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Abstract
Accurate weather forecasts are important for dis-
aster prevention, agricultural planning, etc. Tradi-
tional numerical weather prediction (NWP) meth-
ods offer physically interpretable high-accuracy
predictions but are computationally expensive and
fail to fully leverage rapidly growing historical
data. In recent years, deep learning models have
made significant progress in weather forecasting,
but challenges remain, such as balancing global
and regional high-resolution forecasts, excessive
smoothing in extreme event predictions, and in-
sufficient dynamic system modeling. To address
these issues, this paper proposes a global-regional
nested weather forecasting framework (OneFore-
cast) based on graph neural networks. By combin-
ing a dynamic system perspective with multi-grid
theory, we construct a multi-scale graph struc-
ture and densify the target region to capture lo-
cal high-frequency features. We introduce an
adaptive messaging mechanism, using dynamic
gating units to deeply integrate node and edge
features for more accurate extreme event fore-
casting. For high-resolution regional forecasts,
we propose a neural nested grid method to miti-
gate boundary information loss. Experimental re-
sults show that OneForecast performs excellently
across global to regional scales and short-term to
long-term forecasts, especially in extreme event
predictions. Codes link: https://github.
com/YuanGao-YG/OneForecast.
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Figure 1. Forecast results of extreme typhoons. (a) OneForecast’s
predicted wind speed for Typhoon Molva (2020) at 850 hPa pres-
sure level with a 60-hour lead time. (b)–(c) the predicted cyclone
tracks of Typhoon Yagi (2018) and Typhoon Molva (2020) using
different models

1. Introduction
Accurate weather forecasting is crucial for disaster preven-
tion, optimizing agriculture and energy planning, and ensur-
ing water resource management (Chen et al., 2023a; Pathak
et al., 2022; Ahmed et al., 2021). Traditional Numerical
Weather Prediction (NWP) methods (Bauer et al., 2015) rely
on the numerical solution of atmospheric dynamic equa-
tions (Achatz et al., 2023; Buzzicotti et al., 2023), ensuring
consistency across spatiotemporal scales from a physical
perspective. However, with the growing volume of obser-
vational and historical data, and the increasing demand for
high-resolution and long-term forecasts, NWP methods of-
ten struggle with computational costs and fail to fully lever-
age the potential value of vast data.

Recent developments in deep learning (DL) models offer
new perspectives for weather forecasting. Early spatio-
temporal prediction algorithms (Wu et al., 2024a), such
as ConvLSTM (Shi et al., 2015) and PredRNN (Wang
et al., 2022), focus on regional precipitation. Recent large-
scale scientific computing models, like Pangu-weather (Bi
et al., 2023), GraphCast (Lam et al., 2023), and Now-
castNet (Zhang et al., 2023), achieve significant results in
medium- and short-term forecasts and show high potential
in extreme event prediction (e.g., precipitation and Typhoon
track prediction) (Chen et al., 2024; Espeholt et al., 2022;
Gong et al., 2024; Wu et al., 2024b). However, pure AI
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methods still face several core challenges:

❶ Global and regional high-resolution forecasts are hard
to balance. Regional predictions often lack boundary in-
formation, making it difficult to effectively nest global data.
❷ Extreme events and long-term forecasts suffer from
over-smoothing. They fail to capture high-frequency dis-
turbances, leading to reduced forecast accuracy. ❸ Lack of
dynamic system modeling capability. This is especially true
for capturing complex interactions between nodes at multi-
ple scales and learning high-frequency node-edge features.

To address these challenges, we propose OneForecast, a
global-regional nested weather forecasting framework based
on Graph Neural Networks (GNNs). Inspired by heuristic
learning from numerical methods, we construct a multi-scale
graph structure based on dynamical systems and multi-grid
theory (He & Xu, 2019; He et al.), refining it for the target re-
gion to capture local high-frequency features with greater de-
tail. Additionally, to solve issues like over-smoothing in ex-
treme events and long-term forecasts, which hinder the cap-
ture of high-frequency disturbances, we introduce an adap-
tive information propagation mechanism. This mechanism
deepens the integration of node and edge features through
dynamic gating units. Finally, for regional high-resolution
forecasting, we adopt a nested grid strategy (Phillips &
Shukla, 1973) that inherits large-scale background infor-
mation from the global scale, significantly alleviating the
boundary information loss. Through this integrated frame-
work, we aim to effectively capture high-frequency features
and extreme events across global to regional scales, as well
as from short-term to long-term forecasts.

The method most similar to ours is Graph-EFM (Oskarsson
et al., 2024). It also uses a hierarchical graph neural net-
work for global and regional weather modeling. However,
for high-resolution regional forecasts, it treats global low-
resolution data as non-trainable forcing conditions, making
it unable to adaptively couple multi-scale information based
on actual needs. And it doesn’t treats the forecasts of the
global model in the region as forcing, which unable to fully
utilize the information of the global model. In contrast, our
neural nested grid method applies trainable local refinement
to the target region in the network structure. It also updates
boundary and background information with global model
future forcing dynamically through end-to-end training dur-
ing global-regional coupling. This design better captures
the interaction between large-scale global backgrounds and
high-frequency regional details. Our experiments (Sec 3.3)
show that our method achieves greater stability and accuracy
in long-term rolling inference.

The contribution of this paper can be summarized as fol-
lows: (1) Global-Regional Unified Forecasting Framework.
We propose a Graph Neural Network method that supports
both global scale and regional high-resolution forecasting,

achieving high-accuracy results for multi-scale and multi-
time frame weather forecasts within the same framework.
(2) Adaptive Information Propagation Mechanism. Through
Dynamic Gating Units and graph attention modules, we
deeply integrate node and edge features, more accurately
capturing extreme events and other high-frequency distur-
bance signals within the multi-scale graph structure. As
shown in Figure 1, OneForecast delivers better performance
in tracking extreme events like typhoons. (3) Nested Grid
and Long-Term Forecasting. By using a nested grid to merge
global and regional information, we overcome the boundary
loss issue in regional forecasting. This method effectively
mitigates the loss of details caused by over-smoothing in
long-term forecasts.

2. Method
Problem Definition In this study, we model weather fore-
casting as an autoregressive problem (Lam et al., 2023). At
each time step t, we use the meteorological state compris-
ing surface variables Xt and pressure level variables Pt to
forecast the state at the next time step. We concatenate the
surface and pressure level variables along the channel dimen-
sion to form the combined input: Zt = [Xt,Pt] ∈ RN×d,
where N = H ×W represents the number of grid loca-
tions (nodes), and d = dx + dp is the total number of
variables. Here, dx and dp are the numbers of surface level
and pressure level variables, respectively. In our setup,
the initial input contains 69 variables: 4 surface level vari-
ables and 65 pressure level variables. Our model aims
to forecast the combined variables at the next time step
Ẑt+1 using the current input Zt, capturing the spatiotempo-
ral evolution of the atmosphere: Ẑt+1 = Model(Zt; Θ),
where Θ denotes the model parameters. The training
objective is to minimize the relative mean squared error
(MSE) between the forecasts and the true values across

all time steps: minΘ
1
T

∑T−1
t=0

∥Ẑt+1−Zt+1∥2

2

∥Zt+1∥2
2

. During in-
ference, we adopt a rollout strategy to forecast longer se-
quences. Starting from the initial state Z0, the model
recursively uses its previous forecasts as the next input:
Ẑt+1 = Model(Ẑt; Θ), t = 0, 1, 2, . . . , T − 1. This strat-
egy allows the model to generate extended weather forecasts
using its own forecasts.

