
RAG-Enhanced Collaborative LLM Agents for Drug Discovery

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Recent advances in large language models (LLMs) have shown great potential to
2 accelerate drug discovery. However, the specialized nature of biochemical data
3 often necessitates costly domain-specific fine-tuning, posing critical challenges.
4 First, it hinders the application of more flexible general-purpose LLMs in cutting-
5 edge drug discovery tasks. More importantly, it limits the rapid integration of
6 the vast amounts of scientific data continuously generated through experiments
7 and research. Compounding these challenges is the fact that real-world scientific
8 questions are typically complex and open-ended, requiring reasoning beyond
9 pattern matching or static knowledge retrieval. To address these challenges, we
10 propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic
11 system tailored to drug discovery tasks. Through the collaboration of multiple LLM
12 agents, CLADD dynamically retrieves information from biomedical knowledge
13 bases, contextualizes query molecules, and integrates relevant evidence to generate
14 responses — all without the need for domain-specific fine-tuning. Crucially, we
15 tackle key obstacles in applying RAG workflows to biochemical data, including
16 data heterogeneity, ambiguity, and multi-source integration. We demonstrate the
17 flexibility and effectiveness of this framework across a variety of drug discovery
18 tasks, showing that it outperforms general-purpose and domain-specific LLMs as
19 well as traditional deep learning approaches. Our code is publicly available at
20 <https://anonymous.4open.science/r/CLADD-EEDE>.

21

1 Introduction

22 Large language models (LLM) have revolutionized the landscape of natural language processing-
23 ing, emerging as general-purpose foundation models with remarkable abilities across multiple
24 domains [1, 60]. In particular, their application in biomolecular studies has recently gained significant
25 interest, motivated by the potential to profoundly accelerate scientific innovation and drug discovery
26 applications [75, 51, 13]. LLMs provide novel ways to understand and reason about molecular data,
27 building on the wealth of available scientific literature. Additionally, their reasoning and zero-shot
28 abilities help overcome the limitations of task-specific deep learning models, streamlining data needs
29 and improving human-AI collaboration [22, 73].

30 However, given the inherent complexity and specialized nature of the field, recent works emphasize
31 the importance of domain-specific fine-tuning to boost tasks such as molecular captioning, property
32 prediction, or binding affinity prediction [22, 13, 73, 19]. Consequently, rather than employing readily
33 available general-purpose LLMs, most efforts in drug discovery have focused on fine-tuning LLMs
34 using biochemical annotations or instruction-tuning datasets.

35 While promising, solely relying on these approaches poses significant challenges that can limit
36 applications. On one hand, the rapid emergence of new LLM architectures and techniques [47, 78]

37 complicates maintaining domain-specific models obtained through expensive fine-tuning. More
38 importantly, drug discovery applications often require promptly incorporating new insights as they
39 become available, for example, as a result of new experiments or through the scientific literature.
40 In addition to being impractical, regular rounds of fine-tuning to keep LLMs up-to-date with the
41 latest scientific advances also introduce challenges such as catastrophic forgetting [43], while not
42 necessarily providing grounded answers [25]. Above all, real-world drug discovery questions are
43 inherently complex, open-ended, and context-dependent, spanning heterogeneous data types [53]. As
44 a consequence, static LLMs—either general-purpose or fine-tuned—may struggle to generalize to
45 novel tasks or adapt to new evidence.

46 From this perspective, retrieval-augmented generation (RAG) methods offer a promising direction that
47 enables dynamic adaptation of the model’s knowledge without the need for continuous, expensive fine-
48 tuning [24, 21]. However, applying this paradigm in the drug discovery domain presents important
49 obstacles. First, retrieving relevant knowledge is difficult due to the limited domain expertise
50 of general-purpose LLMs, combined with the vastness of the biochemical space [8] that renders
51 exact retrieval ineffective. Second, biochemical data is extremely heterogeneous, spanning diverse
52 modalities such as molecules, proteins, diseases, and complex relationships between them [62], which
53 can also exist across multiple sources, introducing challenges in factual integration [28]. Finally,
54 many real-world tasks are open-ended and require the LLM to extrapolate beyond the available
55 external knowledge (which may also be ambiguous or partial [61]) while remaining grounded in it.

56 In this study, we tackle these challenges by introducing a **Collaborative framework of LLM Agents**
57 for **Drug Discovery** (CLADD). We assume a general setting where external knowledge is available as
58 expert annotations associated with molecules or as knowledge graphs (KGs) that flexibly represent
59 diverse biochemical entities and their relationships. CLADD is powered by general-purpose LLMs,
60 while also integrating domain-specific LLMs, when necessary, to improve molecular understanding.
61 Notably, external knowledge can be updated dynamically without LLM fine-tuning.

62 The multi-agent collaborative framework enables each agent to specialize in a specific data source
63 and/or role, offering a modular solution that can improve overall information processing [11]. In
64 particular, CLADD includes a *Planning Team* to determine relevant data sources, a *Knowledge Graph*
65 *Team* to retrieve external heterogeneous information in the KG and summarize it, also through a novel
66 anchoring approach to retrieve related information when the query molecule is not present in the
67 knowledge base, and a *Molecule Understanding Team*, which analyzes the query molecule based on
68 its structure, along with summaries of external data and tools. The flexibility of the framework enables
69 CLADD to address a wide range of tasks for drug discovery, including zero-shot and open-ended
70 settings, while also improving interpretability through the transparent interaction of its agents.

71 Overall, we highlight the following contributions:

- 72 • We present CLADD, a multi-agent framework for RAG-based question-answering in drug discovery
73 applications. The framework leverages generalist LLMs and dynamically integrates external
74 heterogeneous biochemical data without requiring fine-tuning, while addressing zero-shot and
75 open-ended settings.
- 76 • We demonstrate the flexibility of the framework by tackling diverse applications, including drug-
77 target prediction, property-specific molecular captioning, and biological activity prediction tasks.
- 78 • We provide comprehensive experimental results showcasing the effectiveness of CLADD compared
79 to both general-purpose and domain-specific LLMs, as well as standard deep learning approaches.
80 A further appeal of CLADD is its flexibility and explainability, improving the interaction between
81 scientists and AI.

82 2 Methodology

83 2.1 Problem Setup

84 Given a query molecule g_q and a textual prompt describing a task of interest \mathcal{I} , we con-
85 sider the general problem of generating a relevant response \mathcal{A}_{g_q} . For instance, given $g_q =$
86 ‘C1=CC(=C(C=C1CCN)O)O’ and $\mathcal{I} = ‘Predict\ liver\ toxicity’$, our model should be able to generate
87 an answer stating that $\mathcal{A}_{g_q} = ‘this\ molecule\ does\ not\ have\ liver\ toxicity\ concerns’$. Such a general
88 QA setup can be flexibly adapted to multi-class classification, captioning, and set-based predictions.

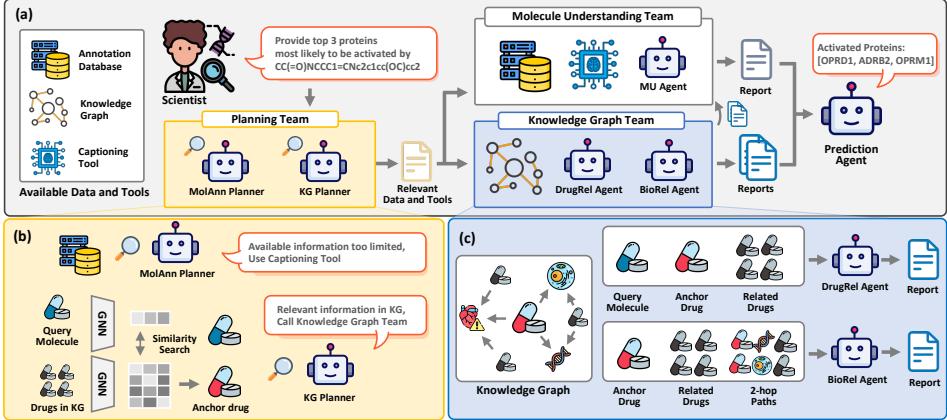


Figure 1: Overview of CLADD.

89 We assume access to two types of external databases: (1) molecular annotation databases \mathcal{C} , which
90 include textual annotation about molecules (for example, detailing their functions and properties),
91 and (2) knowledge graphs (KGs) connecting molecules to other biomedical entities. In particular, a
92 KG \mathcal{G} is composed of a set of heterogeneous entities \mathcal{E} (such as drugs, proteins, and diseases) and a
93 set of relations \mathcal{R} connecting them. In this paper, we only assume that molecule (or drug) entities
94 are present in KG, while any other types of entities can exist. Additionally, we assume access to
95 pre-trained molecular captioning models that can be used as external tools to complement the external
96 databases. In general, any predictive model on molecules can be considered a captioning model
97 [18, 50], given that its output can be simply represented as text.

98 2.2 CLADD

99 Here, we introduce CLADD, a multi-agent framework for general molecular question-answering
100 that supports multiple drug discovery tasks. Each agent is implemented by an off-the-shelf LLM
101 prompted to elicit a particular behavior. Our framework is composed of three teams, each composed
102 of several agents: the **Planning Team**, which identifies the most appropriate data sources and
103 overall strategy given the task and the query molecule (Section 2.2.1); the **Knowledge Graph**
104 (**KG**) **Team**, which retrieves relevant contextual information about the molecule from available
105 KG databases (Section 2.2.2); and the **Molecular Understanding** (**MU**) **Team**, which retrieves
106 and integrates information from molecular annotation databases and external tools for molecule
107 description (Section 2.2.3). Finally, the **Prediction Agent** integrates the findings from the MU and
108 KG teams to generate the final answer. In the following sub-sections, we describe each team in detail.
109 The overall framework is depicted in Figure 1.

110 2.2.1 Planning Team

111 The Planning Team assesses the relevance of external knowledge for a given query molecule. The
112 team separately assesses the molecular annotations database and the knowledge graph through the
113 MolAnn Planner and the KG Planner agents, respectively.

114 **Molecule Annotation (MolAnn) Planner.** This agent first retrieves annotations for the query
115 molecule, c_q , from the annotation database \mathcal{C} . While these annotations can provide valuable biochemical
116 knowledge [73], they are often sparse, with many molecules entirely missing or lacking sufficient
117 details due to the vastness of the chemical space [36].

118 To this end, the MolAnn Planner determines whether the retrieved annotations provide enough
119 information for subsequent analyses. Specifically, given a query molecule g_q , retrieved annotations
120 c_q , and the task instruction \mathcal{I} , the agent is invoked as follows:

$$o_{MAP} = \text{MolAnn Planner}(g_q, c_q, \mathcal{I}). \quad (1)$$

121 o_{MAP} indicates whether annotations should be complemented with additional information from tools.

122 **Knowledge Graph (KG) Planner.** In parallel to analyzing the available description for the query
123 molecule, we analyze the relevance of the contextual information present in the KG. While previous

124 works on general QA tasks focus on identifying entities in the knowledge graph that exactly match
125 those in the query [3, 31], the vast chemical search space and the limited coverage of existing
126 knowledge bases limit the effectiveness of such approaches in the field of drug discovery.

