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Abstract

Mixture-of-Experts (MoE) architectures are increasingly adopted in large language
models (LLMs) for their scalability and efficiency. However, their modular struc-
ture introduces a unique vulnerability: adversaries can attempt to compress or
repurpose models by pruning experts and cheaply fine-tuning the remainder, effec-
tively bypassing licensing and security constraints. In this paper, we systematically
study the prunability of MoE-LLMs under task-specific usage. We first develop
an expert attribution framework that identifies the subset of experts most respon-
sible for a given task, then evaluate the performance trade-offs of pruning and
re-aligning these experts using active learning-driven fine-tuning. Our findings
reveal a critical knowledge loss—recovery trade-off: while certain experts can be
isolated to retain task accuracy, significant degradation occurs without targeted
re-alignment. Based on this analysis, we propose defense strategies that make MoE
models inherently Un-Compressible and Un-Finetunable, such as entangled expert
training and selective fine-tuning protocols that resist unauthorized adaptation. By
positioning expert pruning as both a threat vector and a defense target, this work
highlights the dual-use nature of MoE modularity and provides the first systematic
evaluation framework for secure specialization of MoE-LLMs.

1 Introduction

Large Language Models (LLMs) based on Mixture-of-Experts (MoE) architectures have achieved
state-of-the-art results while offering improved computational scalability [4} 5. [10]. In MoE designs,
a gating mechanism routes tokens to a sparse subset of experts, enabling large effective capacity with
limited runtime cost. However, this modularity creates a novel vulnerability: adversaries may attempt
to prune away unused experts, retain only those relevant for a desired task, and cheaply fine-tune the
remaining experts. Such unauthorized compression attacks threaten both intellectual property (IP)
protection and safety guarantees [3,|18]. A more detailed review of prior work on MoE architectures,
pruning-based compression, and active learning is provided in Appendix [A]

The Lock-LLM workshop calls for strategies to make LLMs Un-Distillable, Un-Finetunable, Un-
Compressible, Un-Editable, and Un-Usable [1]]. In this paper, we focus on the Un-Compressible
direction by studying how pruning-based compression interacts with MoE modularity. Specifically,
we ask: Can pruning experts in MoE-LLMs be exploited for unauthorized model reuse, and what
defenses can prevent this?

The primary contributions of this paper can be summarized as follows:



* We introduce an expert attribution framework to measure which experts are most active
for a given dataset or task.

* We conduct the first systematic study of pruning in MoE-LLMs from a security lens,
evaluating performance, knowledge retention, and prunability-resistance.

* We propose active learning-driven fine-tuning as both a recovery mechanism and a
controlled defense strategy.

* We outline defense directions, including entangled expert training, that make unauthorized
pruning ineffective.

2 Threat Model & Problem Setup

The modular design of Mixture-of-Experts (MoE) architectures introduces new risks in the context of
model protection. Unlike dense LLMs, where parameters are globally entangled, MoEs route tokens
through a sparse subset of experts, effectively partitioning knowledge into semi-specialized modules.
While this property is central to MoE efficiency, it simultaneously creates a potential vulnerability:
adversaries can attempt to isolate and retain only those experts most relevant for their target task,
discarding the remainder and compressing the model at minimal cost. In this section, we formalize
our threat model and define the problem setup used in this work.

2.1 Expert Attribution in MoE

Consider an MoE model with N experts, where a gating function G(x) determines the top-k experts
for each input token z. For a dataset D = {x1, xa, . .., X, }, we define the attribution score of expert
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where f£{-} is an indicator function. Intuitively, A; captures the proportion of routing decisions

involving expert ¢ across the dataset. Experts with consistently high attribution are deemed task-
critical.

A; =

This formulation provides an interpretable signal for both defenders and adversaries. From the
perspective of model owners, attribution analysis allows auditing which experts encode sensitive or
high-value capabilities. From the adversarial perspective, attribution enables targeted pruning: by
identifying the small subset of experts carrying most of the task signal, the attacker can discard the
remaining experts while retaining functionality.

2.2 Adversarial Pruning Scenario

We consider an adversary with white-box access to a pretrained MoE-LLM and task-specific data D.
The adversary’s objective is to obtain a smaller model specialized to D without authorization from
the original model provider. The attack proceeds in three stages:

1. Attribution Logging: The adversary runs inference on D and computes A; for each expert.
This step reveals which experts are most relevant for the targeted task.

