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Figure 1: X-Distill is a simple yet effective visual encoder enabling data-efficient visuomotor learning.
A. X-Distill is obtained by cross-architecture knowledge distillation from a large ViT teacher into a
compact CNN student on general-purpose image datasets. B. Designed for visuomotor policy learning,
X-Distill can be jointly fine-tuned end-to-end with a diffusion policy head on robotics-specific datasets.
C. Given a few (20 ∼ 25) demonstrations per task, X-Distill significantly outperforms representative
counterparts on real-world manipulation tasks, exhibiting its surprising effectiveness.

ABSTRACT

Visuomotor policies often leverage large pre-trained Vision Transformers (ViTs)
for their powerful generalization capabilities. However, their significant data re-
quirements present a major challenge in the data-scarce context of most robotic
learning settings, where compact CNNs with strong inductive biases can be more
easily optimized. To address this trade-off, we introduce X-Distill, a simple yet
highly effective method that synergizes the strengths of both architectures. Our
approach involves an offline, cross-architecture knowledge distillation, transferring
the rich visual representations of a large, frozen DINOv2 teacher to a compact
ResNet-18 student on the general-purpose ImageNet dataset. This distilled en-
coder, now endowed with powerful visual priors, is then jointly fine-tuned with a
diffusion policy head on the target manipulation tasks. Extensive experiments on
34 simulated benchmarks and 5 challenging real-world tasks demonstrate that our
method consistently outperforms policies equipped with from-scratch ResNet or
fine-tuned DINOv2 encoders. Notably, X-Distill also surpasses 3D encoders that
utilize privileged point cloud observations or much larger Vision-Language Models.
Our work highlights the efficacy of a simple, well-founded distillation strategy for
achieving state-of-the-art performance in data-efficient robotic manipulation.

1 INTRODUCTION

Visuomotor policies, exemplified by Diffusion Policy Chi et al. (2023), are promising solutions for
generalizable robotic manipulation. As end-to-end approaches, they typically rely on a visual encoder
to extract manipulation-centric features from the raw pixels of a scene, followed by a policy head that
generates concrete robot actions conditioning on the extracted visual features.

Benefiting from the success of large-scale vision pre-training Caron et al. (2021); Radford et al.
(2021), it has become a common practice in recent advances Chi et al. (2024); Lin et al. (2024);
Xue et al. (2025); Team et al. (2025) to initialize the visual encoder in a visuomotor policy with
off-the-shelf, pre-trained Vision Transformers (ViTs) Dosovitskiy et al. (2021), e.g., CLIP Radford
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et al. (2021) or DINOv2 Oquab et al. (2023). These ViT-backend pre-trained models are found
to exhibit enhanced generalization capabilities compared to Convolutional Neural Network (CNN)
counterparts lacking open-world semantic knowledge, e.g., a ResNet He et al. (2016) trained from
scratch.

However, lacking the strong intrinsic inductive biases inherent to CNNs, such as locality and
translation equivariance, ViTs are known to struggle when faced with limited amounts of training
data Dosovitskiy et al. (2021); Touvron et al. (2021). This issue becomes prominent and inevitable in
the context of robot learning, where the dataset size is significantly smaller than in computer vision.
Despite the recent trend among embodied AI startups to train policies with hundreds of hours of
high-quality data produced by a data collection factory Black et al. (2024); Bu et al. (2025); Jiang
et al. (2025), most researchers in academia typically collect data by hand, thus favoring data-efficient
policies that perform well under a dataset size constraint of tens to a few hundred manipulation
trajectories.

In this work, we find that simple advances to the visual encoder can yield higher-performing and
more data-efficient visuomotor policies. More specifically, we design a cross-architecture vision
distillation mechanism, or X-Distill in short, which attempts to combine the merits of both the
open-world semantic generalization capabilities of pre-trained ViT models, and the inductive bias of
CNN architectures that facilitate policy optimization under the low-data regime.

On an implementation level, we instantiate X-Distill by selecting DINOv2 (ViT-L/14) as the teacher
encoder, a lightweight from-scratch ResNet-18 as the student encoder, and the mean squared error
(MSE) between the teacher and student features as the knowledge distillation Hinton et al. (2015)
loss. To make the X-Distilled encoder generally effective for diverse tasks, environments, and robot
platforms, we choose the general-purpose ImageNet dataset as the distillation corpus, avoiding
potential overfitting to any specific robotic scenarios. After X-Distillation, the CNN-backend encoder
with ViT pre-training knowledge can be seamlessly integrated into the policy learning pipeline, jointly
fine-tuned with the policy head in an end-to-end manner on any robotics-specific datasets.

We validate the effectiveness of X-Distill by conducting experiments on 34 simulated tasks across
MetaWorld (Yu et al., 2020), Adroit (Kumar, 2016; Rajeswaran et al., 2017b), and DexArt (Bao et al.,
2023) benchmarks, with 10 demonstrations per task. We also design 5 real-world tasks, carefully
defining their In-Distribution (ID) and Out-of-Distribution (OOD) conditions and preparing 20 ∼ 25
demonstrations per task. Empirically, we find that Diffusion Policy with X-Distill consistently
outperforms counterparts equipped with ResNet from scratch or DINOv2 as the encoder. Additionally,
our policy also outperforms 3D Diffusion Policy Ze et al. (2024), which utilizes privileged 3D
observation, as well as π0 Black et al. (2024), a Vision-Language-Action (VLA) model that adopts a
much larger VLM Beyer et al. (2024) as the visual perception encoder. Finally, we present a detailed
qualitative analysis of the learned representations, providing insights into how X-Distill achieves
superior performance over the baseline methods. Please refer to the project website for robot videos.

