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Abstract

Recent advances in large language models (LLMs) have shown great potential to
accelerate drug discovery. However, the specialized nature of biochemical data
often necessitates costly domain-specific fine-tuning, posing critical challenges.
First, it hinders the application of more flexible general-purpose LLMs in cutting-
edge drug discovery tasks. More importantly, it limits the rapid integration of
the vast amounts of scientific data continuously generated through experiments
and research. Compounding these challenges is the fact that real-world scientific
questions are typically complex and open-ended, requiring reasoning beyond
pattern matching or static knowledge retrieval. To address these challenges, we
propose CLADD, a retrieval-augmented generation (RAG)-empowered agentic
system tailored to drug discovery tasks. Through the collaboration of multiple LLM
agents, CLADD dynamically retrieves information from biomedical knowledge
bases, contextualizes query molecules, and integrates relevant evidence to generate
responses — all without the need for domain-specific fine-tuning. Crucially, we
tackle key obstacles in applying RAG workflows to biochemical data, including
data heterogeneity, ambiguity, and multi-source integration. We demonstrate the
flexibility and effectiveness of this framework across a variety of drug discovery
tasks, showing that it outperforms general-purpose and domain-specific LLMs as
well as traditional deep learning approaches. Our code is publicly available at
https://anonymous.4open.science/r/CLADD-EEDE|

1 Introduction

Large language models (LLM) have revolutionized the landscape of natural language process-
ing, emerging as general-purpose foundation models with remarkable abilities across multiple
domains [1}60]. In particular, their application in biomolecular studies has recently gained significant
interest, motivated by the potential to profoundly accelerate scientific innovation and drug discovery
applications [75, 51} [13]]. LLMs provide novel ways to understand and reason about molecular data,
building on the wealth of available scientific literature. Additionally, their reasoning and zero-shot
abilities help overcome the limitations of task-specific deep learning models, streamlining data needs
and improving human-AlI collaboration [22] [73]].

However, given the inherent complexity and specialized nature of the field, recent works emphasize
the importance of domain-specific fine-tuning to boost tasks such as molecular captioning, property
prediction, or binding affinity prediction [22, 1373, [19]]. Consequently, rather than employing readily
available general-purpose LLMs, most efforts in drug discovery have focused on fine-tuning LL.Ms
using biochemical annotations or instruction-tuning datasets.

While promising, solely relying on these approaches poses significant challenges that can limit
applications. On one hand, the rapid emergence of new LLM architectures and techniques [47} [78]
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complicates maintaining domain-specific models obtained through expensive fine-tuning. More
importantly, drug discovery applications often require promptly incorporating new insights as they
become available, for example, as a result of new experiments or through the scientific literature.
In addition to being impractical, regular rounds of fine-tuning to keep LLMs up-to-date with the
latest scientific advances also introduce challenges such as catastrophic forgetting [43]], while not
necessarily providing grounded answers [25]. Above all, real-world drug discovery questions are
inherently complex, open-ended, and context-dependent, spanning heterogeneous data types [53[]. As
a consequence, static LLMs—either general-purpose or fine-tuned—may struggle to generalize to
novel tasks or adapt to new evidence.

From this perspective, retrieval-augmented generation (RAG) methods offer a promising direction that
enables dynamic adaptation of the model’s knowledge without the need for continuous, expensive fine-
tuning [24} 21]]. However, applying this paradigm in the drug discovery domain presents important
obstacles. First, retrieving relevant knowledge is difficult due to the limited domain expertise
of general-purpose LLMs, combined with the vastness of the biochemical space [§] that renders
exact retrieval ineffective. Second, biochemical data is extremely heterogeneous, spanning diverse
modalities such as molecules, proteins, diseases, and complex relationships between them [62], which
can also exist across multiple sources, introducing challenges in factual integration [28]]. Finally,
many real-world tasks are open-ended and require the LLM to extrapolate beyond the available
external knowledge (which may also be ambiguous or partial [61]]) while remaining grounded in it.

In this study, we tackle these challenges by introducing a Collaborative framework of LLM Agents
for Drug Discovery (CLADD). We assume a general setting where external knowledge is available as
expert annotations associated with molecules or as knowledge graphs (KGs) that flexibly represent
diverse biochemical entities and their relationships. CLADD is powered by general-purpose LLMs,
while also integrating domain-specific LLMs, when necessary, to improve molecular understanding.
Notably, external knowledge can be updated dynamically without LLM fine-tuning.

The multi-agent collaborative framework enables each agent to specialize in a specific data source
and/or role, offering a modular solution that can improve overall information processing [11]. In
particular, CLADD includes a Planning Team to determine relevant data sources, a Knowledge Graph
Team to retrieve external heterogeneous information in the KG and summarize it, also through a novel
anchoring approach to retrieve related information when the query molecule is not present in the
knowledge base, and a Molecule Understanding Team, which analyzes the query molecule based on
its structure, along with summaries of external data and tools. The flexibility of the framework enables
CLADD to address a wide range of tasks for drug discovery, including zero-shot and open-ended
settings, while also improving interpretability through the transparent interaction of its agents.

Overall, we highlight the following contributions:

* We present CLADD, a multi-agent framework for RAG-based question-answering in drug discovery
applications. The framework leverages generalist LLMs and dynamically integrates external
heterogeneous biochemical data without requiring fine-tuning, while addressing zero-shot and
open-ended settings.

* We demonstrate the flexibility of the framework by tackling diverse applications, including drug-
target prediction, property-specific molecular captioning, and biological activity prediction tasks.

» We provide comprehensive experimental results showcasing the effectiveness of CLADD compared
to both general-purpose and domain-specific LLMs, as well as standard deep learning approaches.
A further appeal of CLADD is its flexibility and explainability, improving the interaction between
scientists and Al

2 Methodology

2.1 Problem Setup

Given a query molecule g, and a textual prompt describing a task of interest Z, we con-
sider the general problem of generating a relevant response A, . For instance, given g, =
‘C1=CC(=C(C=C1CCN)O)O ’ and Z = ‘Predict liver toxicity’, our model should be able to generate
an answer stating that A, = ‘this molecule does not have liver toxicity concerns’. Such a general
QA setup can be flexibly adapted to multi-class classification, captioning, and set-based predictions.
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Figure 1: Overview of CLADD.

We assume access to two types of external databases: (1) molecular annotation databases C, which
include textual annotation about molecules (for example, detailing their functions and properties),
and (2) knowledge graphs (KGs) connecting molecules to other biomedical entities. In particular, a
KG g is composed of a set of heterogeneous entities £ (such as drugs, proteins, and diseases) and a
set of relations R connecting them. In this paper, we only assume that molecule (or drug) entities
are present in KG, while any other types of entities can exist. Additionally, we assume access to
pre-trained molecular captioning models that can be used as external tools to complement the external
databases. In general, any predictive model on molecules can be considered a captioning model
[18,150], given that its output can be simply represented as text.

2.2 CLADD

Here, we introduce CLADD, a multi-agent framework for general molecular question-answering
that supports multiple drug discovery tasks. Each agent is implemented by an off-the-shelf LLM
prompted to elicit a particular behavior. Our framework is composed of three teams, each composed
of several agents: the Planning Team, which identifies the most appropriate data sources and
overall strategy given the task and the query molecule (Section 2:2.1); the Knowledge Graph
(KG) Team, which retrieves relevant contextual information about the molecule from available
KG databases (Section m); and the Molecular Understanding (MU) Team, which retrieves
and integrates information from molecular annotation databases and external tools for molecule
description (Section [2.2.3). Finally, the Prediction Agent integrates the findings from the MU and
KG teams to generate the final answer. In the following sub-sections, we describe each team in detail.
The overall framework is depicted in Figure|[T]

2.2.1 Planning Team

The Planning Team assesses the relevance of external knowledge for a given query molecule. The
team separately assesses the molecular annotations database and the knowledge graph through the
MolAnn Planner and the KG Planner agents, respectively.

