
Published as a conference paper at ICLR 2021

A PANDA? NO, IT’S A SLOTH: SLOWDOWN ATTACKS

ON ADAPTIVE MULTI-EXIT NEURAL NETWORK INFERENCE

Sanghyun Hong∗, Yiǧitcan Kaya∗, Ionut,-Vlad Modoranu†, Tudor Dumitras,
University of Maryland, College Park, USA
†Alexandru Ioan Cuza University, Ias, i, Romania
shhong@cs.umd.edu, yigitcan@cs.umd.edu,
modoranu.ionut.vlad@hotmail.com, tudor@umd.edu

ABSTRACT

Recent increases in the computational demands of deep neural networks (DNNs),
combined with the observation that most input samples require only simple models,
have sparked interest in input-adaptive multi-exit architectures, such as MSDNets
or Shallow-Deep Networks. These architectures enable faster inferences and could
bring DNNs to low-power devices, e.g., in the Internet of Things (IoT). However,
it is unknown if the computational savings provided by this approach are robust
against adversarial pressure. In particular, an adversary may aim to slowdown
adaptive DNNs by increasing their average inference time—a threat analogous
to the denial-of-service attacks from the Internet. In this paper, we conduct a
systematic evaluation of this threat by experimenting with three generic multi-exit
DNNs (based on VGG16, MobileNet, and ResNet56) and a custom multi-exit
architecture, on two popular image classification benchmarks (CIFAR-10 and Tiny
ImageNet). To this end, we show that adversarial example-crafting techniques
can be modified to cause slowdown, and we propose a metric for comparing
their impact on different architectures. We show that a slowdown attack reduces
the efficacy of multi-exit DNNs by 90–100%, and it amplifies the latency by
1.5–5× in a typical IoT deployment. We also show that it is possible to craft
universal, reusable perturbations and that the attack can be effective in realistic
black-box scenarios, where the attacker has limited knowledge about the victim.
Finally, we show that adversarial training provides limited protection against
slowdowns. These results suggest that further research is needed for defending
multi-exit architectures against this emerging threat. Our code is available at
https://github.com/sanghyun-hong/deepsloth.

1 INTRODUCTION

The inference-time computational demands of deep neural networks (DNNs) are increasing, owing to
the “going deeper" (Szegedy et al., 2015) strategy for improving accuracy: as a DNN gets deeper,
it progressively gains the ability to learn higher-level, complex representations. This strategy has
enabled breakthroughs in many tasks, such as image classification (Krizhevsky et al., 2012) or speech
recognition (Hinton et al., 2012), at the price of costly inferences. For instance, with 4× more
inference cost, a 56-layer ResNet (He et al., 2016) improved the Top-1 accuracy on ImageNet by 19%
over the 8-layer AlexNet. This trend continued with the 57-layer state-of-the-art EfficientNet (Tan &
Le, 2019): it improved the accuracy by 10% over ResNet, with 9× costlier inferences.

The accuracy improvements stem from the fact that the deeper networks fix the mistakes of the shallow
ones (Huang et al., 2018). This implies that some samples, which are already correctly classified by
shallow networks, do not necessitate the extra complexity. This observation has motivated research
on input-adaptive mechanisms, in particular, multi-exit architectures (Teerapittayanon et al., 2016;
Huang et al., 2018; Kaya et al., 2019; Hu et al., 2020). Multi-exit architectures save computation
by making input-specific decisions about bypassing the remaining layers, once the model becomes
confident, and are orthogonal to techniques that achieve savings by permanently modifying the
∗Authors contributed equally.

1

https://github.com/Sanghyun-Hong/DeepSloth

Published as a conference paper at ICLR 2021

model (Li et al., 2016; Banner et al., 2018; Han et al., 2015; Taylor et al., 2018). Figure 1 illustrates
how a multi-exit model (Kaya et al., 2019), based on a standard VGG-16 architecture, correctly
classifies a selection of test images from ‘Tiny ImageNet’ before the final layer. We see that more
typical samples, which have more supporting examples in the training set, require less depth and,
therefore, less computation.

1st 5th 14th

Le
m
o
n

Li
o
n

Figure 1: Simple to complex inputs.
Some Tiny ImageNet images a VGG-16
model can correctly classify if computa-
tion stops at the 1st, 5th, and 14th layers.

It is unknown if the computational savings provided by
multi-exit architectures are robust against adversarial pres-
sure. Prior research showed that DNNs are vulnerable to
a wide range of attacks, which involve imperceptible input
perturbations (Szegedy et al., 2014; Goodfellow et al., 2015;
Papernot et al., 2016; Hu et al., 2020). Considering that a
multi-exit model, on the worst-case input, does not provide
any computational savings, we ask: Can the savings from
multi-exit models be maliciously negated by input perturba-
tions? As some natural inputs do require the full depth of
the model, it may be possible to craft adversarial examples
that delay the correct decision; it is unclear, however, how
many inputs can be delayed with imperceptible perturba-
tions. Furthermore, it is unknown if universal versions of
these adversarial examples exist, if the examples transfer across multi-exit architectures and datasets,
or if existing defenses (e.g. adversarial training) are effective against slowdown attacks.

Threat Model. We consider a new threat against DNNs, analogous to the denial-of-service (DoS)
attacks that have been plaguing the Internet for decades. By imperceptibly perturbing the input to
trigger this worst-case, the adversary aims to slow down the inferences and increase the cost of using
the DNN. This is an important threat for many practical applications, which impose strict limits on
the responsiveness and resource usage of DNN models (e.g. in the Internet-of-Things (Taylor et al.,
2018)), because the adversary could push the victim outside these limits. For example, against a
commercial image classification system, such as Clarifai.com, a slowdown attack might waste valuable
computational resources. Against a model partitioning scheme, such as Big-Little (De Coninck et al.,
2015), it might introduce network latency by forcing excessive transmissions between local and
remote models. A slowdown attack aims to force the victim to do more work than the adversary, e.g.
by amplifying the latency needed to process the sample or by crafting reusable perturbations. The
adversary may have to achieve this with incomplete information about the multi-exit architecture
targeted, the training data used by the victim or the classification task (see discussion in Appendix A).

Our Contributions. To our best knowledge, we conduct the first study of the robustness of multi-exit
architectures against adversarial slowdowns. To this end, we find that examples crafted by prior
evasion attacks (Madry et al., 2017; Hu et al., 2020) fail to bypass the victim model’s early exits, and
we show that an adversary can adapt such attacks to the goal of model slowdown by modifying its
objective function. We call the resulting attack DeepSloth. We also propose an efficacy metric for
comparing slowdowns across different multi-exit architectures. We experiment with three generic
multi-exit DNNs (based on VGG16, ResNet56 and MobileNet) (Kaya et al., 2019) and a specially-
designed multi-exit architecture, MSDNets (Huang et al., 2018), on two popular image classification
benchmarks (CIFAR-10 and Tiny ImageNet). We find that DeepSloth reduces the efficacy of multi-
exit DNNs by 90–100%, i.e., the perturbations render nearly all early exits ineffective. In a scenario
typical for IoT deployments, where the model is partitioned between edge devices and the cloud, our
attack amplifies the latency by 1.5–5×, negating the benefits of model partitioning. We also show
that it is possible to craft a universal DeepSloth perturbation, which can slow down the model on
either all or a class of inputs. While more constrained, this attack still reduces the efficacy by 5–45%.
Further, we observe that DeepSloth can be effective in some black-box scenarios, where the attacker
has limited knowledge about the victim. Finally, we show that a standard defense against adversarial
samples—adversarial training—is inadequate against slowdowns. Our results suggest that further
research will be required for protecting multi-exit architectures against this emerging security threat.

