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ABSTRACT

Reinforcement Learning (RL) has become a compelling way to strengthen the
multi step reasoning ability of Large Language Models (LLMs). However, preva-
lent RL paradigms still lean on sparse outcome-based rewards and limited ex-
ploration, which often drives LLMs toward repetitive and suboptimal reasoning
patterns. In this paper, we study the central question of how to design explo-
ration for LLM reasoning and introduce MERCI (Motivating Exploration in LLM
Reasoning with Count-based Intrinsic Rewards), a novel RL algorithm that aug-
ments policy optimization with a principled intrinsic reward. Building on the
idea of count-based exploration, MERCI leverages a lightweight Coin Flipping
Network (CFN) to estimate the pseudo count and further epistemic uncertainty
over reasoning trajectories, and converts them into an intrinsic reward that val-
ues novelty while preserving the learning signal from task rewards. We integrate
MERCI into some advanced RL frameworks like Group Relative Policy Opti-
mization (GRPO). Experiments on complex reasoning benchmarks demonstrate
that MERCI encourages richer and more varied chains of thought, significantly
improves performance over strong baselines, and helps the policy escape local
routines to discover better solutions. It indicates that our targeted intrinsic moti-
vation can make exploration reliable for language model reasoning.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has become a cornerstone of advancing the
multi-step reasoning capabilities of Large Language Models (LLMs), enabling them to tackle com-
plex domains like competitive mathematics and code generation (Jaech et al., 2024; Guo et al., 2025;
MAA, 2025). However, these tasks feature sparse rewards, with feedback available only after com-
pleting a lengthy reasoning chain, making exploration a critical challenge. Recent breakthroughs,
such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and Dynamic sAmpling
Policy Optimization (DAPO) (Yu et al., 2025), have streamlined the training process by eliminating
the need for an explicit value function. This yields local variability at the token level, but it does not
produce exploration that is coherent across the length of a reasoning trajectory. To guide exploration
in such frameworks, many prevalent techniques rely on entropy regularization to encourage local
policy diversity. While effective, this approach is limited for complex, long-horizon tasks. We see
an opportunity to design complementary strategies that provide more directed, temporally-consistent
exploration signals particularly for those tasks, motivating our investigation into principled explo-
ration strategies compatible with modern value-free RL.

The exploration-exploitation trade-off is a classic challenge in RL (Jin et al., 2018; Azar et al., 2017).
Simple approaches such as ϵ-greedy (Mnih et al., 2015) or Boltzmann exploration with entropy-
based regularization (Mnih et al., 2016), inject undirected noise to encourage stochasticity (Osband
et al., 2016a). While these “shallow” exploration methods visit all states theoretically, they can be
exponentially inefficient in simple yet illustrative examples (Osband et al., 2016b; Kakade, 2003). In
notoriously difficult exploration tasks like the video game Montezuma’s Revenge, these methods fail
because the chance of discovering long, precise action sequences needed for reward is vanishingly
small. In contrast, “deep exploration” strategies are both theoretically and empirically superior in
such scenarios. These methods follow the principle of “optimism in the face of uncertainty” (Kearns
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& Singh, 2002; Brafman & Tennenholtz, 2002; O’Donoghue et al., 2017), encouraging the agent to
explore regions of the state-action space where its knowledge is limited. This is often implemented
by generating an intrinsic reward to densify the sparse signal from the environment. Canonical
examples include pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017), Bootstrapped DQN
(Osband et al., 2016a), Random Network Distillation (RND) (Burda et al., 2019), the intrinsic cu-
riosity module (ICM) (Pathak et al., 2017), and methods based on the Uncertainty Bellman Equation
(UBE) (O’Donoghue et al., 2017).

Although desirable, existing methods for estimating epistemic uncertainty (Mannor et al., 2007) do
not scale to modern LLMs. Deep Ensembles (Osband et al., 2016a; Lakshminarayanan et al., 2017),
which train multiple independent models, are prohibitively expensive. Monte Carlo dropout (Gal
& Ghahramani, 2016), though cheaper, still adds significant inference overhead. Other methods
face architectural or theoretical hurdles: pseudo-count techniques (Bellemare et al., 2016; Ostro-
vski et al., 2017) depend on normalized probability densities and preclude efficient batching, while
curiosity-driven methods (Burda et al., 2019; Pathak et al., 2017) lack theoretical guarantees on how
the exploration bonus should decay. The UBE framework (O’Donoghue et al., 2017), while princi-
pled, relies on estimating local uncertainty, a notoriously difficult task often relegated to heuristics.
This fundamental mismatch between classic uncertainty quantification and the scale of LLMs ne-
cessitates a novel approach.

Our work is founded on a critical insight applicable to a broad class of LLM reasoning
tasks—specifically those that are self-contained, such as mathematical problem-solving, where the
model operates without an external, stochastic world. In this context of autoregressive genera-
tion, the underlying Markov Decision Process (MDP) has known and deterministic transitions.
When an LLM in a state s (the token sequence generated so far) selects an action a (the next token),
the subsequent state s′ = (s, a) is determined without ambiguity. This property dramatically simpli-
fies the Uncertainty Bellman Equation, which propagates uncertainty from two sources: the reward
function estimate (r̂) and the transition function estimate (P̂ ). With known transitions, the epistemic
uncertainty of P̂ is zero. The UBE thus reduces to a simple accumulation of local reward uncertainty
along a trajectory. This reframes the intractable problem of estimating Q-value uncertainty into the
more manageable one of estimating local reward uncertainty. To make this tangible, we propose
to proxy this uncertainty using a measure of state novelty—a practical and effective approach in
sparse-reward settings. To this end, we employ the “Flipping Coins” method (Lobel et al., 2023),
a computationally lightweight and theoretically grounded pseudo-counting technique that provides
a scalable estimator for this purpose. We formalize this entire approach in our proposed algorithm,
MERCI (Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards).

To our knowledge, this is the first work to derive and apply a deep exploration algorithm for LLM
reasoning directly from a principled simplification of the UBE. By recognizing that the LLM serves
as its own perfectly known world model, we bridge the gap between model-aware RL theory and
the typically model-free application of RL to LLMs. Our method integrates this simplified UBE
framework with the “Flipping Coins” pseudo-count module to generate an intrinsic reward. This
reward, expressed as an exploration bonus, guides policy optimization algorithms like GRPO to
explore novel reasoning trajectories based on a coherent, temporally-consistent signal of epistemic
uncertainty. Experiments on complex reasoning benchmarks demonstrate that this approach signifi-
cantly improves performance, effectively mitigating the tendency of standard algorithms to converge
on repetitive and suboptimal solutions. Our main contributions are summarized as follows:

1. A Novel Theoretical Framework for LLM Exploration. We establish a new framework
based on a key insight: the LLM’s known and deterministic transition dynamics simplify
the Uncertainty Bellman Equation. This renders principled, uncertainty-driven exploration
tractable at scale by reducing the intractable problem of Q-value uncertainty to a manage-
able estimation of local reward uncertainty.

2. A Practical and Scalable Exploration Algorithm. We propose MERCI, a novel algo-
rithm that operationalizes our theoretical framework. MERCI employs a highly scalable
counting method to translate state novelty into a potent intrinsic reward signal, designed
for seamless integration with modern, value-free policy optimization methods like GRPO.

3. State-of-the-Art Performance on Complex Reasoning. Our extensive empirical evidence
on challenging reasoning benchmarks, including MATH and SQL generation, demonstrate
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that MERCI beats strong baselines. Its directed exploration mechanism mitigates prema-
ture convergence and leads to the discovery of more robust and accurate solutions.

2 PRELIMINARIES

Coin Flip Network (CFN) CFN is a computationally efficient method of count-based exploration,
which estimates a state’s visitation count by solving a simple regression problem. The core idea
is that a state’s visitation count can be estimated by leveraging the statistical properties of the
Rademacher distribution (i.e., random coin flips) (Lobel et al., 2023). The method works by set-
ting up a supervised learning problem where a neural network fϕ, i.e., the CFN, is trained to predict
the average of random coin-flip vectors associated with each state it encounters.

For every visit to a state si, a new random vector yi (i.e., the coin flips) is sampled from {−1, 1}d.
The CFN fϕ is learned by solving argmin

ϕ
E(si,yi)∼Dcfn

[L(si, yi)], where L is the mean-square error

loss function and Dcfn is a dataset of state-label pairs. Considering the fair coin-flip distribution C
over outcomes {−1, 1}, we can flip this coin n times and average the results into zn. Specifically,
the second moment of the sample mean zn is related to the inverse count: M2(zn) = E[z2n] =∑

i Pr(zn = i) ∗ i2 = 1
n . E[z2n] is the variance of the sample mean of the coin-flip distribution.

Furthermore, by flipping d coins each time, the variance of z2n can be reduced by a factor of 1
d , which

implies a reliable way for estimating the inverse count. To this end, we generate a d-dimensional
random vector ci ∼ {−1, 1}d as a label yi for state si. The learning objective is described as:

f∗
ϕ(s) = argmin

ϕ
E(si,yi)∼Dcfn

[L(si, yi)] = argmin
ϕ

|Dcfn|∑
i=1

∥ci − fϕ(si)∥2. (1)

In the dataset Dcfn, each occurrence of the same state will be paired with a different random vector.
f∗
ϕ cannot learn a perfect mapping from states to labels since there are more than one (i.e., m)

instances of the same state si. Thus, it instead minimizes L by outputting the mean random vector
for all instances of a given state: f∗

ϕ(s) =
1
n

∑n
i=1 ci. The pseudo-count can be estimated by:

1

d
∥fϕ(s)∥2 =

1

d

d∑
j=1

E

( n∑
i=1

cij
n

)2
 =

1

d

d∑
j=1

E
[
z2n
]
=

1

n
. (2)

By training fϕ on the objective described in Equation 1, we can map states to approximate the count
by: 1

d∥fϕ(s)∥
2 ≈ 1

N (s) , where N (s) denote the counts of state s.

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) discards the value net-
work in PPO (Schulman et al., 2017) by calculating the advantage of each reasoning step against the
value of the entire completed sequence. For each question q and its ground-truth answer a, GRPO
samples a group of outputs {oi}Gi=1 from the old policy πθold with corresponding outcome rewards
{Ri}Gi=1, and then computes the normalized reward in each group as the estimated advantage:

Âi
t =

ri −mean
(
{Ri}Gi=1

)
std
(
{Ri}Gi=1

) , where Ri =

{
1.0 if is equivalent(a, oi),

0.0 otherwise.
(3)

Adding a KL penalty term to the clipped objective in PPO, the objective of GRPO is expressed as:

JGRPO(θ) = E(q,a)∼D, {oi}Gi=1∼πθold
(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
rit(θ)Â

i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Âi

t

)
− β DKL

[
πθ ∥πref

])]
, where rit(θ) =

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
.

(4)

Decouple Clip and Dynamic sAmpling Policy Optimization (DAPO) Building on GRPO,
DAPO (Yu et al., 2025) removes the KL penalty, introduces a clip-higher strategy and dynamic
sampling, applies a token-level policy gradient loss, and adopts overlong reward shaping.
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Figure 1: Overview of the MERCI framework. Two separate networks are used: a policy network πθ

trained with RL, and a CFN network that provides an intrinsic reward. The CFN network, initialized
from the same SFT checkpoint π0, estimates state novelty to guide the exploration of πθ.

3 METHODOLOGY

In this section, we first establish the theoretical foundation for our approach by simplifying the
Uncertainty Bellman Equation for the specific case of LLMs, and then introduce the full details of
our novel algorithm, MERCI.