Molecule Annotation (MolAnn) Planner. This agent first retrieves annotations for the query
molecule, ¢4, from the annotation database C. While these annotations can provide valuable biochem-
ical knowledge [73]], they are often sparse, with many molecules entirely missing or lacking sufficient
details due to the vastness of the chemical space [36].

To this end, the MolAnn Planner determines whether the retrieved annotations provide enough
information for subsequent analyses. Specifically, given a query molecule g,, retrieved annotations
cq, and the task instruction Z, the agent is invoked as follows:

omap = MolAnn Planner(gq, ¢q,Z). (1
omap indicates whether annotations should be complemented with additional information from tools.

Knowledge Graph (KG) Planner. In parallel to analyzing the available description for the query
molecule, we analyze the relevance of the contextual information present in the KG. While previous
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works on general QA tasks focus on identifying entities in the knowledge graph that exactly match
those in the query [3}31], the vast chemical search space and the limited coverage of existing
knowledge bases limit the effectiveness of such approaches in the field of drug discovery.

To address this challenge, we propose leveraging the knowledge of drugs that are structurally similar
to the query drug, building upon the well-established biochemical principle that structurally similar
molecules often exhibit related biological activity [44]]. Specifically, we define the anchor drug g,
as the entity drug with the maximum cosine similarity between its embedding and that of the query
emb(gq)-emb(g)
llemb(gq)llemb(g)1l >
is a representation produced by a graph neural network (GNN) pre-trained with 3D geometry [39]],
which outputs structure-aware molecular embeddings.

molecule, among the set of all molecules in the KG (gg), g, = argmax where emb
9€9g

Then, the KG Planner agent decides whether to use the KG based on the structural similarity between
the query molecule and the retrieved anchor drug. To do so, we also provide the Tanimoto similarit
to the KG Planner, as this domain-specific metric can be leveraged by the LLM’s reasoning about
chemical structural similarity as follows:

oxgp = KG Planner(gq, ga, Sq,a, L), 2

where s, , is the Tanimoto similarity between the query and anchor molecules. oxgp is a Boolean
indicating whether the KG should be used for the prediction.

2.2.2 Knowledge Graph Team

This team aims to provide relevant contextual information about the query molecule by leveraging
the KG, and it is only called if oxgp = TRUE. It consists of the Drug Relation (DrugRel) Agent
and the Biological Relation (BioRel) Agent, both of which generate reports on the query molecule
based on different aspects of the KG. Specifically, the DrugRel Agent focuses on related drug entities
within the KG, primarily leveraging its internal knowledge, whereas the BioRel Agent focuses on
summarizing and assessing contextual biological knowledge in the KG.

Related Drugs Retrieval. The typical approach to leveraging a KG for QA tasks involves identifying
multiple entities in the query and extracting the subgraph that encompasses those entities [3l [66].
However, in molecular understanding for applications related to drug discovery tasks, the question
often involves only a single entity, i.e., the query molecule g,, making it challenging to identify
information in the KG relevant to the task.

Here, we introduce a novel approach for extracting relevant information for the query molecule g, by
utilizing the retrieved anchor drug g,, which exhibits high structural similarity to the query molecule.
In particular, while the drug entities in the KG G are mainly connected to other types of biological
entities (e.g., proteins, diseases), we can infer relationships among drugs by considering the biological
entities they share. For example, we can determine the relatedness of the drugs Trastuzumab and
Lapatinib by observing their connectivity to the protein HER?2 in the KG, as both drugs specifically
target and inhibit HER?2 to treat HER2-positive breast cancer [16]]. Therefore, to identify relevant
related drugs, we first compute the 2-hop paths connecting the anchor drug g, to other drugs gé in the

KG G, i.e., (ga,Ta—se, € Timse, gé), where 7 € R, e € £, and ¢ denotes the index of the other drug.
Then, we select the top-k related drugs, denoted as g,1, ..., g+, corresponding to the molecules
that have the greatest number of 2-hop paths to the anchor drug. Note that while the anchor drug
g 1s selected based on its structural similarity to the query molecule g,, these reference drugs are
semantically related to g,, reflecting the relationships captured within the KG.

Drug Relation (DrugRel) Agent. The DrugRel Agent generates a report on the query molecule,
contextualizing it in relation to relevant drugs present in the knowledge base for the specific task
instruction. Given a query molecule g, its anchor drug g,, and the set of related drugs g,1, ..., gx,
the DrugRel Agent generates a report as follows:

ODRA = DrugRel Agent (gll7 Gas Grly .- 9rk, T7 1)3 (3)

where 7 = {s4,a, Sq.r1s- - - Sq,rk } is the set of Tanimoto similarities between the query molecule and
the retrieved drugs. The agent leverages its internal knowledge about related drugs while effectively
assessing the relatedness of the information to the target molecule based on the Tanimoto similarity.

'We provide details on the Tanimoto similarity in Appendix
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Biological Relation (BioRel) Agent. The BioRel Agent summarizes how the anchor drug and the
related drugs are biologically related, integrating additional biochemical entities present in the KG,
such as targets, indications, side effects, etc. Specifically, given an anchor drug g,, a set of reference
drugs g,1, ..., g,, the collection of all 2-hop paths P linking the anchor drug to the reference drugs,
and the instruction Z, the agent generates the report as follows:

ogra = BioRel Agent(P,Z, gq, ga, Sq,a)- (€))]

This enables us to obtain a task-relevant summary of the subgraph connected to the anchor drug.
Importantly, while both the DrugRel Agent and BioRel Agent aim to reason about the query molecule
in relation to other relevant entities in the KG for the specific task, they leverage distinct knowledge
sources and perform different roles. Specifically, the BioRel Agent focuses on summarizing the
network of relationships between drugs and other biological entities in the KG, contextualizing it with
respect to the specific task at hand. In contrast, the DrugRel Agent primarily draws on its internal
knowledge, triggered by the names of the related drug entities in the KG, and incorporates structural
similarity between them. In Section [3| we demonstrate how these agents complement each other
effectively, producing a synergistic effect when combined together.

2.2.3 Molecular Understanding Team

The Molecular Understanding (MU) Team compiles a report on the query molecule by leveraging
external annotations and integrating them with structural information and reports from other agents.

Molecule Annotations. Annotations from the external database are retrieved for the query molecule,
denoted as c,. If the Planning Team decided to use external annotation tools (i.e., omap = TRUE),
additional captions ¢, are generated with the external captioning tools as follows:

&4 = Captioning Tools(gq), ©)

and concatenated to the annotations retrieved from the database: ¢, = ¢,||¢,. External captioning
tools allow the system to easily harness recent advances in LLM-driven molecular understanding [50}
73], and can potentially include any tools, given that the output can be transformed into text.

Molecule Understanding (MU) Agent. The MU agent then analyzes the structure of the molecule,
combining it with annotations and reports generated by the KG Team and generating a comprehensive
report as follows:

omua = MU Agent(gq, Cq;, ODRA, OBRA> T)- (6)

2.2.4 Prediction Agent

Finally, the Prediction Agent performs the user-defined task by considering the reports from the
various agents, including the MU and KG teams, as follows:

Ay, = Task Agent(gq, 0MUA, ODRA; OBRA, L)- 7N

By integrating this evidence, the Prediction Agent can perform a comprehensive analysis of the query
molecule. Importantly, the output of the Prediction Agent can be flexibly adjusted based on the
specific task requirements. For instance, it can be a descriptive caption, a simple yes/no response for
binary classification, or an open-ended answer. Such behavior leverages the zero-shot capabilities of
LLMs [34]] and does not require additional fine-tuning. Therefore, a key advantage of CLADD is its
flexibility, which enhances scientist-Al interactions.