2 RELATED WORK

2.1 VISUAL REPRESENTATION LEARNING

After the dominance of Convolutional Neural Networks (CNNs) He et al. (2016); Simonyan &
Zisserman (2014); Tan & Le (2019) in the 2010s, Vision Transformers (ViTs) Dosovitskiy et al.
(2021); Touvron et al. (2021); Liu et al. (2021) have gained increasing popularity in the 2020s
because of their superior scaling capabilities and impressive representational power when pre-trained
on large-scale datasets Caron et al. (2021); He et al. (2020; 2022); Oquab et al. (2023). Despite
this trend, CNNs maintain a crucial edge in low-data regimes and continue to see widespread
practical deployment. The key reason for this is the strong inductive bias inherent in CNNs. The
convolutional operator imposes assumptions of locality and spatial weight sharing, which make them
remarkably data-efficient. On the other hand, ViTs lack such biases and therefore require exposure to
massive datasets to learn fundamental visual concepts. This discrepancy in data requirements keeps
CNNs popular in many specialized domains, such as medical diagnostics Shamshad et al. (2023) or
manufacturing quality control Liu et al. (2024), where large labeled datasets are often unavailable.
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2.2 CROSS-ARCHITECTURE KNOWLEDGE DISTILLATION

Knowledge distillation (KD) has become a cornerstone technique for model compression and knowl-
edge transfer. Most work has focused on distillation between homologous architectures, including
traditional CNN-to-CNN approaches Hinton et al. (2015) and more modern ViT-to-ViT frameworks
designed for efficiency such as TinyViT Wu et al. (2022). For robotics, homologous knowledge
distillation was recently explored by Theia (Shang et al., 2024), which fuses knowledge from multiple
pre-trained ViTs into a single unified ViT encoder. In comparison, cross-architecture distillation is
comparatively underexplored. Liu et al. (2022a). A representative work is DeiT Touvron et al. (2021),
a CNN-to-ViT distillation where a CNN teacher can stabilize a data-hungry ViT student. By contrast,
our work adopts the converse approach: a ViT-to-CNN distillation aiming to combine the inductive
bias of a CNN with the powerful semantic understanding of a large-scale pre-trained ViT.

2.3 VISUOMOTOR POLICY LEARNING

Visuomotor policy learning is a promising paradigm for robotic manipulation. Representative works
in this vein include Diffusion Policy Chi et al. (2023) and related approaches (Pearce et al., 2023;
Reuss et al., 2023; Xian et al., 2023; Hu et al., 2024; Sridhar et al., 2024; Prasad et al., 2024),
which typically consists of a visual encoder followed by a policy head network. Recently, Vision-
Language-Action (VLA) models have been proposed to replace the visual encoder with more capable
vision-language models (VLMs) Brohan et al. (2023); Reed et al. (2023); Black et al. (2024); Team
et al. (2024); Liu et al. (2025), enabling impressive generalization abilities such as zero-shot skill
deployment in unseen homes Intelligence et al. (2025). However, finetuning the VLM requires a
substantial amount of training data. State-of-the-art VLAs such as π0 Black et al. (2024), AgiBot
GO-1 Bu et al. (2025), and Galaxea G0 Jiang et al. (2025) all rely on their embodiment-specific
large-scale datasets, measured either in millions by the number of trajectories or in hundreds of hours
by the physical on-robot execution time. In this work, we focus on training capable visuomotor
policies when a limited amount of training data is available, i.e., using only ∼ 25 demonstration
trajectories per task.

3 METHOD

3.1 X-DISTILL: A CROSS-ARCHITECTURE DISTILLATION METHOD

As detailed in Algorithm 1a in Appendix A, we employ cross-architecture knowledge distillation
to transfer the representational capabilities of a large Vision Transformer (ViT) into a compact
CNN with beneficial inductive biases. Crucially, this entire process is conducted exclusively on the
general-purpose ImageNet-1K Krizhevsky et al. (2017) dataset (X ), which contains approximately
1.3 million images depicting a wide variety of real-world objects and scenes. This decoupling of
visual feature distillation from the downstream domain-specific datasets makes X-Distill entirely
domain-agnostic. In other words, the resulting X-Distill encoder is universally suitable for all kinds
of robotic manipulation tasks, thus avoiding potential overfitting to any specific environments, camera
setups, or robotic embodiments.

Selection of teacher and student networks. We select the pre-trained DINOv2 (ViT-L/14) model
as our teacher T . With approximately 304M parameters, this large-scale model is used off-the-
shelf as a frozen feature extractor, serving as a robust source of semantic and structural visual
knowledge. For the student model S , we choose a highly compact ResNet-18 architecture with only
11M parameters. The choice of student network prioritizes not only its computational efficiency with
a network parameter size nearly 28× smaller than the teacher, but also its strong inductive biases
such as spatial locality that are beneficial for manipulation tasks.

Domain-agnostic distillation. The student is trained to replicate the feature outputs of the teacher
on ImageNet-1K. For a given input image x, we extract the global [CLS] token from the DINOv2
teacher, which serves as the target feature vector. The ResNet-18 student architecture is modified
with a final linear layer to match the feature dimension of the teacher. The core objective is then to
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minimize the direct Mean Squared Error (MSE) between these two feature vectors:

LKD = Ex∼X

[
∥fT (x)− fS(x)∥22

]
(1)

where fT and fS represent the complete feature extraction processes of the teacher and the dimension-
aligned student, respectively. This process results in a ResNet-18 with parameter weights S∗, which
encodes the open-world generalization knowledge of the teacher network.