3.1 THE UNCERTAINTY BELLMAN EQUATION WITH KNOWN TRANSITIONS

The Uncertainty Bellman Equation (UBE) provides a principled mechanism for propagating epis-
temic uncertainty—quantified as the variance of the posterior distribution over Q-values—through
time (O’Donoghue et al., 2017). For clarity, we will use the terms ”uncertainty” and ”variance”
interchangeably throughout this section. Our core theoretical contribution stems from a key insight:
the Markov Decision Process (MDP) underlying LLM reasoning has a known and determin-
istic transition function, P . This property dramatically simplifies the general form of the UBE,
leading to a more direct and tractable equation for uncertainty propagation.

Formally, we consider a finite horizon, finite state and action space MDP, with horizon length H ∈
N, state space S, action space A and rewards at time period h denoted by rh ∈ R. A policy
π = (π1, . . . , πH) is a sequence of functions where each πh : S × A → R+ is a mapping from
state-action pair to the probability of taking that action at that state, i.e., πh

sa is the probability of
taking action a at state s at time-step h and

∑
a π

h
sa = 1 for all s ∈ S. At each time-step h the agent

receives a state sh and a reward rh and selects an action ah from the policy πh, and the agent moves
to the next state sh+1, which is sampled with probability Ph

s′sa. The Q-value, at time step h of a
particular state under policy π is the expected total return from taking that action at that state and
following π thereafter, i.e., Qπ,h(s, a) = E

[∑H
t=h r

t | st = s, at = a, π
]
.

We adopt a Bayesian perspective as that in (O’Donoghue et al., 2017). We assume a prior over the
mean reward function, r(s), and collect a history of interactions Ft (states, actions, and rewards
up to episode t) generated by a policy π. This history is used to form a posterior distribution over
the mean rewards, which we denote ϕr|Ft

. If we draw a reward function estimate r̂ ∼ ϕr|Ft
, the

corresponding Q-function estimate, Q̂π , must satisfy the posterior Bellman equation for that sample:

Q̂π,h(s, a) = r̂h(s) +
∑
s′,a′

πh
s′,a′Ph

s′sa[Q̂
π,h+1(s′, a′)], (5)

for all timesteps h = 1, . . . , H , with Q̂π,H+1 = 0.

Since the transition function P for an LLM is a known delta function (i.e., for a given state s and
action a, the next state s′ = (s, a) ), we have P rather than its posterior P̂ in equation 5. This leads to
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a recursive equation for the variance of the Q-value posterior, as stated in the following proposition.
In the following discussions, we may use the word uncertainty and variance (w.r.t. the posterios
distribution) interchangeably. we denoteVtx as the variance of random variable x conditioned on
the history Ft, which is E

(
(x− E(x|Ft))

2
∣∣∣Ft

)
.

Proposition 1 (Uncertainty Bellman Equation for Known Transitions) Let Uh(s, a) ≜
Vt[Q̂

π,h(s, a)] be the posterior variance of the Q-value at step h, conditioned on the history
Ft. Given a known and deterministic transition function, this uncertainty propagates according to
the following Bellman equation:

Uh(s, a) ≤ Vt[r̂
h(s)] +

∑
s′,a′

πh
s′,a′Ph

s′saU
h+1(s′, a′),

where s′ is the unique next state reached from (s, a), and UH+1(·) = 0.

The proof follows from the analysis in O’Donoghue et al. (2017) by applying the law of total vari-
ance to equation 5. This result provides a powerful recursive formula: the uncertainty of a state-
action pair is bounded by the immediate reward uncertainty plus the expected uncertainty of
the unique subsequent state, where the expectation is over the policy’s next actions. This reframes
the complex problem of estimating Q-value variance into the more manageable task of estimating
the local reward uncertainty, Vt[r̂

h(s)]. The resulting Q-value variance, Uh(s, a), can be used to
define an exploration bonus inspired by Upper Confidence Bound (UCB) algorithms (Lattimore &
Szepesvári, 2020). Specifically, the policy can be encouraged to explore by modifying the optimiza-
tion objective to Qπ,h(s, a)+α

√
Uh(s, a), where α is a hyperparameter balancing exploitation and

exploration. This approach is backed by strong theoretical guarantees for achieving low regret (Auer
et al., 2008; Jin et al., 2018).

From standard concentration inequalities, we know that the uncertainty over a mean reward estimate
is inversely proportional to the number of times that state has been visited, i.e., Vt[r̂

h(s)] ∝ 1/N (s).
However, in the high-dimensional state space of language, exact state visitations are exceedingly
rare. This necessitates a method to generalize counting to unseen but similar states. In the fol-
lowing section, we describe how we use a scalable pseudo-count mechanism to estimate this local
uncertainty.

3.2 ESTIMATE VARIANCE OF REWARD VIA CFN

Standard policy optimization driven by sparse, outcome-based rewards (e.g., GRPO) can lead to
premature convergence on suboptimal solutions. MERCI addresses it via a dedicated mechanism
for principled exploration. The framework is illustrated in Figure 1.

Our framework employs two distinct Large Language Models operating in parallel:

1. The Policy Network (πθ): This is the agent that generates reasoning trajectories. It is
initialized from a supervised fine-tuned (SFT) checkpoint, π0, and its parameters θ are
exclusively updated by the policy optimization algorithm (e.g., GRPO).

2. The CFN Network: This network’s sole purpose is to estimate epistemic uncertainty. It is
a separate instance of the LLM, also initialized from the same checkpoint π0. A lightweight
MLP, which we call the CFN head (fϕ), is attached to its final hidden layer. CFN network
is updated together via a supervised regression objective (detailed in Section 2).

The training process integrates these two networks as follows. During a training step, a reasoning
trajectory τ is first generated by the current policy network πθ. In the sequential decision-making
process, we define the state at each step as the contextual hidden representation shidden output by the
LLM backbone at that token position, which inherently captures the entire prefix of the generated
sequence. The state shidden is then processed by the CFN head fϕ(s) to estimate the variance of the
reward, computed by V[r̂(s)] = 1

d∥fϕ(s)∥
2.
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Percentile Filtering Spatial Coherence Filtering Noise-suppression Filtering

retains only a fixed fraction of the 
strongest signals within each sample

keeps tokens that belong to contiguous regions 
of elevated bonus and discards isolated spikes 

removes incentives attached to content that is 
unrelated to solving the problem

No Filter Applied
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \( k \ ) white buckets , all initially empty . In each
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket
must be proportional to the number of times it was
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . **
Graph Theory Interpret ation ** : - We can
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex ( the number of times a
bucket was selected ) must be the same for all
vertices in the same set ( all red or all white ). 4 .
** Degree Condition ** : - Let \( d \ ) be the
common degree of each vertex in the graph . Since
each red bucket is connected to \( d \ ) white buckets
and each white bucket is connected to \( d \ ) red
buckets , the total number of edges in the graph is \(
1 0 0 d \ ) ( from the red side ) and also \( kd \ ) (

from the white side ). Therefore , we have the
equation : \ [ 1 0 0 d = kd \ ] - If \( d \ ne q 0 \
), we can divide both sides by \( d \ ) to get : \ [ 1
0 0 = k \ ] 5 . ** Conclusion ** : - The only possible
value for \( k \ ) that satisfies the conditions of the
problem is \( k = 1 0 0 \ ). Thus , the only possible
value of \( k \ ) is \ (\ boxed { 1 0 0 }\ ). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Percentile Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \( k \ ) white buckets , all initially empty . In each 
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the 
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket 
must be proportional to the number of times it was 
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . ** 
Graph Theory Interpret ation ** : - We can 
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a 
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex ( the number of times a 
bucket was selected ) must be the same for all
vertices in the same set ( all red or all white ). 4 . 
** Degree Condition ** : - Let \( d \ ) be the 
common degree of each vertex in the graph . Since
each red bucket is connected to \( d \ ) white buckets
and each white bucket is connected to \( d \ ) red 
buckets , the total number of edges in the graph is \(
1 0 0 d \ ) ( from the red side ) and also \( kd \ ) ( 

from the white side ). Therefore , we have the 
equation : \ [ 1 0 0 d = kd \ ] - If \( d \ ne q 0 \
), we can divide both sides by \( d \ ) to get : \ [ 1
0 0 = k \ ] 5 . ** Conclusion ** : - The only possible
value for \( k \ ) that satisfies the conditions of the 
problem is \( k = 1 0 0 \ ). Thus , the only possible 
value of \( k \ ) is \ (\ boxed { 1 0 0 }\ ). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Spatial Coherence Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \( k \ ) white buckets , all initially empty . In each 
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the 
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket 
must be proportional to the number of times it was 
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . ** 
Graph Theory Interpret ation ** : - We can 
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a 
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex ( the number of times a 
bucket was selected ) must be the same for all
vertices in the same set ( all red or all white ). 4 . 
** Degree Condition ** : - Let \( d \ ) be the 
common degree of each vertex in the graph . Since
each red bucket is connected to \( d \ ) white buckets
and each white bucket is connected to \( d \ ) red 
buckets , the total number of edges in the graph is \(
1 0 0 d \ ) ( from the red side ) and also \( kd \ ) ( 

from the white side ). Therefore , we have the 
equation : \ [ 1 0 0 d = kd \ ] - If \( d \ ne q 0 \
), we can divide both sides by \( d \ ) to get : \ [ 1
0 0 = k \ ] 5 . ** Conclusion ** : - The only possible
value for \( k \ ) that satisfies the conditions of the 
problem is \( k = 1 0 0 \ ). Thus , the only possible 
value of \( k \ ) is \ (\ boxed { 1 0 0 }\ ). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Noise-suppression Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets and
\( k \ ) white buckets , all initially empty . In each move , 
a red and a white bucket are selected and an equal 
amount of water is added to both . After a certain 
number of moves , no bucket is empty , and for every pair 
of buckets that were selected together at least once , the 
amount of water in these buckets is the same . 2 . ** 
Key Observ ations ** : - Since the amount of water 
added to each pair of buckets is the same , the final 
amount of water in each bucket must be proportional 
to the number of times it was selected . - Since no 
bucket is empty , each bucket must have been selected 
at least once . 3 . ** Graph Theory Interpret ation ** : 
- We can interpret the problem using a bip art ite 
graph where the red buckets and white buckets are 
the two sets of vertices , and an edge between a red 
and a white bucket indicates that they were selected 
together in a move . - The condition that the amount 
of water in buckets that were selected together is the 
same implies that the degree of each vertex ( the 
number of times a bucket was selected ) must be the 
same for all vertices in the same set ( all red or all 
white ). 4 . ** Degree Condition ** : - Let \( d \ ) be 
the common degree of each vertex in the graph . Since 
each red bucket is 
connected to \( d \ ) white buckets and each white 
bucket is connected to \( d \ ) red buckets , the total 
number of edges in the graph is \(
1 0 0 d \ ) ( from the red side ) and also \( kd \ )

( from the white side ). Therefore , we have the 
equation : \ [ 1 0 0 d = kd \ ] - If \( d \ ne q 0\ ), 
we can divide both sides by \( d \ ) to get : \ 
[ 1 0 0 = k \ ] 5 . ** Conclusion ** : - The only 
possible value for \( k \ ) that satisfies the conditions of 
the problem is \( k = 1 0 0 \ ). Thus , the only possible 
value of \( k \ ) is \ (\ boxed { 1 0 0 }\ ). Let 's confirm 
this with Python code to ensure the accuracy of the 
result . ``` python # The ... """ output 1 8 9 ```

Figure 2: The entire pipeline of bonus filtering. Step 1: We rank all tokens within a response by
their associated bonus values and retain only those falling within a predefined top percentile (e.g.,
the top 50% in this figure). Step 2: We only preserve clusters of adjacent tokens that consistently
exhibit elevated bonuses (e.g., 3 consecutive tokens in this figure). Step 3: For example, in a math
reasoning task without external tools, any Python code potentially generated during LLM rollouts is
semantically irrelevant and noisy, so we exclude them from the overall bonus calculation.

