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Abstract
Optimization on sparse graphs underlies many scientific challenges, such as heat
diffusion in solids and synchronization of nonlinear oscillators. Conventional
methods often suffer from slow convergence, especially in complex, random
graph structures typical of glassy systems. We introduce a novel approach using
Graph Neural Networks (GNN) to reparametrize the state of each node as a
network output, transforming the optimization variables into the GNN weights
and high-dimensional node embeddings. This reparametrization effectively
preconditions the optimization landscape, leveraging the approximate Hessian
to accelerate convergence—akin to quasi-Newton methods. Our experiments
demonstrate significant speed enhancements in solving the heat equation with
boundary conditions on 2D and 3D graphs and in achieving synchronization
in the Kuramoto model. Our work both provides a theoretical analysis for the
observed performance gains and also a framework for improving optimization
techniques in graph-based problems.

1 Introduction
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Figure 1: Original (a) vs Neural Reparametrization using GNN (b). In problems on sparse graphs,
using the Hessian inside the GNN implements a quasi-Newton method and accelerates optimization.

Dynamical processes on graphs are ubiquitous in real-world, such as traffic flow on road networks,
epidemic spreading on mobility networks, and heat diffusion in material. They also frequently appear
in machine learning applications including in fluid simulations Ummenhofer et al. (2019); Pfaff et al.
(2020), topological data analysis Carriere et al. (2021); Birdal et al. (2021), and solving differential
equations Zobeiry and Humfeld (2021); He and Pathak (2020); Schnell et al. (2021). Many of
these challenges can be formulated as optimization problems on graphs, which are frequently highly
non-convex. Gradient-based methods are often used for numerical optimization, but they also suffer
from slow convergence on large graphs Chen et al. (2018).

In this paper, we propose a novel neural reparametrization which can significantly accelerate
optimization on sparse graphs. Our key idea is to reparametrize the optimization variables (state of
the nodes) as the output of a graph neural network (GNN) during optimization. Instead of optimizing
the original variables of the problem, we optimize a latent embedding for each node and the weights of
the GNN. We demonstrate that our neural reparametrization utilizes the approximate Hessian, making
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our approach akin to a quasi-Newton method, resulting in significant speedup. This is particularly
advantageous for large, sparse graphs, where GNN reparametrization can be implemented efficiently.
We also find comparable speedup using a node-wise neural network without the graph (i.e. using
an empty graph in the GNN reparametrization). We demonstrate that for solving heat diffusion on
graphs and synchronization of nonlinear oscillators, our method leads to significant speed-up (2-50×
in our experiments).

Since our GNN reparametrization effectively uses the approximate Hessian, it is fair to compare it
with other efficient second-order (quasi-Newton) methods. However, existing second-order methods
such as KFAC (Martens and Grosse, 2015) and Shampoo (Gupta et al., 2018; Anil et al., 2020) are
tailored for deep neural networks. The problems we consider only consist of an input state vector
and a loss function (i.e. shallow network). Hence, Shampoo and K-FAC are not expected to be very
effective for these sparse graph optimization problems. In our experiments, we compared our model
against Shampoo as one of the baselines but did not observe Shampoo to yield speed-up comparable
to our neural reparametrization approach.

In summary, we show that

1. In optimization problems on sparse graphs, neural reparametrization can yield significant
reduction in convergence time.

2. We show the effectiveness of this method on two scientifically relevant problems: heat diffusion,
and synchronization. We observe over an order of magnitude speed-up in graphs of various
sizes.

3. We show that in early optimization steps, a GNN reparametrization uses an approximate Hessian,
in a way similar to quasi-Newton methods.

2 Related Work
Graph Neural Networks. Our method demonstrates a novel and unique perspective for GNN. The
majority of literature uses GNNs to learn representations from graph data to make predictions, see
surveys and the references in Bronstein et al. (2017); Zhang et al. (2018); Wu et al. (2019); Goyal
and Ferrara (2018). Recently, (Bapst et al., 2020) showed the power of GNN in predicting long-time
behavior of glassy systems, which are notoriously slow and difficult to simulate. Additionally, (Fu
et al., 2022) showed that GNN-based models can help speedup simulation of molecular dynamics
problems by predicting large time steps ahead. However, we use GNNs to modify the learning
dynamics of sparse graph optimization problems. We discover that reparametrizing optimization
problems leads to a significant speedup in convergence. Indeed, we show analytically that a GNN
with a certain aggregation rule achieves the same optimal adaptive learning rate as in (Duchi et al.,
2011). Thanks to the sparsity of the graph, we can obtain an efficient implementation of the optimizer
that mimics the behavior of quasi-Newton methods.

Neural Reparametrization. Reparameterizing an optimization problem can reshape the landscape
geometry, and change the learning dynamics, hence speeding-up convergence. In linear systems,
preconditioning Axelsson (1996); Saad and Van Der Vorst (2000) reparameterizes the problem
by multiplying a fixed symmetric positive-definite preconditioner matrix to the original problem.
Groeneveld (1994) reparameterizes the covariance matrix to allow the use a faster Quasi-newton
algorithm in maximum likelihood estimation. Recently, an implicit acceleration has been documented
in over-parametrized linear neural networks and analyzed in Arora et al. (2018); Tarmoun et al. (2021).
Specifically, Arora et al. (2018) shows that reparametrizing with deep linear networks imposes a
preconditioning scheme on gradient descent. Other works (Sosnovik and Oseledets, 2019; Hoyer et al.,
2019; Both et al., 2023) have demonstrated that reparametrizing with convolutional neural networks
and GNNs can speed-up structure optimization problems (e.g. designing a bridge) and network
visualization. However, the theoretical foundation for the improvement is not well understood. To our
knowledge, the use of GNNs for reparametrization and acceleration of general graph optimization
problems has not been systematically studied.