127 To address this challenge, we propose leveraging the knowledge of drugs that are structurally similar
128 to the query drug, building upon the well-established biochemical principle that structurally similar
129 molecules often exhibit related biological activity [44]. Specifically, we define the *anchor drug* g_a
130 as the entity drug with the maximum cosine similarity between its embedding and that of the query
131 molecule, among the set of all molecules in the KG (\mathcal{G}), $g_a = \operatorname{argmax}_{g \in \mathcal{G}} \frac{\operatorname{emb}(g_a) \cdot \operatorname{emb}(g)}{\|\operatorname{emb}(g_a)\| \|\operatorname{emb}(g)\|}$, where emb
132 is a representation produced by a graph neural network (GNN) pre-trained with 3D geometry [39],
133 which outputs structure-aware molecular embeddings.

134 Then, the KG Planner agent decides whether to use the KG based on the structural similarity between
135 the query molecule and the retrieved anchor drug. To do so, we also provide the Tanimoto similarity¹
136 to the KG Planner, as this domain-specific metric can be leveraged by the LLM’s reasoning about
137 chemical structural similarity as follows:

$$o_{\text{KGP}} = \text{KG Planner}(g_q, g_a, s_{q,a}, \mathcal{I}), \quad (2)$$

138 where $s_{q,a}$ is the Tanimoto similarity between the query and anchor molecules. o_{KGP} is a Boolean
139 indicating whether the KG should be used for the prediction.

140 2.2.2 Knowledge Graph Team

141 This team aims to provide relevant contextual information about the query molecule by leveraging
142 the KG, and it is only called if $o_{\text{KGP}} = \text{TRUE}$. It consists of the Drug Relation (DrugRel) Agent
143 and the Biological Relation (BioRel) Agent, both of which generate reports on the query molecule
144 based on different aspects of the KG. Specifically, the DrugRel Agent focuses on related drug entities
145 within the KG, primarily leveraging its internal knowledge, whereas the BioRel Agent focuses on
146 summarizing and assessing contextual biological knowledge in the KG.

147 **Related Drugs Retrieval.** The typical approach to leveraging a KG for QA tasks involves identifying
148 multiple entities in the query and extracting the subgraph that encompasses those entities [3, 66].
149 However, in molecular understanding for applications related to drug discovery tasks, the question
150 often involves only a single entity, i.e., the query molecule g_q , making it challenging to identify
151 information in the KG relevant to the task.

152 Here, we introduce a novel approach for extracting relevant information for the query molecule g_q by
153 utilizing the retrieved anchor drug g_a , which exhibits high structural similarity to the query molecule.
154 In particular, while the drug entities in the KG \mathcal{G} are mainly connected to other types of biological
155 entities (e.g., proteins, diseases), we can infer relationships among drugs by considering the biological
156 entities they share. For example, we can determine the relatedness of the drugs Trastuzumab and
157 Lapatinib by observing their connectivity to the protein HER2 in the KG, as both drugs specifically
158 target and inhibit HER2 to treat HER2-positive breast cancer [16]. Therefore, to identify relevant
159 related drugs, we first compute the 2-hop paths connecting the anchor drug g_a to other drugs $g_{\mathcal{G}}^i$ in the
160 KG \mathcal{G} , i.e., $(g_a, r_{a \rightarrow e}, e, r_{e \rightarrow g_{\mathcal{G}}^i})$, where $r \in \mathcal{R}$, $e \in \mathcal{E}$, and i denotes the index of the other drug.
161 Then, we select the top- k *related drugs*, denoted as g_{r^1}, \dots, g_{r^k} , corresponding to the molecules
162 that have the greatest number of 2-hop paths to the anchor drug. Note that while the anchor drug
163 g_a is selected based on its structural similarity to the query molecule g_q , these reference drugs are
164 *semantically* related to g_a , reflecting the relationships captured within the KG.

165 **Drug Relation (DrugRel) Agent.** The DrugRel Agent generates a report on the query molecule,
166 contextualizing it in relation to relevant drugs present in the knowledge base for the specific task
167 instruction. Given a query molecule g_q , its anchor drug g_a , and the set of related drugs g_{r^1}, \dots, g_{r^k} ,
168 the DrugRel Agent generates a report as follows:

$$o_{\text{DRA}} = \text{DrugRel Agent}(g_q, g_a, g_{r^1}, \dots, g_{r^k}, \mathcal{T}, \mathcal{I}), \quad (3)$$

169 where $\mathcal{T} = \{s_{q,a}, s_{q,r^1}, \dots, s_{q,r^k}\}$ is the set of Tanimoto similarities between the query molecule and
170 the retrieved drugs. The agent leverages its internal knowledge about related drugs while effectively
171 assessing the relatedness of the information to the target molecule based on the Tanimoto similarity.

¹We provide details on the Tanimoto similarity in Appendix C.

172 **Biological Relation (BioRel) Agent.** The BioRel Agent summarizes how the anchor drug and the
 173 related drugs are biologically related, integrating additional biochemical entities present in the KG,
 174 such as targets, indications, side effects, etc. Specifically, given an anchor drug g_a , a set of reference
 175 drugs g_{r^1}, \dots, g_{r^k} , the collection of all 2-hop paths \mathcal{P} linking the anchor drug to the reference drugs,
 176 and the instruction \mathcal{I} , the agent generates the report as follows:

$$o_{\text{BRA}} = \text{BioRel Agent}(\mathcal{P}, \mathcal{I}, g_q, g_a, s_{q,a}). \quad (4)$$

177 This enables us to obtain a task-relevant summary of the subgraph connected to the anchor drug.
 178 Importantly, while both the DrugRel Agent and BioRel Agent aim to reason about the query molecule
 179 in relation to other relevant entities in the KG for the specific task, they leverage distinct knowledge
 180 sources and perform different roles. Specifically, the BioRel Agent focuses on summarizing the
 181 network of relationships between drugs and other biological entities in the KG, contextualizing it with
 182 respect to the specific task at hand. In contrast, the DrugRel Agent primarily draws on its internal
 183 knowledge, triggered by the names of the related drug entities in the KG, and incorporates structural
 184 similarity between them. In Section 3, we demonstrate how these agents complement each other
 185 effectively, producing a synergistic effect when combined together.

186 2.2.3 Molecular Understanding Team

187 The Molecular Understanding (MU) Team compiles a report on the query molecule by leveraging
 188 external annotations and integrating them with structural information and reports from other agents.

189 **Molecule Annotations.** Annotations from the external database are retrieved for the query molecule,
 190 denoted as c_q . If the Planning Team decided to use external annotation tools (i.e., $o_{\text{MAP}} = \text{TRUE}$),
 191 additional captions \tilde{c}_q are generated with the external captioning tools as follows:

$$\tilde{c}_q = \text{Captioning Tools}(g_q), \quad (5)$$

192 and concatenated to the annotations retrieved from the database: $c_q = c_q || \tilde{c}_q$. External captioning
 193 tools allow the system to easily harness recent advances in LLM-driven molecular understanding [50,
 194 73], and can potentially include any tools, given that the output can be transformed into text.

195 **Molecule Understanding (MU) Agent.** The MU agent then analyzes the structure of the molecule,
 196 combining it with annotations and reports generated by the KG Team and generating a comprehensive
 197 report as follows:

$$o_{\text{MUA}} = \text{MU Agent}(g_q, c_q, o_{\text{DRA}}, o_{\text{BRA}}, \mathcal{I}). \quad (6)$$

198 2.2.4 Prediction Agent

199 Finally, the Prediction Agent performs the user-defined task by considering the reports from the
 200 various agents, including the MU and KG teams, as follows:

$$\mathcal{A}_{g_q} = \text{Task Agent}(g_q, o_{\text{MUA}}, o_{\text{DRA}}, o_{\text{BRA}}, \mathcal{I}). \quad (7)$$

201 By integrating this evidence, the Prediction Agent can perform a comprehensive analysis of the query
 202 molecule. Importantly, the output of the Prediction Agent can be flexibly adjusted based on the
 203 specific task requirements. For instance, it can be a descriptive caption, a simple yes/no response for
 204 binary classification, or an open-ended answer. Such behavior leverages the zero-shot capabilities of
 205 LLMs [34] and does not require additional fine-tuning. Therefore, a key advantage of CLADD is its
 206 flexibility, which enhances scientist-AI interactions.

207 3 Experiments

208 We assess the effectiveness of CLADD by conducting a range of drug discovery applications spanning
 209 different predictive tasks, including drug-target prediction (Section 3.1), property-specific molecular
 210 captioning (Section 3.2), and drug biological activity prediction (Section 3.3).

211 **Implementation Details.** In all experiments, we utilize GPT-4o mini through the OpenAI API for
 212 each agent. We use PrimeKG [12] as the KG, PubChem [32] as an annotation database, and MolTS
 213 [18] as an external captioning tool. Additional implementation details and agent templates can be
 214 found in Appendix F and H, respectively.

Table 1: Performance in drug-target prediction tasks (Precision @ 5). **Bold** and underline indicate best and second-best language model-based methods.

	(a) Overlap		(b) No overlap	
	Activate	Inhibit	Activate	Inhibit
GNNs (Fine-tune)				
GraphMVP	1.76	1.03	1.67	0.73
MoleculeSTM	1.66	0.89	1.48	0.65
General LLMs (Zero-shot)				
GPT-4o mini	1.15	1.02	1.13	<u>0.87</u>
GPT-4o	0.62	0.79	0.68	0.65
Domain LMs (Zero-shot)				
N/A	N/A	N/A	N/A	N/A
Domain LMs (Fine-tune)				
Galactica 125M	1.36	1.03	0.86	0.69
Galactica 1.3B	<u>1.65</u>	<u>1.09</u>	1.37	0.80
Galactica 6.7B	1.52	0.97	1.22	0.71
CLADD (Zero-Shot)	3.04	4.83	2.67	3.24

Table 2: Performance in molecular captioning tasks, mean AUROC with standard deviation (in parentheses). **Bold** and underline indicate the best and second-best language model-based methods.

	BBBP	Sider	ClinTox	BACE
GNNs				
GraphMVP	69.59 (1.29)	60.88 (0.41)	87.57 (3.26)	80.24 (2.92)
MoleculeSTM	70.14 (0.90)	<u>58.69</u> (0.89)	92.19 (2.79)	79.24 (3.40)
Only SMILES	70.95 (1.14)	60.80 (1.18)	91.62 (2.18)	74.21 (1.32)
General LLMs				
GPT-4o mini	67.85 (1.50)	58.18 (1.55)	90.74 (1.91)	74.22 (1.95)
GPT-4o	66.43 (1.47)	60.41 (1.21)	88.13 (1.74)	67.82 (4.14)
Domain LMs				
MoIT5	69.77 (1.89)	57.20 (0.98)	87.91 (1.25)	74.28 (4.00)
LlasMol	68.12 (1.48)	61.50 (1.66)	89.67 (0.57)	75.42 (2.98)
BioIT5	69.68 (1.23)	<u>64.65</u> (2.01)	<u>92.80</u> (2.92)	<u>77.23</u> (1.95)
CLADD	72.28 (1.04)	66.42 (1.31)	93.80 (2.30)	77.74 (3.15)

215 3.1 Drug-Target Prediction Task

216 Accurately predicting a drug’s protein target is essential for understanding its mechanism of action
217 and optimizing its therapeutic efficacy while minimizing off-target effects [56, 6]. Here, we evaluate
218 the models’ ability to *accurately identify which proteins a given molecule is most likely to activate or*
219 *inhibit* in a set prediction setting.

220 **Datasets.** We use molecular targets present in the Drug Repurposing Hub [15], DrugBank [67], and
221 STITCH v5.0 [57], as preprocessed in Zheng et al. [79], including 13,688 molecules in total (details
222 are presented in Appendix D).