3.3 ADVANTAGE ESTIMATION

Calculating the Intrinsic Reward from Cumulative Uncertainty A critical detail of our method,
derived directly from Proposition 1, is the precise calculation of the exploration bonus. The cor-
rect approach to determine the uncertainty of a trajectory’s value is to first sum the local reward
variances at each step (we use the monte carlo estimation here), and only then take the square root
of the total sum. This resulting value represents the standard deviation of the cumulative Q-value
posterior and serves as our intrinsic reward.

This stands in stark contrast to a common but theoretically flawed heuristic in many RL explo-
ration algorithms. Those methods often compute a per-step bonus proportional to the local stan-
dard deviation and apply a standard RL algorithm to the modified, “bonused” rewards. As demon-
strated by O’Donoghue et al. (2017), this latter approach—which is equivalent to summing standard
deviations—leads to a significant overestimation of uncertainty over long horizons. This miscalcula-
tion can cause the agent to become overly optimistic, leading to prolonged and inefficient exploration
of paths that are long but not necessarily promising. To illustrate the difference, consider a trajectory
of horizon H where the local reward variance at each step is σ2 = 1. Correct Bonus (MERCI): The
cumulative variance is

∑H
h=1 1 = H . The bonus, or standard deviation, is correctly calculated as√

H . Heuristic Bonus: The per-step bonus is
√
1 = 1. Summing these bonuses results in an overes-

timated total bonus of
∑H

h=1 1 = H . MERCI adheres strictly to the former, theoretically-grounded
calculation, ensuring the exploration signal accurately reflects the true cumulative epistemic uncer-
tainty. Indeed, we compare this two calculation in our ablation study G.2.4.

Budget-Aware Exploration Bonus Control The non-sparse exploration bonus introduces its own
considerable instabilities when becoming indiscriminately dense, which would invite LLMs seeking
through aimless exploration. So, we enforce budgeted exploration, which reduces gradient variance
and in turn stabilizes optimization and lowers noise in final answers. Concretely, three filtering
stages are applied, shaping where and how the bonus can act. (1) Percentile filtering retains only a
fixed fraction of the strongest signals within each sample, which tracks the gradual decline in bonus
magnitude over training without manual retuning. (2) Spatial coherence filtering keeps tokens that
belong to contiguous regions of elevated bonus and discards isolated spikes even when numerically
large, thereby yielding steadier updates. (3) Noise-suppression filtering removes incentives at-
tached to content that is unrelated to solving the problem, such as meaningless repetition, gratuitous
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code blocks, or rare characters generated solely to chase the bonus. Together these stages allocate
a controlled exploration budget that preserves useful exploration while safeguarding the primary
reward signal. The overall pipeline of bonus control is illustrated in Figure 2.

Advantage Normalization and Bonus Integration After bonus filtering, the normalized bonus B
is computed by first averaging the squared CFN outputs across all retained tokens and then applying
square-root compression:

B =

√
1

l

∑
i∈I

(1
d
∥fϕ(sihidden)∥2

)
, (6)

where l is the length of a trajectory, d is the dimension of CFN’s outputs, and I is the set of retained
tokens’ indices.

To ensure comparability across trajectories sampled under the same prompt, we standardize
trajectory-aggregated bonuses within each group of size G and truncate negative values, preserv-
ing only positive exploratory incentives:

Âi
exploration = max

(
0,

Bi − µ

σ

)
,where µ =

1

G

G∑
j=1

Bj , σ =

√√√√ 1

G

G∑
j=1

(Bj − µ)2. (7)

To prevent the bonus from overpowering outcome-based rewards, we scale the standardized intrinsic
bonus term by an exploration coefficient γ, and add it to the base advantage Âi

old. For trajectories
whose base advantage is negative, we cap the augmented advantage with a clipping factor α ∈ (0, 1)
to prevent the intrinsic term from overwhelming the outcome signal:

Âi
new =

min
(
Âi

old + γÂi
exploration, (1 + α)Âi

old

)
, if Âi

old ≥ 0;

min
(
Âi

old + γÂi
exploration, (1− α)Âi

old

)
, if Âi

old < 0.
(8)

We give an algorithmic description in Algorithm 1 in Appendix C.

4 RELATED WORK

4.1 REINFORCEMENT LEARNING FOR LLM REASONING

Reinforcement learning (RL) (Sutton & Barto, 2018), particularly Reinforcement Learning with
Verifiable Rewards (RLVR), has been widely used to improve the reasoning abilities of large lan-
guage models (LLMs). PPO is a foundational policy gradient method, which ensures stable policy
updates via clipped objectives, proving effective in reasoning tasks (Schulman et al., 2017). It treats
token positions in reasoning trajectories of LLM as distinct states for advantage estimation, but
this approach comes at the cost of computational overhead from its joint policy-value optimization.
Starting from PPO, recent efforts have developed some efficient and advanced frameworks such as
GRPO (Shao et al., 2024). By evaluating and normalizing rewards across a group of entire gener-
ated sequences, GRPO provides a more robust and efficient method for advantage estimation. This
method of relative, sequence-level comparison sidesteps the complexities of token-level advantage
estimation, proving far more effective for multi-step reasoning. The success of this holistic approach
is highlighted by its adoption and extension in subsequent research, such as DAPO (Yu et al., 2025),
VAPO (Yue et al., 2025) and Dr. GRPO (Liu et al., 2025). However, even advanced RL methods
for LLMs face a critical bottleneck: their dependence on external static and sparse reward struc-
tures limits effective exploration. To overcome this, we integrate count-based intrinsic motivation
into GRPO-like frameworks, incentivizing the model to explore more novel and diverse reasoning
trajectories guided by epistemic uncertainty during training.

4.2 EXPLORATION IN REINFORCEMENT LEARNING

Effective exploration in RL is critical for navigating the fundamental dilemma between exploit-
ing known rewards and exploring uncertain options to discover better policies. Some traditional
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exploration methods like RND (Burda et al., 2019), ICM (Pathak et al., 2017), and Count-Based
Exploration (Ostrovski et al., 2017; Tang et al., 2017a), encourage agents to explore novel or under-
visited states via intrinsic rewards. However, their application to LLMs faces significant challenges:
the dynamic response length and vast action space. Most approaches for LLMs rely on undirected
exploration, such as simply encouraging exploration from an entropy perspective (Wen et al., 2024;
Wang et al., 2025; Cheng et al., 2025). These heuristic approaches often lack solid theoretical foun-
dation to guide policy models to identify which states warrant greater exploration, leading to subop-
timal policies. To address these limitations, recent work has developed active exploration strategies
to estimate uncertainty from historical data and plan optimistically (Zhang et al., 2024; Bai et al.,
2025; Cen et al.; Chen et al., 2025; Gao et al., 2025; Zhang et al., 2025; Dai et al., 2025). However,
curiosity-driven methods (Bougie & Watanabe, 2025; Gao et al., 2025; Dai et al., 2025) lack theo-
retical guarantees on how the exploration bonus should decay, and the classical density-based meth-
ods for calculating pseudo-counts (Ostrovski et al., 2017; Bai et al., 2021) are resource-intensive,
time-consuming, and hard to fulfill. Some methods (Tang et al., 2017b; Rashid et al., 2019; Lobel
et al., 2023) instead explored alternatives to eliminate the usage of density models. In our work, we
formally show that the deterministic nature of LLM transitions simplifies the general Uncertainty
Bellman Equation to a tractable form, providing the principled justification for how to aggregate
the local pseudo-counts into a sum-of-variance trajectory bonus, thereby distinguishing our method
from purely heuristic exploration techniques. We take CFN (Lobel et al., 2023) as our theoretical
foundation for estimating the pseudo-count, introducing a simple supervised learning objective to
estimate a visitation count and further integrates intrinsic motivation.

5 EXPERIMENTS

To validate our hypothesis that encouraging novelty via MERCI promotes the policy’s ability to
discover more optimal solutions, we conduct a comprehensive set of experiments on two types of
benchmarks: mathematical reasoning and SQL generation, and further provide in-depth analyses.

5.1 EXPERIMENTAL SETUP

Mathematical Reasoning Our backbone model is Qwen2.5-Math-7B (Yang et al., 2024). Our
training dataset is sourced from DAPO-17K (Yu et al., 2025), and we evaluate models on a diverse
set of challenging mathematical reasoning benchmarks, including AIME2024/2025 (MAA, 2025),
MATH500 (Hendrycks et al., 2021), OlympiadBench (He et al., 2024), College Math (Tang et al.,
2024), and Minerva (Lewkowycz et al., 2022).

SQL Generation Our experiments are conducted on Llama-3.1-8B-Instruct (Grattafiori et al.,
2024). We trained on the Bird training set (Li et al., 2023) and evaluated performance on the Bird
and Spider test sets (Yu et al., 2019).

Baselines and Configurations We conduct RL training experiments on both vanilla GRPO and
DAPO using the veRL framework (Sheng et al., 2025). We additionally introduce two algorithms
designed to encourage exploration as baselines: one uses entropy-based advantage shaping(Cheng
et al., 2025), and the other incorporates intrinsic rewards via RND training (Gao et al., 2025). In
our experimental results, we refer to them as Entropy Adv. and iMentor, respectively. For the
implementation of CFN, we set the dimensionality d, which can be intuitively interpreted as how
many times we have flipped a coin, to 20. Detailed hyperparameters are presented in Appendix E.

5.2 MAIN RESULTS

5.2.1 COIN FLIP NETWORK

To evaluate the effectiveness of the CFN, i.e., our exploration model, and enhance exploration ef-
ficiency during RL training, we first generate responses from the backbone model on the training
dataset and use these responses to perform a preliminary training of the CFN. This process enables
it to develop a basic understanding of which states are likely to occur more rarely.
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Table 1: Performance on mathematical reasoning benchmarks with pass@k and mean@k. The
highlighted color represents the best within RL models, while underlined represents the second best.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

Qwen2.5-Math 53.3 70.0 50.4 88.6 56.7 44.2 60.5
+ GRPO 53.3 76.7 64.0 91.8 59.7 49.2 65.8
+ GRPO w/ Entropy Adv. 56.7 76.7 62.5 91.2 59.4 48.9 65.9
+ GRPO w/ iMentor 60.0 76.7 61.4 90.4 60.4 49.3 66.4
+ GRPO w/ MERCI (ours) 60.0 ↑ 80.0 ↑ 63.2 91.4 60.9 ↑ 48.9 67.4 ↑

+ DAPO 56.7 76.7 66.9 92.0 60.9 48.3 66.9
+ DAPO w/ Entropy Adv. 60.0 83.3 66.5 91.4 57.6 48.5 67.9
+ DAPO w/ iMentor 56.7 76.7 68.0 92.0 60.0 50.1 67.3
+ DAPO w/ MERCI (ours) 60.0 ↑ 83.3 ↑ 66.5 91.8 62.1 ↑ 50.2 ↑ 69.0 ↑

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

Qwen2.5-Math 4.4 10.7 16.9 47.5 64.6 22.1 20.3
+ GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5
+ GRPO w/ Entropy Adv. 12.1 28.9 42.0 81.0 40.6 42.6 41.2
+ GRPO w/ iMentor 11.9 29.0 42.2 78.9 40.7 42.4 40.9
+ GRPO w/ MERCI (ours) 13.4 ↑ 29.6 ↑ 44.1 ↑ 80.7 ↑ 42.6 ↑ 42.9 ↑ 42.2 ↑

+ DAPO 16.5 31.9 41.0 81.5 41.4 41.0 42.2
+ DAPO w/ Entropy Adv. 17.2 33.3 44.5 80.9 41.4 41.6 43.2
+ DAPO w/ iMentor 17.4 32.0 46.7 82.3 42.8 43.3 44.1
+ DAPO w/ MERCI (ours) 18.4 ↑ 35.2 ↑ 44.8 ↑ 82.4 ↑ 44.3 ↑ 44.2 ↑ 44.9 ↑

For this pretrained CFN, we conduct two evaluations: (1) Within a single response, we visualize the
estimated uncertainty assigned by the CFN to each token position; (2) For all collected responses,
we apply the method described in Section 3.3 to select the top 30% of tokens with the highest bonus
in each response, filter them accordingly, and then perform statistical analysis on the retained token
sequences. The results of Experiment (1) and (2) are presented in Figure 3, 4, 5, 6 and Figure 7
in Appendix G, respectively. We can observe that token sequences assigned higher uncertainty by
the CFN predominantly correspond to novel reasoning paths, Python code along with its outputs,
or specialized mathematical terminologies. This observation aligns with our hypothesis that more
novel token positions tend to induce higher epistemic uncertainty and are therefore assigned higher
values by our CFN.