3 Experiments

We assess the effectiveness of CLADD by conducting a range of drug discovery applications spanning
different predictive tasks, including drug-target prediction (Section [3.1), property-specific molecular
captioning (Section [3.2), and drug biological activity prediction (Section [3.3).

Implementation Details. In all experiments, we utilize GPT-40 mini through the OpenAI API for
each agent. We use PrimeKG [12] as the KG, PubChem [32] as an annotation database, and MolT5
[L8] as an external captioning tool. Additional implementation details and agent templates can be
found in Appendix [Fland[H] respectively.
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Table 1: Performance in drug-target prediction  Table 2: Performance in molecular captioning
tasks (Precision @ 5). Bold and underline indi- tasks, mean AUROC with standard deviation
cate best and second-best language model-based  (in parentheses). Bold and underline indicate

methods. the best and second-best language model-based
(a) Overlap (b) No overlap methods.
Activate Inhibit Activate Inhibit BBBP Sider ClinTox BACE

GNNs (Fine-tune) GNNs
GraphMVP 1.76 1.03 1.67 0.73 GraphMVP 69.59 (129)  60.88 (0.41) 87.57 (3.26) 80.24 (2.92)
MoleculeSTM 1.66 0.89 1.48 0.65 MoleculeSTM 70.14(0.90)  58.69 (0.89) 92.19 (2.79)  79.24 (3.40)
General LLMs (Zero-shot) Only SMILES 70.95 (1.14)  60.80 (1.18)  91.62 (2.18) 74.21 (1.32)
GPT-40 mini 1.15 1.02 1.13 0.87 General LLMs
GPT-4o 0.62 0.79 0.68 0.65 GPT-40 mini 67.85(1.50) 58.18(1.55) 90.74 (1.91) 74.22 (1.95)
Domain LMs (Zero-shot)  N/A N/A N/A N/A GPT-40 66.43 (147)  60.41 (1.21)  88.13 (1.74)  67.82 (4.14)
Domain LMs (Fine-tune) Domain LMs
Galactica 125M 1.36 1.03 0.86 0.69 MolT5 69.77 (1.89)  57.20(0.98) 87.91 (1.25) 74.28 (4.00)
Galactica 1.3B 1.65 1.09 1.37 0.80 LlasMol 68.12 (1.48)  61.50 (1.66)  89.67 (0.57) 75.42 (2.98)
Galactica 6.7B 1.52 0.97 1.22 0.71 BioT5 69.68 (1.23)  64.65 (2.01) 92.80(2.92) 77.23 (1.95)
CLADD (Zero-Shot) 3.04 4.83 2.67 3.24 CLADD 72.28 (1.04) 66.42 (1.31) 93.80 (2.30) 77.74 (3.15)

3.1 Drug-Target Prediction Task

Accurately predicting a drug’s protein target is essential for understanding its mechanism of action
and optimizing its therapeutic efficacy while minimizing off-target effects |56} 6]. Here, we evaluate
the models’ ability to accurately identify which proteins a given molecule is most likely to activate or
inhibit in a set prediction setting.

Datasets. We use molecular targets present in the Drug Repurposing Hub [[15], DrugBank [67], and
STITCH v5.0 [S7], as preprocessed in Zheng et al. [79], including 13,688 molecules in total (details
are presented in Appendix [D).

Methods Compared. We evaluate two pre-trained GNNs, GraphM VP and MoleculeSTM, along with
two general-purpose LLMs—GPT-40 mini and GPT-40, and the domain-specific language model
Galactica [58] (details are presented in Appendix [E).

Evaluation Protocol. We assess the performance of LLMs in a zero-shot setting. Specifically, for
a given target molecule, we prompt the LLMs to generate the top 5 proteins that the molecule is
most likely to activate or inhibit, and we calculate the precision with respect to ground truth data. As
baseline GNNs cannot perform this task without training in a zero-shot setting, we fine-tune them in a
few-shot setting using 10% of the data. For domain-specific LMs, we also present fine-tuning results
on the specific task. To better assess generalization power, we separately report the performance on
the test set for molecules present/not present in the external databases (“Overlap”/“No Overlap”).

Experimental Results. Table 1] summarizes the results. We observe the following: 1) CLADD out-
performs all the baselines, with a higher likelihood of correctly identifying proteins activated/inhibited
by the input molecule. 2) Importantly, the superiority of CLADD is confirmed for molecules not
present in the caption database or knowledge graph (Table|[I] (b)), showcasing CLADD’s ability to
leverage external knowledge to generalize to novel molecules. 3) We observe that domain-specific
fine-tuned models, such as Galactica, GIMLET, and MolecularGPT, could not perform this task in a
zero-shot setting when prompted to do so, likely because this task is not included in their fine-tuning
instruction dataset. By specifically fine-tuning Galactica on the task, we were able to answer the
specific question, outperforming general-purpose LLMs in most experiments, but results were still
inferior to CLADD. This further highlights the flexibility of CLADD, which leverages the zero-shot
abilities of general-purpose LLMs in its architecture.

3.2 Property-Specific Molecular Captioning Task

Earlier studies on molecular captioning tasks have primarily focused on generating general descrip-
tions of molecules without targeting specific areas of interest, raising concerns about their practical
applicability in real-world drug discovery tasks. Indeed, the usefulness of a molecular description
is often task-dependent, and scientists may be interested in detailed explanations of specific charac-
teristics of a molecule rather than a general description [27,|19]]. Hence, in this paper, we introduce
property-specific molecular captioning, where the model is required to generate a description for a
given molecule customized to a particular task of interest.
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Datasets. We leverage four widely recognized molecular property prediction datasets from the
MoleculeNet benchmark [68]: BBBP, Sider, ClinTox, and BACE (further details in Appendix .

Methods Compared. We consider different baseline approaches. First, we compare recent molecular
captioning methods designed to generate general descriptions of molecules, including MolT5 [18]],
LlasMol [73]], and BioT5 [S0Q]. Furthermore, we assess general-purpose LLMs, namely GPT-40 mini
and GPT-4o. Finally, we consider standard molecular property prediction baselines for references,
including two GNNss pre-trained with different methodologies: GraphM VP [39]] and MoleculeSTM
[40]. We provide further details on the baseline models in Appendix [E}

Evaluation Protocol. Although property-specific captions are practical, no ground truth property-
specific captions exist for individual molecules, rendering traditional text generation evaluation
methods inapplicable. Thus, in line with recent works [69} [27, [19], we assess whether the gener-
ated captions can drive a classification model that categorizes molecules based on their properties.
Specifically, we pose this evaluation as a molecular property prediction problem, and fine-tune a
SciBERT model [7] on the generated caption concatenated to the SMILES representation to predict
the property of interest. The “Only SMILES" model utilizes only the SMILES string as input for the
SciBERT classifier. For baseline GNNs, each SMILES string is converted into a molecular graph.
For all the experiments, we use a scaffold splitting strategy to simulate realistic distribution shifts,
following previous work [40] (train/validation/test data split as 80/10/10%, with five independent
runs). This evaluation protocol is further illustrated in Appendix

Experimental Results. Table 2] summarizes the results. 1) While domain-specific models outperform
general-purpose LLMs, their performance remains suboptimal, occasionally falling behind the “Only
SMILES" approach. This means that the generated captions occasionally reduce model performance
compared to using only the SMILES representation of the molecule. This aligns with previous work
that found that general descriptors may lack property-specific relevance [27, [19]. 2) On the other
hand, CLADD-generated captions consistently outperform all the baseline captioners and successfully
improve over “Only SMILES" across all datasets. We attribute this improvement to the ability of
CLADD to draw on external biochemical knowledge to ground its generation and its task-specificity.
3) Moreover, CLADD consistently outperforms pre-trained GNN baselines, except on the BACE
dataset. Interestingly, this is also the only dataset for which the “Only SMILES” baseline falls short
compared to GNN models, thus highlighting the critical role of 2D topological and 3D geometric
information in this case. This paves the way for future research on injecting essential aspects of
molecules, such as topological and geometric information, into LLM understanding.