223 **Methods Compared.** We evaluate two pre-trained GNNs, GraphMVP and MoleculeSTM, along with
224 two general-purpose LLMs—GPT-4o mini and GPT-4o, and the domain-specific language model
225 Galactica [58] (details are presented in Appendix E).

226 **Evaluation Protocol.** We assess the performance of LLMs in a zero-shot setting. Specifically, for
227 a given target molecule, we prompt the LLMs to generate the top 5 proteins that the molecule is
228 most likely to activate or inhibit, and we calculate the precision with respect to ground truth data. As
229 baseline GNNs cannot perform this task without training in a zero-shot setting, we fine-tune them in a
230 few-shot setting using 10% of the data. For domain-specific LMs, we also present fine-tuning results
231 on the specific task. To better assess generalization power, we separately report the performance on
232 the test set for molecules present/not present in the external databases (“Overlap”/“No Overlap”).

233 **Experimental Results.** Table 1 summarizes the results. We observe the following: **1)** CLADD out-
234 performs all the baselines, with a higher likelihood of correctly identifying proteins activated/inhibited
235 by the input molecule. **2)** Importantly, the superiority of CLADD is confirmed for molecules not
236 present in the caption database or knowledge graph (Table 1 (b)), showcasing CLADD’s ability to
237 leverage external knowledge to generalize to novel molecules. **3)** We observe that domain-specific
238 fine-tuned models, such as Galactica, GIMLET, and MolecularGPT, *could not perform this task in a*
239 *zero-shot setting* when prompted to do so, likely because this task is not included in their fine-tuning
240 instruction dataset. By specifically fine-tuning Galactica on the task, we were able to answer the
241 specific question, outperforming general-purpose LLMs in most experiments, but results were still
242 inferior to CLADD. This further highlights the flexibility of CLADD, which leverages the zero-shot
243 abilities of general-purpose LLMs in its architecture.

244 3.2 Property-Specific Molecular Captioning Task

245 Earlier studies on molecular captioning tasks have primarily focused on generating general descrip-
246 tions of molecules without targeting specific areas of interest, raising concerns about their practical
247 applicability in real-world drug discovery tasks. Indeed, the usefulness of a molecular description
248 is often task-dependent, and scientists may be interested in detailed explanations of specific charac-
249 teristics of a molecule rather than a general description [27, 19]. Hence, in this paper, we introduce
250 *property-specific molecular captioning*, where the model is required to generate a description for a
251 given molecule customized to a particular task of interest.

Table 3: Performance in biological activity prediction task including (a) toxicity and (b) antibacterial activity (Macro-F1). **Avg.** indicates the average performance over toxicity datasets. * indicates whether the model always outputs the same response, either “Yes” or “No”.

	(a) Toxicity			(b) MLSMR	
	hERG	DILI	Skin	Avg.	Mtb
General LLMs					
GPT-4o mini	28.42	33.47	41.84	34.58	33.33*
GPT-4o	40.45	25.76	54.51	40.24	36.68
Domain LLMs					
Galactica 125M	40.78*	33.56	42.43	38.92	33.33*
Galactica 1.3B	48.57	34.37	42.43	41.79	33.33*
Galactica 6.7B	23.75*	57.67	40.41*	40.61	33.33*
GIMLET	36.50	35.51	42.28	38.09	39.81
LlasMol	23.75*	61.20	31.92	38.95	33.33*
CLADD	51.46	41.10	<u>50.43</u>	47.66	50.92

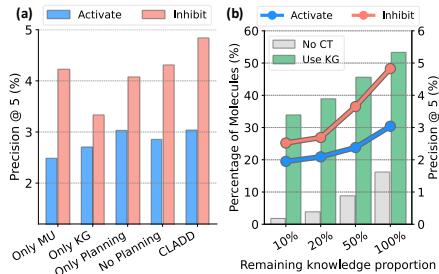


Figure 2: **Ablation studies.** (a) On model components. (b) On external knowledge.

252 **Datasets.** We leverage four widely recognized molecular property prediction datasets from the
253 MoleculeNet benchmark [68]: **BBBP**, **Sider**, **ClinTox**, and **BACE** (further details in Appendix D).

254 **Methods Compared.** We consider different baseline approaches. First, we compare recent molecular
255 captioning methods designed to generate general descriptions of molecules, including MolT5 [18],
256 LlasMol [73], and BioT5 [50]. Furthermore, we assess general-purpose LLMs, namely GPT-4o mini
257 and GPT-4o. Finally, we consider standard molecular property prediction baselines for references,
258 including two GNNs pre-trained with different methodologies: GraphMVP [39] and MoleculeSTM
259 [40]. We provide further details on the baseline models in Appendix E.

260 **Evaluation Protocol.** Although property-specific captions are practical, no ground truth property-
261 specific captions exist for individual molecules, rendering traditional text generation evaluation
262 methods inapplicable. Thus, in line with recent works [69, 27, 19], we assess whether the gener-
263 ated captions can drive a classification model that categorizes molecules based on their properties.
264 Specifically, we pose this evaluation as a molecular property prediction problem, and fine-tune a
265 SciBERT model [7] on the generated caption concatenated to the SMILES representation to predict
266 the property of interest. The “Only SMILES” model utilizes only the SMILES string as input for the
267 SciBERT classifier. For baseline GNNs, each SMILES string is converted into a molecular graph.
268 For all the experiments, we use a scaffold splitting strategy to simulate realistic distribution shifts,
269 following previous work [40] (train/validation/test data split as 80/10/10%, with five independent
270 runs). This evaluation protocol is further illustrated in Appendix D.2.

271 **Experimental Results.** Table 2 summarizes the results. **1)** While domain-specific models outperform
272 general-purpose LLMs, their performance remains suboptimal, occasionally falling behind the “Only
273 SMILES” approach. This means that the generated captions occasionally reduce model performance
274 compared to using only the SMILES representation of the molecule. This aligns with previous work
275 that found that general descriptors may lack property-specific relevance [27, 19]. **2)** On the other
276 hand, CLADD-generated captions consistently outperform all the baseline captioners and successfully
277 improve over “Only SMILES” across all datasets. We attribute this improvement to the ability of
278 CLADD to draw on external biochemical knowledge to ground its generation and its task-specificity.
279 **3)** Moreover, CLADD consistently outperforms pre-trained GNN baselines, except on the BACE
280 dataset. Interestingly, this is also the only dataset for which the “Only SMILES” baseline falls short
281 compared to GNN models, thus highlighting the critical role of 2D topological and 3D geometric
282 information in this case. This paves the way for future research on injecting essential aspects of
283 molecules, such as topological and geometric information, into LLM understanding.

284 3.3 Biological Activity Prediction: Toxicity and Antibacterial Activity

285 Accurately predicting molecular bioactivity is a cornerstone of drug discovery, which is often hindered
286 by the existence of countless biological contexts and sparse experimental data. We therefore explore
287 the *zero-shot characterization of biological activity for unseen compounds*. To this goal, we focus on
288 *drug toxicity* [5] and *antibacterial activity* [46] prediction.

289 **Datasets.** For drug toxicity prediction, we use three benchmark datasets: **hERG** [65], **DILI** [71],
290 and **Skin** [2]. For antibacterial activity prediction, we use the dataset published in Eke et al. [20],

291 hereafter referred to as **MLSMR_Mtb**. In addition to its relevance, we selected MLSMR_Mtb for its
292 recency, as it was *published after GPT-4o training and in parallel to the preparation of this study*,
293 therefore avoiding the risk of pre-training data leakage. Dataset details are presented in Appendix D.

294 **Methods Compared.** We compare five domain-specific LLMs—Galactica 125M, Galactica 1.3B,
295 Galactica 6.7B [58], LlasMol [73], and GIMLET [77], alongside two general-purpose LLMs, GPT-4o
296 and GPT-4o mini (details in Appendix E).

297 **Evaluation Protocol.** Evaluation follows a zero-shot QA setting. The input includes a SMILES-
298 based structural description of the molecule and the task description. Using the text-formatted output
299 generated by each model, we compute the Macro-F1 score [49] as the evaluation metric.

300 **Experimental Results.** Table 3 summarizes the results. **1)** Both on toxicity datasets (average
301 score) and the recently published antibacterial activity dataset, CLADD outperforms all the baselines.
302 This highlights its ability to perform zero-shot predictions without domain-specific fine-tuning by
303 effectively incorporating external knowledge into general-purpose LLMs at inference time. **2)** Notably,
304 for three datasets (hERG, Skin and MLSMR_Mtb), several baseline models often output the same
305 response, either “Yes” or “No”, indicating their inability to perform the given task. In contrast,
306 CLADD did not suffer from this limitation.

307 3.4 Ablation studies

308 **Model Components Ablations.** In Figure 2 (a), we report the results of ablations on the components
309 of CLADD. We observe: **1)** *The knowledge graph and the molecular annotations are important and*
310 *complementary data sources*, as shown by the lower performance when only Molecular Understanding
311 or Knowledge Graph team is available (“Only MU”, “Only KG”). **2)** *Dynamically selecting the*
312 *relevant data sources with Planning Team improves performance*, leveraging their complementarity,
313 as suggested by the lower performance of the “No Planning”. **3)** *The distributed architecture of the*
314 *multi-agent system is a more effective way of processing the retrieved information*, as highlighted by
315 the lower performance of “Only Planning” where all the relevant data sources are directly included in
316 the prompt of a single Prediction Agent, bypassing intermediate reports. Additional ablation studies
317 are presented in Appendix G.1. Furthermore, *we confirmed results across different LLMs, including*
318 *open-source models*, showcasing the LLM-agnostic nature of CLADD in Appendix G.2.

319 **External Knowledge Ablations.** To further assess the impact of external knowledge on model
320 performance, we evaluate the model after progressively pruning the available databases and present
321 our results in Figure 2 (b). We observe the following: **1)** *Model performance depends on external*
322 *knowledge size*, validating the key role of the external knowledge to the framework. **2)** Interestingly,
323 *we do not observe any performance plateau*, indicating that further expanding the external knowledge
324 could provide additional performance improvements. **3)** From the bar plots, i.e., “No CT (No
325 Captioning Tool)” and “Use KG (Call Knowledge Graph Team)”, we observe that as the amount
326 of external knowledge grows, the planning team increasingly depends on it. This indicates that
327 **CLADD actively leverages external knowledge more effectively during the decision-making process**
328 *when such knowledge is more abundant*. A more detailed analysis of how external knowledge is
329 utilized and its impact on model performance is provided in Appendix G.3.

330 4 Conclusion and Limitations

331 In this work, we introduced CLADD, a RAG-enhanced multi-agent framework for zero-shot molecular
332 question-answering that can support various drug discovery tasks. We showcased its flexibility and
333 effectiveness across multiple real-world tasks, outperforming both general-purpose and domain-
334 specific fine-tuned LLMs. Our analyses highlighted the complementarity of external knowledge
335 sources, internal LLM reasoning, and multi-agent orchestration. CLADD’s chain of messages
336 also provides insight into its decision-making process, fostering more interpretable scientist-AI
337 interactions. While we focused on open-ended, set-based, and classification predictions, a limitation
338 is the lack of focus on regression-based tasks, which would rely on the LLM’s ability to interpret assay
339 details and numerical answers. Another limitation is the lack of uncertainty intervals, which could
340 be tackled through recent orthogonal work. Beyond serving as a standalone tool, CLADD can also
341 have a broader impact as a component of more complex agentic workflows, for example, combining
342 computational and experimental systems [59], which will be the subject of future work.