PDE Solving. Our work can also be viewed as finding the steady-state solution of non-linear
discretized partial differential equations (PDEs). Traditional finite difference or finite element
methods Forsythe and Wasow (1960); Zienkiewicz et al. (2005) for solving PDEs are computationally
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challenging. Several recent works use deep learning to solve PDEs in a supervised fashion. For
example, physics-informed neural network (PINN) Raissi et al. (2019); Greenfeld et al. (2019); Bar
and Sochen (2019) parameterize the solution of a PDE with neural networks. Their neural networks
take as input the physical domain. Thus, their solution is independent of the mesh but is specific to
each parameterization. Neural operators Lu et al. (2021); Li et al. (2020a,b) alleviate this limitation
by learning in the space of infinite dimensional functions. However, both class of methods require
data from the numerical solver as supervision, whereas our method is completely unsupervised. We
solve the PDEs by directly minimizing the energy function.

Combinatorial optimization. The intersection of Graph Neural Networks (GNNs) and combi-
natorial optimization has emerged as a transformative approach to solving complex graph-based
problems. Several studies have contributed to this field. For example, Khalil et al. (2017) laid the
foundation by combining GNNs with reinforcement learning to tackle NP-hard problems. Kool et al.
(2018) further advanced this work by incorporating attention mechanisms for the Traveling Salesman
Problem. The practical impact of these theoretical developments was highlighted by Mirhoseini et al.
(2017), who demonstrated significant performance improvements in chip placement optimization over
traditional methods. Additionally, Xu et al. (2019) provided key theoretical insights into the reasoning
capabilities of GNNs, formally establishing their computational boundaries. Building on these efforts,
Cappart et al. (2023) conducted a comprehensive analysis that unified existing approaches. Their
work demonstrated how GNNs can effectively learn and reason about combinatorial optimization
problems while preserving problem-specific constraints. This represents a significant step toward
developing more efficient and adaptable solutions for complex graph optimization challenges.

3 Graph Optimization
Problem Structure. Assume we have a graph with n nodes. The edge data is captured in an
adjacency matrix A ∈ Rn×n. We assume each node i has a state (feature) vector wi ∈ Rd. The
optimization problems we consider are tasked with finding the set of node states w ∈ Rn×d that
minimize the following energy function:

L(w) =
∑
ij

Aijf(∥wi −wj∥2) + g(w). (1)

where f and g are smooth functions.

The first term represents “diffusion”, where neighboring nodes diffuse to each other. The diffusion
term explicitly depends the graph structure via Aij . The second term may denote any global, graph
independent interaction between the nodes or with the environment, e.g. heat bath, external magnetic
field, or all-to-all interactions. Since ∥wi −wj∥ = ∥wj −wi∥, only the symmetric part of the A
contributes to equation 1 and so we can assume Aij = Aji (i.e. undirected graph). When f(x) ≈ x,
the first term in equation 1 describes a diffusion process on a graph:

L(w) ≈
∑
ij

Aij∥wi −wj∥2 + g(w)

= Tr
[
wTLw

]
+ g(w) (2)

where L = D −A is the graph Laplacian, Dij =
∑

k Aikδij the diagonal degree matrix and δij is
the Kronecker delta. Problems described by equation 1 include reaction-diffusion dynamics Turing
(1990). Next, we consider two examples: heat diffusion processes and the Kuramoto oscillators,
which can be highly nonlinear synchronization problems.

3.1 Heat Diffusion

The heat equation describes how heat diffuses in a medium Incropera et al. (1996); Du and Zaki
(2021); Zhao et al. (2021) with broad applications in fluid mechanics, atmospheric and climate
science. It is given by

∂tw(x, t) = −ε∇2w(x, t) + Fbath(w) (3)

where w(x, t) represents the temperature at point x at time t, and ε is the heat diffusion constant.
Fbath can be a set of constraints from being connected to a heat bath (source or sink of thermal
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Figure 2: Optimized heat distribution on the Stanford bunny, Stochastic Block Model with 10 blocks
(SBM 10), 3D lattice and Random Geometric Graphs (RGG).

energy). On a graph, w(x, t) ∈ R+ is discretized and replaced by wi(t), with node i representing
the position, and the Laplacian operator ∇2 becomes the graph Laplacian L = D − A. The heat
diffusion in equation 3 on graphs becomes dw/dt = −εLw + Fbath(w). The energy function of
the heat diffusion has the form

LHE(w) =
1

2
wTLw − VBath

=
1

2

∑
ij

Aij∥wi −wj∥2 + Vbath (4)

where Fbath = −∇Vbath. For instance, if a set of nodes, denoted as Hot, are attached to a source
that keeps them at temperature Thot and some others, denoted as Cold to a cold source at temperature
Tcold, the regularizer can have the form

Vbath = λ
∑

i∈Hot

∥wi − Thot∥4 + λ
∑

i∈Cold

∥wi − Tcold∥4 (5)

We are interested in the long-term distribution of heat w(t → ∞), which can be obtained by
performing gradient descent (GD) on equation 4. However, finding w(t → ∞) on large meshes,
lattices or amorphous, glassy systems, or systems with bottlenecks (e.g. graph with multiple clusters
with bottlenecks between them) can be prohibitively slow Vincent et al. (1997); Rocha et al. (2011).
We show that GNN reparametrization can significantly accelerate convergence of GD and finding the
steady state solutions w(t→∞).

3.2 Kuramoto Model and Synchronization

Network synchronization (Pikovsky et al., 2003) optimizes a network of coupled dynamical systems
until they reach at the same frequency, known as the synchronization phenomena. These problems
have a profound impact on engineering, physics, and machine learning Schnell et al. (2021).

An important model for studying the synchronization phenomena is the Kuramoto model (Kuramoto,
1975, 1984). It has had a profound impact on engineering, physics, machine learning Schnell et al.