3.3 Biological Activity Prediction: Toxicity and Antibacterial Activity

Accurately predicting molecular bioactivity is a cornerstone of drug discovery, which is often hindered
by the existence of countless biological contexts and sparse experimental data. We therefore explore
the zero-shot characterization of biological activity for unseen compounds. To this goal, we focus on
drug toxicity |3l and antibacterial activity [46] prediction.

Datasets. For drug toxicity prediction, we use three benchmark datasets: hERG [65], DILI [71]],
and Skin [2]]. For antibacterial activity prediction, we use the dataset published in Eke et al. [20],
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hereafter referred to as MLSMR_Mtb. In addition to its relevance, we selected MLSMR_Mtb for its
recency, as it was published after GPT-4o training and in parallel to the preparation of this study,
therefore avoiding the risk of pre-training data leakage. Dataset details are presented in Appendix

Methods Compared. We compare five domain-specific LLMs—Galactica 125M, Galactica 1.3B,
Galactica 6.7B [58]], LlasMol [73], and GIMLET [77], alongside two general-purpose LLMs, GPT-40
and GPT-40 mini (details in Appendix [E)).

Evaluation Protocol. Evaluation follows a zero-shot QA setting. The input includes a SMILES-
based structural description of the molecule and the task description. Using the text-formatted output
generated by each model, we compute the Macro-F1 score [49] as the evaluation metric.

Experimental Results. Table |3| summarizes the results. 1) Both on toxicity datasets (average
score) and the recently published antibacterial activity dataset, CLADD outperforms all the baselines.
This highlights its ability to perform zero-shot predictions without domain-specific fine-tuning by
effectively incorporating external knowledge into general-purpose LLMs at inference time. 2) Notably,
for three datasets (hERG, Skin and MLSMR_Mtb), several baseline models often output the same
response, either “Yes" or “No", indicating their inability to perform the given task. In contrast,
CLADD did not suffer from this limitation.

3.4 Ablation studies

Model Components Ablations. In Figure 2] (a), we report the results of ablations on the components
of CLADD. We observe: 1) The knowledge graph and the molecular annotations are important and
complementary data sources, as shown by the lower performance when only Molecular Understanding
or Knowledge Graph team is available (“Only MU”, “Only KG”). 2) Dynamically selecting the
relevant data sources with Planning Team improves performance, leveraging their complementarity,
as suggested by the lower performance of the “No Planning”. 3) The distributed architecture of the
multi-agent system is a more effective way of processing the retrieved information, as highlighted by
the lower performance of “Only Planning” where all the relevant data sources are directly included in
the prompt of a single Prediction Agent, bypassing intermediate reports. Additional ablation studies
are presented in Appendix[G.I] Furthermore, we confirmed results across different LLMs, including
open-source models, showcasing the LLM-agnostic nature of CLADD in Appendix [G.2}

External Knowledge Ablations. To further assess the impact of external knowledge on model
performance, we evaluate the model after progressively pruning the available databases and present
our results in Figure [2| (b). We observe the following: 1) Model performance depends on external
knowledge size, validating the key role of the external knowledge to the framework. 2) Interestingly,
we do not observe any performance plateau, indicating that further expanding the external knowledge
could provide additional performance improvements. 3) From the bar plots, i.e., “No CT (No
Captioning Tool)" and “Use KG (Call Knowledge Graph Team)", we observe that as the amount
of external knowledge grows, the planning team increasingly depends on it. This indicates that
CLADD actively leverages external knowledge more effectively during the decision-making process
when such knowledge is more abundant. A more detailed analysis of how external knowledge is
utilized and its impact on model performance is provided in Appendix [G.3]

4 Conclusion and Limitations

In this work, we introduced CLADD, a RAG-enhanced multi-agent framework for zero-shot molecular
question-answering that can support various drug discovery tasks. We showcased its flexibility and
effectiveness across multiple real-world tasks, outperforming both general-purpose and domain-
specific fine-tuned LLMs. Our analyses highlighted the complementarity of external knowledge
sources, internal LLM reasoning, and multi-agent orchestration. CLADD’s chain of messages
also provides insight into its decision-making process, fostering more interpretable scientist-Al
interactions. While we focused on open-ended, set-based, and classification predictions, a limitation
is the lack of focus on regression-based tasks, which would rely on the LLM’s ability to interpret assay
details and numerical answers. Another limitation is the lack of uncertainty intervals, which could
be tackled through recent orthogonal work. Beyond serving as a standalone tool, CLADD can also
have a broader impact as a component of more complex agentic workflows, for example, combining
computational and experimental systems [S9]], which will be the subject of future work.
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This is an appendix for the paper RAG-Enhanced Collaborative LLM Agents for Drug Discovery.

A Related Work

LLMs for Molecules. Leveraging the extensive body of literature and string-based molecular
representations such as SMILES, language models (LMs) have been successfully applied to molecular
sciences. Inspired by the masked language modeling approach used in BERT training [17], KV-PLM
[74] introduces a method to train LMs by reconstructing masked SMILES and textual data. Similarly,
MolTS5 [[18]] adopts the “replace corrupted spans" objective [52] for pre-training on both SMILES
strings and textual data, followed by fine-tuning for downstream tasks such as molecule captioning
and generation. Building on this foundation, Pei et al. [50] and Christofidellis et al. [14] extend
MolT5 with additional pre-training tasks, including protein FASTA reconstruction and chemical
reaction prediction. Furthermore, GIMLET [77], Mol-Instructions [22], and MolecularGPT [42]
adopt instruction tuning [76]] to improve generalization across a wide range of molecular tasks. While
these approaches demonstrate enhanced versatility, they still rely on expensive fine-tuning processes
to enable molecule-specific tasks or to incorporate new data.

LLM Agents for Science. An LLM agent is a system that leverages LLMs to interact with users or
other systems, perform tasks, and make decisions autonomously [63]. Recently, LLM agents have
attracted significant interest in scientific applications and biomedical discovery [23]], with applications
including literature search [35]], experiment design [S5]], and hypothesis generation [64], among
others. In particular, agents focusing on drug discovery applications have emerged. Systems like
ChemCrow [10], CACTUS [435]], and Coscientist [9] focus on automating cheminformatics tasks
and experiments, streamlining computational and experimental pipelines. Other works leverage
agent-based orchestration of tools and data to accelerate specific aspects of scientific workflows,
such as search [48]] or design [26]. In contrast to existing works, we investigate an agent-based
framework that can effectively incorporate external knowledge to improve open-ended and zero-shot
molecular QA. This could be used either independently or as part of a larger system for automated
drug discovery [59].