2.1. Earth-specific Region Refined Graph Encoder

In the encoder of OneForecast, inspired by (Fortunato et al.,
2022) (Lam et al., 2023), we introduce an Earth-specific Re-
gion Refined Multi-scale Graph to improve the interaction
of node features in complex dynamical systems. Inspired
by the idea of multigrid methods (He & Xu, 2019), we con-
struct a multi-level Graph Neural Network architecture that
includes grids of multiple granularities. Each grid has the
same number of nodes but different grid densities, thereby
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Figure 2. Overview of Our OneForecast. (a) The overall architecture includes input variables, an encoder, a message passing module, a
decoder, and visualization of forecast variables; (b) The global forecasts module uses rollout technology to generate future forecasts; (c)
The neural nested grid method specializes in regional high-resolution weather forecasts tasks; and (d) The ensemble forecasting module
generates long-term forecast results.

capturing spatial features at different scales. Specifically,
we define the multi-scale graph structure as:

G =
(
VG,V, E(1), E(2), . . . , E(L), E(R), EG2M, EM2G

)
,

(1)
where VG represents the set of lat-lon grid nodes, with a
total of N = H ×W nodes; V represents the mesh nodes.
E(l) denotes the edge set at the l-th scale, corresponding to
grids of different granularities, where l = 1, 2, . . . , L, and
E(R) represents regional refined edges. EG2M and EM2G

are the unidirectional edges that connect lat-lon grid nodes
and mesh nodes. All scales share the same set of nodes V .
More details can be found in Appendix E.

In the encoder, we first map the input meteorological state
Zt ∈ RN×d to the initial node feature representation:

h
(0)
i = ϕ(Zt,i), i = 1, 2, . . . , N, (2)

where ϕ(·) is the feature mapping function, and Zt,i is the
input feature at node i. Next, we iteratively update the node
features on the multi-scale graph structure. At iteration k,
the feature update formula for node i is:

h
(k)
i = σ

 L∑
l=1

∑
j∈N (l)

i

W(l)h
(k−1)
j + b(l)

 , (3)

where N (l)
i is the set of nodes adjacent to node i at the

l-th scale, W(l) is the weight matrix at the l-th scale, b

is the bias term, and σ(·) is the activation function. To
enhance the forecasting accuracy in specific regions, we
introduce a region-refined grid on the finest global grid.
For nodes within the target region, we add denser edge
connections to capture local high-frequency features. In this
way, the update of node features not only considers global
multi-scale information but also incorporates region-specific
fine-grained information.

2.2. Multi-stream Messaging

To address the issue of information transmission between
nodes in complex dynamic systems, we propose a mod-
ule called Multi-stream Messaging (MSM). This module
consists of an adaptive messaging mechanism, including a
dynamic multi-head gated edge update module and a multi-
head node attention mechanism. And OneForecast includes
16 MSMs for messaging.

Dynamic Multi-head Gated Edge Update Module. Un-
like traditional message passing methods based on MLPs,
we introduce dynamic gating and multi-head mechanisms to
control the information flow more precisely. For each edge,
we concatenate its own features with those of the source
node and the target node:

ci = Concat
(
ei,hs(i),hd(i)

)
∈ RDe+2Dh , (4)

where ei is the feature of edge i, hs(i) and hd(i) are the
features of the source and target nodes of edge i, De is
the edge feature dimension, and Dh is the node feature
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dimension. Next, we generate gating vectors through a two-
layer MLP to regulate the information flow. Specifically,
the gating vector is divided into three parts: edge feature
update gate ge, source node feature gate gs, and destination
node feature gate gd. First, we perform the first layer linear
transformation and activation:

zi = SiLU (W1ci + b1) , (5)

where W1 ∈ Rh×(De+2Dh) is the weight matrix of the first
layer, and b1 ∈ Rh is the bias term. Then, we perform the
second layer linear transformation and Sigmoid activation:

gi = σ (W2zi + b2) ∈ R3HD, (6)

where, W2 ∈ R3HD×h is the weight matrix of the linear
transformation of the second layer, and D is the feature
dimension for each gate. For each head h, the gating val-
ues g

(h,e)
i , g(h,s)

i , and g
(h,d)
i are vectors of dimension D,

corresponding to the edge feature gate, source node feature
gate, and destination node feature gate, respectively. Sub-
sequently, we use Edge Sum MLP (ESMLP) (Pfaff et al.,
2020) to perform linear transformation and nonlinear acti-
vation on the edge features to generate the updated edge
features:

e′i = ESMLPe

(
ei,hs(i),hd(i)

)
∈ RD′

e , (7)

where D′
e is the dimension of the updated edge features.

Finally, we combine the gating vectors and the updated edge
features to generate the final updated edge features through
weighted averaging and residual connections:

enew
i =

1

3

H∑
h=1

(
g
(h,e)
i ⊙ e′i + g

(h,s)
i ⊙ hs(i)

+ g
(h,d)
i ⊙ hd(i)

)
+ ei,

(8)

where ⊙ denotes element-wise multiplication.

Multi-head Node Attention Mechanism. Compared to
traditional message passing mechanisms, multi-head atten-
tion mechanisms can more precisely capture complex de-
pendencies between nodes and dynamically adjust the way
information is aggregated through attention weights. For
each edge ei = (j → k), we use a MLP to calculate the
attention score:

ai = MLPa (e
new
i ) ∈ RH . (9)

Then, we normalize the attention scores:

α
(h)
i =

exp
(
a
(h)
i

)
∑

ej∈E(k) exp
(
a
(h)
j

) , ∀h = 1, 2, . . . ,H, (10)

where E(k) denotes the set of all incoming edges to node k,
and α(h)

i is the attention weight of the h-th attention head for
edge ei. Next, we perform weighted aggregation of the edge
features. For each node k, based on the attention weights,
we compute the weighted sum of the features of all edges
incoming to node k, generating the aggregated feature for
each head:

m
(h)
k =

∑
ei∈E(k)

α
(h)
i · enew

i ∈ RD′
e . (11)

Then, we flatten and concatenate the aggregated features
from all heads:

Mk = Flatten
[
m

(1)
k ,m

(2)
k , . . . ,m

(H)
k

]
∈ RD′

e·H . (12)

Finally, we concatenate the aggregated edge features with
the original node features and, through a MLP, perform
a nonlinear transformation to generate the updated node
features:

hnew
k = MLPn (Concat (Mk,hk)) + hk. (13)

In summary, in each iteration, we use the multi-stream mes-
saging module to update the node features. Specifically, the
node feature update formula is:

h
(k)
i = σ

(
L∑

l=1

MSM
(
h
(k−1)
i , E(l)

)
+ b

)
, (14)

where MSM represents the aforementioned multi-stream
messaging operation, E(l) is the set of edges at the l-th
scale, and σ(·) is the activation function. In the region-
refined graph structure, for nodes within the target region,
we additionally consider the set of edges within the region
E region to capture finer local information.