Initial Final

Training

Synchronization of Kuramoto Oscillators (XY Model)

Figure 3: Illustration of Kuramoto oscillators. Each node has a phase angle, represented by an
arrow. As the energy is minimized, the phase angles at nodes connected to each other start aligning
(synchronization).
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input :Graph A, energy function L(w), w ∈ Rn×d, and tMAX .
output :w = argminwL(w)
Initialize random latent states z ∈ Rn×h;
Construct GNN(A, θ) : Rn×h → Rn×d with learnable parameters θ ;
; /* GCN using A with residual connections. */
while not GNN_stopping_criterion(L(wt)) and t < tGNN do

wt ← GNN(A, θt)(zt);
; /* gradient descent on z and θ */
zt+1 ← zt − ε∇ztL(wt);
θt+1 ← θt − ε∇θtL(wt);

end
; /* Switch to GD for w without GNN */
wt ← GNNθt(zt); /* Get last output of GNN */
while not Stopping_criterion(L(wt)) and t < tMAX do

wt+1 ← wt − ε∇wt
L(wt);

end
Algorithm 1: Neural Reparametrization

(2021) and network synchronization problems (Pikovsky et al., 2003) in social systems. The loss
function for the Kuramoto model is defined as

LKM(w) = −
∑
i,j

Aji cos∆ij , ∆ij = wi −wj . (6)

which can be derived from the misalignement ∥xi − xj∥2 = 2 [1 + cos(wi −wj)] between unit 2D
vectors xi representing each oscillator. Figure 3 shows a sketch of this model. The oscillators are
nodes on a graph and the phases wi are shown as 2D vectors. The vectors are initially randomly
oriented. After synchronization (minimizing L), the vectors become aligned. Thus, the loss function
for the Kuramoto model is identical to the energy function of interacting 2D spins, also known as the
“XY model” in physics. Minimizing LKM using gradient-based methods follows the gradient flow
equation dwi/dt = −ε

∑
j Aij sin∆ij , which is highly nonlinear. We will show in experiments that

we observe considerably faster convergence in the Kuramoto model using our method compared to
SGD or other adaptive gradient methods.

The Hopf-Kuramoto Model. We further consider a more complex version of the Kuramoto model:
the Hopf-Kuramoto (HK) model Lauter et al. (2015). This model includes second-neighbor effects
via AijAjk terms. The HK model is interesting for assessing the performance of our method because
it includes phases and regimes in which conventional methods become extremely slow. The richness
of the phase space of the HK model can be seen in Fig. 7. This diversity of phases allows us to
showcase our method’s performance in different parameter regimes and in highly nonlinear scenarios.
The loss function for the HK model is

LHK =
∑
i,j

Aji [sin∆ij + s1 cos∆ij ]+
s2
2

∑
i,k,j

AijAjk

[
cos (∆ji+∆jk) + cos (∆ji−∆jk)

]
(7)

where s1, s2 are model constants determining the phases of the system. We observe significant
speed-up using our model in most phases of the HK model, as reported in the experiments.

4 Neural Reparametrization

Our optimization objective is to minimize the energy function of the form in equation 1. A common
approach is to use gradient descent (GD) wt ← wt−1 − ε∇L to minimize such a loss function.
However, GD can take many steps to converge on these graph problems. We describe a novel
optimization scheme that reparametrizes the optimization variables w with a GNN. We also show
that such a reparametrization has a similar effect to preconditioning.

5



Faster Optimization on Sparse Graphs via Neural Reparametrization

GNN reparametrization. We propose to reparametrize the optimization variables (state of the
nodes) w ∈ Rn×d as the output of a GNN, w(z, θ) or w(θ) for short (Algorithm 1). We first
randomly initialize a set of latent states z ∈ Rn×h as the high-dimensional embedding of the node
states. We construct a GNN whose outputs are the optimization variables w and θ are the weights.
After reparametrization, we change the problem from optimization w to optimizing θ. Figure 1
visualizes the pipeline of the proposed approach.

NoGraph reparametrization. We introduce a second neural reparametrization, which does not
use graph, denoted by “NoGraph”, which is similar to our GNN model, but the graph adjacency is set
to A = I identity. Next, we describe the details of the algorithm.

Architecture. We use graph convolutional networks (GCN) (Kipf and Welling, 2016) with residual
connections to build our GNN. We choose GCN because its propagation rule allows us to implement
polynomials of Hessian easily. The idea is that incorporating the Hessian can have an effect similar
to quasi-Newton method as we discuss in the next section. To minimize the computational overhead
from the GNN, we use only one or two layers of GCN. Our reparametrization begins with a high
dimensional embedding z ∈ Rn×h for n nodes. The first GCN layer takes z and returns σ(f(A)zθ),
where we use f(A) = As ≡ D−1/2AD−1/2 as the propagation (aggregation) rule. Here θ ∈ Rh×h1

are the learnable weights of the GCN and σ = LeakyReLU is the nonlinearity.

Early stage Hessian. The HessianH = ∂2L/∂w2 of equation 1 can be sparse when the graph is
sparse (see appendix 6.1 for details). Assume we initialize w ∼ N (0, 1/n) as a normal distribution.
Using moments of the normal distribution, we can show that the expected value for the components
of the HessianHij = ∂i∂jL of the loss in equation 1, at early stages is given by

E[Hij ] ≈∂i∂jg(0)− f ′(0)Lij +O (1/n) (8)

where L = D − A is the Laplacian. In the problems we consider we expect the diffusion term
Aijf(∆

2
ij) dominates over g(w) for random w, up to a constant factor, H ≈ L = D − A from

equation 8. To avoid divergences we can normalize by the degree H ≡ D−1/2HD−1/2 ≈ I −As.
Hence, since the propagation rule of our GNN is As, it effectively uses the Hessian at initialization.

Two-stage optimization. As we showed above, the GNN effectively uses the Hessian at early
stages. However, the Hessian changes during optimization, making the initial Hessian less relevant.
This, combined with the extra computation cost of the forward pass through GNN led us to adopt a
two-stage optimization. After optimizing the reparametrized w(θ) until the change in loss becomes
small, we remove the GNN reparametrization and switch to simple GD on w, initialized using the
final value of w(θ), to fine-tune. This hybrid approach works very well in our experiments and led to
significant speedup.