In addition, the CFN exhibits three further important findings: (1) when directly applied to esti-
mate the uncertainty of responses in the SQL Generation task, the CFN trained on mathematical
reasoning tasks produces estimates that align well with our intuition and analysis, which indicates
the generalization ability of CFN; (2) for reasoning trajectories that are linguistically close but not
identical, the CFN successfully captures their semantic similarity, yielding correspondingly similar
uncertainty estimates; (3) our CFN bonus provides a non-redundant signal and effectively measures
the policy’s epistemic uncertainty (i.e., lack of knowledge). The detailed results are shown in Figure
8, 9, 10 and Figure 11 in Appendix G.1.

5.2.2 RL TRAINING

The CFN in the RL phase is initialized using the pretrained CFN and is then co-trained with the
policy model during RL training.

Our primary results for RL training are summarized in Table 1 and Table 2. As shown in Table 1,
MERCI delivers consistent gains over both vanilla GRPO and DAPO across mathematical reason-
ing benchmarks when measured by pass@k and mean@k. Gains are most pronounced on the AIME
suites, which is the most challenging, and remain robust on the other datasets. Consistently higher
mean@k suggest better overall sample quality with uniform and stable gains. In addition, MERCI
also yields improvements in pass@k, pointing to enhanced exploration and calibration rather than
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Table 2: Performance on SQL generation benchmarks with greedy sampling and pass@k.

Model Bird (in domain) Spider (out of domain)

Greedy Pass@8 Pass@16 Greedy Pass@8 Pass@16

Llama-3.1-8B-Instruct 42.4 68.5 75.1 69.0 91.0 94.6
+ GRPO 60.7 72.2 74.6 74.7 81.0 82.9
+ GRPO w/ Entropy Adv. 60.8 72.1 73.9 74.7 83.2 84.5
+ GRPO w/ iMentor 62.8 72.3 74.2 75.0 84.1 85.2
+ GRPO w/ MERCI (ours) 63.0 ↑ 72.8 ↑ 74.9 ↑ 78.0 ↑ 84.1 85.6 ↑

+ DAPO 63.2 73.9 75.9 76.8 86.1 87.2
+ DAPO w/ Entropy Adv. 62.3 73.2 75.9 77.5 86.1 87.6
+ DAPO w/ iMentor 62.7 73.9 76.1 77.2 86.4 88.2
+ DAPO w/ MERCI (ours) 64.1 ↑ 73.6 76.1 77.3 86.9 ↑ 88.5 ↑

narrow best-case gains. As shown in Table 2, SQL generation results on Bird and Spider also mirror
the earlier findings. Especially, MERCI yields larger out-of-domain gains, i.e., the Spider test set.
It indicates that MERCI effectively pushes LLMs to use general SQL patterns that transfer better
to different schemas. Additionally, the cross-domain experiments in Appendix G.2.1 indicate that
our MERCI play an important role in improving out-of-domain robustness, even when the under-
lying training data is highly domain-specialized.As evidenced by the training dynamics in Figure
13 in Appendix G and our case study in Appendix G.2.6, we further observe that MERCI enhances
exploration and calibration by densifying multiple valid reasoning trajectories while discouraging
gratuitous chain elongation. It concentrates probability mass on more diverse yet more reliable good
solutions that are expressed in shorter, more focused traces, raising the floor of candidate quality.
Besides, our case study also indicates an increased proportion of steps devoted to higher-level rea-
soning abilities. This shift from length-based search to concise, well-calibrated reasoning improves
sample efficiency and reduces error correlation. It learns to prune task-irrelevant branches and con-
centrate computation on promising hypotheses, yielding more intelligent and efficient exploration.

5.3 ABLATION STUDIES AND SCALING EXPERIMENTS

We conducted these experiments on the mathematical reasoning task and vanilla GRPO. The detailed
experimental results are presented in Appendix G.2.2 and Appendix G.2.4. From these results,
we first confirm that crucial components, including bonus filtering and our normalized trajectory-
aggregated uncertainty estimation, are fundamental to the method’s success. Furthermore, the results
reveal MERCI’s superior exploratory efficiency: our algorithm not only identifies good solutions
efficiently and yields strong pass@k performance, but also demonstrates remarkable stability over
the long term in scaling experiments. Finally, sensitivity analysis on the key hyperparameter choices,
e.g., the γ cosine schedule and Top-p% in bonus filtering, are included in Appendix G.2.5.

6 CONCLUSION

In this study we introduced MERCI, a principled exploration strategy for LLM reasoning that har-
nesses the deterministic transitions of language trajectories. By reframing the Uncertainty Bellman
Equation under known transitions we replaced expensive Q variance estimation with a tractable
count based proxy for reward uncertainty. The result is an intrinsic signal that guides Group Rela-
tive Policy Optimization and its variants toward diverse and coherent reasoning paths. Experiments
on challenging mathematics and SQL benchmarks reveal consistent gains in pass rates and in mean
score, verifying that our method steers policies away from shallow entropy driven randomness and
toward productive inquiry. The Coin Flip Network delivers this benefit with minimal compute over-
head and can be trained in parallel with the policy model, which makes the approach attractive
for large scale systems. Experiments on mathematical reasoning and SQL generation show stable
training dynamics, diverse reasoning paths, accurate solutions, and robust outcomes at scale.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage
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guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
models and datasets used in our work are publicly available, and the code is openly available at:
https://anonymous.4open.science/r/MERCI-2E46. The experimental setup, includ-
ing training steps, model configurations, and hardware details, is described in detail in the appendix.
We have also provided a full description to assist others in reproducing our experiments.
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A THE USE OF LARGE LANGUAGE MODELS

We utilize an LLM to assist with paper editing and correcting grammatical errors.

B ENTROPY REGULARIZATION AS A GENERALIZED ϵ-GREEDY
EXPLORATION

We provide a mathematical derivation showing that entropy regularization corresponds to a softmax
exploration strategy. This can be interpreted as a generalized form of ϵ-greedy exploration that
intelligently allocates exploration probability based on the relative quality of suboptimal actions.
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Entropy-regularized policy improvement. Given a state s and advantage estimates A(s, a) for
actions a ∈ A, consider the entropy-regularized optimization:

π⋆ = arg max
π(·|s)

∑
a

π(a|s)A(s, a) + βH(π(·|s)),

where H(π) = −
∑

a π(a|s) log π(a|s) and β > 0 is the entropy coefficient. The well-known
solution is the Boltzmann/softmax distribution:

πβ(a|s) =
exp(A(s, a)/β)∑
b∈A exp(A(s, b)/β)

.

Connection to ϵ-greedy. Let a⋆ ∈ argmaxa A(s, a) and denote the advantage gaps ∆a =
A(s, a⋆)−A(s, a) ≥ 0. The probability of selecting the optimal action is

p⋆ = πβ(a
⋆|s) = 1

1 +
∑

a̸=a⋆ exp(−∆a/β)
.

We can define a state- and value-dependent exploration probability ϵβ(s) = 1− p⋆. This allows us
to decompose the policy as:

πβ(·|s) = (1− ϵβ(s)) δa⋆ + ϵβ(s) qβ(·|s),

where qβ(a|s) ∝ exp(−∆a/β) is a probability distribution over the set of suboptimal actions.

This formulation reveals that softmax exploration is a generalized form of ϵ-greedy. However, unlike
the standard ϵ-greedy rule, its exploration is not uniform. The distribution qβ intelligently assigns
higher probability to suboptimal actions that are closer to optimal (i.e., having a smaller advantage
gap ∆a). Only under the strong and often unrealistic condition that all suboptimal actions are equally
bad (∆a ≈ const. for a ̸= a⋆) does qβ approach a uniform distribution, making the strategy resem-
ble standard ϵ-greedy. Thus, entropy regularization typically leads to a more efficient exploration
strategy than its uniform counterpart.

C ADDITION DESCRIPTIONS FOR OUR METHOD

Our algorithmic description for MERCI is as follows:

Algorithm 1 Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards

Input: policy model πθ, coin flipping network fϕ, dataset D, iterations N , outcome-based reward
function R, exploration coefficient γ, clipping factor α.
for i = 1 to N do

Generate y ∼ πθ(·|x) for each prompt x in Di, and use R to compute Âold via Equation 3.
Extract hidden expression shidden of each token in y as described in Section 3.2.
Compute y’s bonus with the process introduced in Section 3.3 and Figure 2, then incorporate it
into the original advantage by applying γ and α via Equation 8.
Generate random vectors c and update the parameter ϕ via Equation 1.
Update the LLM policy πθ using Ânew in Equation 8.

end for
Output: Fine-tuned πθ and fϕ.

In the pipeline of bonus filtering, the step 3, i.e., Noise-suppression Filtering, can vary across tasks
and can be optionally applied or configured depending on specific task requirements.
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D PROOF OF PROPOSITION 1

The proof follows the methodology presented in (O’Donoghue et al., 2017). According to the defi-
nition of the conditional variance, we have:

Vt[Q̂
h(s, a)] = Et

[
(Q̂h(s, a)−Et[Q̂

h(s, a)])2
]

= Et


r̂h(s)−Et[r̂

h(s)] +
∑
s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


= Et

[
(r̂h(s)−Et[r̂

h(s)])2
]

+Et


∑

s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


The second equality holds by expanding the square and assuming that the reward estimate r̂h(s)

and the next-step Q-value estimate Q̂h+1(s′, a′) are conditionally independent, which makes their
cross-product term zero.

Now, we focus on the second term. Noting that
∑

s′,a′ πh
s′a′Ph

s′sa′ = 1, this term represents a
weighted sum. Since the function f(x) = x2 is convex, we can apply Jensen’s inequality.

For a convex function f , weights wi that sum to 1, and random variables Zi, Jensen’s inequality
states:

E

[
f

(∑
i

wiZi

)]
≤
∑
i

wiE [f(Zi)]

Applying this to our expression gives:

Et


∑

s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


≤
∑
s′,a′

πh
s′a′Ph

s′sa′ Et

[
(Q̂h+1(s′, a′)−Et[Q̂

h+1(s′, a′)])2
]

=
∑
s′,a′

πh
s′a′Ph

s′sa′ Vt[Q̂
h+1(s′, a′)]

Combining the results, we arrive at the final inequality:

Vt[Q̂
h(s, a)] ≤ Vt[r̂

h(s)] +
∑
s′,a′

πh
s′a′Ph

s′sa′ Vt[Q̂
h+1(s′, a′)]

This shows that the variance of the Q-value at step h is bounded by the variance of the immediate
reward plus the expected variance of the Q-value at the next step, h+ 1.

E DETAILED TRAINING CONFIGURATIONS

E.1 TRAINING DATA AND REWARD FUNCTION

Mathematical Reasoning For both our train dataset and test dataset, we use the following system
prompt:

System Prompt

Please reason step by step, and put your final answer within \boxed{}.

We use an outcome-based reward function that assigns +1 for correct final answers and -1 otherwise.
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Table 3: Our CFN training configurations on mathematical reasoning tasks.