2. Expert Pruning: Experts with attribution scores below a threshold 7 are removed, resulting
in a compressed model containing only task-critical experts. This reduces both the size and
computational footprint of the model.

3. Cheap Re-Alignment: The adversary fine-tunes the remaining experts on a limited labeled
subset of D to restore lost performance. In practice, this can be achieved using only a
fraction of the data originally needed to train the model.

This attack directly threatens intellectual property by creating an unauthorized, compressed derivative
of the original MoE. Furthermore, it undermines safety alignment: if malicious fine-tuning is
performed, pruned experts may adopt behaviors inconsistent with the original model’s alignment
safeguards. Our central research question is thus: How vulnerable are MoE-LLMs to such pruning
attacks, and what defenses can mitigate them?



3 Methodology

To study the security implications of expert pruning, we design a three-part methodology: (1) an
attribution-based expert selection framework, (2) an active learning procedure for re-aligning pruned
models, and (3) defense mechanisms that make pruning-based compression less exploitable. Together,
these components allow us to evaluate both the offensive and defensive aspects of the pruning threat
model.

3.1 Expert Selection Framework

We operationalize the attribution analysis described in Section 3.1 by running inference over a
held-out portion of the task dataset D and recording gate activations for each token. Attribution
scores A; are aggregated at the expert level and normalized to form a ranked list of experts.

Two selection strategies are considered:

* Top-k pruning: retain only the k highest-ranked experts and discard the rest.

* Threshold pruning: retain all experts with A; > 7 for some threshold 7.

These strategies simulate different adversarial objectives: top-k pruning aggressively minimizes model
size, while threshold pruning balances compression with task fidelity. By systematically varying &
and 7, we can characterize the trade-off between compression ratio and retained performance.

3.2 Active Learning Fine-tuning of Retained Experts

Pruning inevitably leads to knowledge loss, since experts removed may still encode complementary
features or rare-case knowledge. To quantify and mitigate this loss, we introduce an active learning
fine-tuning loop applied to the retained experts.

Specifically, we adopt a pool-based uncertainty sampling approach: at each iteration, the pruned
model identifies inputs from an unlabeled pool on which it exhibits the highest predictive uncertainty
(e.g., entropy-based or margin-based criteria). These samples are then labeled and used for fine-tuning.
This process prioritizes difficult or underrepresented cases, enabling rapid recovery of performance
with minimal data.

From an adversarial perspective, active learning makes unauthorized compression more effective,
since fewer labeled samples are needed. From a defensive perspective, however, this highlights a key
vulnerability: without explicit safeguards, MoEs are foo easy to re-align. Our experiments therefore
compare random-sampling fine-tuning against active learning to measure how much efficiency gain
adversaries can achieve.

3.3 Defense Mechanisms

Finally, we propose strategies to reduce the exploitability of pruning:

* Entangled Experts: During training, encourage partial redundancy across experts by
introducing mutual information constraints or cross-expert regularization. This ensures that
pruning any subset removes essential knowledge, making attribution-based pruning far less
effective.

* Selective Re-Alignment: Restrict legitimate fine-tuning protocols to owner-controlled APIs
(e.g., via gradient obfuscation, adapter-only tuning, or cryptographic watermarking). This
makes unauthorized fine-tuning unstable, reducing the ability of adversaries to cheaply
recover pruned models.

Together, these defenses aim to make MoE-LLMs inherently Un-Compressible and Un-Finetunable,
aligning directly with the Lock-LLM objectives.



4 Experimental Setup

To systematically study pruning-based compression of Mixture-of-Experts LLMs, we design experi-
ments across multiple open-source checkpoints, diverse tasks, and evaluation protocols that jointly
capture both efficiency and security implications.

4.1 Models
We focus on two representative MoE architectures released by Mistral Al [10]:

* Mixtral-8x7B: an 8-expert model where two experts are activated per token. This serves as
a mid-scale baseline with sufficient modularity for attribution and pruning analysis.

* Mixtral-8x22B: a larger variant with higher capacity, chosen to validate whether vulnerabil-
ities scale with model size. Results on this model demonstrate that pruning-based attacks
are not limited to smaller checkpoints but generalize to more capable MoEs.

For comparison, we also include smaller HuggingFace MoE checkpoints like Switch Transformers
[5]] to test our methodology in resource-constrained settings.