Per-step Time Complexity. Let w ∈ Rn×d with d≪ n and let the average degree of each node be
k =

∑
ij Aij/n. For a sparse graph we have k ≪ n. Assuming the leading term in the loss L(w)

is as in equation 2, the complexity of computing∇L(w) is at least O(dn2k), because of the matrix
product Lw. When we reparametrize to θ ∈ Rn×h with h≪ n, passign through each layer of GCN
has complexity O(hn2k). The complexity of GD on the reparametrized model with l GCN layers is
O((lh+ d)n2k). Thus, as long as lh is not too big, the reparametrization slows down each iteration
by a constant factor of ∼ 1 + lh/d. Next, we provide a theoretical argument for why our GNN
reparametrization should lead to speedup.

4.1 Theoretical Analysis

We now show that the GNN reparametrization has the effect of preconditioning. Moreover, we show
that in the graph problems we consider here, this preconditioner is a function of the approximate
Hessian of the loss. We also show that in certain cases, this reparametrization is equivalent to a
quasi-Newton methods.
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Reparametrization and to Preconditioning. We are performing GD on the parameters θ of the
GNN. Denoting δθ = θt − θt−1, the GD update rule given by

δθa = −
∑
b

ε̂ab
∂L
∂θb

= −
∑
b

ε̂ab
∑
i

∂L
∂wi

∂wi

∂θb
= − [ε̂J∇wL]a (9)

where J = ∂w/∂θ is the Jacobian. The consequence of equation 9 is that the w update rule changes
from δw = −ε∇L to

δw =
∂w

∂θ

T dθ

dt
= −JT ε̂J∇wL (10)

meaning that reparametrization is preconditioning the GD equation of w by the Jacobian of the
reparametrization neural network. As we argued above, when diffusion on the graph is a dominant
term in the loss, the Hessian is related to the graph structure as H ≈ I−As. Hence, the preconditioner
resulting from the GNN reparametrization is a function of the approximate Hessian. Next, we show
that, for a specific set of weights, the GNN preconditioner can approximateH−1 in the early stages
of the optimization, meaning it can act as a quasi-Newton method.

Relation to Quasi-Newton methods. Recall that our GNN consists of GCN layers performing
σ(Aszθ and H ≈ I − As. In equation 10, if the preconditioner JT εJ ≈ H−1, the GNN will
essentially have the same effect using Newton’s method. Assuming ε = 1, to get a quasi-Newton
method we’d need J ≈ H−1/2. Next, we note that using the binomial expansion H−1/2 ≈
I − 1

2As − 3
4A

2
s + . . . . This binomial expansion can be implemented using GCN layers. A linear

GCN layer with residual connections represents the polynomial F (z) =
∑

k f(A)kzVk (Dehmamy
et al., 2019). Hence, to get an order q approximation for J = H−1/2 we can use a q-layer GNN and
we can implement the O(A2

s) approximation J ≈H−1/2 using a two-layer GCN with pre-specified
weights. However, the Hessian of the loss is not constant and changes during GD. To account for small
changes in the Hessian during optimization, instead of fixing GCN weights to an approximation of
J ≈H−1/2, we the GCN weights be trainable. Finally, we need to address the issue of computational
complexity, discussed next.

Exploiting Sparsity. In the context of sparse graphs, our GNN reparametrization does not sig-
nificantly increase computational complexity, even when approximating the inverse Hessian,H−1.
While computingH−1 for a general n× n matrix is O(n3), the situation is more favorable for sparse
matrices. DespiteH being sparse, its inverse may become dense, potentially increasing the cost of
applying Newton’s method. However, computations within a q-layer GNN corresponds to evaluating
a polynomial of order q on the graph, where each layer’s complexity mirrors that of multiplying
sparse matrices. If A is dense, the complexity under naive multiplication would be O(qn3), though
in practice, algorithms like Strassen’s reduce this cost. For a sparse A with k nonzeros per row, the
complexity for A2 is O(nk2), and extending to Aq gives a pessimistic estimate of O(nkq). However,
the growth in nonzeros often saturates, keeping the complexity manageable. For a two-layer GNN
using such a sparse A, the complexity remains O(nk2), which is linear in n when k ≪ n. This sup-
ports our assertion that GNN reparametrization on sparse graphs introduces only a modest overhead,
scaling linearly with n. Next, we present experimental results validating the benefit of our algorithm.

5 Experiments
We showcase the acceleration of neural reparametrization on two graph optimization problems:
heat diffusion on a graph; and synchronization of oscillators. More experimental details, parameter
sweeps and extra experiments on persistent Homology can be found in the appendix. We use the
Adam Kingma and Ba (2014) optimizer and compare different reparametrization models. We
implemented all models with Pytorch. Figure 4a summarizes the speedups (wall clock time to run
original problem divided by time of the GNN model) we observed in all our experiments. We explain
the two problems used in the experiments next.

5.1 Heat Diffusion

We perform experiments for heat diffusion on different graphs, including the Stanford Bunny,
Stochastic Block Model (SBM), 2D and 3D lattices, and Random Geometric Graphs (RGG) Penrose
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a b

NoGraph

Figure 4: a) Summary of the speedup (wall-clock time for GD divided by our method) in
different experiments. In all experiments, GD and our method used the same optimizers (Adam).
The colors indicate the type of loss function, and the labels explain the graph structure. The
numbers in parentheses are the number of vertices. For solving the heat diffusion, we used GCN
reparametrization, while for the synchronization problem, we used GCN with residual connection.
b) The loss curves for solving heat diffusion on a 2D lattice (2500) by the different models. It shows
the advantages of reparametrization, and at the same time, it reveals the bottleneck of the Shampoo
optimizer that cannot converge in a comparable time with other models.

(2003); Karrer and Newman (2011). For all graphs, we pick 10% of nodes and connect them to a
hot source using the regularizer ∥wi − Thot∥4, and 10% to the cold source using ∥wi − Tcold∥4 in
equation 5. We also compare against different baselines, choosing a 2D lattice of size 50× 50 as the
graph, described in Fig. 4b.