Hyperparameter Value

Optimizer AdamW
Learning rate in the pretraining process 1e-3
Learning rate in the RL training process 1e-4
Training batch size 512× 8
Mini-batch size 8

Table 4: Our CFN training configurations on SQL generation tasks.

Hyperparameter Value

Optimizer AdamW
Learning rate in the pretraining process 3e-4
Learning rate in the RL training process 1e-4
Training batch size 128× 8
Mini-batch size 8

SQL Generation For both our train dataset and test dataset, we do not explicitly use any system
prompt. We add the following contents at the beginning of the user prompt:

Prompt

Task Overview:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

The outcome-based reward function is dense: final score = answer score + format score, where:

answer score =

{
1.0, if Result(S) = Result(G)

min
(

count2
|gold dict|×|result dict| , 1.0

)
× 0.8 if Result(S) ̸= Result(G)

(9)

Above, S is the generated solution string (predicted SQL query), and G is the ground truth query.
Result(Q) is the set of execution results returned by the database when executing the SQL query Q.

E.2 CFN TRAINING CONFIGURATION

For CFN training, we first generate rollouts from the backbone model on the training dataset and use
these responses to perform a preliminary training of the CFN. This process enables it to develop a
basic understanding of which states are likely to occur more rarely. During the RL training phase, we
initialize the exploration model with the parameters of the pretrained CFN to prevent the information
it provides at the outset from misleading the policy model.

Mathematical Reasoning We use the hyperparameters in Table 3 for CFN training on mathemat-
ical reasoning tasks.

SQL Generation We use the hyperparameters in Table 4 for CFN training on SQL generation
tasks.

E.3 RL TRAINING CONFIGURATION

Our experiments were conducted on 32 NVIDIA H20-96GB GPUs. For the reproduced Entropy
Adv. and iMentor methods, we adopt the same general training hyperparameters as listed in Table 5
and Table 6, while their method-specific hyperparameters follow the configurations reported in the
original papers.
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Table 5: Our RL training configurations on mathematical reasoning tasks.

Hyperparameter Value

General training hyperparameters
Optimizer AdamW
Policy learning rate 1e-6
Training batch size 512
Samples per prompt 8
Mini-batch size 32
Max prompt length 1024
Max response length 3072
Rollout temperature 1.0

Method-specific hyperparameters
Top p% in step 1 of bonus filtering 30%
Initial γ in Equation 8 0.4
α in Equation 8 0.5

Table 6: Our RL training configurations on SQL generation tasks.

Hyperparameter Value

General training hyperparameters
Optimizer AdamW
Policy learning rate 1e-6
Training batch size 128
Samples per prompt 8
Mini-batch size 64
Max prompt length 8192
Max response length 4096
Rollout temperature 1.0

Method-specific hyperparameters
Top p% in step 1 of bonus filtering 20%
Initial γ in Equation 8 0.1
α in Equation 8 0.5

Mathematical Reasoning We use the hyperparameters in Table 5 for RL training on mathematical
reasoning tasks. Notably, during RL training, we applied a cosine decay schedule to the discount
factor γ, configured so that by step 200 it reached 10% of its initial value. The same applies in the
SQL generation task.

In addition to focusing on mean@k, we also place considerable emphasis on pass@k. However, we
observe that as vanilla GRPO training progresses, increases in mean@k are generally accompanied
by sharp decreases in pass@k, which is also presented in Appendix G.2.2. Therefore, to ensure
comparability across both types of metrics, we train each experiment for 120 steps on vanilla GRPO.
For DAPO, we train each experiment for 160 steps (including data sampling and filtering).

SQL Generation We use the hyperparameters in Table 6 for RL training on SQL generation tasks.

We train each experiment for 160 steps on vanilla GRPO, and 240 steps on DAPO (including data
sampling and filtering).

F INFERENCE CONFIGURATIONS

Mathematical Reasoning We use a rollout temperature of 0.6, top-p sampling with p = 0.95,
and a maximum response length of 4096 tokens. We adopt k = 256 for the small but challenging
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To  determine  the  value  of  \(  c  \ )  such  that  the  graphs  of  the  equation  \(  y  =  | x  -  2 0 |  +  | x  +  1 8 |  \ )  and  the

 line  \(  y  =  x  +  c  \ )  intersect  at  exactly  one  point ,  we  need  to  analyze  the  behavior  of  the  function  \(  y  =  | x  -  2 0

|  +  | x  +  1 8 |  \ ).  The  function  \(  y  =  | x  -  2 0 |  +  | x  +  1 8 |  \ )  can  be  broken  down  into  different  cases  based

 on  the  value  of  \(  x  \ ):  1 .  When  \(  x  \ ge q  2 0  \ ): \[  y  =  ( x  -  2 0 )  +  ( x  +  1 8 )  =  2 x  -  2  \ ]  2 .  When

 \(  - 1 8  \ le q  x  <  2 0  \ ): \[  y  =  ( 2 0  -  x )  +  ( x  +  1 8 )  =  3 8  \ ]  3 .  When  \(  x  <  - 1 8  \ ): \[  y  =  ( 2 0  -

 x )  +  (- x  -  1 8 )  =  2  -  2 x  \ ]  The  function  \(  y  =  | x  -  2 0 |  +  | x  +  1 8 |  \ )  is  a  piece wise  function  that

 looks  like  a  " V "  shape  with  a  flat  bottom  between  \(  x  =  - 1 8  \ )  and  \(  x  =  2 0  \ ).  The  line  \(  y  =  x  +  c  \ )

 will  intersect  this  piece wise  function  at  exactly  one  point  if  it  is  tangent  to  the  flat  bottom  segment  \(  y  =  3 8  \ )  (

since  the  line  \(  y  =  x  +  c  \ )  has  a  slope  of  1  and  will  intersect  the  " V "  shape  at  two  points  unless  it  is  tangent

 to  the  flat  bottom ).  For  the  line  \(  y  =  x  +  c  \ )  to  be  tangent  to  the  flat  bottom  segment  \(  y  =  3 8  \ ),  the  line

 must  intersect  the  segment  at  some  point  \(  ( x ,  3 8 )  \ ).  The  equation  of  the  line  at  this  point  is  \(  3 8  =  x  +  c  \

),  so  \(  x  =  3 8  -  c  \ ).  Since  \(  - 1 8  \ le q  x  <  2 0  \ ),  we  have  \(  - 1 8  \ le q  3 8  -  c  <  2 0  \ ).  Sol ving

 these  inequalities :  1 .  \(  - 1 8  \ le q  3 8  -  c  \ )  gives  \(  c  \ le q  5 6  \ ) 2 .  \(  3 8  -  c  <  2 0  \ )  gives  \(  c  >

 1 8  \ )  Since  the  line  must  be  tangent  to  the  flat  bottom  segment ,  \(  c  \ )  must  be  such  that  the  line  intersects  the

 segment  exactly  once .  The  only  value  that  satisfies  both  inequalities  and  ensures  the  line  is  tangent  to  the  flat  bottom

 segment  is  \(  c  =  1 9  \ ).  This  is  because  if  \(  c  =  1 9  \ ),  then  \(  x  =  3 8  -  1 9  =  1 9  \ ),  which  lies  within

 the  interval  \(  - 1 8  \ le q  x  <  2 0  \ ).  Therefore ,  the  value  of  \(  c  \ )  is  \(  \ boxed { 1 9 }  \ ).
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Figure 3: An example of token-level estimated epistemic uncertainty within a response. Red regions
indicate relatively higher uncertainty estimates assigned by the CFN to the corresponding token
positions, while blue regions indicate relatively lower estimates. The same applies hereafter.

Let 's  denote  the  numbers  thought  by  the  students  as  $ a _ 1 ,  a _ 2 ,  \ ld ots ,  a _{ 1 0 } $.  According  to  the  problem ,  each

 student  announces  the  arithmetic  mean  of  the  two  numbers  they  learned  from  their  neighbors .    The  arithmetic  mean  announced  by

 the  $ i $ - th  student  is  given  by : $  \ frac { a _{ i - 1 }  +  a _{ i + 1 }} { 2 }  =  i  $  where  the  indices  are  taken  modulo  1

0  ( i .e .,  $ a _ 0  =  a _{ 1 0 }$  and  $ a _{ 1 1 }  =  a _ 1 $ ).  We  can  rewrite  the  above  equation  as : $  a _{ i - 1 }  +  a _{ i +

1 }  =  2 i  $   Let 's  start  by  analyzing  the  given  information .  The  announced  numbers  are : $  1 ,  2 ,  3 ,  4 ,  5 ,  6 ,  

7 ,  8 ,  9 ,  1 0  $   We  can  write  down  the  equations  based  on  these  numbers : 1 .  $ a _ 1  +  a _ 3  =  2 $ 2 .  $ a _ 2  +  a _

4  =  4 $ 3 .  $ a _ 3  +  a _ 5  =  6 $ 4 .  $ a _ 4  +  a _ 6  =  8 $ 5 .  $ a _ 5  +  a _ 7  =  1 0 $ 6 .  $ a _ 6  +  a _ 8  =  1 2 $ 7

.  $ a _ 7  +  a _ 9  =  1 4 $ 8 .  $ a _ 8  +  a _{ 1 0 }  =  1 6 $ 9 .  $ a _ 9  +  a _ 1  =  1 8 $ 1 0 .  $ a _{ 1 0 }  +  a _ 2  =  2 0

$  Notice  that  the  sums  are  increasing  by  2  each  time .    Next ,  we  can  sum  all  the  equations : $  (a _ 1  +  a _ 3 )  +  ( a _

2  +  a _ 4 )  +  \ ld ots  +  ( a _ 9  +  a _ 1 )  +  ( a _{ 1 0 }  +  a _ 2 )  =  2  +  4  +  6  +  8  +  1 0  +  1 2  +  1 4  +  1 6  +  

1 8  +  2 0  $   This  simpl ifies  to : $  2 (a _ 1  +  a _ 2  +  \ ld ots  +  a _{ 1 0 })  =  1 1 0  $   Thus ,  the  sum  of  all  numbers

 is : $  a _ 1  +  a _ 2  +  \ ld ots  +  a _{ 1 0 }  =  5 5  $   Now ,  let 's  focus  on  the  student  who  announced  the  number  $ 6 $.

 From  the  equation  $ a _ 3  +  a _ 5  =  6 $,  we  need  to  find  $ a _ 3 $  and  $ a _ 5 $ .  To  solve  for  $ a _ 3 $  and  $ a _ 5 $,  we

 need  additional  information .  However ,  given  the  symmetry  in  the  problem  setup  and  the  arithmetic  sequence  of  the  announced

 numbers ,  we  can  hypo thesize  that  the  numbers  are  evenly  distributed  around  the  mean .    Ass uming  an  evenly  distributed  pattern

,  we  can  estimate  $ a _ 3 $  and  $ a _ 5 $  by  considering  the  average  of  the  numbers  around  them .  Since  $ a _ 3 $  and  $ a _ 5 $

 are  part  of  the  sequence  $ 1 ,  2 ,  3 ,  4 ,  5 ,  6 ,  7 ,  8 ,  9 ,  1 0 $,  a  reasonable  assumption  is  that  $ a _ 3 $  and  $

a _ 5 $  are  close  to  the  middle  of  this  sequence .  Given  the  symmetry  and  the  announced  means ,  a  possible  distribution  could  be

: $  a _ 1  =  1 ,  a _ 2  =  2 ,  a _ 3  =  3 ,  a _ 4  =  4 ,  a _ 5  =  5 ,  a _ 6  =  6 ,  a _ 7  =  7 ,  a _ 8  =  8 ,  a _ 9  =  9 ,

 a _{ 1 0 }  =  1 0  $   Thus ,  the  number  thought  by  the  student  who  publicly  announced  the  number  $ 6 $  is : $  \ boxed { 6 } $

  This  solution  assumes  a  simple  linear  increase  in  the  numbers  thought  by  the  students ,  which  is  consistent  with  the  given

 arithmetic  means .
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Figure 4: An example of token-level estimated epistemic uncertainty within a response.