3.2 FINETUNING X-DISTILL FOR VISUOMOTOR POLICY LEARNING

Given the powerful initialization provided by X-Distill, we deploy the encoder S∗ for downstream
policy learning on a target robotics dataset, as outlined in Algorithm 1b. We use a Diffusion Policy Chi
et al. (2023) head, which generates action chunks conditioned on robot observations.

At each timestep, the distilled encoder S∗ processes a history of camera images xt−To+1:t into a
visual feature vector zimg. This vector is concatenated with the robot’s proprioceptive state st to form
a comprehensive conditioning vector, c = concat(zimg, st). This conditioning vector c guides the
entire action generation process. During inference, actions are generated by iteratively denoising a
random Gaussian tensor, conditioned on this vector c.

Crucially, both the distilled encoder S∗ and the diffusion policy head πθ are jointly trained on robotics-
specific datasets. This end-to-end optimization allows the powerful, general-purpose features from
the distillation phase to be fine-tuned and specialized for the specific demands of the manipulation
task. The entire system is optimized by minimizing the diffusion loss objective:

Ldiff = EA0,ϵ,k

[
∥ϵ− ϵθ(A

0 + σkϵ|c, k)∥2
]
, (2)

where A0 denotes the ground-truth actions, ϵ ∼ N (0, I), and k is sampled from the diffusion steps.

4 SIMULATION EXPERIMENTS

4.1 SETUP

Simulation benchmarks. To thoroughly evaluate the effectiveness of our method, we conduct
experiments across a total of 34 tasks from 3 distinct MuJoCo-based robotic manipulation benchmarks.
Our evaluation encompasses tasks requiring parallel gripper manipulation from MetaWorld (Yu et al.,
2020), dexterous motor skills from Adroit (Kumar, 2016; Rajeswaran et al., 2017b), and articulated
object manipulation from DexArt (Bao et al., 2023). Tasks in MetaWorld are categorized into various
difficulty levels—easy, medium, hard, and very hard—based on Seo et al. (2023). A brief overview
of the tasks is provided in Appendix B.

Expert demonstrations. 10 trajectories are collected for each simulation task. For MetaWorld,
scripted policies are employed. Trajectories in the remaining domains are gathered using agents
trained via reinforcement learning (RL): specifically, VRL3 (Wang et al., 2022) is applied for Adroit,
while PPO (Schulman et al., 2017) is utilized for the remaining benchmarks. Other training-related
hyperparameters can be found in the Appendix C.

Evaluation Metric. We report all results averaged over 3 random seeds (0, 1, and 2). For each
individual training run, we evaluate the policy on 20 episodes every 200 epochs, and the highest
success rate achieved throughout the run is reported for that seed. The final values presented in our
tables are the mean of these scores across the 3 seeds.

4.2 PERFORMANCE

Compared methods. We compare X-Distilled ResNet-18 (11M) against several visual encoder
counterparts with a similar number of parameters, including:

• ResNet-scratch (He et al., 2016), ResNet-18 (11M) trained from scratch;
• DINOv2 (Oquab et al., 2023), ViT-small (21M) pre-trained using large-scale self-supervision;
• Depth-Anything (Yang et al., 2024), ViT-small (24.8M) trained for monocular depth estimation;
• Theia (Shang et al., 2024), ViT-small (22M) that distills multiple vision foundation models.

4
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Table 1: Averaged success rates on MetaWorld, Adroit and Dexart benchmarks. PointNet-
DP3 is marked in gray because it processes privileged background-cropped 3D point clouds.

Method MetaWorld Adroit (3) Dexart (2) Average
(easy 20) (medium 7) (hard 1) (very hard 1)

ResNet-scratch 76.6 48.0 38.0 50.0 37.7 54.5 64.1
DINOv2 78.5 46.0 48.0 38.0 51.7 58.0 66.2
Depth-Anything 68.2 29.3 42.0 43.0 40.3 66.0 56.1
Theia 50.9 13.7 0.0 38.3 8.7 24.0 36.0
X-Distill (Ours) 93.9 88.3 48.0 88.0 68.3 63.5 87.2
PointNet-DP3 90.4 70.6 14.0 72.0 40.7 85.0 84.0

Additionally, we also benchmark against PointNet-DP3 (Ze et al., 2024), a PointNet-based architec-
ture (0.06M) processing privileged background-cropped 3D point cloud observations.

Main results. As summarized in Table 1, X-Distill achieves the best overall average performance
across all 34 tasks. It consistently outperforms all 2D vision baselines by a significant margin,
securing state-of-the-art success rates in most simulation benchmarks. This validates the effectiveness
of our distillation strategy for data-scarce visuomotor learning.

Notably, our 2D approach remains highly competitive even in geometrically demanding settings where
methods leveraging privileged 3D inputs have a natural advantage. For instance, the DexArt-Toilet
task requires the robot to lift the toilet lid from a frontal viewpoint, which is inherently challenging
to estimate the depth relationship between the gripper and the object to be manipulated from a
single RGB image. Nevertheless, X-Distill still demonstrates decent performance in many of these
challenging tasks, showcasing a strong prior in spatial reasoning. More detailed settings and results
are available in Appendix B and Figure 6.

Table 2: Ablation study on MetaWorld benchmarks. We evaluate the impact of teacher model
scale (DINOv2-L vs. S), student architectural bias (CNN vs. ViT), and student model scale.

Teacher Student MW-20
(easy)

MW-7
(medium)

MW-1
(hard)

MW-1
(v. hard) Average

ResNet-18 (11M) 93.9 88.3 48.0 88.0 90.7
DINOv2-L ViT-S-Half (11M) 72.0 25.3 2.0 40.0 57.2

ConvNeXt (89M) 91.8 77.4 50.0 83.0 86.6

DINOv2-S ResNet-18 (11M) 94.3 87.3 43.0 90.0 90.6

4.3 ABLATION STUDIES

We conduct ablation studies to investigate the impact of the teacher network parameter size, as well
as the student network architectural bias and parameter size within our X-Distill framework. The
ablation results are summarized in Table 2.