Results for heat diffusion. Figure 4 summarizes the observed speedups. We find that on all these
graphs, our method can speed up finding the final w by over an order of magnitude. Figure 2 shows
the final temperature distribution in some examples of our experiments. SBM is model where the
probability of Aij = 1 is drawn from a block diagonal matrix. It represents a graphs with multiple
clusters (diagonal block in Aij) where nodes within a cluster are more likely to be connected to each
other than to other clusters (Fig. 2, SBM 10). RGG are graphs where the nodes are distributed in
space (2D or higher) and nodes are more likely to connect to nearby nodes. In our experimental setup,
we use the earlier introduced hybrid optimization model with automatic switching criteria between
the two optimization stages.

Figure 5 shows the results of more detailed experiments for the heat equation. All our experiments
are compared against the simple GD baseline, without reparametrization. We use the Adam optimizer
with a 0.02 learning rate for each simulation. Additionally, we compare both the speedup (wall-clock
time for the linear model divided by the neural model) as well as the the final loss (relative to
the linear baseline) on 2D lattice, SBM and RGG. Our neural reprameterization models consist of
multi-layer GCN (“GCN”: feedforward; “GCN Res”: including residual connections to last layer),
and a “NoGraph” model (also with and without residual connections), which is similar to our GCN
models, but the graph adjacency is set to A = I identity. We run these models with dimensions
16, 32, 64, and 128 (both for the initial latent vectors θ and the hidden widths). Finally, we also
compare with the Shampoo Gupta et al. (2018) preconditioner used on the baseline model. We also

a b c

Figure 5: Heat diffusion on graphs (N = 2500). Comparing the speedup (wall clock time) and the
final energy (ratio to baseline model energy) for the following graphs: a) 2D lattice, b) random graph,
and c) random geometric graph. a) Symbol border thickness shows model depth (i.e. no border is
single layer, thin is 2 layers and thick is 3 layers). The node size increases with latent dimensions:
16, 32, 64, and 128. The x-axis shows the speedup (ratio of wall-clock times; higher is better), and
the y-axis the loss relative to the baseline (lower is better). Another baseline, Runge Kutta (RK4), is
more than 10 times slower than simple GD with Adam and we do not show it in this plot. In b and c,
we only show the single-layer models.
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Figure 6: Kuramoto model on a 25 × 25 lattice (a) Loss over run time for different methods. (b)
Evolution of w over iterations. (c) Level of synchronization, measured by global order parameter ρ
over time. Neural reparametrization achieves the highest speedup.

run 4th order Runge-Kutta (RK4) as a baseline, which is the standard way coupled ODE such as heat
diffusion on graphs is solved.

We observe that GCN and GCN Res yields the highest speedup (more than 10 times faster than
baselines) with a slightly higher loss for 2D lattice. Also note, the baseline (i.e. simple GD with
Adam) is over 10 times faster than RK4. The node sizes in the Fig. 5 indicate the number of
latent dimensions. Single layer models are less computationally expensive and generally yield more
speedup. All reparametrization models outperform the baseline model in terms of energy and running
time. GCN Res and NoGraph Res achieve the best performances, outperforming each other by a
small margin depending on the graph topology. We do not show RK4 in the figure, because it is more
than ten times slower than the GD baseline.

Figure 4b shows the loss curves for the different models. It shows the advantages of parametrization,
and at the same time, it reveals the bottleneck of the Shampoo optimizer that cannot converge in a
comparable time with other models. Note that Shampoo and K-FAC are designed for deep networks.
Similarly, the shallow architecture of the baseline does not make the K-FAC preconditioner applicable
to this problem. All three reparametrization models (NoGraph, NoGraph Res, GCN, GCN Res)
outperform the baseline model in terms of energy and running time.

5.2 Synchronization

We also evaluate on the network synchronization problems. In all experiments, we use the same
lattice size 50× 50, with the same stopping criteria (10 patience steps and 10−10 loss error limit).
For early stages, we use a GCN with the aggregation function derived from the Hessian. For the
Kuramoto model, it is Hij(0) = ∂2L/∂wi∂wj |w→0 = Aij −

∑
k Aikδij = −Lij (L = D − A

being the Laplacian). We use neural reparametrization in the first 100 iterations and then switch to
the original optimization (referred to as baseline) afterwards. We experimented with three different
graph structures: square lattice, circle graph, and tree graph. The phases w are randomly initialized
between 0 and 2π from a uniform distribution. We let the models run until the loss converges (10
patience steps for early stopping, 10−15 loss fluctuation limit).

Results for the Kuramoto Model. Figure 6 shows the results of Kuramoto model on a square lattice.
Additional results on circle graph, and tree graph can be found in Appendix 7. Figure 6 (a) shows that
our method with one-layer GCN (GCN-1) and GCN with residual connection (RGCN-1) achieves
significant speedup. In particular, we found 3.6± .5 speed improvement for the lattice, 6.1± .1 for
the circle graph and 2.7± .3 for tree graphs. We also experimented with two layer (GCN/RGCN-2)
and three layer (GCN/RGCN-3) GCNs. As expected, the overhead of deeper GCN models slows
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 / 
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S2 /c
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2

0.5

0.01 4 10
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A23
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Figure 7: Hopf-Kuramoto model on a square lattice (50 × 50). a) Speedup in the final loss value
difference function. Points color correspond to the regions of the phase diagram (b), also, the number
above each phase pattern are the global order parameters. c) Coupled oscillator system.
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down optimization and offsets the speedup gains. Figure 6 (b) shows the evolution of wi on a square
lattice. Although different GNNs reach the same loss value, the final solutions are quite different.
The baseline model (without GNN) arrives at the final solution smoothly, while GNN models form
dense clusters at the initial steps and reach an organized state before 100 steps. To quantify the level
of synchronization, we measure a quantity ρ known as the “global order parameter” Sarkar and Gupte
(2021): ρ = 1

N

∣∣∣∑j e
iwj

∣∣∣. Figure 6 (c) shows the convergence of ρ over time. We can see that
one-layer GCN and RGCN give the most acceleration, driving the system to synchronization.