Theoretical Analysis. From a theoretical perspective, we
explain why our method helps capture high-frequency in-
formation. This enhances long-term prediction ability and
improves the ability to detect extreme events.

Theorem 2.1. High-pass Filtering Property of Multi-
stream Messaging. Considering the improved multi-stream
message passing mechanism, suppose the graph signal
f ∈ RN has a spectrum f̂ = U⊤f under the graph Fourier
basis U = [u1, ...,uN ], where L = UΛU⊤ is the normal-
ized graph Laplacian matrix and Λ = diag(λ1, ..., λN ) is
its eigenvalue diagonal matrix (0 ≤ λ1 ≤ ... ≤ λN ≤ 2).
Define the frequency response function of the message pass-
ing operator as ρ : λ 7→ R. If the dynamic gating weights
satisfy:

g
(h,e)
i , g

(h,s)
i , g

(h,d)
i ∝ |λi − 1|+ ϵ (ϵ > 0) (15)

then there exist constants α > 0 and κ > 0 such that the
frequency response of the operator satisfies:
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ρ(λi) ≥ α|λi − 1| and ρ(λi) ≥ κλi (16)

that is, the operator is a strictly high-pass filter.

The proof of Theorem A.1 can be found in Appendix A.

2.3. Decoding and Optimization

The decoder’s goal is to decode the latent information back
to meteorological variables on the latitude-longitude grid.
We obtain the updated feature representation hi for each
node. For each node i, the decoder applies the mapping
function:

Ẑt+1,i = ψ(hi), (17)

where ψ(·) is an MLP that converts the latent node features
into the predicted variables Ẑt+1,i for the next time step.

We use relative L2 loss function for model training. The
loss function is defined as:

L =
1

KHW

K∑
k=1

H∑
i=1

W∑
j=1

(
x̂t+lδt
i,j,k − xt+lδt

i,j,k

)2
(
xt+lδt
i,j,k

)2 , (18)

where x̂t+lδt
i,j,k and xt+lδt

i,j,k are the predicted and true values for
variable (channel) k at spatial location (i, j) and time t+lδt;
K is the number of variables (channels); H and W are the
height and width of the spatial dimensions, respectively; δt
is the time interval of single-step prediction (we use δt = 6
hours).

2.4. Downstream Tasks

We consider three principal downstream tasks:

Global Weather Forecasting. As detailed in Section 2 and
illustrated in Figure 2(b), we employ a rollout approach
during inference, using the trained model for multi-step
extrapolation. Specifically, starting from the initial state Z0,
the model recursively uses its previous predictions as inputs
for subsequent time steps, generating a sequence of future
global weather forecasts.

Regional High-Resolution Forecasting. To enhance the
accuracy of high-resolution forecasts in specific regions,
we propose a neural nested grid method, illustrated in Fig-
ure 2(c). This method combines global low-resolution future
forecasts with regional high-resolution data to produce de-
tailed forecasts for the target region. We first input the global
low-resolution data at time t into the pre-trained global
model to obtain the global forecasts Ẑg

t+1 at time t + 1.
We extract Ẑglobal1

t+1 from Ẑg
t+1, which shares the same spa-

tial range as the region, and Ẑglobal2
t+1 , which includes the

boundary of the region (the boundary are defined as two
grid points around the region). Both Ẑglobal1

t+1 and Ẑglobal2
t+1

are then interpolated to match the resolution of the high-
resolution regional data, which are concatenate as Ẑglobal

t+1 to
acted as global forcing. We then combine the regional high-
resolution data at time t with the Ẑglobal

t+1 to form the input of
the regional model. The global forecasts provide the nec-
essary boundary conditions for the regional forecasts. The
regional model then produces the high-resolution forecasts
for the regional state at time t+ 1:

Ẑ
region
t+1 = Modelregion

(
Concat

(
Ẑ

global
t+1 , Z

region
t

)
; Θregion

)
.

(19)

Long-Term and Esemble Weather Forecasting. The ini-
tial condition of the atmospheric state is uncertain, so rea-
sonable quantification of this uncertainty is conducive to
improve to forecast performance. To account for the un-
certainty in the atmospheric initial state for long-term en-
semble forecasting, we generate N perturbed initial con-
ditions Z

(n)
0 by adding Perlin noise ε(n) to Z0 (Chen

et al., 2023b). Each perturbed initial condition is input
into the model, and through recursive rollout over T time
steps, we obtain individual forecasts Ẑ(n)

t+1. Finally, at each
time step t + 1, we compute the ensemble mean predic-
tion Ẑensemble

t+1 = 1
N

∑N
n=1 Ẑ

(n)
t+1 by averaging the forecasts

from all N ensemble members. In this work, we set N=50.

3. Experiments
In this section, we extensively evaluate the performance
of OneForecast, covering metric results, visual results, and
extreme event analysis. We conduct all experiments on 128
NVIDIA A100 GPUs.

3.1. Benchmarks and Baselines

We conduct the experiments on the WeatherBench2 (Rasp
et al., 2024) benchmark, a subset of the fifth generation of
ECMWF Reanalysis Data (ERA5) (Hersbach et al., 2020).
The subset we use includes years from 1959 to 2020, which
is 1959-2017 for training, 2018-2019 for validating, and
2020 for testing. We use 5 pressure level variables (each
with 13 pressure levels), geopotential (Z), specific humidity
(Q), temperature (T), U and V components of wind speed
(U and V), and 4 surface level variables 10-meter U and V
components of wind (U10M and V10M), 2-meter tempera-
ture (T2M), and mean sea-level pressure (MSLP). For the
global weather forecasting task, we choose the 1.5° (121 ×
240 for the global data) version of WeatherBench2 as our
dataset. For convenience, we just choose 120 × 240 data
to train models. For the regional high-resolution weather
forecasting task, we use the original 0.25° (721 × 240 for
the global data) ERA5 data. More details can be found in
the Appendix C. We conduct 2 types comparison, the first
type is the comparison between 1-step supervised models
retrained using the same framework and settings, which in-
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Table 1. In global weather forecasting task, we compare the performance of our OneForecast with 3 baselines, which are trained in the
same framework. The average results for all 69 variables of RMSE (normalized) and ACC are recorded. A small RMSE (↓) and a bigger
ACC (↑) indicate better performance. The best results are in bold, and the second best are with underline.

MODEL

METRIC

6-HOUR 1-DAY 4-DAY 7-DAY 10-DAY

RMSE ACC RMSE ACC RMSE ACC RMSE ACC RMSE ACC

PANGU-WEATHER (BI ET AL., 2023) 0.0826 0.9876 0.1571 0.9581 0.3380 0.8167 0.5092 0.5738 0.6215 0.3542
GRAPHCAST (LAM ET AL., 2023) 0.0626 0.9928 0.1304 0.9705 0.2861 0.8705 0.4597 0.6692 0.6009 0.4275
FUXI (CHEN ET AL., 2023B) 0.0987 0.9820 0.1708 0.9511 0.4128 0.7379 0.5972 0.4446 0.6981 0.2391

ONEFORECAST(OURS) 0.0549 0.9943 0.1231 0.9737 0.2732 0.8825 0.4468 0.6888 0.5918 0.4457

ONEFORECAST(PROMOTION) 12.24% 0.15% 5.54% 0.33% 4.50% 1.38% 2.81% 2.92% 1.51% 4.25%

Figure 3. 10-day forecast results of different models.

cludes Pangu (Bi et al., 2023), Graphcast (Lam et al., 2023),
Fuxi (Chen et al., 2023b), and Ours. The second type is the
comparison between the results released by WeatherBench2
(with many finetune tricks), Fengwu (Chen et al., 2023a)
(results released by the author), and ours finetune model.