Multi-Agent Collaborations for Drug Discovery. Only a limited number of studies have explored
multi-agent frameworks in the context of drug discovery. DrugAgent [29] introduces a multi-
agent framework integrating multiple external data sources, but is limited to predicting drug-target
interaction scores. Another study with the same name employs an agentic framework for automating
machine learning programming for drug discovery tasks [41]]. In contrast, our work seeks to tackle a
diverse array of drug discovery tasks, grounding the agent capabilities in external knowledge.

LLMs with Knowledge Graphs. While large language models (LLMs) have been successfully
adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,
LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a
bottleneck for scientific applications, and are still persistent after fine-tuning [25]]. A promising
approach to mitigate these issues is the integration of external knowledge sources, such as knowledge
graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3]] proposes a
method where relevant triplets are retrieved from KGs based on the input query. These triplets are
then verbalized and provided as additional input to the LLM, enhancing its factual grounding and
accuracy. KG-Rank [72]] focuses on medical question-answering, leveraging a medical knowledge
graph to match terms in the question and expand them. DALK [37] leverages an LLM to construct
an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of
LLM-generated responses. Although these methods retrieve entities from KGs that are related to
those in the query, the virtually infinite number of potential molecules of interest in drug discovery,
combined with the limited domain expertise of general-purpose LLMs, makes it challenging to
directly apply existing techniques to molecular question-answering.

B Additional Related Works

LLMs with Knowledge Graphs. While large language models (LLMs) have been successfully
adapted to numerous domains, they have faced criticism for their lack of factual accuracy. Specifically,
LLMs often struggle to recall reliable facts and are prone to hallucinations [30], which can be a
bottleneck for scientific applications, and are still persistent after fine-tuning [25[]. A promising
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approach to mitigate these issues is the integration of external knowledge sources, such as knowledge
graphs (KGs), into LLMs during the generation process. For instance, Baek et al. [3]] proposes a
method where relevant triplets are retrieved from KGs based on the input query. These triplets are
then verbalized and provided as additional input to the LLM, enhancing its factual grounding and
accuracy. KG-Rank [72]] focuses on medical question-answering, leveraging a medical knowledge
graph to match terms in the question and expand them. DALK [37]] leverages an LLM to construct
an Alzheimer’s disease-specific KG, which is then used to enhance the accuracy and relevance of
LLM-generated responses. Although these methods retrieve entities from KGs that are related to
those in the query, the virtually infinite number of potential molecules of interest in drug discovery,
combined with the limited domain expertise of general-purpose LLMs, makes it challenging to
directly apply existing techniques to molecular question-answering.

C Preliminaries

Tanimoto Similarity. The Tanimoto similarity is a widely accepted criterion for calculating the
similarity between two molecules based on their molecular fingerprint [4], which are the binary
sequences that denote the presence or absence of specific substructures [54]. Given two molecules g;
and g; with fingerprints £p; and £p;, the Tanimoto similarity s; ; is computed as follows:

_ |[fp; N fp,|
lfp;| + ‘ij‘ —lfp; N ij‘

Intuitively, the Tanimoto similarity is the intersection-over-union of the sets of molecular substructures
of both molecules.

®

Si,j

D Datasets

In this section, we provide further details on the datasets we used in Section[3] We provide a summary
of data statistics in Table Fl

Table 4: Data statistics.

hERG DILI Skin MLSMR_Mtb BBBP Sider ClinTox BACE

ChemPert
Overlap  No Overlap

# Molecules 648 475 404 200 2039 1427 1477 1513 7917 5771
# Tasks 1 1 1 1 1 27 2 1 2 2

D.1 Drug Biological Activity Prediction Task

For the drug biological activity prediction task, we use four datasets: hERG, DILI, Skin, and
MLSMR_Mtb.

¢ The Human ether-a-go-go related gene (hERG) [65] plays a critical role in regulating the heart’s
rhythm. Thus, accurately predicting hERG liability is essential in drug discovery. In this task, we
assess the model’s ability to predict whether a drug blocks hERG.

* Drug-induced liver injury (DILI) [71] is a severe liver condition caused by medications. In this
task, we evaluate the model’s capability to predict whether a drug is likely to cause liver injury.

* Repeated exposure to a chemical agent can trigger an immune response in inherently susceptible
individuals, resulting in SKin [2] sensitization. In this task, we evaluate the model’s ability to
predict whether the drug induces a skin reaction.

e The Molecular Libraries Small Molecule Repository - Mycobacterium tuberculosis dataset
(MLSMR_Mtb) has been released as part of Eke et al. [20]. Antimycobacterial activity against
M. tuberculosis was measured in a dose-response assay and quantified as AUC. Following the
original study, we used an AUC cutoff of 25 for classification. Out of the 935 molecules tested, we
randomly selected 200 compounds with a balanced positive/negative ratio. For this task, we evaluate
the model’s ability to predict antimycobacterial activity. In addition to its relevance, we selected
this dataset for its recency, as it was published after GPT-40 and in parallel to the preparation
of this study, ensuring no overlap with pre-training data and thus allowing benchmarking against
leakage risks. To the best of our knowledge, our work is the first study leveraging this dataset.
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D.2 Property-Specific Molecular Captioning Task

For the property-specific molecular captioning task, we use four datasets in MoleculeNet [68]: BBBP,
Sider, Clintox, BACE.

* The blood-brain barrier penetration (BBBP) dataset consists of compounds categorized by their
ability to penetrate the barrier, addressing a significant challenge in developing drugs targeting the
central nervous system.

* The side effect resource (Sider) dataset organizes the side effects of approved drugs into 27 distinct
organ system categories.

* The Clintox dataset includes two classification tasks: 1) predicting toxicity observed during clinical
trials, and 2) determining FDA approval status.

* The BACE dataset provides qualitative binding results for a set of inhibitors aimed at human
[3-secretase 1.

Evaluation Protocol. While previous works on molecular captioning generate general molecule
descriptions and evaluate them with standard NLP metrics like BLEU. However, because a molecule
can be described in multiple ways (some more relevant to certain tasks [27, [19]), we focus on
property-specific captioning. Here, the main challenge is the lack of ground-truth captions for each
property. Therefore, similar to previous work [19]], we use an evaluation protocol that checks how
well the generated captions aid in property prediction by fine-tuning a language model (SciBERT) on
them. Specifically, for a generated caption and the SMILES representation of the target molecule, we
concatenate them using a [CLS] token, forming SMILES [CLS] caption, and fine-tune a SCiBERT
[7] model for property prediction. Importantly, fine-tuning SciBERT is only part of the evaluation
protocol, as CLADD itself does not involve any fine-tuning. This process is illustrated in Figure

(a) Property specific caption generation from CLADD

including its potential blood-brain barrier permeability,
CC(=0)NCCC1=CNc2clcc(OC)cc2

% Provide a detailed description of the molecule, }

Scientist

The molecule's moderate molecular weight, balanced LogP,
and TPSA suggest it may have the potential to cross the 1 1
blood-brain barrier. However, the presence of the charged

chloride ion could affect its overall permeability. CLADD

(b) Caption Evaluation

Generated Caption ==p | SciBERT | ==» Evaluation

Figure 3: (a) After CLADD (or baseline models) generates a property-specific caption, (b) SciBERT
is used for evaluation. In other words, fine-tuning SciBERT is not part of CLADD; it is only used
for evaluation purposes.

D.3 Drug-Target Prediction Task

We rely on annotated molecular targets present in the Drug Repurposing Hub [15], DrugBank [67]],
and STITCH v5.0 [57]], as combined and preprocessed in /9. As we explained in Section [3| we
separately report the performance on the test set for molecules based on their information availability
in the external databases (“Overlap”/“No Overlap”). More specifically, for “No Overlap" cases, we
exclude the molecules in the following criteria:

* We exclude the molecules if they exist in the knowledge graph.