Teacher network parameter size. We distill DINOv2-S (21M) and DINOv2-L (304M) teachers
into the same ResNet-18 student. No significant difference can be observed between DINOv2-S and
DINOv2-L, indicating our X-Distill framework is insensitive to the specific network configurations
of a well-pre-trained teacher network. Nevertheless, we use the DINOv2-L teacher for all subsequent
experiments to ensure the maximized knowledge quality that the teacher could provide.

Student network architectural bias. We distill the same DINOv2-L teacher into a ResNet-18
(11M) and a customized ViT-S-Half (11M) of the same size. The ResNet-18 student substantially
outperforms its ViT counterpart by 33.5%. This highlights the crucial role of convolutional inductive
biases for visuomotor learning in a low-data regime, supporting our primary hypothesis.

Student network parameter size. We compare our compact ResNet-18 (11M) student to a much
larger ConvNeXt (89M) Liu et al. (2022b) CNN counterpart. Despite its greater capacity, the larger
model achieves a slightly degraded success rate by 4.1% on robotics tasks. This confirms our intuition
that smaller visual encoders with stronger inductive biases are easier to optimize, thus beneficial for
data-efficient policy learning.

5
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Move Cube Move Brush Writing “AGI” Drawer Close Door Open

Figure 2: Visualization of configurations for our real-world tasks. The orange arrow provides
a schematic representation of the gripper trajectory as derived from the data. The green regions
represent the distribution of object/robot configurations seen during training demonstrations, while
the red regions illustrate the novel configurations used for generalization testing.

5 REAL-WORLD EXPERIMENTS

5.1 EXPERIMENT SETUP

We conduct all real-world experiments with an X-Arm 6 robotic arm, capture image observations
through a web camera at 15Hz, and prepare a small collection of demonstrations (20 ∼ 25) per
task via Meta-Quest VR teleoperation (in Appendix E). We design 5 tabletop manipulation tasks,
and carefully define their In-Distribution (ID) and Out-of-Distribution (OOD) object randomization
ranges for rigorous and repeatable evaluation. Task execution trajectories as well as ID and OOD
ranges are illustrated in Figure 2. Detailed numbers of demonstrations and evaluation trials can be
found in Table 3.

More specifically, Move Cube requires the robot to pick up an orange cube and place it into a bowl. In
addition to testing on OOD cube positions, we also conduct a color generalization (C-Gen) test with
unseen yellow and green cubes. Move Brush requires the robot to pick up a brush pen with various
initial orientational and translational offsets and place it onto a stand. Writing “AGI” requires the
robot to sequentially write letters “AGI” on a randomly placed piece of paper. We conduct OOD
dynamic perturbation trials, where human perturbators randomly drag the paper elsewhere while the
robot is writing letters. Drawer Open requires the robot to insert its finger into varying initial gaps
of the randomly placed drawer, and then open it by sliding outward. Door Close requires the robot
to close the door from various initial open angles by pushing it inward. More task descriptions are
provided in the Appendix F.

5.2 EXPERIMENT RESULTS AND ANALYSIS

Baselines. We compare our X-Distill encoder against three representative counterparts. The first two
are Diffusion Policies equipped with either a ResNet encoder trained from scratch or an off-the-shelf
DINOv2 encoder. Both of the two baseline policies, as well as our approach, are trained for 1500
epochs on our task-specific data. Our third baseline is the state-of-the-art Vision-Language-Action
(VLA) model, π0 Black et al. (2024). Considering its significant computational requirements, we
performed supervised fine-tuning (SFT) for 30, 000 steps, following the official recommendations,
which took approximately 20 hours on a single A100 GPU. All methods were trained using the same
dataset consisting of the same limited number of demonstrations to ensure a fair comparison.

Main results. The quantitative results for real-world experiments are summarized in Table 3. X-
Distill demonstrates clear superiority, consistently outperforming all baseline approaches by a large
margin and achieving the highest success rates across both ID and OOD evaluation settings. Simply
finetuning a large ViT encoder like DINOv2 yields poor performance, confirming the challenge of
effectively optimizing large Transformer networks in data-scarce scenarios and underscoring the
effectiveness of our cross-architecture distillation.

6
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Table 3: A comparison of task execution success rates (%) for real-world tasks, along with the
numbers of demonstrations and evaluation trials.

Method Move Cube Move Brush Writing “AGI” Drawer Open Door Close Average
ID OOD C-Gen ID OOD ID OOD ID OOD ID OOD

# Demos 20 0 0 24 0 25 0 20 0 20 0 –
# Eval Trials 15 5 10 4 8 5 4 5 15 5 10 –

ResNet-scratch 66.7 0.0 50.0 0.0 0.0 40.0 25.0 100.0 13.3 60.0 80.0 41.9
DINOv2 26.7 20.0 20.0 0.0 0.0 0.0 0.0 80.0 13.3 100.0 90.0 31.4
π0 (SFT) 0.0 0.0 0.0 25.0 0.0 0.0 0.0 80.0 33.3 80.0 90.0 26.7
X-Distill (Ours) 93.3 40.0 70.0 75.0 25.0 100.0 100.0 100.0 53.3 100.0 100.0 75.6

The performance gap is particularly insightful when comparing against the VLA model, π0. While
π0 shows reasonable success on simpler tasks like Drawer Open, it struggles significantly on more
complex, high-precision tasks such as Writing “AGI”, where its performance drops to zero. This
suggests that directly finetuning a large, generalist VLA on small, task-specific datasets is a significant
challenge. In contrast, our X-Distill framework effectively bridges this gap by transferring knowledge
into a compact, data-efficient architecture, highlighting the importance of matching the model and
pre-training strategy to the available data resources.