Results for the Hopf-Kuramoto Model. We report the comparison on synchronizing more complex
Hopf-Kuramoto dynamics. According to the Lauter et al. (2015) paper, we identify two different
main patterns on the phase diagram Fig. 7 (b): ordered (small s2/c, smooth patterns) and disordered
(large s2/c, noisy) phases (c = 1). Figuer 7a shows the loss at convergence versus the speedup. We
compare different GCN models and observe that GCN with A2 as the propagation rule achieves the
highest speedup. This is not surprising, as from equation 7 the Hessian for HK contains O(A2) terms.
Also, we can see that we have different speedups in each region, especially in the disordered phases.
Furthermore, we observed that the Linear and GCN models converge into different minima in a few
cases. However, the patterns of w remain the same. Interestingly, in the disordered phase, we observe
the highest speedup (Fig. 4)

Conclusion

We propose a novel neural reparametrization scheme using GNN to accelerate a large class of graph
optimization problems. The effect of the neural reparametrization is a preconditioning similar to quasi-
Newton methods as it uses the Hessian. We demonstrate our method on optimizing heat diffusion
and network synchronization problems and observe between over ten fold faster convergence to loss
minima, in some cases. We believe such neural reparametrization using the Hessian may also benefit
other optimization problems.
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6 Extended Derivations
6.1 Hessian in early stage

We assume we initialize w ∼ N (0, 1/n) as a normal distribution. We want to estimate the expected
value of the Hessian for the loss functions in equation 1 at initialization. For brevity, let ∆ij = wi−wj

and fij ≡ f(∥∆ij∥2). The Hessian is given by

Hij =∂i∂jL = ∂i∂jg + ∂i
∑
k

Ajk∆jkf
′
jk

=∂i∂jg +Ajif
′
ij − δij

∑
k

Ajkf
′
ik +Aji∥∆ji∥2f ′′

ji − δij
∑
k

Ajk∥∆jk∥2f ′′
jk (11)

With this initialization, ∆ij ∼ N (0, 2/n) will also be normally distributed. We can use a Taylor
expansion to estimate the expected Hessian. Assuming n ≫ 1, we want to find the leading order
terms in E[H]. We have (even(p) = 1 if p is even, and 0 when it’s odd)

E

[
p∏

a=1

∆iaja

]
= δi1···ipδj1···jp

(p− 1)!!

(n/2)p/2
even(p)

E[H] ≈
∞∑
p=0

E [
∏p

a=1 ∆iaja ]

p!

∂pH∏p
a=1 ∂∆iaja

∣∣∣∣
∆→0

= H(∆→ 0) +O

(
1

n

)
E[Hij ] ≈∂i∂jg(0)− f ′(0)Lij +O

(
1

n

)
(12)

where we used the degree matrix Dij = δij
∑

k Ajk, the Laplacian L = D−A, and the assumption of
undirectedness stated for equation 1 (Aij = Aji). Because the Hessian contains the graph Laplacian,
which is n× n, and so computingH−1 is O(n3).

6.2 Network Synchronization

The HK model’s dynamics are follows:
dwi

dt
= c

∑
j

Aji [cos∆ij − s1 sin∆ij ] + s2
∑
k,j

AijAjk [sin (∆ji +∆jk)− sin (∆ji −∆jk)] +AijAik sin (∆ji +∆ki) .

(13)

where c, s1, s2 are the governing parameters. Equation 13 is the GD equation for the following loss
function (found by integrating Equation 13):

L(w) =
c

ε

∑
i,j

Aji [sin∆ij + s1 cos∆ij ] +
s2
2ε

∑
i,k,j

AijAjk

[
cos (∆ji +∆jk) + cos (∆ji −∆jk)

]
(14)

7 Experiment details and additional results
7.1 Network Synchronization

Network synchronization (Pikovsky et al., 2003) optimizes a network of coupled oscillators until they
reach at the same frequency, known as synchronization. Kuramoto model Kuramoto (1975, 1984) are
widely used for synchronization problems, which have profound impact on engineering, physics and
machine learning Schnell et al. (2021).

As shown in Fig. 3, Kuramoto model describes the behavior of a large set of coupled oscillators. Each
oscillator is defined by an angle θi = ωit+wi, where ωi is the frequency and wi is the phase. We
consider the case where ωi = 0. The coupling strength is represented by a graph Aij ∈ R. Defining
∆ij ≡ wi −wj , the dynamics of the phases wi(t) in the Kuramoto model follows the following
equations:

dwi

dt
= −ε

n∑
j=1

Aji sin∆ij , L(w) =

n∑
i,j=1

Aji cos∆ij . (15)
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a b

dc

Figure 8: Kuramoto model on (a,b) tree and (c,d) circle graph. a,c) loss curves evolution, while b,d)
global order parameter in each iteration steps

Our goal is to minimize the phase drift dwi/dt such that the oscillators are synchronized. We further
consider a more general version of the Kuramoto model: Hopf-Kuramoto (HK) model Lauter et al.
(2015), which includes second-order interactions.

We experiment with both the Kuramoto model and Hopf-Kuramoto model. Existing numerical
methods directly optimize the loss L(w) with gradient-based algorithms, which we refer to as linear.
We apply our method to reparametrize the phase variables w and speed up convergence towards
synchronization.

Implementation. For early stages, we use a GCN with the aggregation function derived from
the Hessian which for the Kuramoto model simply becomes Hij(0) = ∂2L/∂wi∂wj |w→0 =
Aij −

∑
k Aikδij = −Lij , where L = D − A is the graph Laplacian of A. We found that NR in

the early stages of the optimization gives more speed up. We implemented the hybrid optimization
described earlier, where we reparemtrize the problem in the first 100 iterations and then switch to the
original linear optimization for the rest of the optimization.