2

Published as a conference paper at ICLR 2021

2 RELATED WORK

Adversarial Examples and Defenses. Prior work on adversarial examples has shown that DNNs are
vulnerable to test-time input perturbations (Szegedy et al., 2014; Goodfellow et al., 2015; Papernot
et al., 2017; Carlini & Wagner, 2017; Madry et al., 2018). An adversary who wants to maximize
a model’s error on specific test-time samples can introduce human-imperceptible perturbations to
these samples. Moreover, an adversary can also exploit a surrogate model for launching the attack
and still hurt an unknown victim (Athalye et al., 2018; Tramèr et al., 2017b; Inkawhich et al., 2019).
This transferability leads to adversarial examples in more practical black-box scenarios. Although
many defenses (Kurakin et al., 2016; Xu et al., 2017; Song et al., 2018; Liao et al., 2018; Lecuyer
et al., 2019) have been proposed against this threat, adversarial training (AT) has become the
frontrunner (Madry et al., 2018). In Sec 5, we evaluate the vulnerability of multi-exit DNNs to
adversarial slowdowns in white-box and black-box scenarios. In Sec 6, we show that standard AT
and its simple adaptation to our perturbations are not sufficient for preventing slowdown attacks.

Efficient Input-Adaptive Inference. Recent input-adaptive DNN architectures have brought two
seemingly distant goals closer: achieving both high predictive quality and computational efficiency.
There are two types of input-adaptive DNNs: adaptive neural networks (AdNNs) and multi-exit
architectures. During the inference, AdNNs (Wang et al., 2018; Figurnov et al., 2017) dynamically
skip a certain part of the model to reduce the number of computations. This mechanism can be used
only for ResNet-based architectures as they facilitate skipping within a network. On the other hand,
multi-exit architectures (Teerapittayanon et al., 2016; Huang et al., 2018; Kaya et al., 2019) introduce
multiple side branches—or early-exits—to a model. During the inference on an input sample, these
models can preemptively stop the computation altogether once the stopping criteria are met at one of
the branches. Kaya et al. (2019) have also identified that standard, non-adaptive DNNs are susceptible
to overthinking, i.e., their inability to stop computation leads to inefficient inferences on many inputs.

Haque et al. (2020) presented attacks specifically designed for reducing the energy-efficiency of
AdNNs by using adversarial input perturbations. However, our work studies a new threat model that
an adversary causes slowdowns on multi-exit architectures. By imperceptibly perturbing the inputs,
our attacker can (i) introduce network latency to an infrastructure that utilizes multi-exit architectures
and (ii) waste the victim’s computational resources. To quantify this vulnerability, we define a new
metric to measure the impact of adversarial input perturbation on different multi-exit architectures
(Sec 3). In Sec 5, we also study practical attack scenarios and the transferability of adversarial input
perturbations crafted by our attacker. Moreover, we discuss the potential defense mechanisms against
this vulnerability, by proposing a simple adaptation of adversarial training (Sec 6). To the best of our
knowledge, our work is the first systematic study of this new vulnerability.

Model Partitioning. Model partitioning has been proposed to bring DNNs to resource-constrained
devices (De Coninck et al., 2015; Taylor et al., 2018). These schemes split a multi-exit model into
sequential components and deploy them in separate endpoints, e.g., a small, local on-device part
and a large, cloud-based part. For bringing DNNs to the Internet of Things (IoT), partitioning is
instrumental as it reduces the transmissions between endpoints, a major bottleneck. In Sec 5.1, on a
partitioning scenario, we show that our attack can force excessive transmissions.

3 EXPERIMENTAL SETUP

Datasets. We use two datasets: CIFAR-10 (Krizhevsky et al., 2009) and Tiny-ImageNet (Tiny). For
testing the cross-domain transferability of our attacks, we use the CIFAR-100 dataset.

Architectures and Hyper-parameters. To demonstrate that the vulnerability to adversarial slow-
downs is common among multi-exit architectures, we experiment on two recent techniques: Shallow-
Deep Networks (SDNs) (Kaya et al., 2019) and MSDNets (Huang et al., 2018). These architectures
were designed for different purposes: SDNs are generic and can convert any DNN into a multi-exit
model, and MSDNets are custom designed for efficiency. We evaluate an MSDNet architecture (6
exits) and three SDN architectures, based on VGG-16 (Simonyan & Zisserman, 2014) (14 exits),
ResNet-56 (He et al., 2016) (27 exits), and MobileNet (Howard et al., 2017) (14 exits).

Metrics. We define the early-exit capability (EEC) curve of a multi-exit model to indicate the
fraction of the test samples that exit early at a specific fraction of the model’s full inference cost.

3

Published as a conference paper at ICLR 2021

Figure 2 shows the EEC curves of our SDNs on Tiny ImageNet, assuming that the computation stops
when there is a correct classification at an exit point. For example, VGG-16-based SDN model can
correctly classify ∼50% of the samples using ∼50% of its full cost. Note that this stopping criterion
is impractical; in Sec 4, we will discuss the practical ones.

Figure 2: The EEC curves. Each curve shows the
fraction of test samples a model classifies using a
certain fraction of its full inference cost. ‘EFCY’
is short for the model’s efficacy.

We define the early-exit efficacy, or efficacy in
short, to quantify a model’s ability of utilizing its
exit points. The efficacy of a multi-exit model is
the area under its EEC curve, estimated via the
trapezoidal rule. An ideal efficacy for a model is
close to 1, when most of the input samples the
computation stops very early; models that do not
use their early exits have 0 efficacy. A model with
low efficacy generally exhibits a higher latency;
in a partitioned model, the low efficacy will cause
more input transmissions to the cloud, and the la-
tency is further amplified by the network round
trips. A multi-exit model’s efficacy and accuracy
are dictated by its stopping criteria, which we dis-
cuss in the next section. As for the classification
performance, we report the Top-1 accuracy on the
test data.

4 ATTACKING THE MULTI-EXIT ARCHITECTURES

Setting. We consider the supervised classification setting with standard feedforward DNN archi-
tectures. A DNN model consists of N blocks, or layers, that process the input sample, x ∈ Rd,
from beginning to end and produce a classification. A classification, F (x, θ) ∈ Rm, is the predicted
probability distribution of x belonging to each label y ∈M = {1, ...,m}. Here, θ denotes the tunable
parameters, or the weights, of the model. The parameters are learned on a training set D that contains
multiple (xi, yi) pairs; where yi is the ground-truth label of the training sample xi. We use θi to
denote the parameters at and before the ith block; i.e., θi ⊂ θi+1 and θN = θ. Once a model is
trained, its performance is then tested on a set of unseen samples, S.

Multi-Exit Architectures. A multi-exit model contains K exit points—internal classifiers—attached
to a model’s hidden blocks. We use Fi to denote the ith exit point, which is attached to the jth block.
Using the output of the jth (j < N) block on x, Fi produces an internal classification, i.e., Fi(x, θj),
which we simply denote as Fi(x). In our experiments, we set K = N for SDNs, i.e., one internal
classifier at each block and K = 6 for MSDNets. Given Fi(x), a multi-exit model uses deterministic
criteria to decide between forwarding x to compute Fi+1(x) and stopping for taking the early-exit at
this block. Bypassing early-exits decreases a network’s efficacy as each additional block increases
the inference cost. Note that multi-exit models process each sample individually, not in batches.

