molecule and the anchor drug show high similarity, the knowledge graph should be
leveraged to extract relevant information.

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug
{SMILES} ({Drug Name}) is {Tanimoto Similarity}.

You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 10: Prompts for Biology Relation Agent (Section 2.2.2).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to predict {Task Description} by analyzing the relationships between the anchor drug,
which shares tanimoto similarity of {Tanimoto Similarity} with the target molecule,
and the most closely related drugs in the knowledge graph.

You should explain the reasoning based on the intermediate nodes between the
related drugs and the anchor drug, as well as the types of relationships they have.

The two-hop relationships between the drugs will be provided in the following format:
(Drug A, relation, Entity, relation, Drug B), where the entity can be one of the following
three types of entities: (gene/protein, effect/phenotype, disease)

Are you ready?

Target molecule: {SMILES}

Here are the two-hop relationships:
{Two-hop Paths}

DO NOT ANSWER IN THE PROVIDED FORMAT.
DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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Table 11: Prompts for Drug Relation Agent (Section 2.2.2).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to {Task Description} by analyzing its structural similarity to anchor drugs
and related drugs, and provide an explanation grounded in its resemblance to these other drugs.

Are you ready?

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug {SMILES}
({Drug Name} is {Tanimoto Similarity}.

The anchor drug {Drug Name} is highly associated with the following molecules
in the knowledge graph: {Reference Drugs}.

The Tanimoto similarities between the target molecule {SMILES} and the related drugs
in the knowledge graph are {Tanimoto Similarity}.

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 12: Prompts for Molecule Understanding Agent (Section 2.2.3).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} by using the SMILES representation
and description of a molecule, and explain the reasoning based on its description.

You can also consider the report from other agents involved in drug discovery:
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Are you ready?
SMILES: {SMILES}
Description: {Caption}

Below is the report from other agents.
Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 13: Prompts for Prediction Agent (Section 2.2.4).
Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} {SMILES}.

Your reasoning should be based on reports from various agents involved in drug discovery:
- Molecule Understanding Agent: Focuses on analyzing the structure of the target molecule.
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Below is the report from each agent.

Molecule Understanding Agent:
{Report from Molecule Understanding Agent}

Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

Based on the reports, {Task Description and Answering Format}

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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