We experimented with three Kuramoto oscillator systems with different coupling structures: square
lattice, circle graph, and tree graph. For each system, the phases are randomly initialized between
0 and 2π from uniform distribution. We let the different models run until the loss converges (10
patience steps for early stopping, 10−15 loss fluctuation limit).

7.2 Kuramoto Oscillator

Relation to the XY model. The loss equation 6 is also identical to the Hamiltonian (energy
function) of a the classical XY model (Kosterlitz and Thouless (1973)), a set of 2D spins si with
interaction energy given by L =

∑
i,j Aijsi · sj =

∑
i,j Aji cos(wj −wi). In the XY model, we

are also interested in the minima of the energy.

Method. In our model, we first initialize random phases between 0 and 2π from a uniform dis-
tribution for each oscillator in a h dimensional space that results in N × h dimensional vector N
is the number of oscillators. Then we use this vector as input to the GCN model, which applies
D−1/2ÂD−1/2 , Â = A+I propagation rule, with LeakyRelu activation. The final output dimension
is N × 1, where the elements are the phases of oscillators constrained between 0 and 2π. In all
experiments for h hyperparameter we chose 10. Different h values for different graph sizes may give
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a cb

Figure 9: Kuramoto-model on different graph structures. We use the GCN model and switch to the
Linear model after different iteration steps: orange - 20 steps, green - 50 steps, and blue - 100 steps.
The plot shows that each GCN iteration step takes longer.

a b c

Figure 10: Kuramoto-model on 25 × 25 square lattice. We use the GCN and Linear model with
different optimizers and learning rates. The Adam optimizer in all cases over-performs the other
optimizers.

different results. Choosing large h reduces the speedup significantly. We used Adam optimizer by
0.01 learning rate.

7.3 MNIST image classification

Here, we introduce our reparametrization model for image classification on the MNIST image dataset.
First, we test a simple linear model as a baseline and compare the performance to the GCN model.
We use a cross-entropy loss function, Adam optimizer with a 0.001 learning rate in the experiments,
and Softmax nonlinear activation function in the GCN model. We train our models on 100 batch size
and 20 epochs. In the GCN model, we build the H = (1− ξ)H/hmax matrix from the covariance
matrix of images and use it as a propagation rule. In the early stages of the optimization, we use the
GCN model until a plateau appears on the loss curve then train the model further by a linear model.
We found that the optimal GCN to linear model transition is around 50 iterations steps. Also, we
discovered that wider GCN layers achieve better performance; thus, we chose 500 for the initially
hidden dimension. According to the previous experiments, the GCN model, persistent homology
(7.4), and Kuramoto (7.2) model speedups the convergence in the early stages (Fig. 12)

7.4 Persistent Homology

Overview. Homology describes the general characteristics of data in a metric space, and is catego-
rized by the order of its features. Zero order features correspond to connected components, first order
features have shapes like "holes" and higher order features are described as "voids".

A practical way to compute homology of a topological space is through forming simplicial complexes
from its points. This enables not only fast homology computation with linear algebra, but also
approximating the topological space with its subsets.

In order to construct a simplicial complex, a filtration parameter is needed to specify the scope of
connectivity. Intuitively, this defines the resolution of the homological features obtained. A feature is
considered "persistent" if it exists across a wide range of filtration values. In order words, persistent
homology seeks features that are scale-invariant, which serve as the best descriptors of the topological
space.
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Figure 11: Hopf-Kuramoto model on a square lattice (50× 50) - phase pattern. We can distinguish
two main patterns - organized states are on the left part while disorganized states are on the right part
of the figure. In the experiments c = 1 for the simplicity.
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Figure 12: MNIST image classification. Red curve shows a linear model (92.68% accuracy). Blue
curve is the reparametrized model, where at step 50 we switch from GCN to Linear model (92.71%
accuracy).
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There are different ways to build simplicial complexes from given data points and filtration values.
Czech complex, the most classic model, guarantees approximation of a topological space with a
subset of points. However, it is computationally heavy and thus rarely used in practice. Instead, other
models like the Vietoris-Rips complex, which approximates the Czech complex, are preferred for
their efficiency (Otter et al., 2017). Vietoris-Rips complex is also used in the point cloud optimization
experiment of ours and Carriere et al. (2021); Gabrielsson et al. (2020).

7.5 Persistent homology

Persistent homology Edelsbrunner et al. (2008) is an algebraic tool for measuring topological features
of shapes and functions. Recently, it has found many applications in machine learning Birdal et al.
(2021); Gabrielsson et al. (2020); Hofer et al. (2019). Persistent homology is computable with linear
algebra and robust to perturbation of input data (Otter et al., 2017), see more details in Appendix 7.4.
An example application of persistent homology is point cloud optimization (Carriere et al., 2021;
Gabrielsson et al., 2020). As shown in Fig. 13 left, given a random point cloud w that lacks any
observable characteristics, we aim to produce persistent homological features by optimizing the
position of data.

L(w) = −
∑
p∈D

∥p− π∆(p)∥2∞ +

n∑
i=1

∥wi − r∥2 (16)

where p ∈ D = {(bi, di)}i∈Ik denotes the homological features in the the persistence diagram
D, consisting of all the pairs of birth bi and death di filtration values of the set of k-dimensional
homological features Ik. π∆ is the projection onto the diagonal ∆ and

∑
i d(wi, S) constrains the

points within the a square centered at the origin with length 2r (denote r as range of the point cloud).
Carriere et al. (2021) optimizes the point cloud positions directly with gradient-based optimization
(we refer to it as “linear”).

Algorithm Implementation. Instead of optimizing the coordinates of the point cloud directly, we
reparameterize the point cloud as the output of the GCN model. To optimize the network weights, we
chose identity matrix with dimension of the point cloud size as the fixed input.

To apply GCN, we need the adjacency matrix of the point cloud. Even though the point cloud does
not have any edges, we can manually generate edges by constructing a simplicial complex from it.
The filtration value is chosen around the midpoint between the maximum and minimum of the feature
birth filtration value of the initial random point cloud, which works well in practice.