* However, we noticed that many molecules have uninformative annotations, as also discussed in
Section [F] Consequently, we decided to exclude molecules from the test set only if they have
sufficient annotations relevant to the task, as determined by GPT-40 mini.

After this process, 5771 molecules remained in the test set for the “No Overlap" scenario.
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E Baselines Setup

This section provides further details on the baselines we used in Section |3} For all baseline models,
we utilize the pre-trained checkpoints provided by the authors of the original papers.

Table 5: Links to baseline model checkpoints.
Model | URL

Galactica 125M | https://huggingface.co/facebook/galactica-125m
Galactica 1.3B | https://huggingface.co/facebook/galactica-1.3b
Galactica 6.7B | https://huggingface.co/facebook/galactica-6.7b
GIMLET https://huggingface.co/haitengzhao/gimlet

LlasMol https://huggingface.co/osunlp/LlaSMol-Mistral-7B
MolecularGPT | https://huggingface.co/YuyanLiu/MolecularGPT

* Galactica [58] is a large language model designed to store, integrate, and reason over scientific
knowledge. The authors demonstrate Galactica’s capabilities in simple molecule understanding
tasks, such as predicting [IUPAC names and performing binary classification for molecular property
prediction. We also fine-tune Galactica for the Drug-Target Prediction task described in Section 3]
using molecules and associated activated/inhibited proteins. For fine-tuning, we searched for the
optimal hyperparameters (learning rate of {1le — 3, 1e — 4, 1le — 5, 1e — 6} and epoch number of
{50,100, 150, 200}), reporting the best performance achieved.

* GIMLET [77] introduces a unified approach to leveraging language models for both graph and
text data. The authors aim to enhance the generalization ability of language models for molecular
property prediction through instruction tuning.

* LlaSMol [73] presents a large-scale, comprehensive, and high-quality dataset designed for in-
struction tuning of large language models. This dataset includes tasks such as name conversion,
molecule description, property prediction, and chemical reaction prediction, and it is used to
fine-tune different open-source LLMs.

F Implementation Details

In this section, we provide further details on the implementation of CLADD.

Software Configuration. Our model is implemented using Python 3.11, PyTorch 2.5.1, Torch-
Geometric 2.6.1, RDKit 2023.9.6, and LangGraph 0.2.59.

Computational Resources. For LLMs, we utilize the OpenAl API, thereby leveraging OpenAI’s
computational resources. All other computations, such as GNN retrievers, are performed on a 24GB
NVIDIA GeForce RTX 3090 GPU.

External Databases. In all experiments, we employ the PubChem database [32] as the annotation
database C and PrimeKG [12] as the biological knowledge graph G.

The PubChem database is one of the most extensive public molecular databases available. Pubchem
database consists of multiple data sources, including DrugBank, CTD, PharmGKB, and more
(https://pubchem.ncbi.nlm.nih.gov/sources/). The PubChem database used in this study
includes 299K unique molecules and 336K textual descriptions associated with them (that is, a single
molecule can have multiple captions sourced from different datasets associated with it). On average,
each molecule has 1.115 descriptions, ranging from a minimum of one to a maximum of 17, as
shown in Figure[d] (a). In this study, if a molecule had multiple captions, they were concatenated to
form a single caption. On the other hand, as shown in Figure[d] (b), most captions consist of fewer
than 20 words, underscoring the limited informativeness of human-generated captions. Even after
concatenating multiple captions for each molecule, the majority still contain fewer than 50 words.

PrimeKG is a widely used knowledge graph for biochemical research. The knowledge graph
contains 4,037,851 triplets and encompasses 10 entity types, including {anatomy, biological
processes, cellular components, diseases, drugs, effects/phenotypes,

exposures, genes/proteins, molecular functions, and pathways}. Additionally,
it includes 18 relationship types: {associated with, carrier, contraindication,
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Figure 5: Data analysis on PrimeKG knowledge
Figure 4: Data analysis on PubChem database. graph.

enzyme, expression absent, expression present, indication, interacts with,
linked to, off-label use, parent-child, phenotype absent, phenotype present,
ppi, side effect, synergistic interaction, target, and transporter}. The
number of triplets associated with each entity and relation type is shown in Figure [5] (a) and (b),
respectively.

F.1 KG Planner

As explained in section @ we utilize a pre-trained GNN (with 3D information) to retrieve
molecules highly related to the query molecule. In particular, the model has a GIN architecture [[70],
which is pre-trained with the GraphM VP [39] approach. The checkpoint of the model is available
athttps://huggingface.co/chao1224/MoleculeSTM/tree/main/pretrained_GraphMVP.

G Additional Experimental Results

In this section, we provide additional experimental results that can supplement our experimental
results in Section Bl

G.1 Additional Ablation Studies

In Table[6] we conduct a model analysis by removing one component of the model at a time for the
drug-target prediction task. We have the following observations: 1) By comparing “Only Expert
Annotation” and “Only Generated Caption”, we observe that relying solely on expert annotations
yields significantly better performance. This highlights the critical importance of human-generated
annotations over machine-generated captions. Still, their combination leads to the best overall
performance. 2) Among the three agents—DrugRel Agent, BioRel Agent, and MU Agent—we could
not determine a clear superiority in their relative importance, as it was task-dependent (Activation
or Inhibition). 3) Overall, we observe a decline in performance when any single component of
CLADD is removed, emphasizing the significance of each module.

We perform additional ablation studies in the property-specific molecule captioning task in Figure 6}
Similarly, we observe that including all components (i.e., CLADD) leads to the best performance
except for the BACE dataset. Our analysis showed that this is because, as illustrated in Figure
[T0} the BACE dataset contains minimal relevant information in both the annotation database and
the knowledge graph. Consequently, the model derives minimal benefit from external knowledge,
highlighting the critical role of having relevant external information to boost performance.

G.2 LLM-Agnostic Nature of CLADD

Due to the expensive API costs, we mainly report the results using GPT-40 mini in the main
manuscript to validate the proposed framework. In this section, we performed additional experiments
replacing it with different LLMs, including Llama3.3-70b and DeepSeek-V3. As shown in Table
the proposed framework (+ CLADD) consistently improves each individual LLM, showcasing its
LLM-agnostic advantage.
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Table 6: Additional ablation studies in drug-target pre-
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No MolAnn Planner < s I
- Only Expert Annotation 2.99 4.80 2.63 3.20 I
- Only Generated Caption 2.72 3.96 2.61 2.80 70 I
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No BioRel Agent 2.96 4.50 2.63 3.00 60- ClinTox BACE
No MU Agent 3.04 4.17 2.66 2.59 . . Datasets .
CLADD 304 483 267 324  Figure 6: Ablation studies in the property-

specific molecular captioning task.

Table 7: Performance of CLADD with each agent replaced by a different closed-source and open-
source LLM (drug-target prediction task).

Overlap No overlap
Activate Inhibit Activate Inhibit
GPT-40 mini 1.15 1.02 1.13 0.87
+ CLADD 3.04 4.83 2.67 3.24
Llama-3.3-70B 0.84 0.94 0.88 0.81
+ CLADD 3.13 6.40 2.73 4.14
DeepSeek-V3 1.91 1.46 1.90 1.11
+ CLADD 3.60 7.75 3.15 5.01

G.3 Additional External Knowledge Analysis

In Table[7] we analyze how the retrieval accuracy affects the model performance. To do so, we
investigated two settings: one where the anchor drug selection in the knowledge graph is done
randomly, and another where annotations are randomly sampled from the annotation database. As
expected, we observe that the performance of both these models is significantly lower compared to
the original model. We also observe that there is still a significant performance gap when compared
to GPT-40 mini. This is expected, as our model still includes a planning team that ensures that the
anchor drug and annotations are only used when they are relevant to the query molecule and task.