3.2. Comparison with state-of-the-art methods

We utilize four metrics, RMSE, ACC, CSI, and SEDI to eval-
uate the forecast performance. More details can be found
in F.1. Since the magnitudes of different variables vary
greatly, we first normalize the 69 variables and then calcu-
late the indicators for the 1300 initial conditions. As shown
in Table 1, OneForecast achieves satisfactory performance
compared with the state-of-the-art models. As shown in
Figure 3, OneForecast are closer with the ground truth. We
also show the forecast results of several important variables
in Figure 4, which are not normalized. Our OneForecast
performs better than other models. More results compared
with WeatherBench2 can be found in Appendix G.4. This

improvement is primarily attributed to integrating the pro-
posed adaptive message passing module, which enhances
OneForecast’s ability to model the relationships between
atmospheric states across different regions of the earth that
allows for the simulation of atmospheric dynamics at vari-
ous spatial and temporal scales adaptively. In summary, the
forecasts exhibit more consistency with the actual physical
field, effectively mitigate over-smoothing, and demonstrate
superior predictive performance, particularly for extreme
atmospheric values.

3.3. Regional High Resolution Forecast

Although the training cost of low-resolution forecast models
is relatively low, their prediction results lack sufficient de-
tails. However, directly training on high-resolution regional
data often results in poor regional forecasts performance
due to issues such as missing boundary conditions and lim-
ited data samples. Although the regional forecasts method
proposed by (Oskarsson et al., 2024) improves prediction
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Figure 4. We select the latitude-weighted RMSE (lower is better) and ACC (higher is better) of several variables.

accuracy, it remains constrained by the absence of global
information in high-resolution regional models. In contrast,
our proposed Neural Nesting Grid method (NNG) incor-
porates boundary conditions and global future information,
enabling more accurate high-resolution regional predictions.
Furthermore, NNG makes full use of the forecast results
of global models, which achieves high-resolution regional
forecasts at an exceptionally low training cost. Therefore, as
shown in Figure 6, we only demonstratively conduct high-
resolution predictions for two regional variables without
requiring training on all variables (e.g., the 69 variables
used for training global models). It can be seen that the
poor long-term inference results are poor when only using
regional data for training. Graph-EFM takes into account
boundary conditions and the effect is improved. And our
proposed NNG not only takes into account regional bound-
ary conditions, but also makes full use of the future forecast
information of the global model, which achieves stable long-
term forecast performance.

Figure 5. Comparison results of 100-day forecasts between the two
best models and our OneForecast.

3.4. Extreme Events Assessment

Extreme events, such as tropical cyclones, can significantly
impact human society. In this section, we evaluate our
model’s ability in forecasting those extreme cyclones. As

Table 2. Comparison results of RMSE between deterministic fore-
casts and ensemble forecasts (ENS), the best results are in bold.

MODEL FORECAST DAY

7-DAY 8-DAY 9-DAY 10-DAY

PANGU 0.4875 0.5321 0.5742 0.6213
PANGU (ENS) 0.4435 0.4743 0.4979 0.5205
GRAPHCAST 0.4440 0.4923 0.5346 0.5823
GRAPHCAST (ENS) 0.4412 0.4759 0.5072 0.5331
FUXI 0.5928 0.6314 0.6604 0.6968
FUXI (ENS) 0.4898 0.5175 0.5353 0.5498

ONEFORECAST 0.4268 0.4834 0.5313 0.5809
ONEFORECAST (ENS) 0.4393 0.4699 0.4951 0.5167

shown in Figure 1, OneForecast achieves competitive perfor-
mance in typhoon tracking during two extreme events, Yagi
(2018) and Molva (2020). For Yagi, due to Best Track (Ying
et al., 2014) (Lu et al., 2021) doesn’t report intact track, we
treat ERA5 as the ground truth. For Molva, we treat Best
Track as the ground truth. The details of tracking algorithm
can be found in Appendix F.3. Additionally, we down-
load the forecast results of baseline models (e.g., Pangu,
Fuxi and Graphcast) from WeatherBench2, which is trained
using high resolution (0.25°) data, to better illustrate the
performance of the baselines. Although OneForecast uses
lower-resolution (1.5°) data, which may limit its capacity to
predict cyclones, it nevertheless shows strong forecast skills
in tracking tropical cyclones comparing with the baselines.

3.5. Long-term and Ensemble Forecasts

As shown in Figure 5, we evaluate long-term forecasts with
the two best models on Z500 (500 hPa Geopotential). Pangu
exhibits patch artifacts in 100-day forecasts, while Graph-
Cast experiences error accumulation that degrades the fore-
casted physical fields, rendering them physically implau-
sible over time. In contrast, OneForecast achieves stable
long-term forecast performance, effectively capturing large-
scale atmospheric states without the aforementioned issues.
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Figure 6. High-resolution regional results. In the left figure, we select two variables, MSLP and U10M, for visualization. We compare our
model with Graph-EFM and the method that directly trains on high-resolution data. The right figure shows line charts of RMSE and ACC
for different models over time. These two figures demonstrate that our proposed neural nesting grid method achieves the best performance.

These results highlight OneForecast’s superior capability in
maintaining accurate and physically consistent predictions
over extended forecasting horizons. In Table 2, we show the
results for 10 initial conditions (starting from 00:00 UTC 1
January 2020, and the interval between consecutive initial
conditions is 12 hour). The ensemble forecast (ENS) results
are averaged from 50 members. Obviously, in most cases
(especially for longer time), the forecasting performance is
enhanced for each model when uncertainty is incorporated,
and OneForecast still achieves the best performance.

3.6. Ablation Studies

To verify the effectiveness of the proposed method, as shown
in Table 3, we conduct detailed ablation experiments. We
introduce the following model variants: (1) OneForecast
w/o Region Refined Graph, we remove the region refined
mesh from the finest mesh and compute the regional metrics.
(2) OneForecast w Region Refined Graph, we reserve
the region refined mesh. (3) OneForecast R w/o NNG, we
remove the neural nested grid method (NNG) in the regional
forecasts and only use the regional data to train the model.
(4) OneForecast R BF, we remove the NNG in the regional
forecasts and only use the boundary forcing method to train
the model. (5) OneForecast R w NNG, regional forecast
model with NNG. (6) OneForecast w/o MSM, we remove
the multi-stream messaging module (MSM) and use a tra-
ditional MLP-based messaging module. (7) OneForecast,
the full version of OneForecast for the global forecasts. For
(1) and (2), we only evaluate the region-refined data. For
(3), (4), and (5), we only evaluate the specific regional data.
For (6) and (7), we evaluate the global data. And these
results are based on 4-day forecasts for 100 ICs. Experi-
mental results show that whether it is a global or regional
forecast task, the lack of any component will degrade the
performance of OneForecast, which proves the effective-
ness of the proposed method. And as shown in Figure 7,
the proposed MSM can better capture of high and low fre-
quency information, which achieves satisfactory results in
long-term forecasts and extreme event forecasts, such as
typhoons.