343 **References**

344 [1] Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,
345 Altenschmidt, J., Altman, S., Anadkat, S., et al. Gpt-4 technical report. *arXiv preprint*
346 *arXiv:2303.08774*, 2023.

347 [2] Alves, V. M., Muratov, E., Fourches, D., Strickland, J., Kleinstreuer, N., Andrade, C. H.,
348 and Tropsha, A. Predicting chemically-induced skin reactions. part i: Qsar models of skin
349 sensitization and their application to identify potentially hazardous compounds. *Toxicology and*
350 *applied pharmacology*, 284(2):262–272, 2015.

351 [3] Baek, J., Aji, A. F., and Saffari, A. Knowledge-augmented language model prompting for
352 zero-shot knowledge graph question answering. *arXiv preprint arXiv:2306.04136*, 2023.

353 [4] Bajusz, D., Rácz, A., and Héberger, K. Why is tanimoto index an appropriate choice for
354 fingerprint-based similarity calculations? *Journal of cheminformatics*, 7:1–13, 2015.

355 [5] Basile, A. O., Yahi, A., and Tatonetti, N. P. Artificial intelligence for drug toxicity and safety.
356 *Trends in pharmacological sciences*, 40(9):624–635, 2019.

357 [6] Batool, M., Ahmad, B., and Choi, S. A structure-based drug discovery paradigm. *International*
358 *journal of molecular sciences*, 20(11):2783, 2019.

359 [7] Beltagy, I., Lo, K., and Cohan, A. Scibert: A pretrained language model for scientific text.
360 *arXiv preprint arXiv:1903.10676*, 2019.

361 [8] Bohacek, R. S., McMardin, C., and Guida, W. C. The art and practice of structure-based drug
362 design: a molecular modeling perspective. *Medicinal research reviews*, 16(1):3–50, 1996.

363 [9] Boiko, D. A., MacKnight, R., Kline, B., and Gomes, G. Autonomous chemical research with
364 large language models. *Nature*, 624(7992):570–578, 2023.

365 [10] Bran, A. M., Cox, S., Schilter, O., Baldassari, C., White, A. D., and Schwaller, P. Chemcrow:
366 Augmenting large-language models with chemistry tools. *arXiv preprint arXiv:2304.05376*,
367 2023.

368 [11] Chan, C.-M., Chen, W., Su, Y., Yu, J., Xue, W., Zhang, S., Fu, J., and Liu, Z. Chateval:
369 Towards better LLM-based evaluators through multi-agent debate. In *The Twelfth International*
370 *Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=FQepisCUWu>.

372 [12] Chandak, P., Huang, K., and Zitnik, M. Building a knowledge graph to enable precision
373 medicine. *Scientific Data*, 10(1):67, 2023.

374 [13] Chaves, J. M. Z., Wang, E., Tu, T., Vaishnav, E. D., Lee, B., Mahdavi, S. S., Semturs, C., Fleet,
375 D., Natarajan, V., and Azizi, S. Tx-llm: A large language model for therapeutics. *arXiv preprint*
376 *arXiv:2406.06316*, 2024.

377 [14] Christofidellis, D., Giannone, G., Born, J., Winther, O., Laino, T., and Manica, M. Unify-
378 ing molecular and textual representations via multi-task language modelling. *arXiv preprint*
379 *arXiv:2301.12586*, 2023.

380 [15] Corsello, S. M., Bittker, J. A., Liu, Z., Gould, J., McCarron, P., Hirschman, J. E., Johnston, S. E.,
381 Vrcic, A., Wong, B., Khan, M., et al. The drug repurposing hub: a next-generation drug library
382 and information resource. *Nature medicine*, 23(4):405–408, 2017.

383 [16] De Azambuja, E., Holmes, A. P., Piccart-Gebhart, M., Holmes, E., Di Cosimo, S., Swaby, R. F.,
384 Untch, M., Jackisch, C., Lang, I., Smith, I., et al. Lapatinib with trastuzumab for her2-positive
385 early breast cancer (neoaltto): survival outcomes of a randomised, open-label, multicentre,
386 phase 3 trial and their association with pathological complete response. *The lancet oncology*,
387 15(10):1137–1146, 2014.

388 [17] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert: Pre-training of deep bidirectional
389 transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.

390 [18] Edwards, C., Lai, T., Ros, K., Honke, G., Cho, K., and Ji, H. Translation between molecules
391 and natural language. *arXiv preprint arXiv:2204.11817*, 2022.

392 [19] Edwards, C., Lu, Z., Hajiramezanali, E., Biancalani, T., Ji, H., and Scalia, G. Molcap-arena:
393 A comprehensive captioning benchmark on language-enhanced molecular property prediction.
394 *arXiv preprint arXiv:2411.00737*, 2024.

395 [20] Eke, I. E., Williams, J. T., and Abramovitch, R. B. Genetic and cheminformatic characterization
396 of mycobacterium tuberculosis inhibitors discovered in the molecular libraries small molecule
397 repository. *ACS Infectious Diseases*, 11(4):882–893, 2025.

398 [21] Fan, W., Ding, Y., Ning, L., Wang, S., Li, H., Yin, D., Chua, T.-S., and Li, Q. A survey on rag
399 meeting llms: Towards retrieval-augmented large language models. In *Proceedings of the 30th
400 ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 6491–6501, 2024.

401 [22] Fang, Y., Liang, X., Zhang, N., Liu, K., Huang, R., Chen, Z., Fan, X., and Chen, H. Mol-
402 instructions: A large-scale biomolecular instruction dataset for large language models. *arXiv
403 preprint arXiv:2306.08018*, 2023.

404 [23] Gao, S., Fang, A., Huang, Y., Giunchiglia, V., Noori, A., Schwarz, J. R., Ektefaie, Y., Kondic, J.,
405 and Zitnik, M. Empowering biomedical discovery with ai agents. *Cell*, 187(22):6125–6151,
406 2024.

407 [24] Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., and Wang, H. Retrieval-
408 augmented generation for large language models: A survey. *arXiv preprint arXiv:2312.10997*,
409 2023.

410 [25] Gekhman, Z., Yona, G., Aharoni, R., Eyal, M., Feder, A., Reichart, R., and Herzig, J. Does
411 fine-tuning LLMs on new knowledge encourage hallucinations? In *Proceedings of the 2024
412 Conference on Empirical Methods in Natural Language Processing*, pp. 7765–7784. Association
413 for Computational Linguistics.

414 [26] Ghafarollahi, A. and Buehler, M. J. Protagents: protein discovery via large language model
415 multi-agent collaborations combining physics and machine learning. *Digital Discovery*, 2024.

416 [27] Guo, H., Zhao, S., Wang, H., Du, Y., and Qin, B. Moltailor: Tailoring chemical molecular
417 representation to specific tasks via text prompts. In *Proceedings of the AAAI Conference on
418 Artificial Intelligence*, volume 38, pp. 18144–18152, 2024.

419 [28] Harris, E. Large language models answer medical questions accurately, but can't match
420 clinicians' knowledge. *JAMA*, 2023.

421 [29] Inoue, Y., Song, T., and Fu, T. Drugagent: Explainable drug repurposing agent with large
422 language model-based reasoning. *arXiv preprint arXiv:2408.13378*, 2024.

423 [30] Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y. J., Madotto, A., and Fung,
424 P. Survey of hallucination in natural language generation. *ACM Computing Surveys*, 55(12):
425 1–38, 2023.

426 [31] Jiang, J., Zhou, K., Dong, Z., Ye, K., Zhao, X., and Wen, J.-R. StructGPT: A general framework
427 for large language model to reason over structured data. In Bouamor, H., Pino, J., and Bali,
428 K. (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language
429 Processing*, pp. 9237–9251. Association for Computational Linguistics. doi: 10.18653/v1/2023.
430 emnlp-main.574. URL <https://aclanthology.org/2023.emnlp-main.574/>.

431 [32] Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen,
432 P. A., Yu, B., et al. Pubchem in 2021: new data content and improved web interfaces. *Nucleic
433 acids research*, 49(D1):D1388–D1395, 2021.

434 [33] Klotsman, M., Weinberg, C., Davis, K., Binnie, C., and Hartmann, K. A case-based evaluation
435 of srd5a1, srd5a2, ar, and adra1a as candidate genes for severity of bph. *The Pharmacogenomics
436 Journal*, 4(4):251–259, 2004.

437 [34] Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa, Y. Large language models are
438 zero-shot reasoners. *Advances in neural information processing systems*, 35:22199–22213,
439 2022.

440 [35] Lála, J., O’Donoghue, O., Shtedritski, A., Cox, S., Rodriques, S. G., and White, A. D. Paperqa:
441 Retrieval-augmented generative agent for scientific research. *arXiv preprint arXiv:2312.07559*,
442 2023.

443 [36] Lee, N., Laghuvarapu, S., Park, C., and Sun, J. Vision language model is not all you need:
444 Augmentation strategies for molecule language models. In *Proceedings of the 33rd ACM
445 International Conference on Information and Knowledge Management*, pp. 1153–1162, 2024.

446 [37] Li, D., Yang, S., Tan, Z., Baik, J. Y., Yun, S., Lee, J., Chacko, A., Hou, B., Duong-Tran, D.,
447 Ding, Y., et al. Dalk: Dynamic co-augmentation of llms and kg to answer alzheimer’s disease
448 questions with scientific literature. *arXiv preprint arXiv:2405.04819*, 2024.

449 [38] Li, J., Liu, Y., Fan, W., Wei, X.-Y., Liu, H., Tang, J., and Li, Q. Empowering molecule discovery
450 for molecule-caption translation with large language models: A chatgpt perspective. *IEEE
451 transactions on knowledge and data engineering*, 2024.

452 [39] Liu, S., Wang, H., Liu, W., Lasenby, J., Guo, H., and Tang, J. Pre-training molecular graph
453 representation with 3d geometry. *arXiv preprint arXiv:2110.07728*, 2021.

454 [40] Liu, S., Nie, W., Wang, C., Lu, J., Qiao, Z., Liu, L., Tang, J., Xiao, C., and Anandkumar, A.
455 Multi-modal molecule structure–text model for text-based retrieval and editing. *Nature Machine
456 Intelligence*, 5(12):1447–1457, 2023.

457 [41] Liu, S., Lu, Y., Chen, S., Hu, X., Zhao, J., Fu, T., and Zhao, Y. Drugagent: Automating
458 ai-aided drug discovery programming through llm multi-agent collaboration. *arXiv preprint
459 arXiv:2411.15692*, 2024.

460 [42] Liu, Y., Ding, S., Zhou, S., Fan, W., and Tan, Q. Molecularargpt: Open large language model
461 (llm) for few-shot molecular property prediction. *arXiv preprint arXiv:2406.12950*, 2024.

462 [43] Luo, Y., Yang, Z., Meng, F., Li, Y., Zhou, J., and Zhang, Y. An empirical study of catastrophic for-
463 getting in large language models during continual fine-tuning. *arXiv preprint arXiv:2308.08747*,
464 2023.

465 [44] Martin, Y. C., Kofron, J. L., and Traphagen, L. M. Do structurally similar molecules have
466 similar biological activity? *Journal of medicinal chemistry*, 45(19):4350–4358, 2002.

467 [45] McNaughton, A. D., Sankar Ramalaxmi, G. K., Kruel, A., Knutson, C. R., Varikoti, R. A.,
468 and Kumar, N. Cactus: Chemistry agent connecting tool usage to science. *ACS omega*, 9(46):
469 46563–46573, 2024.