Practical Stopping Criteria. Ideally, a multi-exit model stops when it reaches a correct classification
at an exit point, i.e., argmaxj∈M F

(j)
i (x) = ŷi = y; y is the ground-truth label. However, for unseen

samples, this is impractical as y is unknown. The prior work has proposed two simple strategies
to judge whether ŷi = y: Fi(x)’s entropy (Teerapittayanon et al., 2016; Huang et al., 2018) or its
confidence (Kaya et al., 2019). Our attack (see Sec 4.3) leverages the fact that a uniform Fi(x)
has both the highest entropy and the lowest confidence. For generality, we experiment with both
confidence-based—SDNs—and entropy-based—MSDNets—strategies.

A strategy selects confidence, or entropy, thresholds, Ti, that determine whether the model should
take the ith exit for an input sample. Conservative Ti’s lead to fewer early exits and the opposite hurts
the accuracy as the estimate of whether ŷi = y becomes unreliable. As utility is a major practical
concern, we set Ti’s for balancing between efficiency and accuracy. On a holdout set, we set the
thresholds to maximize a model’s efficacy while keeping its relative accuracy drop (RAD) over its
maximum accuracy within 5% and 15%. We refer to these two settings as RAD<5% and RAD<15%.
Table 2 (first segment) shows how accuracy and efficacy change in each setting.

4

Published as a conference paper at ICLR 2021

4.1 THREAT MODEL

We consider an adversary who aims to decrease the early-exit efficacy of a victim model. The attacker
crafts an imperceptible adversarial perturbation, v ∈ Rd that, when added to a test-time sample
x ∈ S, prevents the model from taking early-exits.

Adversary’s Capabilities. The attacker is able to modify the victim’s test-time samples to apply
the perturbations, e.g., by compromising a camera that collects the data for inference. To ensure the
imperceptibility, we focus on `∞ norm bounded perturbations as they (i) are well are studied; (ii) have
successful defenses (Madry et al., 2018); (iii) have prior extension to multi-exit models (Hu et al.,
2020); and (iv) are usually the most efficient to craft. We show results on `2 and `1 perturbations
in Appendix C. In line with the prior work, we bound the perturbations as follows: for CIFAR-10,
||v||∞ ≤ ε = 0.03 (Madry et al., 2017), ||v||1 ≤ 8 (Tramèr & Boneh, 2019) and ||v||2 ≤ 0.35 (Chen
et al., 2017); for Tiny ImageNet, ||v||∞ ≤ ε = 0.03 (Yang et al., 2019), ||v||1 ≤ 16 and ||v||2 ≤ 0.6.

Adversary’s Knowledge. To assess the security vulnerability of multi-exit architectures, we study
white-box scenarios, i.e., the attacker knows all the details of the victim model, including its D and
θ. Further, in Sec 5.2, we study more practical black-box scenarios, i.e., the attacker crafts v on a
surrogate model and applies it to an unknown victim model.

Adversary’s Goals. We consider three DeepSloth variants, (i) the standard, (ii) the universal and
(iii) the class-universal. The adversary, in (i) crafts a different v for each x ∈ S; in (ii) crafts a single
v for all x ∈ S; in (iii) crafts a single v for a target class i ∈ M . Further, although the adversary
does not explicitly target it; we observe that DeepSloth usually hurts the accuracy. By modifying
the objective function we describe in Sec 4.3, we also experiment with DeepSloth variants that can
explicitly preserve or hurt the accuracy, in addition to causing slowdowns.

4.2 STANDARD ADVERSARIAL ATTACKS DO NOT CAUSE DELAYS

To motivate DeepSloth, we first evaluate whether previous adversarial attacks have any effect on the
efficacy of multi-exit models. These attacks add imperceptible perturbations to a victim’s test-time
samples to force misclassifications. We experiment with the standard PGD attack (Madry et al.,
2017); PGD-avg and PGD-max variants against multi-exit models (Hu et al., 2020) and the Universal
Adversarial Perturbation (UAP) attack that crafts a single perturbation for all test samples (Moosavi-
Dezfooli et al., 2017). Table 1 summarizes our findings that these attacks, although they hurt the
accuracy, fail to cause any meaningful decrease in efficacy. In many cases, we observe that the
attacks actually increase the efficacy. These experiments help us to identify the critical elements of
the objective function of an attack that decreases the efficacy.

Table 1: Impact of existing evasion attacks on efficacy. Each entry shows a model’s efficacy (left) and
accuracy (right) when subjected to the respective attack. The multi-exit models are trained on CIFAR-10 and
use RAD<5% as their early-exit strategy.

NETWORK NO ATTACK PGD-20 PGD-20 (AVG.) PGD-20 (MAX.) UAP

VGG-16 0.77 / 89% 0.79 / 29% 0.85 / 10% 0.81 / 27% 0.71 / 68%
RESNET-56 0.52 / 87% 0.55 / 12% 0.82 / 1% 0.70 / 6% 0.55 / 44%

MOBILENET 0.83 / 87% 0.85 / 14% 0.93 / 3% 0.89 / 12% 0.77 / 60%

4.3 THE DEEPSLOTH ATTACK

The Layer-Wise Objective Function. Figure 3 shows that the attacks that only optimize for the
final output, e.g., PGD or UAP, do not perturb the model’s earlier layer representations. This does not
bypass the early-exits, which makes these attacks ineffective for decreasing the efficacy. Therefore,
we modify the objective functions of adversarial example-crafting algorithms to incorporate the
outputs of all Fi|i < K. For crafting `∞, `2 and `1-bounded perturbations, we adapt the PGD (Madry
et al., 2017), the DDN (Rony et al., 2019) and the SLIDE algorithms (Tramèr & Boneh, 2019),
respectively. Next, we describe how we modify the PGD algorithm—we modify the others similarly:

5

Published as a conference paper at ICLR 2021

vt+1 = Π||v||∞<ε

(
vt + α sgn

(
∇v

∑
x∈D′

∑
0<i<K

L (Fi (x+ v) , ȳ)

))

Here, t is the current attack iteration; α is the step size; Π is the projection operator that enforces
||v||∞ < ε and L is the cross-entropy loss function. The selection of D′ determines the type of the
attack. For the standard variant: D′ = {x}, i.e., a single test-time sample. For the universal variant:
D′ = D, i.e., the whole training set. For the class-universal variant against the target class i ∈ M :
D′ = {(x, y) ∈ D|y = i}, i.e., the training set samples from the ith class. Finally, ȳ is the target
label distribution our objective pushes Fi(x) towards. Next, we explain how we select ȳ.

Pushing Fi(x) Towards a Uniform Distribution. Despite including all Fi, attacks such as PGD-
avg and PGD-max (Hu et al., 2020) still fail to decrease efficacy. How these attacks select ȳ
reflects their goal of causing misclassifications and, therefore, they trigger errors in early-exits, i.e.,
argmaxj∈M F

(j)
i (x) = ȳ 6= y. However, as the early-exits still have high confidence, or low entropy,

the model still stops its computation early. We select ȳ as a uniform distribution over the class labels,
i.e., ȳ(i) = 1/m. This ensures that (x+ v) bypasses common stopping criteria as a uniform Fi(x)
has both the lowest confidence and the highest entropy.

5 EMPIRICAL EVALUATION

Here, we present the results for `∞ DeepSloth against two SDNs—VGG-16 and MobileNet-based—
and against the MSDNets. In the Appendix, we report the hyperparameters; the `1 and `2 attacks;
the results on ResNet-56-based SDNs; the cost of the attacks; and some perturbed samples. Overall,
we observe that `∞-bounded perturbations are more effective for slowdowns. The optimization
challenges might explain this, as `1 and `2 attacks are usually harder to optimize (Carlini & Wagner,
2017; Tramèr & Boneh, 2019). Unlike objectives for misclassifications, the objective for slowdowns
involves multiple loss terms and optimizes over all the output logits.