Repetitive

Loop

Persistent

Hesitation

Ideal

Behavior

Task Execution Progress

Figure 3: Representative trajectory types observed in the “Writing AGI” task. We identify
three distinct behaviors: (1) Ideal Behavior: Successful and robust execution of all three letters,
even under perturbation. (2) Repetitive Loop: Perseverative behavior where the policy gets stuck
repeatedly writing the first letter ‘A’. (3) Persistent Hesitation: Dithering motion above the paper
without initiating the writing task.

5.3 QUALITATIVE ANALYSIS

We focus on our most challenging long-horizon task, Writing “AGI”, where success critically
depends on the encoder’s ability to discern subtle but crucial visual state changes. For instance, before
starting to write ‘G’, the robot’s physical state is nearly identical to when it starts writing ‘A’; the
only distinguishing information is the visual context of the letter ‘A’ already present on the paper.

Empirically, we observe that Diffusion Policy with ResNet-scratch often fails by repeatedly executing
the trajectory for ‘A’, indicating an inability to visually differentiate these critical semantic states.
Meanwhile, Diffusion Policy with DINOv2 and π0 (SFT) often get stuck and start trembling before
writing any letter, which is a potential sign of underfitting. In comparison, Diffusion Policy with

7
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ResNet-scratch

X-Distill (Ours)

𝝅𝟎

DINOv2

Figure 4: t-SNE visualization of learned feature spaces on the “Writing AGI” task. Our X-
Distill encoder learns to form three distinct clusters corresponding to the task’s semantic stages,
quantitatively confirming a well-separated feature space with a high Silhouette Score Rousseeuw
(1987) of 0.472, which indicates a high degree of cluster cohesion and separation compared with the
baselines. This semantic separability is crucial for the policy to accurately identify the current task
stage, enabling precise long-horizon planning for the sequential writing task.

X-Distill is the only one among the compared methods that manages to differentiate all critical
stages and completes writing all the three letters sequentially one by one. Even under severe external
disturbances that drag the paper away during the writing process, the X-Distill-empowered policy is
still robust, responsively following the movement of the paper and rapidly adapting to the correct
position for writing the next letter. Example trajectories are shown in Figure 3. To provide deeper
insights into how X-Distill achieves superior quantitative performance compared to its counterparts,
we conduct further t-SNE analysis and saliency map visualization of the learned visual representations.

t-SNE visualization of feature space separability. The global structure of the learned feature space
is visualized via t-SNE Maaten & Hinton (2008) in Figure 4. Each data point corresponds to the
feature of a frame sampled from three crucial stages for policy decision making marked in three
respective colors: (1) before writing ‘A’, (2) before writing ‘G’, and (3) before writing ‘I’. The
features produced from an ideal visual encoder should form three distinct clusters, corresponding
to the three colors. It can be observed that X-Distill gives a more separable feature space than the
Paligemma Beyer et al. (2024) encoder extracted from π0, while the features from both ResNet-
scratch and DINOv2 are nearly indistinguishable. These results indicate that X-Distill learns a feature
space that is semantically coherent and robust to visual distractors.

Inspecting task-relevant feature attribution via saliency maps. To further investigate how our
X-Distill achieves emergent semantic feature separation, we inspect pixel-level feature attribution
by visualizing the saliency maps. For saliency visualization, we adopt Grad-CAM for CNN-based
models Selvaraju et al. (2019), and the cross-attention strengths between the [CLS] token and all
local patch features for ViT-based models Dosovitskiy et al. (2020); Chefer et al. (2021), providing
a cross-architecture comparison of the visual focus. As shown in Figure 5, both DINOv2 and π0

are unable to effectively shift the high-attention regions throughout the task progress, which cross-
verifies our earlier judgment of underfitting. Meanwhile, the saliency maps of ResNet-scratch and
X-Distill exhibits more reasonable shifting patterns, but the latter is significantly more precise. More
specifically, before writing ‘A’ on the blank page, the full attention of X-Distill is focused on the
robot gripper, the primary actor. Then, before writing ‘G’, its focus dynamically shifts to the letter
‘A’ already on the paper. Finally, before writing ‘I’, X-Distill shifts attention again, attending to the
letter ‘G’, whose appearance serves as the cue to write the final letter ‘I’.
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DINOv2ResNet-scratch X-Distill (Ours)𝝅𝟎Original Image

Figure 5: Saliency map comparison on the “Writing AGI” task. We visualize the model’s visual
focus at the beginning of each writing stage. Our X-Distill encoder correctly shifts its attention from
the gripper (before ‘A’), to the letter ‘A’ (before ‘G’), and finally to the letter ‘G’ (before ‘I’). Baseline
models exhibit diffuse or irrelevant attention.

The t-SNE and saliency map visualizations combined reveal that X-Distill successfully learns a
semantically meaningful and robust visual representation. Such representation can well differentiate
critical states and dynamically focus on task-relevant visual cues, which ultimately contributes to the
policy’s success in complex long-horizon manipulation tasks.

6 CONCLUSION

In this work, we introduced X-Distill, a simple yet effective framework to address the trade-off
between powerful Vision Transformers and data-efficient CNNs for robotic manipulation. Our core
contribution is an offline, cross-architecture knowledge distillation from a DINOv2 teacher to a
ResNet-18 student on the general-purpose ImageNet dataset. Extensive experiments on 34 simulated
and 5 challenging real-world tasks validate our approach, showing that X-Distill not only outperforms
standard encoders but also surpasses stronger baselines that utilize privileged 3D data or much larger
VLMs. Our analyses reveal this success stems from the encoder’s ability to learn a semantically
separable and accurately grounded feature space. Ultimately, our work demonstrates that a simple,
well-founded distillation strategy is a key enabler for achieving state-of-the-art performance in
data-efficient visuomotor learning.

