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Abstract

Bayesian Optimization (BO) is an effective approach to optimize black-box func-
tions, relying on a probabilistic surrogate to model the response surface. In this
work, we propose to use a Prior-data Fitted Network (PFN) as a cheap and flexible
surrogate. PFNs are neural networks that approximate the Posterior Predictive Dis-
tribution (PPD) in a single forward-pass. Most importantly, they can approximate
the PPD for any prior distribution that we can sample from efficiently. Addition-
ally, we show what is required for PFNs to be used in a standard BO setting with
common acquisition functions. We evaluated the performance of a PFN surrogate
for Hyperparameter optimization (HPO), a major application of BO. While the
method can still fail for some search spaces, we fare comparable or better than the
state-of-the-art on the HPO-B and PD1 benchmark.

1 Introduction

Gaussian processes (GPs) are today's de facto standard surrogate model in Bayesian Optimization
(BO) [7]. This dominance can be attributed to both their strong performance and their mathematical
convenience. The set of priors that GPs can model is restricted, though. A GP can only model
priors that can be encoded as a valid kernel function and, as the name says, only normally-distributed
priors. Moreover, kernel hyperparameters are typically not treated in a Bayesian manner, likely
due to the high cost of running Markov Chain Monte Carlo for this full Bayesian view, which was
already shown to yield strong results a decade ago [1, 16]. Instead, GPs are usually fitted with
maximum likelihood in most BO packages; this procedure, often referred to as “Empirical Bayes”
makes Bayesian Optimization less principled from a Bayesian point of view than it could be.

The recently proposed Prior-data Fitted Networks (PFNs, 14) show that fast approximate Bayesian
inference is possible by training a neural network to mimic the posterior predictive distribution (PPD).
This is a powerful approach, as it makes approximate Bayesian inference readily usable in novel
applications and allows using any prior that we can sample from. E.g., it has been applied to perform
Bayesian inference on tabular data [10] with a prior over different neural architectures and their
weights, generalizing the usual notion of Bayesian deep learning to not only quantify uncertainty
over the weights of a fixed architecture but over the joint space of architectures and weights.

In this work, we show how to use PFNs as a more flexible, Bayesian, drop-in replacement for Gaussian
Processes for real-world Bayesian optimization problems. We show that PFNs can be applied to
Bayesian optimization and find important pre-processing steps to make them a strong BO surrogate.
In our experiments, we focus on BO for hyperparameter optimization (HPO 6). This is an important
task to bring machine learning algorithms to top performance and a major BO application [3, 16, 9].
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2 Bayesian Optimization with PFNs

Prior-data Fitted Networks (PFNs, 14) are neural networks (meta-)trained to perform approximate
Bayesian prediction. That is, PFNs are trained to predict some output y ∈ R conditioned on an input
x ∈ Rk and a training set of given input-output examples D = {(xi, yi)}Ni=1. The PFN is trained on
this task with samples obtained from a prior distribution p, i.e., {(x1, y1), ..., (xN , yN ), (x, y)} ∼
p(D). The algorithm thus is solely trained on artificial data. The loss function for training a PFN qθ
with parameters θ is the cross entropy for predicting the hold-out example's label

ℓθ = E(x,y)∪D∼p(D)[−log qθ(y|x, D)]. (1)

After training on artificial datasets drawn from the prior p(D), we use the trained PFN to approximate
the PPD of this prior, based on which we compute the acquisition values. Last, we maximize the
acquisition values for new inputs to find the configuration to be queried next.

We contrast Bayesian optimization with PFNs and GPs (with Empirical Bayes) in Algorithm 1 in the
Appendix. The major difference is that PFNs have an up-front cost of fitting the PFN once, while
Empirical Bayes incurs the online cost of fitting the hyperparameters in each iteration. We emphasize
that PFNs incur the training cost exactly once per prior, and that a single trained PFN can be used
for BO on different tasks with different dimensions, just like the code base for GP regression is a
one-time investment that is then generally applicable.