AIME2024/2025 datasets (30 problems each), k = 16 for Minerva, MATH500, and Olympiad-
Bench, and k = 8 for College Math, balancing computational cost and difficulty.

SQL Generation We use a top-p sampling with p = 0.95, and a maximum response length of
4096 tokens. We use a rollout temperature of 0.0 for greedy sampling, and a rollout temperature of
1.0 to evaluate pass@k.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 COIN FLIPPING NETWORK

Uncertainty Estimation We conduct two experiments to evaluate CFN as described in Section
5.2.1, and the detailed results are presented as follows in Figure 3, 4, 5, 6 and Figure 7.
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To  solve  the  given  summ ation  \ (\ sum _{ k = 1 } ^{ 3 6 0 }  \ frac { 1 }{ k  \ sqrt {k + 1 }  +  ( k + 1 )\ sqrt {k }} \ ),  we  need  to

 simplify  the  general  term  of  the  summ ation .  Let 's  start  by  simpl ifying  the  expression  \ (\ frac { 1 }{ k  \ sqrt {k + 1 }  +  ( k +

1 )\ sqrt {k }} \ ).  The  expression  can  be  simplified  by  rational izing  the  denominator .  We  multiply  the  numerator  and  the

 denominator  by  the  conjug ate  of  the  denominator :  \ [ \ frac { 1 }{ k  \ sqrt {k + 1 }  +  ( k + 1 )\ sqrt {k }}  \ cdot  \ frac {k  \

sqrt {k + 1 }  -  ( k + 1 )\ sqrt {k }} { k  \ sqrt {k + 1 }  -  ( k + 1 )\ sqrt {k }}  =  \ frac {k  \ sqrt {k + 1 }  -  ( k + 1 )\ sqrt {k }} {( k

 \ sqrt {k + 1 }) ^ 2  -  (( k + 1 )\ sqrt {k }) ^ 2 } \ ]  S impl ifying  the  denominator :  \ [ (k  \ sqrt {k + 1 }) ^ 2  -  (( k + 1 )\ sqrt

{k }) ^ 2  =  k ^ 2  ( k + 1 )  -  ( k + 1 )^ 2  k  =  k ^ 3  +  k ^ 2  -  ( k ^ 3  +  2 k ^ 2  +  k )  =  - k ^ 2  -  k  =  - k (k + 1 ) \ ]  So

 the  expression  becomes :  \ [ \ frac {k  \ sqrt {k + 1 }  -  ( k + 1 )\ sqrt {k }} {- k (k + 1 )}  =  \ frac {( k  \ sqrt {k + 1 }  -  ( k + 1

)\ sqrt {k }) }{ - k (k + 1 )}  =  \ frac {( k  \ sqrt {k + 1 }  -  ( k + 1 )\ sqrt {k }) }{ - k (k + 1 )}  =  \ frac {( k  \ sqrt {k + 1 }  -  ( k +

1 )\ sqrt {k }) }{ - k (k + 1 )}  =  - \ frac {k  \ sqrt {k + 1 }} { k (k + 1 )}  +  \ frac {( k + 1 )\ sqrt {k }} { k (k + 1 )}  =  - \ frac {\ sqrt

{k + 1 }} { k + 1 }  +  \ frac {\ sqrt {k }} { k }  =  \ frac {\ sqrt {k }} { k }  -  \ frac {\ sqrt {k + 1 }} { k + 1 }  =  \ frac { 1 }{ \ sqrt {k

}}  -  \ frac { 1 }{ \ sqrt {k + 1 }} \ ]  So  the  general  term  simpl ifies  to :  \ [ \ frac { 1 }{ k  \ sqrt {k + 1 }  +  ( k + 1 )\ sqrt {k

}}  =  \ frac { 1 }{ \ sqrt {k }}  -  \ frac { 1 }{ \ sqrt {k + 1 }} \ ]  This  is  a  telesc oping  series .  When  we  sum  this  from  \( k = 1

\)  to  \( k = 3 6 0 \ ),  most  terms  will  cancel  out :  \ [ \ sum _{ k = 1 } ^{ 3 6 0 }  \ left (  \ frac { 1 }{ \ sqrt {k }}  -  \ frac { 1

}{ \ sqrt {k + 1 }}  \ right )  =  \ left (  \ frac { 1 }{ \ sqrt { 1 }}  -  \ frac { 1 }{ \ sqrt { 2 }}  \ right )  +  \ left (  \ frac { 1 }{ \

sqrt { 2 }}  -  \ frac { 1 }{ \ sqrt { 3 }}  \ right )  +  \ cd ots  +  \ left (  \ frac { 1 }{ \ sqrt { 3 6 0 }}  -  \ frac { 1 }{ \ sqrt { 3 6 1 }}

 \ right ) \ ]  All  intermediate  terms  cancel  out ,  leaving :  \ [ 1  -  \ frac { 1 }{ \ sqrt { 3 6 1 }}  =  1  -  \ frac { 1 }{ 1 9 }  =

 \ frac { 1 9 }{ 1 9 }  -  \ frac { 1 }{ 1 9 }  =  \ frac { 1 8 }{ 1 9 } \ ]  So  the  sum  is  \ (\ frac { 1 8 }{ 1 9 }\ ).  The  integers  \( m

\)  and  \( n \)  are  1 8  and  1 9 ,  respectively ,  and  they  are  relatively  prime .  Therefore ,  \( m  +  n  =  1 8  +  1 9  =  3 7 \

).  The  final  answer  is  \ (\ boxed { 3 7 }\ ).
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Figure 5: An example of token-level estimated epistemic uncertainty within a response.

To  solve  this  problem ,  we  need  to  understand  the  structure  of  a  triang ulation  of  a  regular  polygon  and  the  properties  of  the

 triangles  formed .  In  a  triang ulation  of  a  regular  $ 1 8 0 $ - gon ,  each  triangle  formed  will  have  angles  that  are  sums  of  the

 angles  of  the  original  polygon .  The  key  insight  here  is  that  in  a  regular  $ 1 8 0 $ - gon ,  the  angles  of  the  triangles  will

 be  determined  by  the  positions  of  the  vertices .  ###  Step -by - Step  Reason ing :  1 .  ** Understanding  the  Tri ang ulation **:  A

 regular  $ 1 8 0 $ - gon  can  be  triang ulated  into  $ 1 7 8 $  triangles .  Each  triangle  will  have  angles  that  are  sums  of  the  angles

 of  the  original  polygon .  The  key  is  to  understand  the  distribution  of  these  angles .  2 .  ** Angles  in  the  Tri angles **:  In  a

 regular  $ 1 8 0 $ - gon ,  each  internal  angle  is  $\ frac {( 1 8 0 - 2 )  \ cdot  1 8 0 }{ 1 8 0 }  =  1 7 8 ^\ circ $.  When  triang ulating

,  the  angles  of  the  triangles  will  be  sums  of  the  angles  of  the  original  polygon .  However ,  the  key  observation  is  that  each

 triangle  will  have  at  most  one  $ 1 ^\ circ $  angle ,  because  the  angles  of  the  triangles  are  sums  of  the  angles  of  the  original

 polygon ,  and  the  smallest  angle  in  a  regular  $ 1 8 0 $ - gon  is  $ 1 ^\ circ $ .  3 .  ** Expected  Number  of  $ 1 ^\ circ $  Ang les

**:  Since  each  triangle  in  the  triang ulation  of  a  regular  $ 1 8 0 $ - gon  can  have  at  most  one  $ 1 ^\ circ $  angle ,  and  since

 the  triang ulation  is  random ,  the  expected  number  of  $ 1 ^\ circ $  angles  in  a  randomly  selected  triangle  is  the  probability  that

 a  triangle  has  a  $ 1 ^\ circ $  angle .  This  probability  is  $\ frac { 2 }{ 1 7 8 }$ ,  because  each  triangle  can  have  at  most  one  $

1 ^\ circ $  angle ,  and  there  are  $ 1 7 8 $  possible  positions  for  the  $ 1 ^\ circ $  angle  in  each  triangle .  4 .  ** Expected  Value

 Calculation **:  The  expected  number  of  $ 1 ^\ circ $  angles  in  a  randomly  selected  triangle  is  $\ frac { 2 }{ 1 7 8 }  =  \ frac { 1 }{

8 9 } $.  This  fraction  is  already  in  its  simplest  form ,  so  $ a  =  1 $  and  $ b  =  8 9 $ .  5 .  ** Final  Calculation **:  The

 value  of  $ 1 0 0 a  +  b $  is  $ 1 0 0  \ cdot  1  +  8 9  =  1 8 9 $ .  Let 's  confirm  this  with  Python  code  to  ensure  the  accuracy

 of  the  result . ``` python  #  The  expected  number  of  1 Â°  angles  in  a  randomly  selected  triangle  is  1 / 8 9  a  =  1  b  =  8

9   #  Calculate  1 0 0 a  +  b  result  =  1 0 0  *  a  +  b  print (result ) `` ` ``` output  1 8 9  `` ` The  expected  number  of  $ 1

^\ circ $  angles  in  a  randomly  selected  triangle  from  a  triang ulation  of  a  regular  $ 1 8 0 $ - gon  is  $\ frac { 1 }{ 8 9 } $.

 Therefore ,  the  value  of  $ 1 0 0 a  +  b $  is  $\ boxed { 1 8 9 } $.
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Figure 6: An example of token-level estimated epistemic uncertainty within a response.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175
Frequency

{or}
using the quadratic formula

3. **Find the
{and}

we need to find the
2. **Determine

2. **Find the
3. **Calculate the

By Vieta's formulas
Angle Bisector Theorem
is already in its simplest

2. **Calculate the
, we need to find

3. **Determine
4. **Find the

isosceles triangle
**Understanding the Problem:

the trapezoid
- We need to
Rearranging

we can use the fact
). Substituting

**Understand the Problem
, we can use the

we can equate the
we need to consider the

which simplifies to
This simplifies to
3. **Finding the

we need to check if
using Heron's formula

Ph
ra

se

165
152

144
134

132
108

104
103

99
92

88
85

84
78
78

77
77

75
74

71
69

65
65

63
59
59

57
56

55
54

50

Figure 7: A statistical analysis of the occurrence frequency of contiguous token segments within
each response that fall within the top 30% of bonus values (after filtering out code-related segments).