470 [46] Melo, M. C., Maasch, J. R., and de la Fuente-Nunez, C. Accelerating antibiotic discovery
471 through artificial intelligence. *Communications biology*, 4(1):1050, 2021.

472 [47] Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher, R., Amatriain, X., and Gao, J.
473 Large language models: A survey. *arXiv preprint arXiv:2402.06196*, 2024.

474 [48] ODonoghue, O., Shtedritski, A., Ginger, J., Abboud, R., Ghareeb, A. E., and Rodriques,
475 S. G. Bioplanner: Automatic evaluation of LLMs on protocol planning in biology. In *The
476 2023 Conference on Empirical Methods in Natural Language Processing*, 2023. URL <https://openreview.net/forum?id=pMCRGmB7Rv>:

477

478 [49] Opitz, J. and Burst, S. Macro f1 and macro f1. *arXiv preprint arXiv:1911.03347*, 2019.

479 [50] Pei, Q., Zhang, W., Zhu, J., Wu, K., Gao, K., Wu, L., Xia, Y., and Yan, R. Biot5: Enriching
480 cross-modal integration in biology with chemical knowledge and natural language associations.
481 *arXiv preprint arXiv:2310.07276*, 2023.

482 [51] Pei, Q., Wu, L., Gao, K., Zhu, J., Wang, Y., Wang, Z., Qin, T., and Yan, R. Leveraging
483 biomolecule and natural language through multi-modal learning: A survey. *arXiv preprint
484 arXiv:2403.01528*, 2024.

485 [52] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and
486 Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. *The
487 Journal of Machine Learning Research*, 21(1):5485–5551, 2020.

488 [53] Ramos, M. C., Collison, C. J., and White, A. D. A review of large language models and
489 autonomous agents in chemistry. *Chemical Science*, 2025.

490 [54] Rogers, D. and Hahn, M. Extended-connectivity fingerprints. *Journal of chemical information
491 and modeling*, 50(5):742–754, 2010.

492 [55] Roohani, Y., Lee, A., Huang, Q., Vora, J., Steinhart, Z., Huang, K., Marson, A., Liang, P., and
493 Leskovec, J. Biodiscoveryagent: An ai agent for designing genetic perturbation experiments.
494 *arXiv preprint arXiv:2405.17631*, 2024.

495 [56] Santos, R., Ursu, O., Gaulton, A., Bento, A. P., Donadi, R. S., Bologa, C. G., Karlsson, A.,
496 Al-Lazikani, B., Hersey, A., Oprea, T. I., et al. A comprehensive map of molecular drug targets.
497 *Nature reviews Drug discovery*, 16(1):19–34, 2017.

498 [57] Szklarczyk, D., Santos, A., Von Mering, C., Jensen, L. J., Bork, P., and Kuhn, M. Stitch 5:
499 augmenting protein–chemical interaction networks with tissue and affinity data. *Nucleic acids
500 research*, 44(D1):D380–D384, 2016.

501 [58] Taylor, R., Kardas, M., Cucurull, G., Scialom, T., Hartshorn, A., Saravia, E., Poulton, A.,
502 Kerkez, V., and Stojnic, R. Galactica: A large language model for science. *arXiv preprint
503 arXiv:2211.09085*, 2022.

504 [59] Tom, G., Schmid, S. P., Baird, S. G., Cao, Y., Darvish, K., Hao, H., Lo, S., Pablo-García,
505 S., Rajaonson, E. M., Skreta, M., et al. Self-driving laboratories for chemistry and materials
506 science. *Chemical Reviews*, 124(16):9633–9732, 2024.

507 [60] Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière, B.,
508 Goyal, N., Hambro, E., Azhar, F., et al. Llama: Open and efficient foundation language models.
509 *arXiv preprint arXiv:2302.13971*, 2023.

510 [61] Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi,
511 A., Shah, P., Spitzer, M., et al. Applications of machine learning in drug discovery and
512 development. *Nature reviews Drug discovery*, 18(6):463–477, 2019.

513 [62] Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z., Chandak, P., Liu, S., Van Katwyk, P.,
514 Deac, A., et al. Scientific discovery in the age of artificial intelligence. *Nature*, 620(7972):
515 47–60, 2023.

516 [63] Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin,
517 Y., et al. A survey on large language model based autonomous agents. *Frontiers of Computer
518 Science*, 18(6):186345, 2024.

519 [64] Wang, Q., Downey, D., Ji, H., and Hope, T. SciMON: Scientific inspiration machines optimized
520 for novelty. In Ku, L.-W., Martins, A., and Srikumar, V. (eds.), *Proceedings of the 62nd
521 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
522 279–299, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
523 10.18653/v1/2024.acl-long.18. URL <https://aclanthology.org/2024.acl-long.18/>.

524 [65] Wang, S., Sun, H., Liu, H., Li, D., Li, Y., and Hou, T. Admet evaluation in drug discovery.
525 16. predicting herg blockers by combining multiple pharmacophores and machine learning
526 approaches. *Molecular pharmacaceutics*, 13(8):2855–2866, 2016.

527 [66] Wen, Y., Wang, Z., and Sun, J. Mindmap: Knowledge graph prompting sparks graph of thoughts
528 in large language models. *arXiv preprint arXiv:2308.09729*, 2023.

529 [67] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu, A., Grant, J. R., Sajed, T., Johnson,
530 D., Li, C., Sayeeda, Z., et al. Drugbank 5.0: a major update to the drugbank database for 2018.
531 *Nucleic acids research*, 46(D1):D1074–D1082, 2018.

532 [68] Wu, Z., Ramsundar, B., Feinberg, E. N., Gomes, J., Geniesse, C., Pappu, A. S., Leswing, K.,
533 and Pande, V. Moleculenet: a benchmark for molecular machine learning. *Chemical science*, 9
534 (2):513–530, 2018.

535 [69] Xu, J., Wu, Z., Lin, M., Zhang, X., and Wang, S. Llm and gnn are complementary: Distilling
536 llm for multimodal graph learning. *arXiv preprint arXiv:2406.01032*, 2024.

537 [70] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks? *arXiv*
538 *preprint arXiv:1810.00826*, 2018.

539 [71] Xu, Y., Dai, Z., Chen, F., Gao, S., Pei, J., and Lai, L. Deep learning for drug-induced liver
540 injury. *Journal of chemical information and modeling*, 55(10):2085–2093, 2015.

541 [72] Yang, R., Liu, H., Marrese-Taylor, E., Zeng, Q., Ke, Y. H., Li, W., Cheng, L., Chen, Q., Caverlee,
542 J., Matsuo, Y., et al. Kg-rank: Enhancing large language models for medical qa with knowledge
543 graphs and ranking techniques. *arXiv preprint arXiv:2403.05881*, 2024.

544 [73] Yu, B., Baker, F. N., Chen, Z., Ning, X., and Sun, H. Llasmol: Advancing large language
545 models for chemistry with a large-scale, comprehensive, high-quality instruction tuning dataset.
546 *arXiv preprint arXiv:2402.09391*, 2024.

547 [74] Zeng, Z., Yao, Y., Liu, Z., and Sun, M. A deep-learning system bridging molecule struc-
548 ture and biomedical text with comprehension comparable to human professionals. *Nature*
549 *communications*, 13(1):862, 2022.

550 [75] Zhang, Q., Ding, K., Lyv, T., Wang, X., Yin, Q., Zhang, Y., Yu, J., Wang, Y., Li, X., Xiang, Z.,
551 et al. Scientific large language models: A survey on biological & chemical domains. *arXiv*
552 *preprint arXiv:2401.14656*, 2024.

553 [76] Zhang, S., Dong, L., Li, X., Zhang, S., Sun, X., Wang, S., Li, J., Hu, R., Zhang, T., Wu, F., et al.
554 Instruction tuning for large language models: A survey. *arXiv preprint arXiv:2308.10792*, 2023.

555 [77] Zhao, H., Liu, S., Chang, M., Xu, H., Fu, J., Deng, Z., Kong, L., and Liu, Q. Gimlet: A
556 unified graph-text model for instruction-based molecule zero-shot learning. *Advances in Neural*
557 *Information Processing Systems*, 36:5850–5887, 2023.

558 [78] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B., Zhang, J., Dong,
559 Z., et al. A survey of large language models. *arXiv preprint arXiv:2303.18223*, 2023.

560 [79] Zheng, M., Okawa, S., Bravo, M., Chen, F., Martínez-Chantar, M.-L., and Del Sol, A. Chempert:
561 mapping between chemical perturbation and transcriptional response for non-cancer cells.
562 *Nucleic Acids Research*, 51(D1):D877–D889, 2023.

**Supplementary Material for
RAG-Enhanced Collaborative LLM Agents for Drug Discovery**

566	A Related Work	15
567	B Additional Related Works	15
568	C Preliminaries	16
569	D Datasets	16
570	D.1 Drug Biological Activity Prediction Task	16
571	D.2 Property-Specific Molecular Captioning Task	17
572	D.3 Drug-Target Prediction Task	17
573	E Baselines Setup	18
574	F Implementation Details	18
575	F.1 KG Planner	19
576	G Additional Experimental Results	19
577	G.1 Additional Ablation Studies	19
578	G.2 LLM-Agnostic Nature of CLADD	19
579	G.3 Additional External Knowledge Analysis	20
580	G.4 Case Studies	23
581	H Agent Templates	25

583 **A Related Work**

584 **LLMs for Molecules.** Leveraging the extensive body of literature and string-based molecular
 585 representations such as SMILES, language models (LMs) have been successfully applied to molecular
 586 sciences. Inspired by the masked language modeling approach used in BERT training [17], KV-PLM
 587 [74] introduces a method to train LMs by reconstructing masked SMILES and textual data. Similarly,
 588 MolT5 [18] adopts the “replace corrupted spans” objective [52] for pre-training on both SMILES
 589 strings and textual data, followed by fine-tuning for downstream tasks such as molecule captioning
 590 and generation. Building on this foundation, Pei et al. [50] and Christofidellis et al. [14] extend
 591 MolT5 with additional pre-training tasks, including protein FASTA reconstruction and chemical
 592 reaction prediction. Furthermore, GIMLET [77], Mol-Instructions [22], and MolecularGPT [42]
 593 adopt instruction tuning [76] to improve generalization across a wide range of molecular tasks. While
 594 these approaches demonstrate enhanced versatility, they still rely on expensive fine-tuning processes
 595 to enable molecule-specific tasks or to incorporate new data.

596 **LLM Agents for Science.** An LLM agent is a system that leverages LLMs to interact with users or
 597 other systems, perform tasks, and make decisions autonomously [63]. Recently, LLM agents have
 598 attracted significant interest in scientific applications and biomedical discovery [23], with applications
 599 including literature search [35], experiment design [55], and hypothesis generation [64], among
 600 others. In particular, agents focusing on drug discovery applications have emerged. Systems like
 601 ChemCrow [10], CACTUS [45], and Coscientist [9] focus on automating cheminformatics tasks
 602 and experiments, streamlining computational and experimental pipelines. Other works leverage
 603 agent-based orchestration of tools and data to accelerate specific aspects of scientific workflows,
 604 such as search [48] or design [26]. In contrast to existing works, we investigate an agent-based
 605 framework that can effectively incorporate external knowledge to improve open-ended and zero-shot
 606 molecular QA. This could be used either independently or as part of a larger system for automated
 607 drug discovery [59].