Before the optimization process begins, we first fit the network to re-produce the initial random point
cloud distribution. This is done by minimizing MSE loss on the network output and the regression
target.

Then, we begin to optimize the output with the same loss function in Carriere et al. (2021); Gabrielsson
et al. (2020), which consists of topological and distance penalties. The GCN model can significantly
accelerates convergence at the start of training, but this effect diminishes quickly. Therefore, we
switch the GCN to the linear model once the its acceleration slows down. We used this hybrid
approach in all of our experiments.

Hyperparameter Tuning. We conducted extensive hyperparameter search to fine tune the GCN
model, in terms of varying hidden dimensions, learning rates and optimizers. We chose the setting of
200 point cloud with range 2.0 for all the tuning experiments.

Fig. 14 shows the model convergence with different hidden dimensions. We see that loss converges
faster with one layer of GCN instead of two. Also, convergence is delayed when the dimension
of GCN becomes too large. Overall, one layer GCN model with h1, h2 = 8, 6 generally excels in
performance, and is used in all other experiments.

Fig. 15,16,17 shows the performance of the GCN model with different prefit learning rates, train
learning rates and optimizers. From the results, a lower prefit learning rate of 0.01 combined with a
training learning rate below 0.01 generally converges to lower loss and yields better speedup. For all
the optimizers, default parameters from the Tensorflow model are used alongside varying learning
rates and the same optimizer is used in both training and prefitting. Adam optimizer is much more
effective than RSMProp and SGD on accelerating convergence. For SGD, prefitting with learning
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Figure 13: Speedup: a,b) Training and total time speedup; c) GCN speeds up convergence. d) Initial
random point cloud and e) optimized point cloud. f) Loss vs speed-up of GCN model. The final loss
depends only on the point cloud range, while the speedup is affected by both range and size.

rate 0.05 and 0.1 causes the loss to explode in a few iterations, thus the corresponding results are left
as blank spaces.

Detailed Runtime Comparison. Fig. 18 and 19 shows how training, initial point cloud fitting and
total time evolve over different point cloud sizes and ranges. Training time decreases significantly
with increasing range, especially from 1.0 to 2.0. This effect becomes more obvious with density
normalized runtime. On the other hand, prefitting time increases exponentially with both point cloud
range and size. Overall, the total time matches the trend of training time, however the speed-up is
halved compared to training due to the addition of prefitting time.

Implementation. We used the same Gudhi library for computing persistence diagram as Carriere
et al. (2021); Gabrielsson et al. (2020). The run time of learning persistent homology is dominated by
computing persistence diagram in every iteration, which has the time complexity of O(n3). Thus, the
run time per iteration for GCN model and linear model are very similar, and we find that the GCN
model can reduce convergence time by a factor of ∼ 4 (Fig. 13,13). We ran the experiments for
point cloud of 100,200,300 points, with ranges of 0.5,1.0,2.0,4.0. The hyperparameters of the GCN
model are kept constant, including network dimensions. The result for each setting is averaged from
5 consecutive runs.

Results for Persistent Homology. Figure 13 right shows that the speedup of the GCN model is
related to point cloud density. In this problem, the initial position of the point cloud determines the
topology features. Therefore, we need to make sure the GCN models also yield the same positions as
used in the linear model. Therefore, we first run a “training" step, where we use MSE to match the
w(θ) or GCN to the initial w used in the linear model. Training converges faster as the point cloud
becomes more sparse, but the speedup gain saturates as point cloud density decreases. On the other
hand, time required for initial point cloud fitting increases significantly with the range of point cloud.
Consequently, the overall speedup peaks when the range of point cloud is around 4 times larger than
what is used be in Carriere et al. (2021); Gabrielsson et al. (2020), which spans over an area 16 times
larger. Further increase in point cloud range causes the speedup to drop as the extra time of initial
point cloud fitting outweighs the reduced training time. The loss curve plot in Fig. 13 shows the
convergence of training loss of the GCN model and the baseline model in one of the settings when
GCN is performing well. Fig. 13 shows the initial random point cloud and the output from the GCN
model. In the Appendix 7.4, we included the results of GCN model hyperparameter search and a
runtime comparison of the GCN model under all experiment settings.
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Figure 14: GCN Hyperparameter Comparison. We recommend using one layer GCN model with
h1, h2 = 8, 6.
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Figure 15: Converged loss of different learning rates and optimizers.
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Figure 16: Training Speedup of different learning rates and optimizers.
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Figure 17: Total Speedup of different learning rates and optimizers.
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Figure 18: Training, prefitting and total time
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Figure 19: Density Normalized training, prefitting and total time. We normalize the runtime by
N3, where N is the point cloud size. This is because persistence diagram computation has time
complexity of O(N3)
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Figure 20: Heat diffusion - GCN/GAT/GN reparametrization. Conducted experiments with GCN
Kipf and Welling (2016), GAT Veličković et al. (2017), and GN Battaglia et al. (2018) models on the
heat diffusion problem. Specifically, we used a 75x75 triangular lattice configuration (2926 nodes and
8550 edges) with a hot heat bath at the top and a cold one at the bottom. Our findings indicate that all
three methods outperformed the baseline GD method in wall clock time. While GN showed slightly
less favorable energy and running time performance compared to GAT and GCN, the difference
between GAT and GCN was not significant. These simulation results represent averages over five
random seeds.

21


	1 Introduction
	2 Related Work
	3 Graph Optimization
	3.1 Heat Diffusion
	3.2 Kuramoto Model and Synchronization

	4 Neural Reparametrization
	4.1 Theoretical Analysis

	5 Experiments
	5.1 Heat Diffusion
	5.2 Synchronization

	6 Extended Derivations
	6.1 Hessian in early stage  
	6.2 Network Synchronization

	7 Experiment details and additional results
	7.1 Network Synchronization
	7.2 Kuramoto Oscillator
	7.3 MNIST image classification
	7.4 Persistent Homology
	7.5 Persistent homology