Moreover, we further investigate how the quality of retrieved knowledge affects the model perfor-
mance. Firstly, we analyzed how performance changes as a function of the length of the annotation
retrieved from the annotation database. In Figure Eka), “Zero" indicates that no annotation is avail-
able in the annotation database, while Q1, Q2, Q3, and Q4 represent the quartiles of the retrieved
annotation length. We highlight two interesting trends: (1) in general, performance increases with the
annotation length, which is in line with the intuition that longer annotations include more relevant
information, and (2) on average, “no annotation” leads to better results than the shortest annotations,
which could indicate that the shortest annotations are often not informative enough to boost perfor-
mance. However, for all groups except the shortest annotations, the additional information provides a
proportional improvement.

Secondly, we analyzed how performance changes as a function of the similarity between the query
molecule and the anchor molecule in the knowledge graph. In Figure [§] (b), Molecules with a
Tanimoto similarity of 1 are excluded from the evaluation. “High": Tanimoto similarity between
0.7~1.0, “Middle": Tanimoto similarity between 0.3~0.7, “Low": Tanimoto similarity between
0.0~0.3. Here, we found a very positive correlation, which is in line with the intuition that a higher
similarity provides more relevant contextual information.

In Figure 9] we analyze how external knowledge is used during the decision-making process for the
drug-target prediction task. We have the following observations: 1) As shown in Figures[9)a) and B{b),
the average length of human descriptions is considerably longer in the “Correct” case, and the number
of retrieved 2-hop paths is notably higher in the “Correct” case. This highlights the importance of
having external information that is both high quality and abundant. 2) On the other hand, although we
anticipated a higher proportion of 2-hop paths containing Gene/Protein entities in the “Correct" case,
no significant difference was observed between the “Correct” and “Incorrect” cases in Figures 0]c)
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Figure 8: Performance as a function of (a) the
length of the text retrieved from the annotation
database and (b) the Tanimoto similarity between
the anchor molecule and the knowledge graph.

s15  and[9(d). From these results, we argue that CLADD’s performance is not solely reliant on retrieving

g1 external information that is directly linked to the correct answer, given that external information can

817 be further processed and contextualized by the agents, integrating different sources of evidence and
internal knowledge.
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Figure 9: External knowledge analysis results. (a) The average length of retrieved human descriptions,
(b) the average number of retrieved 2-hop paths in the knowledge graph, and (c-d) the proportion of
entity types in 2-hop paths for correct and incorrect cases.

818

s19 In Figure we examine how the Planning Team determines the use of the captioning tool and
820 collaborates with the Knowledge Graph Team based on the datasets. We observed that, in most cases,
g21  the KG was used for more than 50% of the query molecules, with the BACE and Skin Reaction
g22 datasets as significant exceptions. Furthermore, we observed that the BACE and hERG datasets
823 lacked corresponding annotations for all query molecules.

21



100

[ NoCT

— [0 Use KG
)
wn
Q
=1
0
° 60 —
=
“—
° —
g 40
o]
[=4
g
o 20
a

01l

BBBP Sider ClinTox BACE ChemPert hERG DILI Skin Carcinogens
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G.4 Case Studies

Figure|l1|showcases how the agents in CLADD collaborate to identify “the top-5 protein targets a
query molecule is most likely to activate”. First, the BioRel Agent extracts from the knowledge graph
that the anchor drug, Naftopidil, is indicated for benign prostatic hyperplasia (BPH), implying the
activation of related pathways. The DrugRel Agent complements these findings by 1) linking BPH to
alpha-1 adrenergic receptors using its internal knowledge (which is confirmed in the literature [33]),
and 2) analyzing related drugs in the knowledge graph (e.g., Hydroxyzine, Clopamine), to infer
interaction with histamine and dopamine receptors. Finally, the MU agent integrates these findings
with the analysis of the molecular structure to provide a summarized report of the activated protein
targets. This example highlights the agents’ complementary strengths, which lead to interpretable
and reliable predictions.

BioRel . H The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, idil, which is indi d for benign ic hyperplasia (BPH) [...]
Agent , the target molecule might also il [ 1 ysrelated to this condition.
DrugRel [...] Naftopidil is known to act as an antagonist of alpha-1 adrenergic receptors. [...] The related drugs in the knowledge graph, such as Hydroxyzineand
Agent U 1 Clozapine, suggest potential interactions with histamine receptors and dopamine receptors, respectively.
The target molecule may activate or inhibit several protein targets [...]:
MU 2. **Alpha-1 Adrenergic Receptors**: Due to its structural similarity to Naftopidil [..].
A 'B' 3. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to histamine receptors [...].
gent 4. + Si iesto Clozapine indicate possible i i with i icp ys [...].
6. **BPH-related Proteins**: Given the link to pidil [...], it may i pathways iated with this condition.
Prediction d H
Agent Activation=[ADRA1A, HTR2A, DRD2, HDAC1, CYP3A4] Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR 28, DRD1, DRD2, DRD3, DRD4]

Figure 11: Example of collaboration between agents in CLADD (on the drug-target prediction task).
Red represents adrenergic receptors, yellow represents histamine receptors, and green represents
dopamine receptors. The full version is available in Appendix @

Moreover, in Figure[I2] we observe that all three agents consistently predict dopamine-related and
serotonin-related proteins as targets. Based on the reports, Prediction Agent prioritizes these proteins
over Cytochrome P450-related enzymes in the prediction. Thus, we argue that our system can
efficiently prioritize relevant information based on consensus, functioning similarly to a majority
voting system.

The target molecule shares a high Tanimoto similarity with Cariprazine, which is linked to several protein targets and enzymes. The relationshipsindica
BioRel te that Cariprazine, along with related drugs like Ol ine, Chlorpr ine, and Aripi targets ine receptors (DRD2, DRD3) and serotoni
)

Agent n receptors (HTR1A, HTR2A, HTR2B). Additionally, these drugs are metabolized by CYP2D6 and CYP3A4 enzymes. Given these connections, the potential
protein targets for the target molecule may include DRD2, DRD3, HTR1A, HTR2A, and HTR2B, aswell asthe CYP2D6 and CYP3A4 enzymes, which could i
fl its inetics and ic effects in conditions like bipolar disorder and schizophrenia.

The target molecule, CN(C)C(=0)NC1CCC(CCN 2CCN(c3cece(Cl)c3C1)CC2)CC1.Cl, exhibits a high Tanimoto similarity of 0.98 to Cariprazine, indicating a str
ong structural resemblance. Cariprazine is an atypical antipsychotic that primarily acts as a partial agonist at dopamine D2 and D3 receptors, and also
has affinity for serotonin receptors (5-HT1A and 5-HT2A). Given this similarity, the target molecule is likely to interact with similar protein targets, part

DrugRel . h icularly dopamine and serotonin r The of a pi ine moiety and a similar aromatic system suggests potential binding to these rec

Agent E eptors, which are citical in the treatment of psychiatric disorders. The lower similarities to related drugs like Aripiprazo le (0.35) and Olanzapine (0.17)
suggest that while the target may share some pharmacological properties, it could also exhibit unique interactions due to structural differences. There
fore, the target molecule may activate or inhibit dopamine D2/D3 and serotonin 5-HT1A/5-HT2A receptors, potentially leading to effects similarto tho
se of Cariprazine and its associated drugs. Further experimental validation would be necessary to confirm these predictions.