5.1 WHITE-BOX SCENARIOS

Perturbations Eliminate Early-Exits. Table 2 (second segment) shows that the victim models
have ∼ 0 efficacy on the samples perturbed by DeepSloth. Across the board, the attack makes the
early-exit completely ineffective and force the victim models to forward all input samples till the
end. Further, DeepSloth also drops the victim’s accuracy by 75–99%, comparable to the PGD attack.
These results give an answer to our main research question: the multi-exit mechanisms are vulnerable
and their benefits can be maliciously offset by adversarial input perturbations. In particular, as SDN
modification mitigates overthinking in standard, non-adaptive DNNs (Kaya et al., 2019), DeepSloth
also leads SDN-based models to overthink on almost all samples by forcing extra computations.

Note that crafting a single perturbation requires multiple back-propagations through the model
and more floating points operations (FLOPs) than the forward pass. The high cost of crafting,
relative to the computational damage to the victim, might make this vulnerability unattractive for
the adversary. In the next sections, we highlight scenarios where this vulnerability might lead to
practical exploitation. First, we show that in an IoT-like scenarios, the input transmission is a major
bottleneck and DeepSloth can exploit it. Second, we evaluate universal DeepSloth attacks that enable
the adversary to craft the perturbation only once and reuse it on multiple inputs.

Attacking an IoT Scenario. Many IoT scenarios, e.g., health monitoring for elderly (Park et al.,
2017), require collecting data from edge devices and making low-latency inferences on this data.
However, complex deep learning models are impractical for low-power edge devices, such as an
Arduino, that are common in the IoT scenarios (Chen & Ran, 2019). For example, on standard
hardware, an average inference takes MSDNet model on Tiny ImageNet 35M FLOPs and ∼10ms.

A potential solution is sending the inputs from the edge to a cloud model, which then returns the
prediction. Even in our optimistic estimate with a nearby AWS EC2 instance, this back-and-forth
introduces ∼11ms latency per inference. Model partitioning alleviates this bottleneck by splitting a
multi-exit model into two; deploying the small first part at the edge and the large second part at the
cloud (De Coninck et al., 2015). The edge part sends an input only when its prediction does not meet

6

Published as a conference paper at ICLR 2021

Table 2: The effectiveness of `∞ DeepSloth. ‘RAD<5,15%’ columns list the results in each early-exit setting.
Each entry includes the model’s efficacy (left) and accuracy (right). The class-universal attack’s results are an
average of 10 classes. ‘TI’: Tiny ImageNet and ‘C10’: CIFAR-10.

NETWORK MSDNET VGG16 MOBILENET

SET. RAD<5% RAD<15% RAD<5% RAD<15% RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.89 / 85% 0.89 / 85% 0.77 / 88% 0.89 / 79% 0.83 / 87% 0.92 / 79%
TI 0.64 / 55% 0.83 / 50% 0.39 / 57% 0.51 / 52% 0.42 / 57% 0.59 / 51%

DEEPSLOTH
C10 0.06 / 17% 0.06 / 17% 0.01 / 13% 0.04 / 16% 0.01 / 12% 0.06 / 16%
TI 0.06 / 7% 0.06 / 7% 0.00 / 2% 0.01 / 2% 0.02 / 6% 0.04 / 6%

UNIVERSAL DEEPSLOTH
C10 0.85 / 65% 0.85 / 65% 0.62 / 65% 0.86 / 60% 0.73 / 61% 0.90 / 59%
TI 0.58 / 46% 0.81 / 41% 0.31 / 47% 0.44 / 44% 0.33 / 47% 0.51 / 43%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.82 / 32% 0.82 / 32% 0.47 / 35% 0.78 / 33% 0.60 / 30% 0.85 / 27%
TI 0.41 / 21% 0.71 / 17% 0.20 / 28% 0.33 / 27% 0.21 / 27% 0.38 / 25%

the stopping criteria. For example, the first early-exit of MSDNets sends only 5% and 67% of all test
samples, on CIFAR-10 and Tiny ImageNet, respectively. This leads to a lower average latency per
inference, i.e., from 11ms down to 0.5ms and 7.4ms, respectively.

The adversary we study uses DeepSloth perturbations to force the edge part to send all the input
samples to the cloud. For the victim, we deploy MSDNet models that we split into two parts at their
first exit point. Targeting the first part with DeepSloth forces it to send 96% and 99.97% of all test
samples to the second part. This increases average inference latency to ∼11ms and invalidates the
benefits of model partitioning. In this scenario, perturbing each sample takes ∼2ms on a Tesla V-100
GPU, i.e., the time adversary spends is amplified by 1.5-5× as the victim’s latency increase.

Reusable Universal Perturbations. The universal attacks, although limited, are a practical as the
adversary can reuse the same perturbation indefinitely to cause minor slowdowns. Table 2 (third
segment) shows that they decrease the efficacy by 3–21% and the accuracy by 15–25%, over the
baselines. Having a less conservative early-exit strategy, e.g., RAD<15%, increases the resilience to
the attack at the cost of accuracy. Further, MSDNets are fairly resilient with only 3–9% efficacy drop;
whereas SDNs are more vulnerable with 12–21% drop. The attack is also slightly more effective on
the more complex task, Tiny ImageNet, as the early-exits become easier to bypass. Using random
noise as a baseline, i.e., v ∼ Ud(−ε, ε), we find that at most it decreases the efficacy by ∼3%.

In the universal attack, we observe a phenomenon: it pushes the samples towards a small subset of all
classes. For example, ∼17% of the perturbed samples are classified into the ’bird’ class of CIFAR-10;
up from ∼10% for the clean samples. Considering certain classes are distant in the feature space, e.g.,
’truck’ and ’bird’; we expect the class-universal variant to be more effective. The results in Table 2
(fourth segment) confirm our intuition. We see that this attack decreases the baseline efficacy by
8–50% and the accuracy by 50–65%. We report the average results across multiple classes; however,
we observe that certain classes are slightly more vulnerable to this attack.

Feature Visualization of DeepSloth. In Figure 3, to shed light on how DeepSloth differs from prior
attacks, e.g., PGD and PGD-avg, we visualize a model’s hidden block (layer) features on the original
and perturbed test-time samples. We observe that in an earlier block (left panel), DeepSloth seems to
disrupt the original features slightly more than the PGD attacks. Leaving earlier representations intact
prevents PGDs from bypassing the early-exits. The behaviors of the attacks diverge in the middle
blocks (middle panel). Here, DeepSloth features remain closer to the original features than prior
attacks. The significant disruption of prior attacks leads to high-confidence misclassifications and
fails to bypass early-exits. In the later block (right panel), we see that the divergent behavior persists.