2.1 A HEBO-inspired Prior for BO

HEBO [4] is a state-of-the-art BO method that won the NeurIPS blackbox competition [20]
and demonstrated excellent performance in a recent comparison [5]. Thus, we build a
prior based on the one used by HEBO. Our HEBO-inspired prior considers parameters ϕ =
{outputscale, lengthscale,noise,Kumaraswamy parameters} modelled like random variables
subject to some distribution p(ϕ;ψ) that depend on hyperparameters ψ. To sample functions, we
perform the following four steps per dataset: i) Sample x from a uniform distribution, ii) sample
the parameters ϕ ∼ p(ϕ;ψ), iii) transform x using the Kumaraswamy CDF, iv) draw the outputs
for our dataset y ∼ N (0,K(x;ϕ)), where K is the covariance matrix defined by the 3/2 Matérn
kernel, which uses the sampled outputscale, lengthscale and noise. For additional details on ψ see
Appendix B.

2.2 PFN Adaptions for BO

Acquisition Functions When we condition a PFN on new observations, we get an approximation
of the PPD in a forward-pass p(y|x, D) ≈ qθ(y|x, D) in the form of a Riemann distribution, i.e., a
distribution over bins spanning a reasonable output range. The Riemann distribution [14] allows us to
calculate the utility exactly for different acquisition functions, e.g., EI, PI or UCB. To exemplify the
general approach, we outline how to compute the PI(f∗) =

∫∞
−∞[y > f∗]p(y)dy for the unbounded

Riemann distribution in Appendix D. We experimented with EI, PI, UCB and the HEBO acquisition
function ensemble [4] and found that simple EI works well enough and is stable.

Inference Strategies We found that two more tricks improve the performance of our PFNs consider-
ably. i) We use a power transform to transform the observed outputs to a distribution more similar to a
standard-normal, like proposed by HEBO [4]. ii) We found that simple min-max input normalization
between 0 and 1 works well. In many search spaces, dimensions that naturally lie on a logarithmic
scale are not correctly specified, though; this e.g., inspired input warping [18]. We found that we can
improve performance in some scenarios by computing the PPD for an ensemble of d+ 1 members,
where one is normalized like above and for all others we apply a logarithm to a single dimension first.
We also found that ensembling over different permutations of the features can improve performance,
thus we do it when we do not otherwise ensemble.

PFN Training Procedure We only train a single PFN for one particular prior, even though the search
spaces can have different numbers of features. To do this, we sample datasets with different numbers
of dimensions during PFN training. Following [10], we zero-pad and linearly scale the features when
the number of features k is smaller than the maximum number of features K by K

k to make sure
the magnitude of the inputs is similar across different numbers of features. We used the original
PFNs settings for training [14]: an embedding size of 512 and six layers, using Adam [12] and
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Figure 1: Left: Fraction of cases in which the PFN gives a higher likelihood to unseen examples
across 1 000 datasets drawn from the prior. The optimization of the GP failed in 4.5% of cases. We
ignored these cases to be as fair as possible. Right: BO performance after 50 evaluations on the prior
with EI over 1 000 sampled datasets. The majority of runs yielded ties.

cosine-annealing [13] without any special tricks. The learning rate was chosen based on a simple
grid search for minimal training loss.

3 Results

We present results on three problems: optimizing functions sampled from the HEBO prior, HPO on
the HPO-B [15] benchmark and HPO on the PD1 [22] benchmark. We only consider the discrete
setting, but plan to scale the results to continuous spaces in the future. We consider a budget of 50
evaluations and repeat experiments for five seeds per task for the real-world experiments.

3.1 Optimizing Prior Functions

We first study whether PFNs can do BO out of the box with as few confounders as possible, by
evaluating them on functions sampled from the prior that they were trained on.

We first verified that the PFN predictions match the true GP posterior without Empirical Bayes, where
it is computable; as shown in Figure 5 in the appendix. This is not the case when training the PFN on
too few (100k) prior samples but the approximation becomes very tight with enough samples (we
evaluated training on up to 80M samples, but performance was already stable with 20M).