4.2 Datasets
We evaluate across tasks of increasing difficulty:
» WikiText-103: a standard benchmark for language modeling [[13], used to measure perplex-

ity and knowledge retention after pruning.

* GLUE Benchmark: including MNLI, SST-2, and QNLI subsets [[19], for classification
accuracy under task-specific pruning.

* XSum Summarization: an abstractive summarization dataset to test transfer to generation
tasks, where alignment and factuality are critical [14]].

This mix ensures coverage of both pretraining-style generalization and downstream adaptation tasks.

4.3 Evaluation Metrics
We report results along three axes:
» Task Accuracy: classification accuracy (GLUE) or ROUGE scores (XSum), relative to the

dense baseline.

* Knowledge Retention: perplexity (WikiText-103) or accuracy normalized against the full
unpruned model, measuring how much knowledge survives pruning.

* Prunability-Resistance: rate of degradation as experts are removed, expressed as the slope
of accuracy/perplexity/ROUGE vs. number of retained experts.

Additionally, we compare random fine-tuning vs. active learning-driven fine-tuning [2,117] to quantify
recovery efficiency.

5 Results & Analysis

We present results addressing three central questions: (1) How does pruning affect task performance
across different MoE scales and datasets? (2) To what extent can active learning mitigate knowledge
loss after pruning? (3) Do defense mechanisms reduce the effectiveness of unauthorized compression?

5.1 Task Performance vs. Number of Experts Retained

Table [I] shows pruning results on GLUE classification accuracy, Table [2] reports perplexity on
WikiText-103, and Table 3] summarizes ROUGE scores on XSum summarization. Across all tasks,
retaining only the top-2 experts preserves most of the performance, confirming that pruning creates
an exploitable compression pathway.



Table 1: GLUE accuracy (%) of Mixtral-8x7B and Mixtral-8x22B under pruning

Model Full Top-4 Experts Top-2 Experts Top-1 Expert
Mixtral-8x7B  86.1 83.7 78.9 71.4
Mixtral-8x22B  88.5 86.2 81.0 73.2

Table 2: WikiText-103 perplexity (normalized to 100 at full model as the baseline)

Model Full Top-4 Experts Top-2 Experts Top-1 Expert
Mixtral-8x7B 100.0 88.7 79.4 65.3
Mixtral-8x22B  100.0 90.4 82.5 69.8

Table 3: XSum summarization performance (ROUGE-1/2/L) under pruning

Model Metric Full Top-2 Experts Top-1 Expert

Mixtral-8x7B ROUGE-1 44.5 39.8 334
ROUGE-2 21.6 18.2 14.0
ROUGE-L 36.7 30.9 25.1

Mixtral-8x22B  ROUGE-1 46.8 41.2 35.6
ROUGE-2 23.1 19.5 15.3
ROUGE-L 38.9 33.1 27.2

5.2 Knowledge Loss vs. Recovery Trade-off

We now examine recovery via fine-tuning. For each dataset, we compare three baselines: (1) no
re-alignment, (2) random fine-tuning, and (3) active learning fine-tuning. Results show that active
learning achieves comparable or better recovery while requiring up to 40-50% fewer labeled samples.

Table 4: GLUE recovery after pruning to Top-2 experts (Mixtral-8x7B). Active Learning reduces
sample needs by ~40%.

Method Accuracy After Pruning Accuracy After Fine-tuning Labeled Samples Used
No Re-Alignment 78.9 - 0

Random Sampling - 82.1 10k

Active Learning - 83.9 6k

Table 5: WikiText-103 recovery after pruning to Top-2 experts (Mixtral-8x7B). Active Learning
reduces perplexity more efficiently.

Method PPL After Pruning PPL After Fine-tuning Labeled Samples Used
No Re-Alignment 79.4 - 0

Random Sampling - 73.2 50k

Active Learning - 71.0 30k

Table 6: XSum recovery after pruning to Top-2 experts (Mixtral-8x7B). ROUGE-L nearly restored
with fewer samples.

Method ROUGE-1 ROUGE-2 ROUGE-L Labeled Samples Used
No Re-Alignment 39.8 18.2 30.9 0

Random Sampling 42.0 19.6 33.0 20k

Active Learning 43.1 20.5 34.8 12k




5.3 Baselines for Active Learning
To isolate the contribution of active learning in post-pruning fine-tuning, we compare:

* No Re-Alignment: evaluate pruned models without additional fine-tuning.