Preserving or Hurting the Accuracy with DeepSloth. Here, we aim to answer whether DeepSloth
can be applied when the adversary explicitly aims to cause or prevent misclassifications, while still

7

Published as a conference paper at ICLR 2021

9 8 7 6 5 4 3 2 1

7

6

5

4

3

2

Org. (5)
Adv. (PGD)
Adv. (PGD-avg)
Adv. (Ours)

0 2 4 6 8 10

0

2

4

6

8

10

Org. (5)
Adv. (PGD)
Adv. (PGD-avg)
Adv. (Ours)

10 5 0 5 10 15

10

5

0

5

10

15

Org. (5)
Adv. (PGD)
Adv. (PGD-avg)
Adv. (Ours)

Figure 3: Visualising features against attacks using UMAP. VGG-16’s 3rd (left), 8th (middle), and 14th
(right) hidden block features on CIFAR-10’s ’dog’ class (Best viewed in color, zoomed in).

causing slowdowns. Our main threat model has no explicit goal regarding misclassifications that hurt
the user of the model, i.e., who consumes the output of the model. Whereas, slowdowns additionally
hurt the executor or the owner of the model through the computations and latency increased at
the cloud providers. In some ML-in-the-cloud scenarios, where these two are different actors, the
adversary might aim to target only the executor or both the executor and the user. To this end, we
modify our objective function to push Fi(x) towards a slightly non-uniform distribution, favoring
either the ground truth label for preventing misclassifications or a wrong label for causing them. We
test this idea on our VGG-16-based SDN model on CIFAR-10 in RAD<5% setting. We see that
DeepSloth for preserving the accuracy leads to 81% accuracy with 0.02 efficacy and DeepSloth for
hurting the accuracy leads to 4% accuracy with 0.01 efficacy—the original DeepSloth led to 13%
accuracy with 0.01 efficacy. These results show the flexibility of DeepSloth and how it could be
modified depending on the attacker’s goals.

5.2 TOWARDS A BLACK-BOX ATTACK: TRANSFERABILITY OF DEEPSLOTH

Transferability of adversarial examples imply that they can still hurt a model that they were not
crafted on (Tramèr et al., 2017a; Liu et al., 2017). Even though white-box attacks are important to
expose the vulnerability, black-box attacks, by requiring fewer assumptions, are more practical. Here,
on four distinct scenarios, we investigate whether DeepSloth is transferable. Based on the scenario’s
constraints, we (i) train a surrogate model; (ii) craft the DeepSloth samples on it; and (iii) use these
samples on the victim. We run these experiments on CIFAR-10 in the RAD<5%.

Cross-Architecture. First, we relax the assumption that the attacker knows the victim architecture.
We evaluate the transferability between a VGG-16-based SDN an an MSDNet—all trained using
the same D. We find that the samples crafted on the MSDNet can slowdown the SDN: reducing its
efficacy to 0.63 (from 0.77) and accuracy to 78% (from 88%). Interestingly, the opposite seems not
to be the case: on the samples crafted against the SDN, the MSDNet still has 0.87 efficacy (from
0.89) and 73% accuracy (from 85%). This hints that DeepSloth transfers if the adversary uses an
effective multi-exit models as the surrogate.

Limited Training Set Knowledge. Second, we relax the assumption that the attacker knows the
victim’s training set, D. Here, the attacker only knows a random portion of D, i.e., 10%, 25%, and
50%. We use VGG-16 architecture for both the surrogate and victim models. In the 10%, 25% and
50% settings, respectively, the attacks reduce the victim’s efficacy to 0.66, 0.5, 0.45 and 0.43 (from
0.77); its accuracy to 81%, 73%, 72% and 74% (from 88%). Overall, the more limited the adversary’s
D is, the less generalization ability the surrogate has and the less transferable the attacks are.

Cross-Domain. Third, we relax the assumption that the attacker exactly knows the victim’s task.
Here, the attacker uses D∫ to train the surrogate, different from the victim’s D altogether. We use a
VGG-16 on CIFAR-100 as the surrogate and attack a VGG-16-based victim model on CIFAR-10.
This transfer attack reduces the victim’s efficacy to 0.63 (from 0.77) and its accuracy to 83% (from
88%). We see that the cross-domain attack might be more effective than the limited D scenarios.
This makes DeepSloth particularly dangerous as the attacker, without knowing the victim’s D, can
collect a similar dataset and still slowdown the victim. We hypothesize the transferability of earlier
layer features in CNNs (Yosinski et al., 2014) enables the perturbations attack to transfer from one
domain to another, as long as they are similar enough.

8

Published as a conference paper at ICLR 2021

Cross-Mechnanism. Finally, we test the scenario where the victim uses a completely different
mechanism than a multi-exit architecture to implement input adaptiveness, i.e., SkipNet (Wang et al.,
2018). A SkipNet, a modified residual network, selectively skips convolutional blocks based on the
activations of the previous layer and, therefore, does not include any internal classifiers. We use a
pre-trained SkipNet on CIFAR-10 that reduces the average computation for each input sample by
∼50% over an equivalent ResNet and achieves ∼94% accuracy. We then feed DeepSloth samples
crafted on a MSDNet to this SkipNet, which reduces its average computational saving to ∼32%
(36% less effective) and its accuracy to 37%. This result suggests that the two different mechanisms
have more in common than previously known and might share the vulnerability. We believe that
understanding the underlying mechanisms through which adaptive models save computation is an
important research question for future work.

6 STANDARD ADVERSARIAL TRAINING IS NOT A COUNTERMEASURE

In this section, we examine whether a defender can adapt a standard countermeasure against adversar-
ial perturbations, adversarial training (AT) (Madry et al., 2018), to mitigate our attack. AT decreases a
model’s sensitivity to perturbations that significantly change the model’s outputs. While this scheme
is effective against adversarial examples that aim to trigger misclassifications; it is unclear whether
using our DeepSloth samples for AT can also robustify a multi-exit model against slowdown attacks.

To evaluate, we train our multi-exit models as follows. We first take a base network—VGG-16—and
train it on CIFAR-10 on PGD-10 adversarial examples. We then convert the resulting model into
a multi-exit architecture, using the modification from (Kaya et al., 2019). During this conversion,
we adversarially train individual exit points using PGD-10, PGD-10 (avg.), PGD-10 (max.), and
DeepSloth; similar to (Hu et al., 2020). Finally, we measure the efficacy and accuracy of the trained
models against PGD-20, PGD-20 (avg.), PGD-20 (max.), and DeepSloth, on CIFAR-10’s test-set.

Table 3: Evaluating adversarial training against slowdown attacks. Each entry includes the
model’s efficacy score (left) and accuracy (right). Results are on CIFAR-10, in the RAD<5% setting.

ADV. TRAINING NO ATTACK PGD-20 PGD-20 (AVG.) PGD-20 (MAX.) DEEPSLOTH

UNDEFENDED 0.77 / 89% 0.79 / 29% 0.85 / 10% 0.81 / 27% 0.01 / 13%
PGD-10 0.61 / 72% 0.55 / 38% 0.64 / 23% 0.58 / 29% 0.33 / 70%
PGD-10 (AVG.) 0.53 / 72% 0.47 / 36% 0.47 / 35% 0.47 / 35% 0.32 / 70%
PGD-10 (MAX.) 0.57 / 72% 0.51 / 37% 0.54 / 30% 0.52 / 34% 0.32 / 70%

OURS 0.74 / 72% 0.71 / 38% 0.82 / 14% 0.77 / 21% 0.44 / 67%
OURS + PGD-10 0.61 / 73% 0.55 / 38% 0.63 / 23% 0.58 / 28% 0.33 / 70%

Our results in Table 3 verify that AT provides resilience against all PGD attacks. Besides, AT provides
some resilience to our attack: DeepSloth reduces the efficacy to ∼0.32 on robust models vs. 0.01
on the undefended one. However, we identify a trade-off between the robustness and efficiency of
multi-exits. Compared to the undefended model, on clean samples, we see that robust models have
lower efficacy—0.77 vs. 0.53∼0.61. We observe that the model trained only with our DeepSloth
samples (Ours) can recover the efficacy on both the clean and our DeepSloth samples, but this model
loses its robustness against PGD attacks. Moreover, when we train a model on both our DeepSloth
samples and PGD-10 (Ours + PGD-10), the trained model suffers from low efficacy. Our results
imply that a defender may require an out-of-the-box defense, such as flagging the users whose queries
bypass the early-exits more often than clean samples for which the multi-exit network was calibrated.