Table 3. Ablation studies on 1.5° WeatherBench2 benchmark, the
best results are in bold.

VARIANTS RMSE ACC

ONEFORECAST W/O REGION REFINED GRAPH 0.3793 0.6075
ONEFORECAST W REGION REFINED GRAPH 0.2609 0.8099

ONEFORECAST R W/O NNG 0.5828 0.2450
ONEFORECAST R BF 0.4428 0.4711
ONEFORECAST R W NNG 0.2180 0.8856

ONEFORECAST W/O MSM 0.3921 0.9305
ONEFORECAST 0.2954 0.9577

Figure 7. Normalized spectral error of the proposed MSM and the
traditional MLP-based massaging.

4. Conclusion
In this paper, we propose OneForecast, a global-regional
nested weather forecasting framework leveraging multi-
scale graph neural networks. By integrating dynamical sys-
tems principles with multi-grid structures, our approach re-
fines target regions for improved capture of high-frequency
features and extreme events. The adaptive information prop-
agation mechanism, featuring dynamic gating units, miti-
gates over-smoothing and enhances node-edge feature rep-
resentation. Additionally, the proposed neural nested grid
method preserves global information for regional forecasts,
effectively relieves the loss of boundary information, which
improves the regional forecast performance. Empirical re-
sults show that the proposed OneForecast achieves higher
prediction accuracy at global and regional scales, especially
for long-term and extreme event predictions, marking a step
towards more robust data-driven weather forecasting.
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A. Proofs of Theorems
Theorem A.1 (High-pass Filtering Property of Multi-stream Messaging). Consider an improved multi-stream message
passing mechanism. Let a graph signal f ∈ RN have a spectrum f̂ = U⊤f under the graph Fourier basis U =
[u1,u2, . . . ,uN ], where L = UΛU⊤ is the normalized graph Laplacian and Λ = diag(λ1, λ2, . . . , λN ) with 0 ≤ λ1 ≤
· · · ≤ λN ≤ 2. Define the frequency response function of the message passing operator by ρ : λ 7→ R. If the dynamic gating
weights satisfy

g
(h,e)
i , g

(h,s)
i , g

(h,d)
i ∝

∣∣λi − 1
∣∣ + ϵ (ϵ > 0), (20)

then there exist constants α > 0 and κ > 0 such that the frequency response ρ(λi) of the operator satisfies

ρ(λi) ≥ α
∣∣λi − 1

∣∣ and ρ(λi) ≥ κλi, (21)

which means the operator is a strictly high-pass filter.

Proof. We consider a multi-stream message passing operator that we denote by G. This operator depends on both node
features and dynamic gating on edges. We let f ∈ RN be an arbitrary graph signal, and we write its graph Fourier transform
as f̂ = U⊤f , where L = UΛU⊤ is the normalized Laplacian and Λ = diag(λ1, . . . , λN ) with 0 ≤ λ1 ≤ · · · ≤ λN ≤ 2.
Step 1: Integral analogy of gating on a discrete graph. We first recall that on a continuous domain, a gating operator
often admits a representation of the form

(Gf)(x) =

∫
K(x, ξ) f(ξ) dξ,

where K(x, ξ) is a kernel that encodes the gating weights. On a discrete graph, the integral turns into a finite sum. Hence for
node i, we write

(Gf)i =
∑
j∈Ni

Kij fj ,

where Ni denotes the neighbors of node i, and Kij depends on the dynamic gating parameters
(
g
(h,e)
i , g

(h,s)
i , g

(h,d)
i

)
. We

assume these gating parameters scale proportionally to
∣∣λ− 1

∣∣+ ϵ, which implies larger weights when λ is around high or
mid-frequency regions.

Step 2: Spectral decomposition of the operator. We decompose f in the eigenbasis of L:

f =

N∑
ℓ=1

f̂ℓ uℓ, fj =

N∑
ℓ=1

f̂ℓ (uℓ)j .

The operator G acts on uℓ with some gain factor ρ(λℓ), which we call the frequency response. In other words, we write

Guℓ = ρ(λℓ)uℓ.

Thus the value of ρ(λℓ) reveals how the operator scales the amplitude of the ℓ-th eigenmode.

Step 3: High-pass filtering behavior from gating design. We now analyze the effect of gating weights g(h,e)i , g
(h,s)
i , g

(h,d)
i

that satisfy
g
(h,e)
i , g

(h,s)
i , g

(h,d)
i ∝ |λi − 1|+ ϵ.

Because λi ∈ [0, 2], when λi is close to 2, it represents a high-frequency component on the graph. In that regime, the gating
weights become larger, and the message passing operator G amplifies those components. Similarly, when λi is near 1, the
factor |λi − 1| can still be significant enough to enhance mid-to-high frequencies. Conversely, for λi near 0 (low frequency),
the gating is relatively small and thus tends to suppress those components.

Step 4: Combining inequalities to show strictly high-pass. We combine partial inequalities for different ranges of λi.
Since 0 ≤ λi ≤ 2, we use the gating assumption to show there are positive constants α and κ such that

ρ(λi) ≥ α
∣∣λi − 1

∣∣ and ρ(λi) ≥ κλi.

Hence the operator G behaves like a high-pass filter, because it provides higher gain to higher (or mid-high) frequency
components and less gain to low-frequency components. Therefore, G is a strictly high-pass operator in the graph spectral
domain.

This completes the proof of Theorem A.1.
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B. Related Work
B.1. Deep Learning based Weather Forecasting

Global Weather Forecasting. Global weather forecasting has seen significant progress with deep learning models.
FourCastNet, based on Fourier neural operators, provides global forecasts comparable to traditional numerical methods
like IFS, but at much higher speeds (Pathak et al., 2022). Pangu, utilizing the Swin Transformer, exceeds NWP methods,
incorporating earth-specific location embeddings for better performance (Bi et al., 2023). The Spherical Fourier Neural
Operator (SFNO) extends Fourier methods using spherical harmonics, offering more stable long-term predictions (Bonev
et al., 2023). FuXi focuses on long-term forecasting, achieving a 15-day forecasts comparable to ECMWF (Chen et al.,
2023b). GraphCast leverages message-passing networks to improve efficiency and forecasting accuracy (Lam et al., 2023),
and GenCast builds on this to enhance ensemble forecasting (Price et al., 2023). Further, diffusion models like those in (Li
et al., 2024) generate probabilistic ensembles by sampling, while NeuralGCM (Kochkov et al., 2024) focuses on atmospheric
circulation with a dynamic core, offering climate simulation capabilities but at higher training and inference costs.