608 **Multi-Agent Collaborations for Drug Discovery.** Only a limited number of studies have explored
 609 multi-agent frameworks in the context of drug discovery. DrugAgent [29] introduces a multi-
 610 agent framework integrating multiple external data sources, but is limited to predicting drug-target
 611 interaction scores. Another study with the same name employs an agentic framework for automating
 612 machine learning programming for drug discovery tasks [41]. In contrast, our work seeks to tackle a
 613 diverse array of drug discovery tasks, grounding the agent capabilities in external knowledge.

614 **LLMs with Knowledge Graphs.** While large language models (LLMs) have been successfully
 615 adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,
 616 LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a
 617 bottleneck for scientific applications, and are still persistent after fine-tuning [25]. A promising
 618 approach to mitigate these issues is the integration of external knowledge sources, such as knowledge
 619 graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3] proposes a
 620 method where relevant triplets are retrieved from KGs based on the input query. These triplets are
 621 then verbalized and provided as additional input to the LLM, enhancing its factual grounding and
 622 accuracy. KG-Rank [72] focuses on medical question-answering, leveraging a medical knowledge
 623 graph to match terms in the question and expand them. DALK [37] leverages an LLM to construct
 624 an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of
 625 LLM-generated responses. Although these methods retrieve entities from KGs that are related to
 626 those in the query, the virtually infinite number of potential molecules of interest in drug discovery,
 627 combined with the limited domain expertise of general-purpose LLMs, makes it challenging to
 628 directly apply existing techniques to molecular question-answering.

629 **B Additional Related Works**

630 **LLMs with Knowledge Graphs.** While large language models (LLMs) have been successfully
 631 adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,
 632 LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a
 633 bottleneck for scientific applications, and are still persistent after fine-tuning [25]. A promising

634 approach to mitigate these issues is the integration of external knowledge sources, such as knowledge
 635 graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3] proposes a
 636 method where relevant triplets are retrieved from KGs based on the input query. These triplets are
 637 then verbalized and provided as additional input to the LLM, enhancing its factual grounding and
 638 accuracy. KG-Rank [72] focuses on medical question-answering, leveraging a medical knowledge
 639 graph to match terms in the question and expand them. DALK [37] leverages an LLM to construct
 640 an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of
 641 LLM-generated responses. Although these methods retrieve entities from KGs that are related to
 642 those in the query, the virtually infinite number of potential molecules of interest in drug discovery,
 643 combined with the limited domain expertise of general-purpose LLMs, makes it challenging to
 644 directly apply existing techniques to molecular question-answering.

645 C Preliminaries

646 **Tanimoto Similarity.** The Tanimoto similarity is a widely accepted criterion for calculating the
 647 similarity between two molecules based on their molecular fingerprint [4], which are the binary
 648 sequences that denote the presence or absence of specific substructures [54]. Given two molecules g_i
 649 and g_j with fingerprints fp_i and fp_j , the Tanimoto similarity $s_{i,j}$ is computed as follows:

$$s_{i,j} = \frac{|\text{fp}_i \cap \text{fp}_j|}{|\text{fp}_i| + |\text{fp}_j| - |\text{fp}_i \cap \text{fp}_j|}. \quad (8)$$

650 Intuitively, the Tanimoto similarity is the intersection-over-union of the sets of molecular substructures
 651 of both molecules.

652 D Datasets

653 In this section, we provide further details on the datasets we used in Section 3. We provide a summary
 654 of data statistics in Table 4.

Table 4: Data statistics.

	hERG	DILI	Skin	MLSMR_Mtb	BBBP	Sider	ClinTox	BACE	ChemPert	
# Molecules	648	475	404	200	2039	1427	1477	1513	7917	5771
# Tasks	1	1	1	1	1	27	2	1	2	2

655 D.1 Drug Biological Activity Prediction Task

656 For the drug biological activity prediction task, we use four datasets: **hERG**, **DILI**, **Skin**, and
 657 **MLSMR_Mtb**.

- 658 • The Human ether-a-go-go related gene (**hERG**) [65] plays a critical role in regulating the heart’s
 659 rhythm. Thus, accurately predicting hERG liability is essential in drug discovery. In this task, we
 660 assess the model’s ability to predict whether a drug blocks hERG.
- 661 • Drug-induced liver injury (**DILI**) [71] is a severe liver condition caused by medications. In this
 662 task, we evaluate the model’s capability to predict whether a drug is likely to cause liver injury.
- 663 • Repeated exposure to a chemical agent can trigger an immune response in inherently susceptible
 664 individuals, resulting in **Skin** [2] sensitization. In this task, we evaluate the model’s ability to
 665 predict whether the drug induces a skin reaction.
- 666 • The Molecular Libraries Small Molecule Repository - *Mycobacterium tuberculosis* dataset
 667 (**MLSMR_Mtb**) has been released as part of Eke et al. [20]. Antimycobacterial activity against
 668 *M. tuberculosis* was measured in a dose-response assay and quantified as AUC. Following the
 669 original study, we used an AUC cutoff of 25 for classification. Out of the 935 molecules tested, we
 670 randomly selected 200 compounds with a balanced positive/negative ratio. For this task, we evaluate
 671 the model’s ability to predict antimycobacterial activity. In addition to its relevance, we selected
 672 this dataset for its recency, as **it was published after GPT-4o and in parallel to the preparation**
 673 **of this study**, ensuring no overlap with pre-training data and thus allowing benchmarking against
 674 leakage risks. To the best of our knowledge, our work is the first study leveraging this dataset.

675 **D.2 Property-Specific Molecular Captioning Task**

676 For the property-specific molecular captioning task, we use four datasets in MoleculeNet [68]: **BBBP**,
677 **Sider**, **Clintox**, **BACE**.

678 • The blood-brain barrier penetration (**BBBP**) dataset consists of compounds categorized by their
679 ability to penetrate the barrier, addressing a significant challenge in developing drugs targeting the
680 central nervous system.

681 • The side effect resource (**Sider**) dataset organizes the side effects of approved drugs into 27 distinct
682 organ system categories.

683 • The **Clintox** dataset includes two classification tasks: 1) predicting toxicity observed during clinical
684 trials, and 2) determining FDA approval status.

685 • The **BACE** dataset provides qualitative binding results for a set of inhibitors aimed at human
686 β -secretase 1.

687 **Evaluation Protocol.** While previous works on molecular captioning generate general molecule
688 descriptions and evaluate them with standard NLP metrics like BLEU. However, because a molecule
689 can be described in multiple ways (some more relevant to certain tasks [27, 19]), we focus on
690 property-specific captioning. Here, the main challenge is the lack of ground-truth captions for each
691 property. Therefore, similar to previous work [19], we use an evaluation protocol that checks how
692 well the generated captions aid in property prediction by fine-tuning a language model (SciBERT) on
693 them. Specifically, for a generated caption and the SMILES representation of the target molecule, we
694 concatenate them using a [CLS] token, forming SMILES [CLS] caption, and fine-tune a SciBERT
695 [7] model for property prediction. Importantly, **fine-tuning SciBERT is only part of the evaluation**
696 **protocol, as CLADD itself does not involve any fine-tuning.** This process is illustrated in Figure 3.

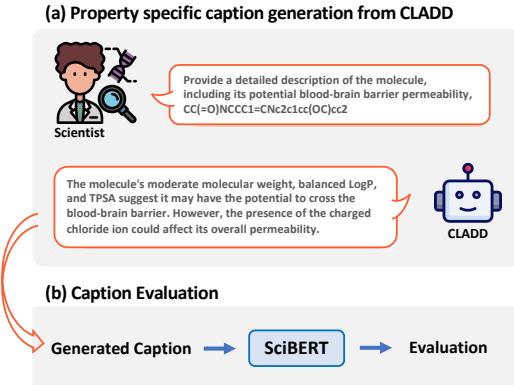


Figure 3: (a) After CLADD (or baseline models) generates a property-specific caption, (b) SciBERT is used for evaluation. In other words, **fine-tuning SciBERT is not part of CLADD**; it is only used for evaluation purposes.

697 **D.3 Drug-Target Prediction Task**

698 We rely on annotated molecular targets present in the Drug Repurposing Hub [15], DrugBank [67],
699 and STITCH v5.0 [57], as combined and preprocessed in 79. As we explained in Section 3, we
700 separately report the performance on the test set for molecules based on their information availability
701 in the external databases (“Overlap”/“No Overlap”). More specifically, for “No Overlap” cases, we
702 exclude the molecules in the following criteria:

703 • We exclude the molecules if they exist in the knowledge graph.

704 • However, we noticed that many molecules have uninformative annotations, as also discussed in
705 Section F. Consequently, we decided to exclude molecules from the test set only if they have
706 sufficient annotations relevant to the task, as determined by GPT-4o mini.

707 After this process, 5771 molecules remained in the test set for the “No Overlap” scenario.

708 **E Baselines Setup**

709 This section provides further details on the baselines we used in Section 3. For all baseline models, we utilize the pre-trained checkpoints provided by the authors of the original papers.

710 Table 5: Links to baseline model checkpoints.

Model	URL
Galactica 125M	https://huggingface.co/facebook/galactica-125m
Galactica 1.3B	https://huggingface.co/facebook/galactica-1.3b
Galactica 6.7B	https://huggingface.co/facebook/galactica-6.7b
GIMLET	https://huggingface.co/haitengzhao/gimlet
LlasMol	https://huggingface.co/osunlp/LlaSMol-Mistral-7B
MolecularGPT	https://huggingface.co/YuyanLiu/MolecularGPT

710

711 • **Galactica** [58] is a large language model designed to store, integrate, and reason over scientific
712 knowledge. The authors demonstrate Galactica’s capabilities in simple molecule understanding
713 tasks, such as predicting IUPAC names and performing binary classification for molecular property
714 prediction. We also fine-tune Galactica for the Drug-Target Prediction task described in Section 3,
715 using molecules and associated activated/inhibited proteins. For fine-tuning, we searched for the
716 optimal hyperparameters (learning rate of $\{1e-3, 1e-4, 1e-5, 1e-6\}$ and epoch number of
717 $\{50, 100, 150, 200\}$), reporting the best performance achieved.

718 • **GIMLET** [77] introduces a unified approach to leveraging language models for both graph and
719 text data. The authors aim to enhance the generalization ability of language models for molecular
720 property prediction through instruction tuning.

721 • **LlaSMol** [73] presents a large-scale, comprehensive, and high-quality dataset designed for in-
722 struction tuning of large language models. This dataset includes tasks such as name conversion,
723 molecule description, property prediction, and chemical reaction prediction, and it is used to
724 fine-tune different open-source LLMs.

725 **F Implementation Details**

726 In this section, we provide further details on the implementation of CLADD.

727 **Software Configuration.** Our model is implemented using Python 3.11, PyTorch 2.5.1, Torch-
728 Geometric 2.6.1, RDKit 2023.9.6, and LangGraph 0.2.59.

729 **Computational Resources.** For LLMs, we utilize the OpenAI API, thereby leveraging OpenAI’s
730 computational resources. All other computations, such as GNN retrievers, are performed on a 24GB
731 NVIDIA GeForce RTX 3090 GPU.

732 **External Databases.** In all experiments, we employ the PubChem database [32] as the annotation
733 database \mathcal{C} and PrimeKG [12] as the biological knowledge graph \mathcal{G} .