To find the lowest three eligible free rates for students aged 5 - 1 7 in continuation schools , we need to follow these steps : 1 . Identify the

table that contains the necessary information . 2 . Select the relevant columns from the table . 3 . Filter the data based on the criteria ( contin

uation schools and students aged 5 - 1 7 ). 4 . Calculate the eligible free rate for each row . 5 . Sort the results in ascending order based on the

eligible free rate . 6 . Limit the results to the lowest three rates . Let 's go through each step in detail : 1 . The table that contains the

necessary information is ` s ats cores `. 2 . The relevant columns from the table are ` cd s `, ` s name `, ` d name `, ` cname `, ` Num T st T ak r

`, and ` Avg Scr Read `. 3 . We need to filter the data based on the criteria ( contin uation schools and students aged 5 - 1 7 ). In the ` schools

` table , we can find the school type (` Ed Ops Name `) and the district type (` DOC Type `). For continuation schools , ` Ed Ops Name ` should be `'

Contin uation School ' `, and for students aged 5 - 1 7 , ` DOC Type ` should be `' K - 1 2 Schools ( Public )' `. 4 . We need to calculate the

eligible free rate for each row . The formula given is ` Free Meal Count ( A ges 5 - 1 7 )` / ` En rollment ( A ges 5 - 1 7 ) `. 5 . We need to

sort the results in ascending order based on the eligible free rate . 6 . We need to limit the results to the lowest three rates . Now , let 's write

the SQL query : ``` sql SELECT s .s name , s .d name , s .c name , s .Num T st T ak r , s .A vg Scr Read , ( s .Num T st T ak r * s .A vg Scr

Read ) / s .Num T st T ak r AS eligible _free _rate FROM s ats cores s JOIN schools s 2 ON s .C DS Code = s 2 .C DS Code WHERE s 2 .Ed Ops

Name = ' Contin uation School ' AND s 2 .D OC Type = ' K - 1 2 Schools ( Public )' ORDER BY eligible _free _rate ASC LIMIT 3 ; `` ` This query

selects the necessary columns from the ` s ats cores ` and ` schools ` tables , filters the data based on the criteria , calculates the eligible free

rate , sorts the results in ascending order , and limits the results to the lowest three rates . The final SQL query is : ``` sql -- Your SQL query

SELECT s .s name , s .d name , s .c name , s .Num T st T ak r , s .A vg Scr Read , ( s .Num T st T ak r * s .A vg Scr Read ) / s .Num T st T

ak r AS eligible _free _rate FROM s ats cores s JOIN schools s 2 ON s .C DS Code = s 2 .C DS Code WHERE s 2 .Ed Ops Name = ' Contin uation

School ' AND s 2 .D OC Type = ' K - 1 2 Schools ( Public )' ORDER BY eligible _free _rate ASC LIMIT 3 ; ```
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Figure 8: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

Generalization Ability of CFN We directly apply the CFN trained on mathematical reasoning
tasks to estimate the uncertainty of responses in the SQL Generation task, and some examples are
shown in Figure 8, Figure 9 and Figure 10. Since SQL code is indeed infrequently encountered, it
exhibits higher uncertainty, and the CFN correspondingly produces noticeably elevated estimates. In
contrast, the uncertainty values assigned to other natural language reasoning sequences are largely
consistent with our intuition and expectations. This directly demonstrates that the CFN is capable of
leveraging the LLM’s general features and translating them into an effective novelty estimate across
domains.
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To identify molecules in which there is carbon , we need to follow these steps : 1 . Join the ` atom ` and ` m olecule ` tables on the ` m olecule

_id ` column to get the molecule _id for each atom . 2 . Filter the results to only include atoms where the ` element ` column is ' c '. 3 . Group

the results by ` m olecule _id ` to get the molecule _id for each molecule containing carbon . 4 . Select the ` m olecule _id ` column from the

grouped results . Here 's the SQL query that accompl ishes this : ``` sql SELECT molecule _id FROM ( SELECT molecule _id FROM atom JOIN

molecule ON atom .m olecule _id = molecule .m olecule _id WHERE element = ' c ' ) AS sub query ; `` ` The generated SQL query is : ``` sql SELECT

molecule _id FROM ( SELECT molecule _id FROM atom JOIN molecule ON atom .m olecule _id = molecule .m olecule _id WHERE element = ' c ' ) AS

sub query ; ```
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Figure 9: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

To solve this problem , we need to identify the triple bond type molecules and extract the atom IDs of the first and second atoms . Let 's break down

the steps : 1 . Identify the triple bond type molecules : - We need to select the molecules where the bond type is '# '. - We can use the ` m

olecule ` table and the ` bond ` table to find the relevant molecules . 2 . Extract the atom IDs of the first and second atoms : - We need to join

the ` m olecule ` table with the ` connected ` table to get the atom IDs . - We can use the ` m olecule _id ` column to match the molecules and the

` atom _id ` and ` atom _id 2 ` columns to get the atom IDs . Here 's the SQL query that accompl ishes this : ``` sql SELECT atom _id , atom _id 2

FROM connected JOIN molecule ON connected .m olecule _id = molecule .m olecule _id WHERE bond _id IN ( SELECT bond _id FROM bond WHERE bond _type =

'# ') ORDER BY atom _id ; `` ` Let 's break down the query step by step : 1 . ` SELECT atom _id , atom _id 2 `: This selects the atom IDs of the

first and second atoms . 2 . ` FROM connected `: This specifies the ` connected ` table . 3 . ` JOIN molecule ON connected .m olecule _id = molecule

.m olecule _id `: This joins the ` connected ` table with the ` m olecule ` table on the ` m olecule _id ` column . 4 . ` WHERE bond _id IN ( SELECT

bond _id FROM bond WHERE bond _type = '# ') `: This filters the results to only include the bond IDs where the bond type is '# '. 5 . ` ORDER BY atom

_id `: This orders the results by the ` atom _id ` column . Now , let 's execute the query and retrieve the results : ``` sql -- Your SQL query ``

` Please execute the query and verify that the results are correct . If necessary , refine the query and execute it again to ensure accuracy .
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Figure 10: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

1. Counting Subsets:

Since 𝑆 has 6 elements, its 
power set contains 2! =
64 subsets.

2. Selecting 𝑨 and 𝑩:
Both subsets are chosen 
uniformly from all 64 subsets, 
giving a total of 64 × 64 = 4096
ordered pairs (𝐴, 𝐵).

3. Condition for 𝑩 to be Contained 
in 𝑨 or 𝑺-𝑨:
 Fix a particular 𝐴, 𝐵 is 
acceptable precisely when it is 
either a subset of 𝐴 or or a 
subset of the complement 𝑆 − 𝐴.
There are 2 " subsets of 𝐴 and 
𝑆 − 𝐴 is 2!# " subsets of 𝑆 − 𝐴.
Thus, the number of possible 𝐵’s 
is 2 " + 2!# " -1.

0.2323

1. Total Number of Subsets:

The set 𝑆 has 2! = 64 subsets 
(since 𝑆 has 6 elements).

2. Choosing Subsets 𝑨 and 𝑩:
Both 𝐴 and 𝐵 can be any subset 

of 𝑆. Therefore, there are 
64 × 64 = 4096 possible pairs of 
(𝐴, 𝐵).

3. Condition for 𝑩 to be 
Contained in 𝑨 or 𝑺-𝑨:

For a given subset 𝐴, 𝐵 can be 
any subset of 𝐴 or any subset of 
𝑆 − 𝐴. The number of subsets of 
𝐴 is 2 " and the number of 
subsets of 𝑆 − 𝐴 is 2!# " .
Therefore, for each subset 𝐴, 
there are 2 " + 2!# " -1 valid 
subsets 𝐵.

0.2547

1. Elementwise Perspective:

Instead of counting subsets 
directly, view the process per 
element: each element of 𝑆
independently lands in 𝐴, 𝐵, both, 
or neither.

2. Characterizing the Event:
No element can simultaneously 

lie in 𝐵 and also in both 𝐴 and 𝑆 −
𝐴. Thus, every element must 
choose from a restricted set of 
valid membership patterns.

3. Configuration Counting:.
For each element, determine 

how many assignments of 
membership in 𝐴 and 𝐵 satisfy the 
constraint; then raise that 
number to the 6th power

0.3452

(1) (2) (3)

Figure 11: An example of reasoning trajectories and corresponding aggregated uncertainties.
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(a) (b) (c)

Figure 12: Relations between the CFN Uncertainty Esitimation and Entropy, Score and Rollouts
Variance.

Semantic Capturing To assess the CFN’s ability to capture semantic similarity and to determine
whether it can provide reasonable uncertainty estimates for sequences that are linguistically close
but not identical, we present in Figure 11 several example statements along with their corresponding
aggregated trajectory uncertainties. The results are obtained from the CFN at training step 80.

The underlying rationale and semantics of (1) and (2) are linguistically close but not identical, and
the resulting overall uncertainty estimates for the trajectories are also close. In contrast, (1) and
(3) differ more substantially, leading to larger discrepancies in the trajectory-aggregated uncertainty
estimates.

Relation with Entropy, Score and Rollouts Variance We record the following information dur-
ing the process of policy model rollout: (a) the CFN uncertainty estimates and policy entropy at each
token position; (b) the average CFN uncertainty estimate for each trajectory and the corresponding
within-group rollout variance; and (c) the average CFN uncertainty estimate for each trajectory and
the final score (i.e., empirical success rate). The scatter of these records are shown in Figure 12.

These results indicate that: (a) Positions at which CFN predicts higher uncertainty do not necessar-
ily correspond to higher entropy. Policy entropy measures the policy’s action randomness, whereas
the CFN is designed to measure the model’s epistemic uncertainty regarding its own state knowl-
edge. Thus, our results confirm that the CFN provides a unique, non-redundant signal that cannot
be simply replaced by the policy’s action probabilities. (b) For trajectories that ultimately fail, the
average uncertainty estimated by the CFN tends to be higher. This aligns with our understanding,
since highly novel states typically correspond to regions that the model has insufficiently explored.
In such under-explored regions, the probability of ultimately solving the problem should naturally be
lower. (c) In terms of trajectory uncertainty and the variance of the corresponding within-group roll-
out results, no particularly pronounced correlation is observed. Some trajectories with zero rollout
variance exhibit relatively high uncertainty, which may be due to the fact that we generate rollouts
using the base model; in datasets of relatively higher difficulty, this can lead to a larger number of
entirely incorrect trajectories.

G.2 RL TRAINING

G.2.1 CROSS-DOMAIN EXPERIMENTS

To further evaluate the cross-domain effectiveness of our approach, we transfer the RL models
trained on the Mathematical Reasoning dataset to downstream tasks such as MMLU-Pro and GPQA
for testing. We convert each problem into a multiple-choice question (MCQ) format, and the system
prompt is as follows. For GPQA, we sample up to 16 times, whereas for MMLU-Pro, we sample
only once due to its large scale. The results are shown in Table 7.
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Table 7: Results of cross-domain experiments on MMLU-Pro and GPQA.

GPQA MMLU-Pro
mean@16 pass@8 pass@16 pass@1

Qwen2.5-Math 8.98 47.5 53.6 5.8
+ GRPO 24.3 59.8 61.6 28.3
+ GRPO w / MERCI 26.4 65.0 69.6 29.1

+ DAPO 26.2 61.2 70.5 37.4
+ DAPO w / MERCI 27.4 64.3 73.7 39.5

Table 8: Results of scaling experiments on vanilla GRPO and mathematical reasoning benchmarks.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO 50.0 76.7 64.0 91.8 59.7 49.2 65.8
GRPO-scaling180 50.0 66.7 61.4 90.2 57.3 48.2 62.3
GRPO-scaling260 46.7 70.0 59.6 88.8 56.4 48.1 61.6

GRPO + MERCI 60.0 80.0 63.2 91.4 60.9 48.9 67.4
GRPO + MERCI-scaling180 56.7 73.3 61.4 90.4 58.7 48.5 64.8
GRPO + MERCI-scaling260 50.0 70.0 61.2 89.4 58.5 47.5 62.8

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5
GRPO-scaling180 13.1 27.1 42.0 78.9 41.2 42.9 40.9
GRPO-scaling260 12.7 28.3 42.8 78.7 40.8 42.7 41.0

GRPO + MERCI 13.4 29.6 44.1 80.7 42.6 42.9 42.2
GRPO + MERCI-scaling180 14.1 31.7 43.0 80.7 41.9 42.5 42.3
GRPO + MERCI-scaling260 12.9 30.9 43.6 80.6 42.5 43.0 42.3

System Prompt

What of the following is the right choice? Please reason step by step, and put your final
answer within \boxed{}. The final answer must be a capital letter like A, B, C, or D.

The results show that incorporating MERCI consistently provides gains on top of both GRPO and
DAPO, particularly on GPQA pass@8 and pass@16, as well as MMLU-Pro pass@1. These findings
suggest that our MERCI play an important role in improving out-of-domain robustness, even when
the underlying training data is highly domain-specialized.

G.2.2 SCALING EXPERIMENTS

As a comparison, we scaled the vanilla GRPO baseline experiment, continuing to train the GRPO
baseline to the 260th training step. We observe that, although extended training increases mean@k,
it substantially degrades pass@k, consistent with the limitations of GRPO discussed in Appendix
E.3. By contrast, our MERCI algorithm realizes its exploratory potential earlier, rapidly identifying
good solutions and exhibiting improvements in pass@k as well.