Next, we consider the HEBO prior, following their hyper-prior setup as close as possible. We do not
tune the hyper-prior hyperparameters, e.g. the distribution over the lengthscale, in this experiment
to have a fair comparison. We evaluate the HEBO posterior based on our reimplementation of the
HEBO model in GPyTorch with Empirical Bayes [8]. We stayed as close as possible to HEBO, but
had to make some adaptions as one cannot sample from the HEBO model as it is. Specifically, we
had to introduce simple priors for the hyperparameters of both the kernels used in HEBO (Matérn
and linear kernel), as they did not have a prior attached. We introduce uniform priors (U(0, 1)) for
the lengthscale of both the Matérn and the Linear kernel and the variance of the linear kernel. Next,
we trained a PFN using the HEBO prior with distributions for the hyperparameters (see Section 2.1)
in order to enable PFNs to perform approximate MCMC over the hyperpriors. We compare the
resulting PFN’s fit vs. the Empirical Bayes approximation, as used in HEBO. Figure 1 shows that the
likelihood assigned to held-out outputs is higher for the PFN in many cases; PFNs also become better
with more features. We hypothesize that this is because HEBO’s empirical Bayes approximation
becomes too greedy in high dimensions.

Next, we perform BO on datasets sampled from the prior. Here, we have to introduce the acquisition
function as a confounding factor, which might favor one or the other method. We chose expected
improvement, since it is a default choice in BO, but are aware that this might have an impact on
our results. For every feature size we sample 1 000 different functions, and for each function 1000
uniform random points in [0.0, 1.0]. Across dimensions, the GP with empirical Bayes and our PFN
approximation worked very similar for Bayesian optimization. To assess our method qualitatively,
we provide example query points of optimizations in Figures 4 and 5 in the appendix.
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Figure 2: Performance over number of trials for the test search spaces of HPO-B for the test search
spaces of HPO-B. Figure 6 shows per-search-space results.

3.2 Hyperparameter Optimization

.

Finally, we conduct a large-scale evaluation of PFNs as a surrogate for HPO. We perform experiments
on the large-scale benchmark HPO-B [15], which contains 16 search spaces on 85 datasets. On
HPO-B, we compare our method to the following baselines: 1) Random Search (RS) [2], 2)
Gaussian Processes (GP) [11, 16] 3) DNGO [17] 4) BOHAMIANN [19], 5) Deep Kernel Gaussian
Processes [23], 6) HEBO [4] and 7) a variant of HEBO that only uses EI and does not have initial
design sampling, like our method.

For this experiment, we used a model with the prior described in Section 2.1. To decide on the
prior hyperparameters ψ, we ran a random search over 50 configurations, picked the model that
yielded the lowest regret in a subset of validation search spaces and report results on a separate
set of test search spaces. We specify details on this split in Appendix A. Figure 2 reports results
for the average rank and average regret across all the datasets from the test search spaces, showing
the PFN to attain competitive results compared to the baselines. Moreover, an ensemble of PFNs
with logged dimensions outperforms HEBO, the state-the-of-the-art in HPO. However, we would
like to mention that the performance rankings are very inconsistent across search spaces, and that
all methods, including the PFN, had some validation search spaces for which they performed very
poorly; see Figure 6 in the appendix for examples.

We also evaluated our PFN for the very different image classification tuning benchmarks in PD1 [22];
the results in Appendix E show that in this case it performs very similarly to HEBO.

4 Conclusion & Limitations

We showed that PFNs can be adapted to perform as efficient BO surrogates. Still, we believe that
there is a lot of room to improve upon our work. So far, this work only considers two real-world
benchmarks and no continuous benchmark, as we did not manage to obtain strong results in a
continuous optimization setting yet. This will therefore be the subject of our focus next.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]
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Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See our experiments in Section 3.
(b) Did you describe the limitations of your work? [Yes] We do have limitations. We only

evaluate on discrete benchmarks and we see that our method can utterly fail. These are
described in the experiments in Section 3 and the conclusion in Section4

(c) Did you discuss any potential negative societal impacts of your work? [No] We do not
see any likely bad impact on society

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [No] We are releasing
the code once we are advancing this to a full conference submission. So far, it is still
heavily under development.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] For the main results we provide 95% confidence
intervals.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The total amount of compute
required to train each of the two PFNs used in this paper was 8 GPU-days on RTX
2080 Ti GPUs.

3. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Both benchmarks

we use are cited, as well as the GP framework, we use.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
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Algorithm 1: Bayesian Optimization with PFNs and Bayesian optimization with GPs

Input : A prior distribution over datasets p(D) , hyperparameter prior settings , initial
observations D = {(x1, y1), ..., (xK , yK)}, search space X , number of BO iterations
K, black-box function to optimize f , acquisition function α

Output :Best observed configuration x∗ and response value y∗
Train neural network qθ by minimizing objective function in Equation 1 (once, offline)

for i← 1 to N do
Fit GP model f̂ to data D

Suggest next candidate x ∈ argmaxx̂∈X α(x̂, D, qθ or f̂ )
Update history with response D ← D ∪ {(x, f(x))}

end
Return top performing configuration: argmax(xi,yi)∈D yi

A Search spaces split

We split search spaces so that we have similar algorithms within the same group, therefore procuring
minimal overlap between search spaces. For choosing the prior with the validation dataset, we use
5527, 5891, 5906, 5971, 6767, 6766, 5860. The test search spaces are 5860, 5906, 5965, 5970, 5971,
6766, 6767, 6794.

B Details on the HEBO-inspired Prior

For our final model, not the one used for the direct comparison with HEBO on artificial data,
we made some adaptions to the HEBO prior. We do not use a linear kernel and use the fol-
lowing priors, found by through BO on the validation search spaces of HPO-B, as described in
Section 3.2. We use Gamma(concentration, rate) distributions. For the outputscale we use
Gamma(0.8452, 0.3993) and for the lengthscale we use Gamma(1.2107, 1.5212). For the noise
we follow the original kernel exactly with log(ϵ) ∼ N (−4.63, 0.5). The warping was performed
with log normal distributions for its concentrations, s.t. log(concentration0) ∼ N (0, 0.5939) and
log(concentration1) ∼ N (0, 0.9722).

C Training Details

We only train a single PFN for one particular prior, even though the search spaces can have different
numbers of features. To do this, we sample datasets with different numbers of dimensions during PFN
training. Following [10], we zero-pad and linearly scale the features when the number of features k
is smaller than the maximum number of features K by K

k to make sure the magnitude of the inputs is
similar across different numbers of features.

Our PFNs were trained in the standard PFN settings. We use an embedding size of 512 and six layers.
Our models were trained with Adam [12] and cosine-annealing [13] without any special tricks. The
lr was chosen based on simple grid searches for minimal training loss.

D Riemman Distribution and Acqusition Function

We outline how to compute the PI(f∗) =
∫∞
−∞[y > f∗]p(y)dy for the unbounded Riemann

distribution.
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Figure 3: Average rank and regret on the image classification tasks of PD1.

∫ ∞

−∞
[y > f∗]p(y)dy (2)

=

∫ y1

−∞
[y > f∗]p(y)dy +

M∑
i=1

∫ yi+1

yi

[y > f∗]p(y)dy +

∫ ∞

yM+1

[y > f∗]p(y)dy (3)

= (1− Fl(y1 − f∗)) +
M∑
i=1

{
(yi+1 − f∗) p(bi)

yi+1−yi
, if yi < f∗ < yi+1

[yi ≤ f∗]p(bi) , else

}
+ Fr(f

∗ − yM+1)

(4)

= (1− Fl(y1 − f∗)) +
M∑
i=1

(yi+1 −min(yi+1,max(f
∗, yi)))

p(bi)

yi+1 − yi
+ Fr(f

∗ − yM+1), (5)

where Fl (Fr) is the CDF of the half-normal distribution used for the left (right) side. The acquisition
function is divided into three terms: (1) a term that governs the probability mass for values lower than
interval b1 and that goes up to values of y1, (2) a term that summarizes over all intervals b1, . . . , bM ,
and (3) a term that governs the probability mass for values larger than the interval bM and that start
from values of yM + 1.

E Evaluation on PD1

We evaluated on all vision tasks of PD1, which amounts to a total of 17 tasks in the same search
space. We make this choice, as these share their evaluation metric: accuracy. For each task we ran 5
seeds with a different (shared) single initial given evaluation. In Figure 3, we can see that even on a
completely different benchmark the PFN is very competetive with HEBO.
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Figure 5: In this figure, we compare models trained on a simple GP prior (with fixed hyper-
parameters), thus we can compare to the exact posterior of the GP. We show how PFNs behave
differently depending on how much they were trained. Vertical lines mark the maximum acquisition
function.
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Figure 6: Average Ranks across search spaces. We can see that the PFN generally works well, but
also has clear failure modes for some search spaces, which need further investigation.
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