7 CONCLUSIONS

This work exposes the vulnerability of input-adaptive inference mechanisms against adversarial
slowdowns. As a vehicle for exploring this vulnerability systematically, we propose DeepSloth,
an attack that introduces imperceptible adversarial perturbations to test-time inputs for offsetting
the computational benefits of multi-exit inference mechanisms. We show that a white-box attack,
which perturbs each sample individually, eliminates any computational savings these mechanisms
provide. We also show that it is possible to craft universal slowdown perturbations, which can be

9

Published as a conference paper at ICLR 2021

reused, and transferable samples, in a black-box setting. Moreover, adversarial training, a standard
countermeasure for adversarial perturbations, is not effective against DeepSloth. Our analysis suggests
that slowdown attacks are a realistic, yet under-appreciated, threat against adaptive models.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their feedback. This research was partially supported by the
Department of Defense.

REFERENCES

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In Jennifer Dy and Andreas Krause (eds.), Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pp. 274–283, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018. PMLR. URL http:
//proceedings.mlr.press/v80/athalye18a.html.

Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable methods for 8-bit
training of neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems
31, pp. 5145–5153. Curran Associates, Inc., 2018. URL http://papers.nips.cc/paper/
7761-scalable-methods-for-8-bit-training-of-neural-networks.pdf.

N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), pp. 39–57, 2017.

Jiasi Chen and Xukan Ran. Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8):
1655–1674, 2019.

Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net attacks to deep neural
networks via adversarial examples. arXiv preprint arXiv:1709.04114, 2017.

Elias De Coninck, Tim Verbelen, Bert Vankeirsbilck, Steven Bohez, Pieter Simoens, Piet Demeester, and Bart
Dhoedt. Distributed neural networks for internet of things: The big-little approach. In International Internet
of Things Summit, pp. 484–492. Springer, 2015.

Michael Figurnov, Maxwell D. Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry Vetrov, and Ruslan
Salakhutdinov. Spatially Adaptive Computation Time for Residual Networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples. In
International Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.
6572.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Mirazul Haque, Anki Chauhan, Cong Liu, and Wei Yang. Ilfo: Adversarial attack on adaptive neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew Senior,
Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups. IEEE Signal processing magazine, 29(6):
82–97, 2012.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. DynaBERT: Dynamic BERT with
Adaptive Width and Depth. In Advances in Neural Information Processing Systems, 2020.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications, 2017.

10

http://proceedings.mlr.press/v80/athalye18a.html
http://proceedings.mlr.press/v80/athalye18a.html
http://papers.nips.cc/paper/7761-scalable-methods-for-8-bit-training-of-neural-networks.pdf
http://papers.nips.cc/paper/7761-scalable-methods-for-8-bit-training-of-neural-networks.pdf
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572

Published as a conference paper at ICLR 2021

C. Hu, W. Bao, D. Wang, and F. Liu. Dynamic adaptive dnn surgery for inference acceleration on the edge.
In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 1423–1431, 2019. doi:
10.1109/INFOCOM.2019.8737614.

Ting-Kuei Hu, Tianlong Chen, Haotao Wang, and Zhangyang Wang. Triple wins: Boosting accuracy, robustness
and efficiency together by enabling input-adaptive inference. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=rJgzzJHtDB.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Weinberger. Multi-
scale dense networks for resource efficient image classification. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=Hk2aImxAb.

Nathan Inkawhich, Wei Wen, Hai (Helen) Li, and Yiran Chen. Feature space perturbations yield more transferable
adversarial examples. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

Weiwen Jiang, Edwin H.-M. Sha, Xinyi Zhang, Lei Yang, Qingfeng Zhuge, Yiyu Shi, and Jingtong Hu. Achieving
super-linear speedup across multi-fpga for real-time dnn inference. ACM Trans. Embed. Comput. Syst., 18(5s),
October 2019. ISSN 1539-9087. doi: 10.1145/3358192. URL https://doi.org/10.1145/3358192.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. In Proceedings of the Twenty-
Second International Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’17, pp. 615–629, New York, NY, USA, 2017. Association for Computing Machinery.
ISBN 9781450344654. doi: 10.1145/3037697.3037698. URL https://doi.org/10.1145/3037697.
3037698.

Yiğitcan Kaya, Sanghyun Hong, and Tudor Dumitraş. Shallow-Deep Networks: Understanding and mitigating
network overthinking. In Proceedings of the 2019 International Conference on Machine Learning (ICML),
Long Beach, CA, Jun 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana. Certified robustness to adversarial examples with
differential privacy. In 2019 IEEE Symposium on Security and Privacy (SP), pp. 656–672, 2019.

En Li, Zhi Zhou, and Xu Chen. Edge intelligence: On-demand deep learning model co-inference with device-
edge synergy. In Proceedings of the 2018 Workshop on Mobile Edge Communications, MECOMM’18, pp.
31–36, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450359061. doi:
10.1145/3229556.3229562. URL https://doi.org/10.1145/3229556.3229562.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
CoRR, abs/1608.08710, 2016. URL http://arxiv.org/abs/1608.08710.

Fangzhou Liao, Ming Liang, Yinpeng Dong, Tianyu Pang, Xiaolin Hu, and Jun Zhu. Defense against adversarial
attacks using high-level representation guided denoiser. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018.

Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial examples and
black-box attacks. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=Sys6GJqxl.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial
perturbations. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

11

https://openreview.net/forum?id=rJgzzJHtDB
https://openreview.net/forum?id=Hk2aImxAb
https://doi.org/10.1145/3358192
https://doi.org/10.1145/3037697.3037698
https://doi.org/10.1145/3037697.3037698
https://doi.org/10.1145/3229556.3229562
http://arxiv.org/abs/1608.08710
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=Sys6GJqxl
https://openreview.net/forum?id=rJzIBfZAb

Published as a conference paper at ICLR 2021

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations of deep learning in
adversarial settings. In 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 372–387,
2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Ananthram Swami.
Practical black-box attacks against machine learning. In Proceedings of the 2017 ACM on Asia conference on
computer and communications security, pp. 506–519, 2017.

Se Jin Park, Murali Subramaniyam, Seoung Eun Kim, Seunghee Hong, Joo Hyeong Lee, Chan Min Jo, and
Youngseob Seo. Development of the elderly healthcare monitoring system with iot. In Advances in Human
Factors and Ergonomics in Healthcare, pp. 309–315. Springer, 2017.

Jérôme Rony, Luiz G Hafemann, Luiz S Oliveira, Ismail Ben Ayed, Robert Sabourin, and Eric Granger.
Decoupling direction and norm for efficient gradient-based l2 adversarial attacks and defenses. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4322–4330, 2019.

Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition,
2014.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend: Leveraging
generative models to understand and defend against adversarial examples. In International Conference on
Learning Representations, 2018. URL https://openreview.net/forum?id=rJUYGxbCW.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1–9, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus. Intriguing properties of neural networks. In International Conference on Learning Representations,
2014. URL http://arxiv.org/abs/1312.6199.

Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In
Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 6105–6114, Long Beach,
California, USA, 09–15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/tan19a.
html.

Ben Taylor, Vicent Sanz Marco, Willy Wolff, Yehia Elkhatib, and Zheng Wang. Adaptive deep learning model
selection on embedded systems. ACM SIGPLAN Notices, 53(6):31–43, 2018.

S. Teerapittayanon, B. McDanel, and H. T. Kung. Branchynet: Fast inference via early exiting from deep neural
networks. In 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2464–2469, 2016.