Limitations and Future Work. While X-Distill demonstrates strong performance, its full potential
remains to be explored. Our current implementation uses a direct MSE loss on the final feature repre-
sentations. An exciting future direction is to investigate more sophisticated distillation techniques,
such as aligning intermediate feature maps or attention distributions Liu et al. (2022a), which could
potentially transfer finer-grained knowledge. Furthermore, while we focused on a unimodal visual
teacher (DINOv2), future work could explore distilling from large multimodal models, such as VLAs.
This could imbue the compact student encoder not only with powerful visual features but also with
implicit language-grounded semantic priors, potentially unlocking even greater generalization capa-
bilities. Furthermore, while our work focuses on the data-scarce regime, investigating its scalability
and potential benefits in data-rich scenarios remains an important open question.

LLM usage disclosure. We used the Gemini 2.5 pro model to refine grammar and phrasing.
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A ALGORITHM PSEUDO-CODE

Algorithm 1 outlines our two-stage framework. Sub-algorithm (a) describes the knowledge distillation
process where a student ResNet is trained to mimic the representations of a frozen DINOv2 teacher
on ImageNet, yielding our X-Distill encoder. Sub-algorithm (b) shows how this pre-trained encoder
is fine-tuned with a diffusion policy head on target robotic datasets for effective policy learning.

Algorithm 1 How to acquire and leverage X-Distill.
(a) Acquiring X-Distill via Knowledge Distillation

Require: Teacher encoder T (frozen DINOv2),
Student encoder S (from-scratch ResNet),
Domain-agnostic dataset Dlarge (ImageNet).

1: for each training epoch do
2: for each batch x ∈ Dlarge do
3: zT ← fT (x).
4: zS ← fS(x).
5: L← LKD(zS , sg(zT )) ▷ Eq. (1)
6: Update student encoder S via ∇SL.
7: end for
8: end for
9: Save the weights of S as S*

10: return X-Distilled encoder weights S∗.

(b) Leveraging X-Distill via Policy Finetuning

Require: X-Distilled encoder weights S∗, Dif-
fusion policy head πθ, Domain-specific
dataset Drobotics.

1: Initialize encoder S with weights from S∗.
2: for each training epoch do
3: for each batch (o, a) ∈ Drobotics do
4: zimg ← fS(x).
5: c← concat(zimg, s).
6: Compute Ldiff. ▷ Eq. (2)
7: Update S and πθ via ∇S,θLdiff.
8: end for
9: end for

10: return Trained encoder and policy
(S∗∗, π∗

θ).

B SIMULATION ENVIRONMENTS

Simulated tasks. We collect a diverse set of simulated tasks to systematically evaluate imitation
learning algorithms, with a particular focus on robotic manipulation in 2D visual settings. Our
benchmark draws on three key environments: MetaWorld (Yu et al., 2020), Adroit (Rajeswaran et al.,
2017a), and DexArt (Bao et al., 2023), each offering distinct challenges in vision-based motor control.

MetaWorld provides a suite of robotic manipulation tasks designed for multi-task and meta-
reinforcement learning, featuring a variety of object interactions in simulated tabletop scenarios,
all observable via RGB images. Adroit focuses on dexterous hand manipulation using a high-DoF
simulated human hand, with tasks such as object relocation and in-hand rotation, posing significant
challenges in policy learning from pixel inputs. DexArt introduces tasks related to articulated object
manipulation and artistic activities, such as painting or tool use, requiring precise and fine-grained
visuomotor control.

The full list of included tasks is available in Table 5, 6.

C TRAINING DETAILS

Our X-Distill model is trained with the hyperparameter configurations summarized in Table 4.
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Table 4: Summary of key hyperparameter configurations

Parameter Description Parameter Name Value
Diffusion Process

Number of diffusion timesteps num_train_timesteps 50
Noise schedule beta_schedule squaredcos_cap_v2
Prediction target prediction_type epsilon

Network Architecture
Feature dimension feature_dim 64
U-Net decoder channels down_dims [256, 512, 1024]
Convolution kernel size kernel_size 5
Group normalization groups n_groups 8
Condition modulation type condition_type film

Training Configuration
Batch size batch_size 64
Number of epochs num_epochs 3000
Base learning rate lr 0.0001
Optimizer optimizer AdamW
Weight decay weight_decay 0.000001
Gradient accumulation steps gradient_accumulate_every 1
EMA decay use_ema true

Data Configuration
Observation history steps n_obs_steps 2
Prediction horizon horizon 4
Action steps n_action_steps 4
Data loading workers num_workers 8

Inference
Number of denoising steps num_inference_steps 16

D ALL SIMULATION RESULTS

Figure 6 presents the training curves across representative tasks from MetaWorld, Adroit, and DexArt,
demonstrating the consistent performance advantages of our X-Distill approach throughout the
learning process.

Tables 5 and 6 provide comprehensive quantitative comparisons against strong baselines on all
benchmark tasks. Our method achieves superior or competitive performance across the majority of
tasks, particularly excelling in challenging manipulation scenarios like handle pulling, peg insertion,
and complex multi-step operations. The results highlight X-Distill’s robustness across varying task
difficulties and embodiment domains.