734 The **PubChem** database is one of the most extensive public molecular databases available. Pubchem
735 database consists of multiple data sources, including DrugBank, CTD, PharmGKB, and more
736 (<https://pubchem.ncbi.nlm.nih.gov/sources/>). The PubChem database used in this study
737 includes 299K unique molecules and 336K textual descriptions associated with them (that is, a single
738 molecule can have multiple captions sourced from different datasets associated with it). On average,
739 each molecule has 1.115 descriptions, ranging from a minimum of one to a maximum of 17, as
740 shown in Figure 4 (a). In this study, if a molecule had multiple captions, they were concatenated to
741 form a single caption. On the other hand, as shown in Figure 4 (b), most captions consist of fewer
742 than 20 words, underscoring the limited informativeness of human-generated captions. Even after
743 concatenating multiple captions for each molecule, the majority still contain fewer than 50 words.

744 **PrimeKG** is a widely used knowledge graph for biochemical research. The knowledge graph
745 contains 4,037,851 triplets and encompasses 10 entity types, including {anatomy, biological
746 processes, cellular components, diseases, drugs, effects/phenotypes,
747 exposures, genes/proteins, molecular functions, and pathways}. Additionally,
748 it includes 18 relationship types: {associated with, carrier, contraindication,

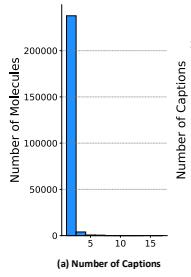


Figure 4: Data analysis on PubChem database.

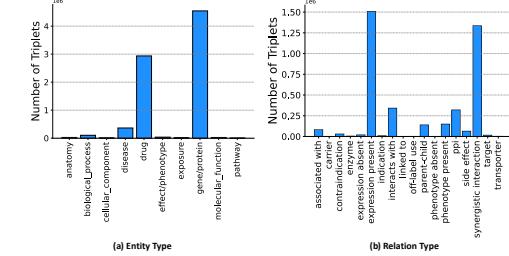


Figure 5: Data analysis on PrimeKG knowledge graph.

749 enzyme, expression absent, expression present, indication, interacts with,
 750 linked to, off-label use, parent-child, phenotype absent, phenotype present,
 751 ppi, side effect, synergistic interaction, target, and transporter}. The
 752 number of triplets associated with each entity and relation type is shown in Figure 5 (a) and (b),
 753 respectively.

754 E.1 KG Planner

755 As explained in section 2.2.1, we utilize a pre-trained GNN (with 3D information) to retrieve
 756 molecules highly related to the query molecule. In particular, the model has a GIN architecture [70],
 757 which is pre-trained with the GraphMVP [39] approach. The checkpoint of the model is available
 758 at https://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_GraphMVP.

759 G Additional Experimental Results

760 In this section, we provide additional experimental results that can supplement our experimental
 761 results in Section 3.

762 G.1 Additional Ablation Studies

763 In Table 6, we conduct a model analysis by removing one component of the model at a time for the
 764 drug-target prediction task. We have the following observations: **1)** By comparing “Only Expert
 765 Annotation” and “Only Generated Caption”, we observe that relying solely on expert annotations
 766 yields significantly better performance. This highlights the critical importance of human-generated
 767 annotations over machine-generated captions. Still, their combination leads to the best overall
 768 performance. **2)** Among the three agents—DrugRel Agent, BioRel Agent, and MU Agent—we could
 769 not determine a clear superiority in their relative importance, as it was task-dependent (Activation
 770 or Inhibition). **3)** Overall, we observe a decline in performance when any single component of
 771 CLADD is removed, emphasizing the significance of each module.

772 We perform additional ablation studies in the property-specific molecule captioning task in Figure 6.
 773 Similarly, we observe that including all components (i.e., CLADD) leads to the best performance
 774 except for the BACE dataset. Our analysis showed that this is because, as illustrated in Figure
 775 10, the BACE dataset contains minimal relevant information in both the annotation database and
 776 the knowledge graph. Consequently, the model derives minimal benefit from external knowledge,
 777 highlighting the critical role of having relevant external information to boost performance.

778 G.2 LLM-Agnostic Nature of CLADD

779 Due to the expensive API costs, we mainly report the results using GPT-4o mini in the main
 780 manuscript to validate the proposed framework. In this section, we performed additional experiments
 781 replacing it with different LLMs, including Llama3.3-70b and DeepSeek-V3. As shown in Table 7,
 782 the proposed framework (+ CLADD) consistently improves each individual LLM, showcasing its
 783 LLM-agnostic advantage.

Table 6: Additional ablation studies in drug-target prediction task (Precision @ 5). **Bold** and underline indicate best and second-best methods.

	(a) Overlap		(b) No overlap	
	Activate	Inhibit	Activate	Inhibit
No MolAnn Planner				
- Only Expert Annotation	2.99	4.80	2.63	<u>3.20</u>
- Only Generated Caption	2.72	3.96	2.61	2.80
No KG Planner	2.84	4.49	2.64	2.97
No DrugRel Agent	2.90	<u>4.79</u>	2.48	2.99
No BioRel Agent	2.96	4.50	2.63	3.00
No MU Agent	3.04	4.17	<u>2.66</u>	2.59
CLADD	3.04	4.83	2.67	3.24

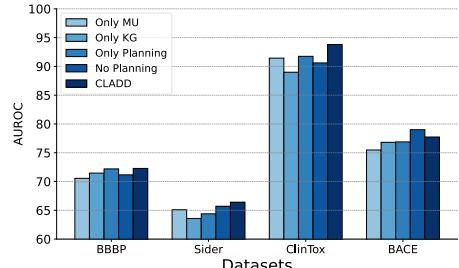


Figure 6: Ablation studies in the property-specific molecular captioning task.

Table 7: Performance of CLADD with each agent replaced by a different closed-source and open-source LLM (drug-target prediction task).

	Overlap		No overlap	
	Activate	Inhibit	Activate	Inhibit
GPT-4o mini	1.15	1.02	1.13	0.87
+ CLADD	3.04	4.83	2.67	3.24
Llama-3.3-70B	0.84	0.94	0.88	0.81
+ CLADD	3.13	6.40	2.73	4.14
DeepSeek-V3	1.91	1.46	1.90	1.11
+ CLADD	3.60	7.75	3.15	5.01

784 G.3 Additional External Knowledge Analysis

785 In Table 7, we analyze how the retrieval accuracy affects the model performance. To do so, we
786 investigated two settings: one where the anchor drug selection in the knowledge graph is done
787 randomly, and another where annotations are randomly sampled from the annotation database. As
788 expected, we observe that the performance of both these models is significantly lower compared to
789 the original model. We also observe that there is still a significant performance gap when compared
790 to GPT-4o mini. This is expected, as our model still includes a planning team that ensures that the
791 anchor drug and annotations are only used when they are relevant to the query molecule and task.

792 Moreover, we further investigate how the quality of retrieved knowledge affects the model perfor-
793 mance. Firstly, we analyzed how performance changes as a function of the length of the annotation
794 retrieved from the annotation database. In Figure 8(a), “Zero” indicates that no annotation is avail-
795 able in the annotation database, while Q1, Q2, Q3, and Q4 represent the quartiles of the retrieved
796 annotation length. We highlight two interesting trends: (1) in general, performance increases with the
797 annotation length, which is in line with the intuition that longer annotations include more relevant
798 information, and (2) on average, “no annotation” leads to better results than the shortest annotations,
799 which could indicate that the shortest annotations are often not informative enough to boost perfor-
800 mance. However, for all groups except the shortest annotations, the additional information provides a
801 proportional improvement.

802 Secondly, we analyzed how performance changes as a function of the similarity between the query
803 molecule and the anchor molecule in the knowledge graph. In Figure 8 (b), Molecules with a
804 Tanimoto similarity of 1 are excluded from the evaluation. “High”: Tanimoto similarity between
805 0.7~1.0, “Middle”: Tanimoto similarity between 0.3~0.7, “Low”: Tanimoto similarity between
806 0.0~0.3. Here, we found a very positive correlation, which is in line with the intuition that a higher
807 similarity provides more relevant contextual information.

808 In Figure 9, we analyze how external knowledge is used during the decision-making process for the
809 drug-target prediction task. We have the following observations: 1) As shown in Figures 9(a) and 9(b),
810 the average length of human descriptions is considerably longer in the “Correct” case, and the number
811 of retrieved 2-hop paths is notably higher in the “Correct” case. This highlights the importance of
812 having external information that is both high quality and abundant. 2) On the other hand, although we
813 anticipated a higher proportion of 2-hop paths containing Gene/Protein entities in the “Correct” case,
814 no significant difference was observed between the “Correct” and “Incorrect” cases in Figures 9(c)

Figure 7: Performance analysis on retrieval errors.

	Overlap		No overlap	
	Activate	Inhibit	Activate	Inhibit
GPT-4o mini	1.15	1.02	1.13	0.87
Random Anchor Drug in KG	2.49	4.46	1.86	2.31
Random Annotations in DB	2.62	4.08	2.51	2.85
CLADD	3.04	4.83	2.67	3.24

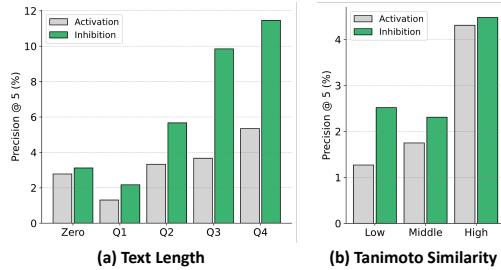


Figure 8: Performance as a function of (a) the length of the text retrieved from the annotation database and (b) the Tanimoto similarity between the anchor molecule and the knowledge graph.

815 and 9(d). From these results, we argue that CLADD’s performance is not solely reliant on retrieving
 816 external information that is directly linked to the correct answer, given that external information can
 817 be further processed and contextualized by the agents, integrating different sources of evidence and
 internal knowledge.

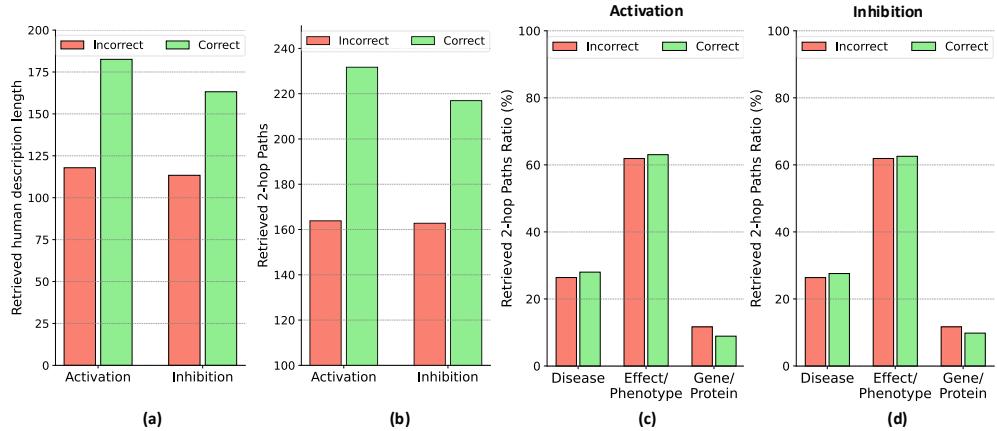


Figure 9: External knowledge analysis results. (a) The average length of retrieved human descriptions, (b) the average number of retrieved 2-hop paths in the knowledge graph, and (c-d) the proportion of entity types in 2-hop paths for correct and incorrect cases.

818
 819 In Figure 10, we examine how the Planning Team determines the use of the captioning tool and
 820 collaborates with the Knowledge Graph Team based on the datasets. We observed that, in most cases,
 821 the KG was used for more than 50% of the query molecules, with the BACE and Skin Reaction
 822 datasets as significant exceptions. Furthermore, we observed that the BACE and hERG datasets
 823 lacked corresponding annotations for all query molecules.