Regional Weather Forecasting. The goal of regional weather forecasting is to enhance local prediction accuracy with
high-resolution models. CorrDiff (Mardani et al., 2023) combines U-Net and diffusion models to improve local forecasts.
MetaWeather (Kim et al., 2024) adapts global forecasts to regional contexts using meta-learning. GNNs are also widely
applied in regional forecasting, with Graphcast (Lam et al., 2023) enhancing accuracy by modeling complex spatial
dependencies. MetNet-3 (Espeholt et al., 2022) offers high-accuracy forecasts for weather variables, such as precipitation,
temperature, and wind speed, at 2-minute intervals and 1–4 km resolution, outperforming traditional models like HRRR.
NowcastNet (Zhang et al., 2023) and DGMR (Ravuri et al., 2021) excel in short-term extreme precipitation forecasts
using deep generative models and radar data. In spatiotemporal prediction, NMO (Wu et al., 2024b) models the evolution
of physical dynamics, providing new insights for local weather forecasting. Similarly, SimVP (Gao et al., 2022) and
PastNet (Wu et al., 2024c) achieve good results in forecasting local precipitation evolution using spatiotemporal convolution
methods.

B.2. Numerical analysis methods

Multigrid methods (McCormick, 1987; Wesseling, 1995; Hackbusch, 2013; Bramble, 2019; Hiptmair, 1998; Brandt et al.,
1983; Borzi & Schulz, 2009) and nested grid strategies (Miyakoda & Rosati, 1977; Zhang et al., 2012; Sullivan et al., 1996)
are widely used to solve PDEs and handle multi-scale problems (Debreu & Blayo, 2008; Xue et al., 2000). Multigrid
methods use grids of different resolutions to transfer information and accelerate iterations. They efficiently solve large-scale
problems and improve computational accuracy. By eliminating low-frequency errors on coarse grids and high-frequency
errors on fine grids, multigrid methods effectively handle error convergence at different scales (He & Xu, 2019; He et al.,
2023; Shao et al., 2022). Nested grid strategies embed higher-resolution fine grids into regions of interest based on a global
coarse grid to capture local complex physical phenomena in detail. In weather forecasting, this method provides large-scale
background fields on a global scale while refining the grid for target regions to accurately simulate the evolution of local
weather systems and the occurrence of extreme events (Bacon et al., 2000).

C. Data Details
C.1. Dataset

In this section, we are going to introduce the dataset we used in this study detailedly. For the global forecasting, we conduct
experiments on the WeatherBench2 (Rasp et al., 2024) benchmark, a subset of ERA5 reanalysis data (Hersbach et al., 2020).
The WeatherBench2 benchmark we used is the version of 1.5° resolution (121 × 240), which spans from 1959 to 2020.
This subset contains 5 variables (Z, Q, T, U, V) with 13 pressure levels (50 hPa, 100 hPa, 150 hPa, 200 hPa, 250 hPa, 300
hPa, 400 hPa, 500 hPa, 600 hPa, 700 hPa, 850 hPa, 925 hPa and 1,000 hPa) and 4 variables (U10M, V10M, T2M, MSLP)
with surface level. For the regional forecasting, a higher resolution data (0.25° resolution) of ERA5 is also used, which can
be downloaded from https://cds.climate.copernicus.eu/, the official website of Climate Data Store (CDS).
All the data we used are shown in Table 4. For both global and regional forecasts, we use the data from 1959 to 2017 for
training, 2018 to 2019 for validating, and 2020 for testing.
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Table 4. The data details in this work.

TASK
VARIABLE

NAME
LAYERS

SPATIAL
RESOLUTION

DT
LAT-LON
RANGE

TIME

GLOBAL

GEOPOTENTIAL (Z) 13 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020
SPECIFIC HUMIDITY (Q) 13 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020

TEMPERATURE (T) 13 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020
U COMPONENT OF WIND (U) 13 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020
V COMPONENT OF WIND (V) 13 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020

10 METRE U WIND COMPONENT (U10M) 1 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020
10 METRE V WIND COMPONENT (V10M) 1 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020

2 METRE TEMPERATURE (T2M) 1 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020
MEAN SEA LEVEL PRESSURE (MSLP) 1 1.5° 6H -90°S-180°W∼90°N180°E 1959∼2020

REGIONAL
MEAN SEA LEVEL PRESSURE (MSLP) 1 0.25° 6H 7.5°W114°E∼ 36°W172.5°E 1959∼2020

10 METRE U WIND COMPONENT (U10M) 1 0.25° 6H 7.5°W114°E∼ 36°W172.5°E 1959∼2020

Table 5. The Params and MACs comparsion of different models.

MODEL PARAMS (M) MACS (G)

PANGU (BI ET AL., 2023) 23.83 142.39
FENGWU (CHEN ET AL., 2023A) 153.49 132.83
GRAPHCAST (LAM ET AL., 2023) 28.95 1639.26
FUXI (CHEN ET AL., 2023B) 128.79 100.96

ONEFORECAST 24.76 509.27

C.2. Data preprocessing

Different atmosphere and ocean variables have large variations in their magnitude. To allow the model focusing on
predictions rather than learning the differences between variables, we normalized the data before putting the data into the
model. We calculated the mean and standard deviation of all variables using data from 1959 to 2017 (training set). Each
variable has a corresponding mean and standard deviation. Before feeding the data into the model, we first subtract the
respective mean and divided it by the standard deviation.

D. Algorithm
We summarize the overall framework of OneForecast in Algorithm 1.

E. Model Details for Global Forecasts
E.1. Earth-specific Region Refined Multi-scale Graph

The graph used in OneForecast can be defined as: G(VG,V, E , EG2M, EM2G).

Grid Nodes. VG is the ensemble of grid nodes, which contains 120× 240 = 28800 nodes for 1.5° global data in global
forecast task. And each node consists of 69 atmospheric features (5 variables at 13 pressure levels and 4 variables at surface
level, 5× 13 + 4 = 69). Since we just consider 1 step historical state, the input features of OneForecast are 69. For regional
forecast, the region size can be arbitrary within the permission of GPU memory. For simplicity, we choose the region size of
120× 240 from 0.25° data, the node is still 120× 240 = 28800.

Mesh Nodes. V is the ensemble of mesh nodes, which contains multi-scale mesh nodes of different fineness and region
refined mesh nodes that cover the global area. The mesh nodes are distributed over a refined icosahedron that has undergone
five levels of subdivision, and the coarsest icosahedron consists of 12 vertices and 20 triangular faces. By dividing each
triangular face into four smaller triangles, an additional node is generated at the midpoint of each edge. The new nodes
are then projected back onto the unit sphere, gradually refining the grid. To enhance the forecasting performance in key
regions, we further refine specific areas of the finest mesh, achieving localized mesh densification. For the global forecast
task, we refine the 2 areas: 0°N105°E∼30°N160°E and 10°N-95°W∼30°N-35°W. The features of each node include the
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Algorithm 1 OneForecast Framework for Global Weather Forecasting

Require: Initial atmospheric condition Zt.
Ensure: Next step atmospheric state Zt+1.