Tiny. Tiny ImageNet Visual Recognition Challenge. http://tiny-imagenet.herokuapp.com/.
Accessed: 2020-09-28.

Florian Tramèr and Dan Boneh. Adversarial training and robustness for multiple perturbations. In Advances in
Neural Information Processing Systems, pp. 5866–5876, 2019.

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space of transferable
adversarial examples. arXiv preprint arXiv:1704.03453, 2017a.

Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. The space of transferable
adversarial examples. arXiv preprint arXiv:1704.03453, 2017b.

Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E. Gonzalez. SkipNet: Learning Dynamic Routing
in Convolutional Networks. In The European Conference on Computer Vision (ECCV), September 2018.

Weilin Xu, David Evans, and Yanjun Qi. Feature squeezing: Detecting adversarial examples in deep neural
networks. arXiv preprint arXiv:1704.01155, 2017.

Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial robustness with
matrix estimation. arXiv preprint arXiv:1905.11971, 2019.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural
networks? In Advances in neural information processing systems, pp. 3320–3328, 2014.

12

https://openreview.net/forum?id=rJUYGxbCW
http://arxiv.org/abs/1312.6199
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://tiny-imagenet.herokuapp.com/

Published as a conference paper at ICLR 2021

Li Zhou, Hao Wen, Radu Teodorescu, and David H.C. Du. Distributing deep neural networks with containerized
partitions at the edge. In 2nd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 19), Renton, WA,
July 2019. USENIX Association. URL https://www.usenix.org/conference/hotedge19/
presentation/zhou.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. BERT Loses Patience: Fast
and Robust Inference with Early Exit. In Advances in Neural Information Processing Systems, 2020.

13

https://www.usenix.org/conference/hotedge19/presentation/zhou
https://www.usenix.org/conference/hotedge19/presentation/zhou

Published as a conference paper at ICLR 2021

A MOTIVATING EXAMPLES

Here, we discuss two exemplary scenarios where an adversary can exploit the slowdown attacks.

• (Case 1) Attacks on cloud-based IoT applications. In most cases, cloud-based IoT applications,
such as Apple Siri, Google Now, or Microsoft Cortana, run their DNN inferences in the cloud.
This cloud-only approach puts all the computational burden on cloud servers and increases the
communications between the servers and IoT devices. In consequence, recent work (Kang et al.,
2017; Li et al., 2018; Zhou et al., 2019) utilizes multi-exit architectures for bringing computationally
expensive models, e.g. language models (Zhou et al., 2020; Hou et al., 2020), in the cloud to IoT
(or mobile) devices. They split a multi-exit model into two partitions and deploy each of them
to a server and IoT devices, respectively. Under this scheme, the cloud server only takes care of
complex inputs that the shallow partition cannot correctly classify at the edge. As a result, one can
reduce the computations in the cloud and decrease communications between the cloud and edge.
On the other hand, our adversary, by applying human-imperceptible perturbations, can convert
simple inputs into complex inputs. These adversarial inputs will bypass early-exits and, as a result,
reduce (or even offset) the computational and communication savings provided by prior work.
Here, a defender may deploy DoS defenses such as firewalls or rate-limiting. In this setting, the
attacker may not cause DoS because defenses keep the communications between the server and
IoT devices under a certain-level. Nevertheless, the attacker still increases: (i) the computations
at the edge (by making inputs skip early-exits) and (ii) the number of samples that cloud servers
process. Recall that a VGG-16 SDN model classifies 90% of clean CIFAR-10 instances correctly
at the first exit. If the adversarial examples crafted by the attacker bypass only the first exit, one
can easily increase the computations on IoT devices and make them send requests to the cloud.

• (Case 2) Attacks on real-time DNN inference for resource- and time-constrained scenarios.
Recent work on the real-time systems (Hu et al., 2019; Jiang et al., 2019) harnesses multi-exit
architectures and model partitioning as a solution to optimize real-time DNN inference for resource-
and time-constrained scenarios. Hu et al. (2019) showed a real-world prototype of an optimal
model partitioning, which is based on a self-driving car video dataset, can improve latency and
throughput of partitioned models on the cloud and edge by 6.5–14×, respectively.
However, the prior work does not consider the danger of slowdown attacks; our threat model has
not been discussed before in the literature. Our results in Sec 5 suggest that slowdown can be
induced adversarially, potentially violating real-time guarantees. For example, our attacker can
force partitioned models on the cloud and edge to use maximal computations for inference. Further,
the same adversarial examples also require the inference results from the model running on the
cloud, which potentially increases the response time of the edge devices by 1.5–5×. Our work
showed that multi-exit architectures should be used with caution in real-time systems.

B HYPERPARAMETERS

In our experiments, we use the following hyperparameters to craft adversarial perturbations.

`∞-based DeepSloth. We find that `∞-based DeepSloth does not require careful tuning. For the
standard attack, we set the total number of iterations to 30 and the step size to α = 0.002. For the
modified attacks for hurting or preserving the accuracy, we set the total number of iterations to 75
and the step size to α = 0.001. We compute the standard perturbations using the entire 10k test-set
samples in CIFAR-10 and Tiny Imagenet. For the universal variants, we set the total number of
iterations to 12 and reduce the initial step size of α = 0.005 by a factor of 10 every 4 iterations. To
compute a universal perturbation, we use randomly chosen 250 (CIFAR-10) and 200 (Tiny Imagenet)
training samples.

`2-based DeepSloth. For both the standard and universal attacks, we set the total number of iterations
to 550 and the step size γ to 0.1. Our initial perturbation has the `2-norm of 1.0. Here, we use the
same number of samples for crafting the standard and universal perturbations as the `∞-based attacks.

`1-based DeepSloth. For our standard `1-based DeepSloth, we set the total number of iterations to
250, the step size α to 0.5, and the gradient sparsity to 99. For the universal variants, we reduce the
total number of iterations to 100 and set the gradient sparsity to 90. Other hyperparameters remain
the same. We use the same number of samples as the `∞-based attacks, to craft the perturbations.

14

Published as a conference paper at ICLR 2021

C EMPIRICAL EVALUATION OF `1 AND `2 DEEPSLOTH

Table 4 and Table 5 shows the effectiveness of `1-based and `2-based DeepSloth attacks, respectively.

Table 4: The effectiveness of `1 DeepSloth. ‘RAD<5,15%’ columns list the results in each early-exit
setting. Each entry includes the model’s efficacy score (left) and accuracy (right). The class-universal
attack’s results are an average of 10 classes. ‘TI’ is Tiny Imagenet and ‘C10’ is CIFAR-10.

NETWORK MSDNET VGG16 MOBILENET

SET. RAD<5% RAD<15% RAD<5% RAD<15% RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.89 / 85% 0.89 / 85% 0.77 / 89% 0.89 / 79% 0.83 / 87% 0.92 / 79%
TI 0.64 / 55% 0.83 / 50% 0.39 / 57% 0.51 / 52% 0.42 / 57% 0.59 / 51%

DEEPSLOTH
C10 0.36 / 51% 0.35 / 51% 0.12 / 36% 0.34 / 45% 0.18 / 41% 0.49 / 53%
TI 0.23 / 37% 0.51 / 40% 0.08 / 22% 0.15 / 25% 0.08 / 33% 0.19 / 35%

UNIVERSAL DEEPSLOTH
C10 0.89 / 83% 0.89 / 83% 0.75 / 85% 0.88 / 75% 0.82 / 85% 0.92 / 77%
TI 0.64 / 55% 0.83 / 50% 0.38 / 57% 0.51 / 52% 0.41 / 57% 0.59 / 51%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.88 / 73% 0.88 / 73% 0.69 / 78% 0.86 / 67% 0.76 / 74% 0.89 / 65%
TI 0.64 / 54% 0.83 / 49% 0.39 / 59% 0.50 / 58% 0.41 / 60% 0.58 / 53%

Table 5: The effectiveness of `2 DeepSloth. ‘RAD<5,15%’ columns list the results in each early-exit
setting. Each entry includes the model’s efficacy score (left) and accuracy (right). The class-universal
attack’s results are an average of 10 classes. ‘TI’ is Tiny Imagenet and ‘C10’ is CIFAR-10.