Tables 7 and 8 present an extensive ablation study examining the impact of different teacher-student
architecture combinations. Notably, the DINOv2-L to ResNet-18 configuration emerges as the
most effective balance between performance and efficiency, while the consistent superiority of
distilled representations over from-scratch training underscores the value of our knowledge distillation
approach.
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Table 5: Main results on MetaWorld tasks. 29 tasks are evenly split into 6 rows (5 tasks per row).

MetaWorld (Easy)

Alg \Task Lever Pull Door Close Drawer Open Door Lock Door Unlock

ResNet-scratch 30± 18 100± 0 77± 6 70± 19 82± 5
Theia 48± 14 100± 0 100± 0 47± 3 83± 8
Depth-Anything 17± 2 100± 0 63± 5 48± 2 78± 13
DINOv2 47± 5 100± 0 100± 0 63± 2 90± 4
X-Distill (Ours) 75± 8 100± 0 100± 0 100± 0 100± 0
PointNet-DP3 79± 8 100± 0 100± 0 100± 0 100± 0

MetaWorld (Easy)

Alg \Task Drawer Close Faucet Close Faucet Open Handle Press Handle Pull

ResNet-scratch 100± 0 100± 0 100± 0 83± 13 25± 22
Theia 100± 0 3± 3 7± 3 100± 0 13± 10
Depth-Anything 100± 0 88± 6 100± 0 85± 7 18± 2
DINOv2 100± 0 93± 2 100± 0 100± 0 28± 5
X-Distill (Ours) 100± 0 100± 0 100± 0 100± 0 95± 4
PointNet-DP3 100± 0 100± 0 100± 0 100± 0 45± 8

MetaWorld (Easy)

Alg \Task Handle Pull
Side

Plate Slide Plate Slide
Back

Plate Slide
Back Side

Plate Slide
Side

ResNet-scratch 3± 5 90± 14 100± 0 100± 0 100± 0
Theia 12± 16 40± 30 38± 8 62± 47 2± 3
Depth-Anything 12± 2 80± 12 100± 0 100± 0 100± 0
DINOv2 48± 5 80± 4 100± 0 100± 0 100± 0
X-Distill (Ours) 95± 7 100± 0 100± 0 100± 0 100± 0
PointNet-DP3 100± 0 100± 0 100± 0 100± 0 100± 0

MetaWorld (Easy)

Alg \Task Reach Wall Window Close Window Open Reach Peg unplug
side

ResNet-scratch 77± 2 100± 0 93± 10 47± 13 55± 8
Theia 67± 3 42± 6 95± 5 48± 6 10± 0
Depth-Anything 48± 10 90± 14 70± 4 45± 4 22± 6
DINOv2 53± 6 100± 0 78± 13 52± 2 38± 2
X-Distill (Ours) 73± 6 100± 0 100± 0 52± 6 87± 2
PointNet-DP3 68± 3 100± 0 100± 0 24± 1 92± 2

MetaWorld (Medium)

Alg \Task Coffee Push Bin picking Coffee Pull Push Wall Peg Insert
Side

ResNet-scratch 82± 10 68± 9 55± 4 48± 10 28± 13
Theia 32± 3 10± 0 2± 3 3± 6 0± 0
Depth-Anything 38± 2 32± 2 47± 6 33± 2 13± 2
DINOv2 35± 0 52± 13 52± 6 48± 6 35± 4
X-Distill (Ours) 97± 5 95± 4 95± 4 80± 0 88± 2
PointNet-DP3 95± 4 65± 19 85± 11 49± 8 72± 5

MetaWorld (Medium / Hard / Very Hard)

Alg \Task Sweep Sweep into Pick out of hole Disassemble

ResNet-scratch 22± 2 33± 9 38± 9 50± 29
Theia 12± 3 37± 3 0± 0 38± 6
Depth-Anything 20± 4 22± 6 42± 10 43± 6
DINOv2 48± 5 52± 5 48± 9 38± 5
X-Distill (Ours) 85± 4 78± 5 48± 6 88± 6
PointNet-DP3 83± 5 45± 16 14± 9 72± 6
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Figure 6: Training curves on representative simulation tasks. Success rates are shown for selected
tasks from MetaWorld, Adroit, and DexArt.

Table 6: Main results on Adroit and Dexart tasks. Tasks are grouped by difficulty and arranged
across five visually aligned rows.

Adroit Dexart
Alg \ Task Door Pen Relocate Laptop Toilet

ResNet-scratch 47± 7 18± 2 48± 8 52± 5 57± 2
Theia 7± 2 14± 1 5± 4 0± 0 48± 2
Depth-Anything 52± 6 16± 1 53± 5 70± 4 62± 2
DINOv2 57± 6 38± 11 60± 7 53± 13 63± 5
X-Distill (Ours) 73± 9 60± 11 72± 5 65± 4 62± 2
PointNet-DP3 67± 6 52± 6 3± 2 90± 4 80± 0
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Table 7: Main results on MetaWorld tasks. Tasks are grouped by difficulty and arranged across
visually aligned sections.