The target molecule, CN(C)C(=0)NC1CCC(CCN 2CCN(c3cecc(Cl)e3CI)CC2)CC1.Cl, islikely to activate or inhibit several protein targets based on its structura
Mu B| | similarity to Cariprazine. The high Tanimoto similarity (0.98) suggests it will interact withdopamine D2 and D3 receptors (DRD2, DRD3) and serotonin r
Agent eceptors (5-HT1A, 5-HT2A, 5-HT2B), which are critical in treating schizophrenia and bipolar disorder. Additionally, the molecule may be metabolized by
CYP2D6 and CYP3A4 y ol ing its inetics. Thus, the ial protein targets include DRD2, DRD3, HTR1A, HTR2A, HTR2B, CYP2D
6,and CYP3A4.
:I’geednl:'.lon Activation=[DRD2, DRD3, HTR1A, HTR2A, HTR2B] Ground Truth=[DRD3, DRD2, HTR1A]

Figure 12: Additional case studies. Red represents dopamine-related proteins, yellow represents
serotonin-related proteins, and green represents Cytochrome P450-related enzymes.
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The target molecule shares a Tanimoto similarity of 0.411 with the anchor drug, idil, which i for benign ic hyperplasia (BPH). Th

e relationships indicate that several drugs, including Hydroxyzine, Caffeine, and Clozapine, contraindicate BPH while also in teracting with the enzyme CY
P3A4, which is crucial for drug metabolism. Given these connections, the target molecule may potentially inhibit or activate proteins related to CYP3A4,

affecting the metabolism of drugs that interact with this enzyme. Additionally, since Naftopidil is linked to BPH, the target molecule might also influence
pathways related to this condition, possibly through interactions with proteins involved in the signaling or pathology of BPH. Thus, potential protein tar

gets indude CYP3A4 and proteins associated with BPH-related pathways.

The target molecule COclcecccINICCN (CCCCN C(=0)c2cec3ccecc3c2)CCl showsa Tanimoto similarity of 0.4117 with Naftopidil, indicating a moderate str
uctural resemblance. Naftopidil is known to act as an antagonist of alpha-1 adrenergic receptors, which are involved in vasodilation and blood pressure

Given this similarity, the target molecule may also interact with adrenergic receptors or related pathways. The related drugs in the knowled
gegraph, such as Hydroxyzine and Clozapine, suggest i with hi ine receptors and dopamine receptors, respectively. The target
molecule's structural features, including the aromatic rings and nitrog ini may facili binding to these receptors. Additionally
, the presence of a carbonyl group (C(=0)) in the target molecule could enhance its ability to form hydrogen bonds, potentially increasing affinity for var
ious protein targets. Overall, the target molecule may activate or inhibit adrenergic, histaminergic, oerathways, warranting further inves
tigation into its pharmacological profile.

The target molecule COclceccc1NICCN (CCCCN C(=0)c2cec3ccecc3¢2)CC1 may activate or inhibit several protein targets based on itsstructure and there
portsfrom the Tanimoto and Summary Agents.

1. **Histone Deacetylase (HDAC)**: As an identified HDAC inhibitor, it may modulate gene expression and influence cancer patiways.

2. **Alpha-1 Adrenergic Receptors**: Due to itsstructural similarity to Naftopidil, it may interact with these receptors, affecting vasodilation and blood
pressure.

3. **Histamine Receptors**: The presence of aromatic rings suggests potential binding to hi: iner i ing allergic

4. “ﬁ‘ imilarities to Clozapine indicate possible il ions with i i relevant in iatric di

5. **CYP3A4**: The molecule may affect drug metabolism via interactions with this enzyme, i ing the phar inetics of ini drugs.

6. **BPH-related Proteins**: Given the link to Naftopidil and benign prostatic ia, it mayi p: y: i with this diti
Activation=[ADRA1A, HTR2A, BRD2, HDAC1, CYP3A4] Ground Truth=[ADRA1A, ADRA1D, ADRA2A, HTR1A, HTR 28, BRD1)DRD2)DRD3) DRDA]

Figure 13: Full version of Figure
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se0 H Agent Templates

s+1 In this section, we provide the templates for each agent used in Section[2} We follow the previous
s42 work for designing the system prompt [38]].

Table 8: Prompts for Molecule Annotation Planner (Section 2.2.1)).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.
Your task is to determine whether the provided description is enough for analyzing
the structure of the molecule.

Are you ready?
Description: {Retrieved Human Description}
You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 9: Prompts for Knowledge Graph Planner (Section [2.2.1).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to decide whether to utilize the knowledge graph structure by evaluating the structural
similarity between the target molecule and the anchor drug within the knowledge graph.

If the target molecule and the anchor drug show high similarity, the knowledge graph should be
leveraged to extract relevant information.

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug
{SMILES} ({Drug Name})is {Tanimoto Similarity}.

You should answer in the following format:

Answer = YES or NO
REASON = YOUR REASON HERE

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 10: Prompts for Biology Relation Agent (Section [2.2.2)).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} by analyzing the relationships between the anchor drug,
which shares tanimoto similarity of {Tanimoto Similarity} with the target molecule,

and the most closely related drugs in the knowledge graph.

You should explain the reasoning based on the intermediate nodes between the
related drugs and the anchor drug, as well as the types of relationships they have.

The two-hop relationships between the drugs will be provided in the following format:
(Drug A, relation, Entity, relation, Drug B), where the entity can be one of the following
three types of entities: (gene/protein, effect/phenotype, disease)

Are you ready?

Target molecule: {SMILES}

Here are the two-hop relationships:
{Two-hop Paths}

DO NOT ANSWER IN THE PROVIDED FORMAT.
DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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Table 11: Prompts for Drug Relation Agent (Section |2.2.2|D.

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to {Task Description} by analyzing its structural similarity to anchor drugs
and related drugs, and provide an explanation grounded in its resemblance to these other drugs.

Are you ready?

The Tanimoto similarity between the target molecule {SMILES} and the anchor drug {SMILES}
({Drug Name} is {Tanimoto Similarity}.

The anchor drug {Drug Name} is highly associated with the following molecules
in the knowledge graph: {Reference Drugs}.

The Tanimoto similarities between the target molecule {SMILES} and the related drugs
in the knowledge graph are {Tanimoto Similarity}.

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 12: Prompts for Molecule Understanding Agent (Section |2.2.3|).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} by using the SMILES representation
and description of a molecule, and explain the reasoning based on its description.

You can also consider the report from other agents involved in drug discovery:
- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Are you ready?
SMILES: {SMILES}
Description: {Caption}

Below is the report from other agents.
Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

DO NOT WRITE MORE THAN 300 TOKENS.
THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 13: Prompts for Prediction Agent (Section |2.2.4|).

Prompt: You are now working as an excellent expert in chemistry and drug discovery.

Your task is to predict {Task Description} {SMILES}.

Your reasoning should be based on reports from various agents involved in drug discovery:

- Molecule Understanding Agent: Focuses on analyzing the structure of the target molecule.

- Drug Relation Agent: Evaluates the structural similarity between the target molecule and related molecules.
- Biology Relation Agent: Examines the biological relationships among the related molecules.

Below is the report from each agent.

Molecule Understanding Agent:
{Report from Molecule Understanding Agent}

Drug Relation Agent:
{Report from Drug Relation Agent}

Biology Relation Agent:
{Report from Biology Relation Agent}

Based on the reports, {Task Description and Answering Format}

THERE SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.
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