1: Initialize OneForecast
2: repeat
3: Encoder
4: Embedding features of grid nodes Zt, mesh nodes V , mesh edges E , grid to mesh edges EG2M, and mesh to grid

edges EM2G into latent space using respective MLP: (VG
f , h, Ef , EG2M

f , EM2G
f ) = MLPs(Zt, V , E , EG2M, EM2G)

5: Project the atmospheric state from the lat-lon grid into the mesh nodes: EG2M
f

′
= ESMLP(VG

f , h, EG2M
f ),

h′ = MLPe1(h,
∑

EG2M
f

′
)

6: Update grid node feature: VG
f

′
= MLPe2(VG

f )

7: Apply residual connection to update the feature of grid to mesh edge, mesh node, and grid node again: EG2M
f =

EG2M
f

′
+ EG2M

f , h′ = h′ + h, VG
f = VG

f

′
+ VG

f

8: Multi-stream Messaging
9: Apply dynamic multi-head gated edge update module (DMG) to update edge feature: E ′

f = DMG(Ef , hs, hr)
10: Apply multi-head node attention mechanism (MHA) to update mesh node feature: h′ =MHA(h,

∑
Ef ′)

11: Apply residual connection to update the feature of edge and mesh node: Ef = E ′
f + Ef , h = h′ + h

12: Decoder Project the feature from mesh back to lat-lon grid: EM2G
f

′
= ESMLP(VG

f , Ef , EM2G
f ), VG

f

′
=

MLPd1(VG
f ,
∑

EM2G
f

′
), VG

f = VG
f + VG′

f , Zt+1 = MLPd2(VG
f )

13: until converged
14: return OneForecast

cosine value of the latitude, as well as the sine and cosine values of the longitude. We only keep the finest mesh nodes, since
the nodes on the coarse mesh are its subset. In total, the graph structure of OneForecast comprises 12337 mesh nodes, each
characterized by three features.

Mesh Edges. E are the bidirectional edges that connect mesh nodes (sender and receiver nodes). Similar to mesh nodes,
there are corresponding edges for each scale of mesh, and E is the ensemble of multi-scale edges. And the features of
each edge include the length of edge, the 3D position difference between sender and receiver nodes. In total, OneForecast
comprises 98296 mesh edges, each characterized by four features.

Grid2Mesh Edges. EG2M are the the unidirectional edges that used in the encoder, which connect grid and mesh nodes. To
ensure that each grid node has a corresponding mesh node connected to it, we add EG2M to grid nodes and mesh nodes if
the distance between them is less than or equal to 0.6 times the edge length of the finest E . Similar to mesh edge E , each
grid2mesh edge comprises 4 features, and OneForecast has 49233 grid2mesh edges in total.

Mesh2Grid Edges. EM2G are the unidirectional edges that used in the decoder, which connect grid and mesh nodes. For
each grid node, we find the triangle face containing it on the finest mesh and connect 3 mesh nodes to it. Similar to other
edges, each mesh2grid edge has 4 features. In total, OneForecast has 86,400 mesh2grid edges.

E.2. Encoder

This paper uses 2 types MLP. We denote the first type as MLP(·), the number of layer is 1, the latent dim is 512, and
followed by the SiLU activation function and Layernorm function. And we denote the second type as ESMLP(·), the other
hyperparameters are the same as MLP(·), except ESMLP(·) transforms three features (edge features, node features of the
corresponding source and destination node) individually through separate linear transformations and then sums them for
each edge accordingly. We first apply embedder MLP to map the data to the latent space, which can be defined as:

MLP = LN(SiLU(Linear(xembedder))), (22)

(VG
f , h, Ef , EG2M

f , EM2G
f ) =MLPs(Zt,V, E , EG2M, EM2G), (23)

where, xembedder is the input of embedder MLP. For the linear function, we set the latent dim to 512. SiLU(·) is the SiLU
activation function, LN(·) is the layernorm function. Zt, V , E , EG2M, and EM2G are embedded features of grid nodes, mesh
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nodes, mesh edges, grid to mesh edges, and mesh to grid edges. We then project the atmospheric state from the lat-lon grid
into the mesh nodes. Specifically, we first update the edge features through an Edge Sum MLP (ESMLP):

EG2M′
f = WeEG2M

f , (24)

hs
′ = Wshs, (25)

h′d = Wdhd + bd, (26)

hsum = EG2M′
f + h′s + h′d, (27)

EG2M
f

′
= LN(WESMLPσ (hsum) + bESMLP) , (28)

where, We, Ws, Wd are the linear transformation matrix of grid2mesh edge features, send node feature, and target
node features. WESMLP is the linear transformation matrix of output layer. bd is the bias of mesh node during linear
transformation, bESMLP is the bias vector of ESMLP. In summary, the grid2mesh edge update process can be define as:

EG2M
f

′
= ESMLP(EG2M

f , hs, hd). (29)

After updating the grid2node features, we update the mesh node features using another MLP:

h′ = MLPe1(h,
∑

EG2M
f

′
), (30)

where,
∑

EG2M′

f are the edges that arrives at mesh node. Then, we update the grid node features using another MLP:

VG′

f = MLPe2

(
VG
f

)
. (31)

Finally, residual connections are applied to update the feature of grid to mesh edge, mesh node, and grid node again.

E.3. Multi-stream Messaging

The proposed multi-stream messaging is implemented by an adaptive messaging mechanism, which contains a dynamic
multi-head gated edge update module and a multi-head node attention module. This part has been introduced in detail in the
main text, so we only added the hyperparameter settings here. For the dynamic multi-head gated edge update module, the
dimensions of the gating vector are set to 64. In the multi-head node attention module, the MLPa used to calculate the
attention score consists of a linear layer, a SiLU activation function, a linear layer, and a Sigmoid function. The hidden
dimension of the linear layer is 64.

E.4. Decoder

In the decoder, we map the feature from mesh back to lat-lon grids, similar to encoder, we first update the mesh2grid
features:

EM2G′

f = ESMLP
(
VG
f , h, EM2G

f

)
. (32)

Then, we update the grid node features:

VG
f

′
= MLPd1(VG

f ,
∑

EM2G
f

′
), (33)

where,
∑

EM2G′

f are the edges that arrives at grid node.

After that, a residual connection is applied to update the grid node features again:

VG
f = VG

f + VG′

f . (34)

Finally, we apply a MLP to predict the next step results:

Zt+1 = MLPd2

(
VG
f

)
. (35)
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F. Experiments Details
F.1. Evaluation Metric

We utilize four metrics, RMSE (Root Mean Square Error) and ACC (Anomalous Correlation Coefficient), CSI (Critical
Success Index), and SEDI (Symmetric Extremal Dependence Index) to evaluate the forecasting performance, which can be
defined as:

RMSE(k, t) =

√√√√√Nlat∑
i=1

Nlon∑
j=1

L(i)
(
Âk

ij,t −Ak
ij,t

)2

Nlat ×Nlon
, (36)

ACC(k, t) =

Nlat∑
i=1

Nlon∑
j=1

L(i)Â′k
ij,tA

′k
ij,t√

Nlat∑
i=1

Nlon∑
j=1

L(i)
(
Â′k

ij,t

)2

×
Nlat∑
i=1

Nlon∑
j=1

L(i)
(
A′k

ij,t

)2 , (37)

where Av
i,j,t represents the value of variable v at horizontal coordinate (i, j) and time t. Latitude-dependent weights are

defined as L(i) = Nlat × cosϕi∑Nlat
i′=1

cosϕi′
, where ϕi is the latitude at index i. The anomaly of A, denoted as A′, is computed as

the deviation from its climatology, which corresponds to the long-term mean of the meteorological state estimated from
59 years of training data. To evaluate model performance, RMSE and ACC are averaged across all time steps and spatial
coordinates, providing summary statistics for variable k at a given lead time ∆t.