Metaworld - Easy Tasks

Teacher Student Lever Pull Door Close Drawer Open Door Lock

DINOv2-L
ResNet-18 (11M) 75± 8 100± 0 100± 0 100± 0
ViT-S-Half (11M) 40± 4 100± 0 100± 0 68± 10
ConvNeXt (89M) 73± 8 100± 0 100± 0 100± 0

DINOv2-S ResNet-18 (11M) 82± 12 100± 0 100± 0 100± 0

Metaworld - Easy Tasks

Teacher Student Door Unlock Drawer Close Faucet Close Faucet Open

DINOv2-L
ResNet-18 (11M) 100± 0 100± 0 100± 0 100± 0
ViT-S-Half (11M) 68± 2 100± 0 22± 17 100± 0
ConvNeXt (89M) 100± 0 100± 0 100± 0 100± 0

DINOv2-S ResNet-18 (11M) 100± 0 100± 0 100± 0 100± 0

Metaworld - Easy Tasks

Teacher Student Handle Press Handle Pull Handle Pull
Side

Plate Slide

DINOv2-L
ResNet-18 (11M) 100± 0 95± 4 95± 7 100± 0
ViT-S-Half (11M) 98± 2 13± 5 10± 0 93± 2
ConvNeXt (89M) 100± 0 80± 15 78± 6 98± 2

DINOv2-S ResNet-18 (11M) 100± 0 98± 3 90± 13 100± 0

Metaworld - Easy Tasks

Teacher Student Plate Slide
Back

Plate Slide
Back Side

Plate Slide
Side

Reach Wall

DINOv2-L
ResNet-18 (11M) 100± 0 100± 0 100± 0 73± 6
ViT-S-Half (11M) 85± 7 100± 0 100± 0 72± 5
ConvNeXt (89M) 100± 0 100± 0 100± 0 67± 3

DINOv2-S ResNet-18 (11M) 100± 0 100± 0 100± 0 75± 5

Metaworld - Easy Tasks

Teacher Student Window Close Window Open Coffee Push Bin Picking

DINOv2-L
ResNet-18 (11M) 100± 0 100± 0 97± 5 95± 4
ViT-S-Half (11M) 92± 8 95± 4 35± 4 10± 4
ConvNeXt (89M) 100± 0 100± 0 88± 8 88± 6

DINOv2-S ResNet-18 (11M) 100± 0 100± 0 95± 5 85± 9

Metaworld - Medium Tasks

Teacher Student Reach Peg Unplug
Side

Coffee Pull Push Wall

DINOv2-L
ResNet-18 (11M) 52± 6 87± 2 95± 4 80± 0
ViT-S-Half (11M) 50± 4 33± 2 23± 18 37± 6
ConvNeXt (89M) 52± 3 88± 8 83± 3 73± 8

DINOv2-S ResNet-18 (11M) 52± 6 88± 6 95± 0 83± 3
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Table 8: Main results on MetaWorld tasks (continued).

Metaworld - Medium/Hard Tasks

Teacher Student Peg Insert Side Sweep Sweep Into Pick Out of
Hole

DINOv2-L
ResNet-18 (11M) 88± 2 85± 4 78± 5 48± 6
ViT-S-Half (11M) 7± 6 45± 8 20± 4 2± 2
ConvNeXt (89M) 57± 16 75± 5 78± 6 50± 5

DINOv2-S ResNet-18 (11M) 90± 5 85± 5 78± 3 43± 16

Very Hard Tasks

Teacher Student Disassemble

DINOv2-L
ResNet-18 (11M) 88± 6
ViT-S-Half (11M) 40± 7
ConvNeXt (89M) 83± 8

DINOv2-S ResNet-18 (11M) 90± 5

E REAL-WORLD SETUP

Our real-world evaluation setup, depicted in Figure 7, features a 6-DoF X-Arm robot manipulator
controlled via policies trained with our method. The system utilizes a UGreen camera for visual per-
ception and a Meta-Quest headset for human demonstration data collection, enabling comprehensive
evaluation of manipulation capabilities in physical environments.

Figure 7: Hardware setup comprising the 6-DoF X-Arm robot for control, Meta-Quest headset for
data collection, and UGreen camera for visual perception.

F KEYFRAME SEQUENCE FROM REAL-WORLD TASK

The following figures present keyframe sequences from our real-world robotic manipulation experi-
ments, illustrating both successful executions and representative failure cases for each task.

Move Cube Task: Successful completion requires the robot to reliably pick up the cube and place
it into the bowl. Common failure modes include the gripper colliding with the cube, triggering
emergency stops due to excessive force, or failing to establish a secure grasp on the object (see
Figure 8).

Writing “AGI” Task: Success is defined by the accurate writing of the letters "AGI". Typical
failures include writing incorrect characters, repeatedly writing the same letter without progression,
or complete failure to produce any legible writing (see Figure 9).
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Move Cube

Success

Fail : Failed to catch the cube. 

Figure 8: Move Cube task keyframe sequence. Illustrates successful executions and typical failure
cases of the Move Cube task.

Writing “AGI”

Success

Fail : Wrote the letter wrongly. 

Fail : Repeatedly writing the same letter. 

Figure 9: Writing “AGI” task keyframe sequence. Illustrates successful executions and typical
failure cases of the writing “AGI” task.
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Move Brush Task: Successful execution involves correctly orienting and placing the brush into
the holder. Common failures include incorrect brush orientation, collisions with the brush handle
triggering emergency stops, or complete misses when attempting to grasp the brush (see Figure 10).

Move Brush

Success

Fail : The brush tip is in the wrong direction. 

Fail : Gripper bumped into the pen shaft. 

Fail : Missed the opportunity. 

Figure 10: Move Brush task keyframe sequence. Illustrates successful executions and typical
failure cases of the move brush task.

Drawer Open Task: Success requires smoothly opening the drawer without collisions. The primary
failure mode involves the gripper colliding with the drawer edges, preventing proper engagement and
manipulation (see Figure 11).

Drawer Open

Success

Fail : Hit the edge of the drawer. 

Figure 11: Drawer Open task keyframe sequence. Illustrates successful executions and typical
failure cases of the drawer open task.

Door Close Task: Successful completion entails securely closing the door. The main failure occurs
when the gripper fails to make proper contact with the door surface, resulting in inability to initiate or
complete the closing motion (see Figure 12).
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Door Close

Success

Fail : The outside of the door was not found. 

Figure 12: Door Close task keyframe sequence. Illustrates successful executions and typical failure
cases of the door close task.
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