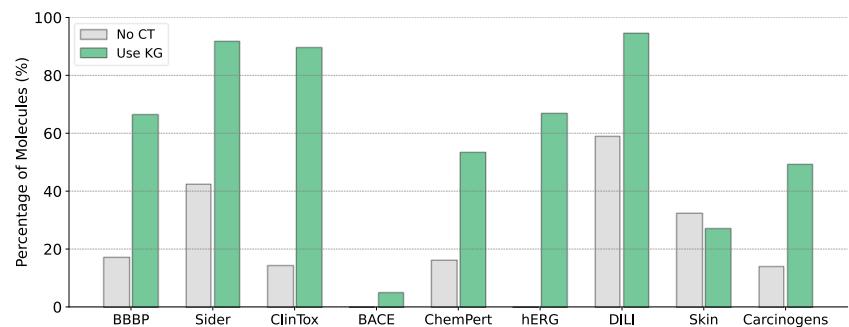


Figure 10: Planning team decision analysis based on different datasets. “No CT” signifies that the planning team has decided not to utilize the captioning tool, while “Use KG” indicates that the planning team intends to involve the Knowledge Graph Team.

824 **G.4 Case Studies**

825 Figure 11 showcases how the agents in CLADD collaborate to identify “the top-5 protein targets a
 826 query molecule is most likely to activate”. First, the BioRel Agent extracts from the knowledge graph
 827 that the anchor drug, Naftopidil, is indicated for benign prostatic hyperplasia (BPH), implying the
 828 activation of related pathways. The DrugRel Agent complements these findings by 1) linking BPH to
 829 alpha-1 adrenergic receptors using its internal knowledge (which is confirmed in the literature [33]),
 830 and 2) analyzing related drugs in the knowledge graph (e.g., Hydroxyzine, Clozapine), to infer
 831 interaction with histamine and dopamine receptors. Finally, the MU agent integrates these findings
 832 with the analysis of the molecular structure to provide a summarized report of the activated protein
 833 targets. This example highlights the agents’ complementary strengths, which lead to interpretable
 834 and reliable predictions.

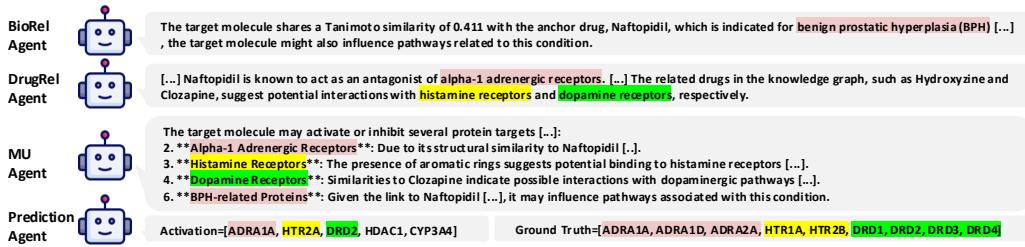


Figure 11: **Example of collaboration between agents in CLADD** (on the drug-target prediction task). Red represents adrenergic receptors, yellow represents histamine receptors, and green represents dopamine receptors. The full version is available in Appendix G.

835 Moreover, in Figure 12, we observe that all three agents consistently predict dopamine-related and
 836 serotonin-related proteins as targets. Based on the reports, Prediction Agent prioritizes these proteins
 837 over Cytochrome P450-related enzymes in the prediction. Thus, we argue that our system can
 838 efficiently prioritize relevant information based on consensus, functioning similarly to a majority
 839 voting system.

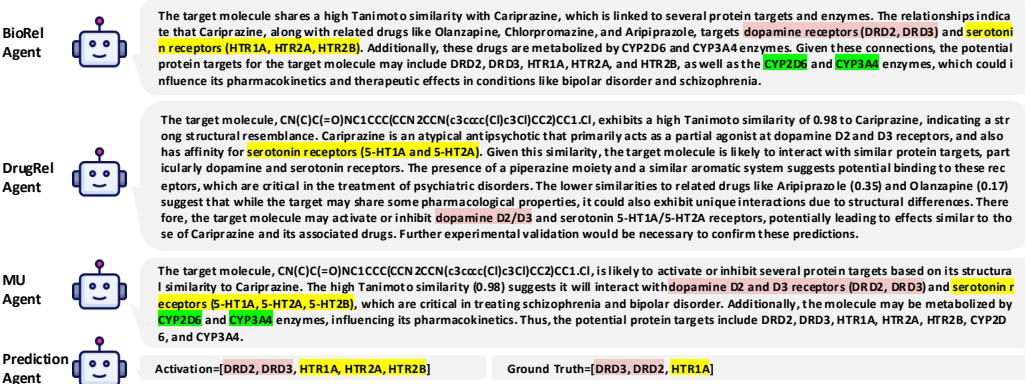


Figure 12: Additional case studies. Red represents dopamine-related proteins, yellow represents serotonin-related proteins, and green represents Cytochrome P450-related enzymes.

BioRel Agent		The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, Naftopidil, which is indicated for benign prostatic hyperplasia (BPH). The relationships indicate that several drugs, including Hydroxyzine, Caffeine, and Clozapine, contraindicate BPH while also interacting with the enzyme CYP3A4, which is crucial for drug metabolism. Given these connections, the target molecule may potentially inhibit or activate proteins related to CYP3A4, affecting the metabolism of drugs that interact with this enzyme. Additionally, since Naftopidil is linked to BPH, the target molecule might also influence pathways related to this condition, possibly through interactions with proteins involved in the signaling or pathology of BPH. Thus, potential protein targets include CYP3A4 and proteins associated with BPH-related pathways.
DrugRel Agent		The target molecule <chem>CC1cccc1N1CCN(CCCNC(=O)c2cc3cccc3c2)CC1</chem> shows a Tanimoto similarity of 0.4117 with Naftopidil, indicating a moderate structural resemblance. Naftopidil is known to act as an antagonist of alpha-1 adrenergic receptors, which are involved in vasodilation and blood pressure regulation. Given this similarity, the target molecule may also interact with adrenergic receptors or related pathways. The related drugs in the known graph, such as Hydroxyzine and Clozapine, suggest potential interactions with histamine receptors and dopamine receptors, respectively. The target molecule's structural features, including the aromatic rings and nitrogen-containing heterocycles, may facilitate binding to these receptors. Additionally, the presence of a carbonyl group (C=O) in the target molecule could enhance its ability to form hydrogen bonds, potentially increasing affinity for various protein targets. Overall, the target molecule may activate or inhibit adrenergic, histaminergic, or dopaminergic pathways, warranting further investigation into its pharmacological profile.
MU Agent		<p>The target molecule <chem>CC1cccc1N1CCN(CCCNC(=O)c2cc3cccc3c2)CC1</chem> may activate or inhibit several protein targets based on its structure and the reports from the Tanimoto and Summary Agents.</p> <ol style="list-style-type: none"> **Histone Deacetylase (HDAC)**: As an identified HDAC inhibitor, it may modulate gene expression and influence cancer pathways. **Alpha-1 Adrenergic Receptors**: Due to its structural similarity to Naftopidil, it may interact with these receptors, affecting vasodilation and blood pressure. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to histamine receptors, influencing allergic responses. **Dopamine Receptors**: Similarities to Clozapine indicate possible interactions with dopaminergic pathways, relevant in psychiatric disorders. **CYP3A4**: The molecule may affect drug metabolism via interactions with this enzyme, impacting the pharmacokinetics of orally-administered drugs. **BPH-related Proteins**: Given the link to Naftopidil and benign prostatic hyperplasia, it may influence pathways associated with this condition.
Prediction Agent		<p>Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4]</p> <p>Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR2B, DRD1, DRD2, DRD3, DRD4]</p>

Figure 13: Full version of Figure 11.

840 H Agent Templates

841 In this section, we provide the templates for each agent used in Section 2. We follow the previous
842 work for designing the system prompt [38].

Table 8: Prompts for Molecule Annotation Planner (Section 2.2.1).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to determine whether the provided description is enough for analyzing
the structure of the molecule.

Are you ready?

Description: [\(Retrieved Human Description\)](#)

You should answer in the following format:

Answer = YES or NO

REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 9: Prompts for Knowledge Graph Planner (Section 2.2.1).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to decide whether to utilize the knowledge graph structure by evaluating the structural
similarity between the target molecule and the anchor drug within the knowledge graph.
If the target molecule and the anchor drug show high similarity, the knowledge graph should be
leveraged to extract relevant information.

The Tanimoto similarity between the target molecule [\(SMILES\)](#) and the anchor drug
[\(SMILES\)](#) ([\(Drug Name\)](#)) is [\(Tanimoto Similarity\)](#).

You should answer in the following format:

Answer = YES or NO

REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 10: Prompts for Biology Relation Agent (Section 2.2.2).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to predict [\(Task Description\)](#) by analyzing the relationships between the anchor drug,
which shares tanimoto similarity of [\(Tanimoto Similarity\)](#) with the target molecule,
and the most closely related drugs in the knowledge graph.

You should explain the reasoning based on the intermediate nodes between the
related drugs and the anchor drug, as well as the types of relationships they have.

The two-hop relationships between the drugs will be provided in the following format:
(Drug A, relation, Entity, relation, Drug B), where the entity can be one of the following
three types of entities: (gene/protein, effect/phenotype, disease)

Are you ready?

Target molecule: [\(SMILES\)](#)

Here are the two-hop relationships:
[\(Two-hop Paths\)](#)

DO NOT ANSWER IN THE PROVIDED FORMAT.
DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 11: Prompts for Drug Relation Agent (Section 2.2.2).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to [\(Task Description\)](#) by analyzing its structural similarity to anchor drugs and related drugs, and provide an explanation grounded in its resemblance to these other drugs.

Are you ready?

The Tanimoto similarity between the target molecule [\(SMILES\)](#) and the anchor drug [\(SMILES\)](#) ([\(Drug Name\)](#)) is [\(Tanimoto Similarity\)](#).

The anchor drug [\(Drug Name\)](#) is highly associated with the following molecules in the knowledge graph: [\(Reference Drugs\)](#).

The Tanimoto similarities between the target molecule [\(SMILES\)](#) and the related drugs in the knowledge graph are [\(Tanimoto Similarity\)](#).

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 12: Prompts for Molecule Understanding Agent (Section 2.2.3).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict [\(Task Description\)](#) by using the SMILES representation and description of a molecule, and explain the reasoning based on its description.

You can also consider the report from other agents involved in drug discovery:

- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Are you ready?

SMILES: [\(SMILES\)](#)

Description: [\(Caption\)](#)

Below is the report from other agents.

Drug Relation Agent:

[\(Report from Drug Relation Agent\)](#)

Biology Relation Agent:

[\(Report from Biology Relation Agent\)](#)

DO NOT WRITE MORE THAN 300 TOKENS.

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 13: Prompts for Prediction Agent (Section 2.2.4).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict [\(Task Description\)](#) [\(SMILES\)](#).

Your reasoning should be based on reports from various agents involved in drug discovery:

- Molecule Understanding Agent: Focuses on analyzing the structure of the target molecule.
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Below is the report from each agent.

Molecule Understanding Agent:

[\(Report from Molecule Understanding Agent\)](#)

Drug Relation Agent:

[\(Report from Drug Relation Agent\)](#)

Biology Relation Agent:

[\(Report from Biology Relation Agent\)](#)

Based on the reports, [\(Task Description and Answering Format\)](#)

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