CSI(k, t) =
TP

TP + FP + FN
, (38)

SEDI(k, t) =
log(F )− log(H)− log(1− F ) + log(1−H)

log(F ) + log(H) + log(1− F ) + log(1−H)
, (39)

where, true positives (TP) indicate the number of cases in which the state is accurately simulated. False positives (FP) and
false negatives (FN) are defined in a similar manner. The false alarm rate is denoted as F = FP

FP+TP , while the hit rate is
represented as H = TP

TP+FN .

F.2. Model Training

For the first type comparison, we train baseline models and OneForecast using the same training framework. We set the
total model training epochs to 200, the initial learning rate is 1e-3, and use the cosine annealing scheduler to adjust the
learning rate until the model converged. The model codes of Pangu and Graphcast we used are released by NVIDIA modulus
(https://github.com/NVIDIA/modulus). The model code of Fuxi is obtained by sending an email to the author.
For all models, we select the checkpoint that performed best on the validation set for comparative analysis.

F.3. Typhoon Tracking

To track the eye of a tropical cyclone, we follow (Bi et al., 2023; Magnusson et al., 2021) to find the local minimum of mean
sea level pressure (MSLP). The time step of forecast lead time is set to be 6 hours. Specifically, once the initial position of
the cyclone eye is provided, we iteratively search for a local minimum of MSLP that meets the following criteria:

- There is a maximum 850hPa relative vorticity greater than 5× 10−5 within a 278km radius (in the Northern Hemisphere).

- There is a maximum thickness between 850hPa and 200hPa within a 278km radius when the cyclone is extratropical.

- The maximum 10m wind speed exceeds 8m/s within a 278km radius when the cyclone is over land.

Once the cyclone eye is identified, the tracking algorithm continues to find the next position within a 445km vicinity.

This study focuses on two extreme cyclones: Tropical Storm Yagi and Severe Typhoon Molave. The Yagi formed near
Ito To, Japan on August 6, 2018, and landed over Wenling, China on August 12. The Molave formed on October 11,
2020, and landed over the Philippines on October 25, 2020. The initial conditions for these two cyclones are set at
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0:00 UTC, August 6, 2018 and 0:00 UTC, 11 October 2020, respectively. Since there is no Fuxi results in 2018 on
WeatherBench2, we can not compare it with Yagi. The results of Best Track (Ying et al., 2014) (Lu et al., 2021) can be
found in https://tcdata.typhoon.org.cn/en/.

G. Additional Results
G.1. Efficiency Analysis

As shown in Table 5, our OneForecast has a competitive performance for Parameters and MACs. For the MACs, the size of
input tensor is set to (1, 69, 120, 240). Not that for the ML-based weather forecasts, the computational cost is less important
compared with the forecasting accuracy because the ML-basd model is several orders of magnitude faster (maybe tens of
thousands of times) than traditional numerical methods. For instance, in numerical forecasting, a single simulation for a
10-day forecasts can take hours of computation in a supercomputer that has hundreds of nodes. In contrast, ML-based
weather forecasting models just need a few seconds or minutes to produce 10-day forecasts using only 1 GPU.

G.2. Spectral Analysis

As shown in Figure 8, we compute the surface kinetic energy spectrum and Q700 spectrum for baseline models using Weath-
erBench2’s official results (averaged across the first 700 ICs). Our OneForecast model achieves comparable performance in
this standardized evaluation framework. Notably, as Q700 data for Fuxi were not available in the WeatherBench2, only its
surface kinetic energy spectrum could be analyzed.

Figure 8. Spectral analysis of different models.

G.3. Quantitative analysis of Extreme Event

To assess the forecast performance of more extreme events, as shown in Table 6, we present 2 extreme event assessment
indicators (the higer the better) CSI and SEDI. And we also add a quantitative metric for typhoon prediction in Table 7, a
lower value represents better results. It can be seen that our OneForecast also achieves satisfactory results in quantitative
analysis.

G.4. Additional quantitative comparison with the results from WeatherBench2

As shown in Figure 9, we compare all models released by WeatherBench2, except for ENS (ensemble forecasting, not the
same task) and Spherical CNN (too few ICs, only 178 compared with our used 700). While the WeatherBench2 baseline
leverages numerous training strategies, we only conducted 1-epoch of finetuning (Ours finetune) during the brief rebuttal
period. Nevertheless, a 2-epoch finetune model (Ours finetune2) demonstrates improved results, indicating the potential for
further gains with additional finetuning. If we finetuned for more epochs, OneForecast can achieve better result. However,
our primary objective is to introduce a novel paradigm for global and regional weather forecasting rather than solely
optimizing metrics, we just finetune for a few epoch as an example.
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Table 6. Quantitative analysis of extreme event for different models.

MODEL
WIND10M WIND10M T2M T2M

CSI SEDI CSI SEDI

PANGU 0.11 0.29 0.16 0.34
GRAPHCAST 0.13 0.29 0.20 0.38
FUXI 0.11 0.20 0.19 0.27

OURS 0.14 0.31 0.21 0.40

Table 7. Quantitative analysis of typhoon for different models.

MODEL TRACK POSITION ERROR(KM)

FS-HRES 332
PANGU 1.5° 222
GRAPHCAST 1.5° 212
PANGU 231
GRAPHCAST 197

OURS 157

Figure 9. Additional quantitative comparison with the results from WeatherBench2 for several important variables.

G.5. Additional Visual Results

We present more additional results in Figure 10, 11, 12 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
including 18 variables that are importmant to weather forecasting, each with results ranging from 6 hours to 10 days. These
additional results further demonstrate the effectiveness of OneForecast. Same as the Figure 3, the initial conditions is 00:00
UTC, 1 January 2020.
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Figure 10. 6-hour forecast results of different models.
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Figure 11. 0.5-day forecast results of different models.
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Figure 12. 1-day forecast results of different models.
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Figure 13. 1.5-day forecast results of different models.
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Figure 14. 2-day forecast results of different models.
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Figure 15. 2.5-day forecast results of different models.
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Figure 16. 3-day forecast results of different models.
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Figure 17. 3.5-day forecast results of different models.
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Figure 18. 4-day forecast results of different models.
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Figure 19. 4.5-day forecast results of different models.
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Figure 20. 5.0-day forecast results of different models.
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Figure 21. 5.5-day forecast results of different models.
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Figure 22. 6.0-day forecast results of different models.
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Figure 23. 6.5-day forecast results of different models.
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Figure 24. 7.0-day forecast results of different models.
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Figure 25. 7.5-day forecast results of different models.
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Figure 26. 8.0-day forecast results of different models.
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Figure 27. 8.5-day forecast results of different models.
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Figure 28. 9.0-day forecast results of different models.
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Figure 29. 9.5-day forecast results of different models.
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Figure 30. 10.0-day forecast results of different models.
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