NETWORK MSDNET VGG16 MOBILENET

SET. RAD<5% RAD<15% RAD<5% RAD<15% RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.89 / 85% 0.89 / 85% 0.77 / 89% 0.89 / 79% 0.83 / 87% 0.92 / 79%
TI 0.64 / 55% 0.83 / 50% 0.39 / 57% 0.51 / 52% 0.42 / 57% 0.59 / 51%

DEEPSLOTH
C10 0.52 / 64% 0.52 / 64% 0.22 / 60% 0.45 / 62% 0.23 / 46% 0.48 / 55%
TI 0.24 / 42% 0.52 / 44% 0.13 / 35% 0.21 / 36% 0.12 / 38% 0.25 / 40%

UNIVERSAL DEEPSLOTH
C10 0.89 / 81% 0.89 / 81% 0.75 / 87% 0.88 / 76% 0.81 / 84% 0.92 / 76%
TI 0.63 / 54% 0.82 / 48% 0.38 / 56% 0.51 / 52% 0.41 / 56% 0.58 / 51%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.88 / 73% 0.88 / 73% 0.71 / 81% 0.86 / 70% 0.76 / 76% 0.89 / 66%
TI 0.64 / 53% 0.83 / 49% 0.38 / 57% 0.50 / 57% 0.41 / 58% 0.58 / 53%

Our results show that the `1- and `2-based attacks are less effective than the `∞-based attacks. In
contrast to the `∞-based attacks that eliminate the efficacy of victim multi-exit models, the `1-
and `2-based attacks reduce the efficacy of the same models by 0.24∼0.65. Besides, the accuracy
drops caused by `1- and `2-based attacks are in 6∼21%, smaller than that of `∞-based DeepSloth
(75∼99%). Moreover, we see that the universal variants of `1- and `2-based attacks can barely reduce
the efficacy of multi-exit models—they decrease the efficacy up to 0.08 and the accuracy by 12%.

15

Published as a conference paper at ICLR 2021

D EMPIRICAL EVALUATION OF DEEPSLOTH ON RESNET56

Table 6 shows the the effectiveness of our DeepSloth attacks on ResNet56-base models.

Table 6: The effectiveness of DeepSloth on the ResNet-based models. ‘RAD<5,15%’ columns
list the results in each early-exit setting. Each entry includes the model’s efficacy score (left) and
accuracy (right). The class-universal attack’s results are an average of 10 classes.

NETWORK RESNET (`∞) RESNET (`1) RESNET (`2)

SET. RAD<5% RAD<15% RAD<5% RAD<15% RAD<5% RAD<15%

BASELINE (NO ATTACK)
C10 0.52 / 87% 0.69 / 80% 0.52 / 87% 0.69 / 80% 0.51 / 87% 0.69 / 80%
TI 0.25 / 51% 0.39 / 46% 0.25 / 51% 0.39 / 46% 0.25 / 51% 0.39 / 46%

DEEPSLOTH
C10 0.00 / 19% 0.01 / 19% 0.05 / 43% 0.18 / 47% 0.06 / 45% 0.17 / 48%
TI 0.00 / 7% 0.01 / 7% 0.04 / 27% 0.10 / 28% 0.05 / 34% 0.13 / 35%

UNIVERSAL DEEPSLOTH
C10 0.35 / 63% 0.59 / 60% 0.49 / 84% 0.68 / 75% 0.48 / 85% 0.67 / 76%
TI 0.25 / 25% 0.34 / 37% 0.25 / 51% 0.39 / 46% 0.25 / 51% 0.38 / 46%

CLASS-UNIVERSAL DEEPSLOTH
C10 0.23 / 33% 0.48 / 29% 0.39 / 70% 0.60 / 61% 0.39 / 71% 0.60 / 61%
TI 0.11 / 21% 0.23 / 18% 0.23 / 51% 0.36 / 46% 0.23 / 50% 0.36 / 46%

Our results show that ResNet56-based models are vulnerable to all the `∞, `2, and `1-based DeepSloth
attacks. Using our `∞-based DeepSloth, the attacker can reduce the efficacy of the victim models
to 0.00∼0.01 and the accuracy by 39∼68%. Besides, the `2, and `1-based attacks also decrease the
efficacy to 0.04∼0.18 and the accuracy by 11∼44%. Compared to the results on MSDNet, VGG16,
and MobileNet in Table 4 and 5, the same attacks are more effective. The universal variants decrease
the efficacy up to 0.21 and the accuracy up to 24%. In particular, the `2, and `1-based attacks (on
CIFAR-10 models) are effective than the same attacks on MSDNet, VGG16, and MobileNet models.

E COST OF CRAFTING DEEPSLOTH SAMPLES

ATTACKS TIME (SEC.)

PGD-20 38
PGD-20 (AVG.) 48
PGD-20 (MAX.) 475

DEEPSLOTH 44
UNIVERSAL DEEPSLOTH 2

Table 7: Time it takes to craft attacks.

In Table 7, we compare the cost of DeepSloth with
other attack algorithms on a VGG16-based CIFAR-
10 model—executed on a single Nvidia Tesla-V100
GPU. For the universal DeepSloth, we measure the
execution time for crafting a perturbation using one
batch (250 samples) of the training set. For the other
attacks, we measure the time for perturbing the whole
test set of CIFAR-10. Our DeepSloth takes roughly
the same time as the PGD and PGD-avg attacks and
significantly less time than the PGD-max attack. Our
universal DeepSloth takes only 2 seconds (10x faster than DeepSloth) as it only uses 250 samples.

F ADVERSARIAL EXAMPLES FROM STANDARD ATTACKS AND DEEPSLOTH

In Figure 4, we visualize the adversarial examples from the PGD, UAP and our DeepSloth attacks.

16

Published as a conference paper at ICLR 2021

Standard Attacks DeepSloth
Original PGD PGD (avg.) PGD (max.) UAP Per-sample Universal Class-specific

`inf of the Perturbations (on Average)
`inf 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Figure 4: Adversarial examples from the standard and our DeepSloth attacks. The leftmost
column shows the clean images. In the next four columns, we show adversarial examples from PGD,
PGD (avg.), PGD (max.), and UAP attacks, respectively. The last four columns include adversarial
examples from the three variants of DeepSloth. Each row corresponds to each sample, and the last
row contains the average `inf -norm of the perturbations over the eight samples in each attack.

17

	Introduction
	Related Work
	Experimental Setup
	Attacking the Multi-Exit Architectures
	Threat Model
	Standard Adversarial Attacks Do Not Cause Delays
	The DeepSloth Attack

	Empirical Evaluation
	White-Box Scenarios
	Towards a Black-Box Attack: Transferability of DeepSloth

	Standard Adversarial Training Is Not a Countermeasure
	Conclusions
	Motivating Examples
	Hyperparameters
	Empirical Evaluation of 1 and 2 DeepSloth
	Empirical Evaluation of DeepSloth on ResNet56
	Cost of Crafting DeepSloth Samples
	Adversarial Examples from Standard Attacks and DeepSloth