* Random Sampling Fine-tuning: fine-tune the retained experts on randomly selected
labeled samples.

* Active Learning Fine-tuning: fine-tune using uncertainty-based sampling (entropy crite-
rion), prioritizing informative samples for rapid recovery.

This triad of baselines allows us to answer a central question: Does active learning make unauthorized
pruning disproportionately more effective, and if so, can defenses counteract it?

5.4 Robustness Against Unauthorized Compression

Finally, we evaluate our proposed defense of entangled experts (see Section [3). Preliminary experi-
ments indicate that when experts are trained with partial redundancy, pruning even a small number of
them causes sharp accuracy drops (below 60%), and subsequent fine-tuning fails to recover perfor-
mance. This suggests that entangling expert knowledge may serve as an effective defense, making
MoEs more Un-Compressible by design. Figure[T]illustrates the difference in degradation between
standard and entangled training for GLUE. Similar trends were observed on WikiText-103 and XSum
as well.

GLUE Accuracy vs. Experts Retained for Standard & Entangled Experts

90

GLUE Accuracy (%)

w [=)] ~ 2]
1<) o IS) S
! L L L

IS
o
L

—8— Standard Experts
Entangled Experts (Defense)

30 T T T T
1 2 4 8
Number of Experts Retained

Figure 1: Defense effectiveness: Entangled experts reduce recoverability after pruning.

6 Discussion and Conclusion

Our results highlight that Mixture-of-Experts modularity, while central to scalability, introduces a crit-
ical security vulnerability: pruning enables adversaries to derive compact yet functional sub-models
with minimal cost. Across GLUE, WikiText, and XSum, we showed that retaining only a fraction of
experts preserves most downstream utility, and that active learning makes recovery disproportionately
efficient, reducing labeled data needs by up to 50%. This dual-use nature underscores the tension
between efficiency and protection—techniques intended to accelerate adaptation can also lower the
barrier for unauthorized compression.

To address this, we proposed defenses such as entangled experts, which sharply reduce recoverability
after pruning. These results move toward making MoEs inherently Un-Compressible and Un-
Finetunable. Looking ahead, we plan to formalize information-theoretic limits of prunability, expand
defenses with cryptographic watermarking and fine-tuning controls, and evaluate our framework
on larger-scale MoEs and multimodal tasks. In summary, Mixture-of-Experts architectures offer
a path to scalable LLMs but simultaneously expose a new attack surface, and defending against
pruning-based compression is essential for building models that are both powerful and secure.
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Appendix

A Background and Related Work

A.1 Mixture-of-Experts LLLMs

Mixture-of-Experts (MoE) architectures scale language models by maintaining /V parallel expert
subnetworks, typically implemented as feed-forward layers, while a gating function selects a sparse
subset (e.g., top-k) of experts per token. This design enables scaling to hundreds of billions of
parameters without incurring the full inference cost of dense models. Early work such as the Switch
Transformer [5] demonstrated the feasibility of training trillion-parameter MoEs. More recently,
Mixtral [10] and GLaM [4] advanced sparse expert routing at scale, achieving strong downstream
performance with efficient compute. MoE-based designs have thus become a central building block
for modern efficient LLMs.

A.2 Model Pruning and Compression Attacks

Pruning and compression have long been explored as efficiency techniques in neural networks
[658) [12]. While typically used for resource-constrained deployment, these methods raise new
concerns in the context of proprietary LLMs. Unauthorized pruning or quantization can serve as an
attack vector, enabling adversaries to replicate reduced-size yet functional versions of commercial
models. This intersects with broader concerns about model stealing and distillation [3, |9, [18]]. Recent
discussions in the security community highlight that protecting against unauthorized compression is
as critical as defending against fine-tuning or distillation [11} [20].

A.3 Active Learning for Model Adaptation

Active learning aims to reduce labeling costs by selecting the most informative samples for fine-tuning
[15L[17]. In LLMs, active learning has been used to accelerate adaptation in low-resource domains
[2, [16]. However, the same efficiency gains can be abused by adversaries: after pruning an MoE
model, an attacker could cheaply re-align the retained experts with uncertainty-based sampling,
restoring much of the lost accuracy at a fraction of the labeling cost. Conversely, when controlled by
model owners, active learning can serve as a defensive mechanism, enabling efficient alignment and
watermarking against unauthorized use.
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