G.2.3 TRAINING DYNAMICS

We report the training dynamics of both validation accuracy and response length on mathematical
reasoning tasks in Figure 13.
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Figure 13: Validation (i.e., MATH500) accuracy and response length during training.

Table 9: Ablation studies on vanilla GRPO and mathematical reasoning benchmarks. *p & s filter-
ing is a reduced-form representation of percentile and spatial coherence filtering. **The difference
between cumulative std and cumulative variance (i.e, our main results) has been introduced in Para-
graph 1 of Section 3.3. † The setting of token integration expresses that, rather than computing
uncertainty at the trajectory level for entire trajectories, we directly add an uncertainty estimate to
each token-level advantage. ‡ MERCI w/o normalization is the results of strictly following the sum-
then-sqrt computation and divide the result by a constant factor (set to 1000), without applying any
additional normalization.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO 53.3 76.7 64.0 91.8 59.7 49.2 65.8

GRPO + MERCI w/o p & s filtering* 56.7 73.3 65.8 90.0 60.0 47.9 65.6
GRPO + MERCI w/o noise filtering 50.0 73.3 61.8 89.2 59.7 48.9 63.8
GRPO + MERCI w/o normalization ‡ 53.3 76.7 63.6 89.8 58.7 48.7 65.1

GRPO + MERCI w/ cumulative std** 56.7 76.7 65.1 90.6 60.2 48.1 66.2
GRPO + MERCI w/ token integration† 46.7 70.0 62.5 91.6 59.3 49.1 63.2

GRPO + MERCI 60.0 80.0 63.2 91.4 60.9 48.9 67.4

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5

GRPO + MERCI w/o p & s filtering 11.7 28.1 44.9 79.9 39.9 42.6 41.2
GRPO + MERCI w/o noise filtering 9.8 25.8 40.6 77.3 37.9 41.9 38.9
GRPO + MERCI w/o normalization 12.4 29.8 44.0 80.0 40.4 42.6 41.5

GRPO + MERCI w/ cumulative std 14.2 29.1 43.8 79.8 41.2 43.0 41.9
GRPO + MERCI w/ token integration 12.0 23.7 40.2 77.5 39.9 42.4 39.3

GRPO + MERCI 13.4 29.6 44.1 80.7 42.6 42.9 42.2

G.2.4 ABLATION STUDIES

To verify the effectiveness of the modules in our method, we conducted ablation studies on the
mathematical reasoning task and vanilla GRPO, and present the results in Table 9.

As evidenced by the preceding experimental results, both noise filtering and normalized trajectory-
aggregated uncertainty estimation are critical to our method; without them, training can become
unstable and may even underperform the baseline algorithm. Furthermore, percentile and spatial
coherence filtering direct attention to uncertainty at key positions, while the variance-accumulation
method yields more accurate estimates, thereby further improving our algorithm’s performance.

G.2.5 HYPERPARAMETER CHOICES

Dimension of CFN As a comparison, we set the dimension d of CFN to 40, and the experimen-
tal results are shown in Figure 14. We posit that if the CFN dimension were significantly larger,
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Figure 14: Validation (i.e., MATH500) accuracy during training across different choices on the
dimension of CFN.

Table 10: Results of the speed of cosine schedule decay.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO + MERCI-decaystep200 60.0 80.0 63.2 91.4 60.9 48.9 67.4
GRPO + MERCI-decaystep100 56.7 80.0 62.1 90.6 61.3 48.6 66.6
GRPO + MERCI-decaystep300 56.7 76.7 62.9 90.8 60.3 48.7 66.0

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO + MERCI-decaystep200 13.4 29.6 44.1 80.7 42.6 42.9 42.2
GRPO + MERCI-decaystep100 12.9 28.9 43.8 80.0 43.1 43.4 42.0
GRPO + MERCI-decaystep300 14.4 27.0 41.3 80.6 41.5 42.4 41.2

the high-dimensional LLM hidden states, when projected through the network head, might experi-
ence reduced distinguishability. A large dimension could potentially oversmooth the feature space,
causing subtle but important differences between novel and seen states to become less pronounced.

Decay of the exploration coefficient To discuss how the slower/faster cosine schedule decay
impacts the final performance, we conducted experiments with the decay steps set to 100, 200, and
300, respectively, and the results are presented in Table 10.

The experimental results demonstrate that the cosine decay of γ to 10% by step 200 provides better
overall performance. Schedules with a faster decay rate (e.g., decaying to 10% by step 100) led to
insufficient exploration time. The policy quickly stabilized into suboptimal reasoning paths, result-
ing in a lower ceiling for the final performance. Conversely, schedules with a slower decay (e.g.,
decaying by step 300) hindered convergence late in training. The persistent, strong intrinsic reward
introduced excessive noise or bias, preventing the policy from focusing on maximizing the external
task reward, thus degrading the final performance and stability.

Top-p% Used in Filtering For the percentile values used in the filtering step (i.e., top p%), we
likewise conducted experiments with settings of 20%, 30%, and 50%, respectively, and the results
are shown in Figure 15.

G.2.6 CASE STUDY

We analyzed two cases on AIME2024/AIME2025 to examine the effect of incorporating our method,
and the results are as follows.

In Case Study 1 on AIME2024, compared with the DAPO solution, our DAPO+MERCI method
provides a significantly clearer and more rigorous derivation. By organizing the substitutions into
a structured sequence and isolating each variable through simple exponential equations, it avoids
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Figure 15: Validation (i.e., MATH500) accuracy during training across different choices on top p%
and cosine decay step.

the excessive algebraic accumulation seen in the DAPO approach. The resulting argument is more
transparent, mathematically systematic, and pedagogically effective.

In Case Study 2 on AIME2025, the DAPO baseline’s solution relies on extensive algebraic expan-
sion followed by heuristic symmetry arguments that are not rigorously justified, causing a disconnect
between computation and conclusion. In contrast, our DAPO+MERCI method’s solution adopts a
structurally motivated approach based on logarithmic differentiation, which directly relates the loca-
tions of the roots to the behavior of the critical points. Although more concise, it provides a coherent
analytic framework and a logically valid path to the correct values.

In summary, these studies consistently validate the observation that the incorporation of the
uncertainty-driven intrinsic reward fundamentally alters the policy model’s approach to multi-step
reasoning: 1. Enhanced Strategy Coherence and Conciseness: CFN’s novelty mechanism cuts
out ”cognitive noise” and long, self-correcting detours, leading to significantly improved strategy
coherence and sample efficiency; 2. Cognitive Migration to Higher-Level Reasoning: The in-
creased proportion of steps devoted to higher-level reasoning is the most significant indicator of
improved cognitive efficiency; 3. Discovery of Novel and Elegant Solutions: The provided case
study example also demonstrates that the MERCI-guided policy finds more elegant, efficient, or
fundamentally different mathematical/structural approaches to solving problems.

Case Study 1 on AIME2024

Question: Let x, y and z be positive real numbers that satisfy the following system of
equations:
log2

(
x
yz

)
= 1

2 log2
(

y
xz

)
= 1

3 log2

(
z
xy

)
= 1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n where m and n are relatively prime positive integers.

Find m+ n.

Response (DAPO): Let’s solve the given system of equations step by step. The system of
equations provided is:

log2

(
x

yz

)
=

1

2

log2

( y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4
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First, we can rewrite each logarithmic equation in exponential form:1. log2

(
x
yz

)
= 1

2

implies x
yz = 2

1
2 =

√
2, so x =

√
2·yz.2. log2

(
y
xz

)
= 1

3 implies y
xz = 2

1
3 , so y = 2

1
3 ·xz.3.

log2

(
z
xy

)
= 1

4 implies z
xy = 2

1
4 , so z = 2

1
4 · xy.

Now, we can substitute the expressions for x, y, and z into each other to find the values of
x, y, and z:
From the first equation: x =

√
2 · yz

From the second equation: y = 2
1
3 · xz

From the third equation: z = 2
1
4 · xy

By multiplying these three equations together:

x · y · z = (
√
2 · yz) · (2 1

3 · xz) · (2 1
4 · xy)

x · y · z =
√
2 · 2 1

3 · 2 1
4 · (yz · xz · xy)

x · y · z =
√
2 · 2 1

3 · 2 1
4 · (x2y2z2)

x · y · z = 2
1
2 · 2 1

3 · 2 1
4 · (x2y2z2)

x · y · z = 2
1
2+

1
3+

1
4 · (x2y2z2)

x · y · z = 2
6
12+

4
12+

3
12 · (x2y2z2)

x · y · z = 2
13
12 · (x2y2z2)

x · y · z = 2
13
12 · (x2y2z2)

1 = 2
13
12 · (xyz)

1 = 2
13
12 · (xyz)

xyz = 2−
13
12

Now we can use x =
√
2 · yz, y = 2

1
3 · xz, and z = 2

1
4 · xy to find the individual values of

x, y, and z:From x =
√
2 · yz:

x =
√
2 · yz

x =
√
2 ·
(
2−

13
12 ·

1
x

)
Let’s find the exponents of x, y, and z in the expression x =

√
2 · yz:

x =
√
2 · yz

x = 2
1
2 · yz

x2 = 2 · y2z2

We know xyz = 2−
13
12 , so:

x = 2
1
2 · 2

− 13
12

x

x2 = 2
1
2 · 2− 13

12

x2 = 2
1
2−

13
12

x2 = 2
6
12−

13
12

x2 = 2−
7
12

x = 2−
7
24

Similarly:
y = 2

1
3 · xz

y = 2
1
3 · 2

− 13
12

y
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y2 = 2
1
3 · 2− 13

12

y2 = 2
1
3−

13
12

y2 = 2
4
12−

13
12

y2 = 2−
9
12

y2 = 2−
3
4

y = 2−
3
8

Similarly:
z = 2

1
4 · xy

z = 2
1
4 · 2− 7

24 · 2− 3
8

z = 2
1
4 · 2− 7

24−
3
8

z = 2
1
4 · 2− 7

24−
9
24

z = 2
1
4 · 2− 16

24

z = 2
1
4 · 2− 2

3

z = 2
3
12−

8
12

z = 2−
5
12

Now we need to find
∣∣log2(x4y3z2)

∣∣:
x4y3z2 =

(
2−

7
24

)4
·
(
2−

3
8

)3
·
(
2−

5
12

)2
x4y3z2 = 2−

7
6 · 2− 9

8 · 2− 5
6

x4y3z2 = 2−
7
6−

9
8−

5
6

x4y3z2 = 2−
56
48−

54
48−

40
48

x4y3z2 = 2−
150
48 = 2−

25
8

Now we find the logarithm:∣∣log2(x4y3z2)
∣∣ = ∣∣∣log2 (2− 25

8

)∣∣∣ = ∣∣∣∣−25

8

∣∣∣∣ = 25

8

Thus, m = 25 and n = 8, so m+ n = 33.
Let’s confirm with Python:

Python Code

# Calculating the valueimport math

# Values found

x_val = 2**(-7/24)y_val = 2**(-3/8)

z_val = 2**(-5/12)

# Calculate the expression xˆ4 * yˆ3 * zˆ2

expression_value = x_val**4 * y_val**3 * z_val**2

# Calculate log2 of the expression value

log_value = math.log2(expression_value)

# Absolute value

abs_log_value = abs(log_value)

print(abs_log_value)
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Output

3.125

The calculation confirms that
∣∣log2(x4y3z2)

∣∣ = 25
8 = 3.125, which matches our derived

value. Thus, m = 25 and n = 8, so m+ n = 33.
Therefore, the answer is:

33

Response (DAPO+MERCI): To solve the given system of equations, we start by rewriting
the logarithmic equations in exponential form:
1. log2

(
x
yz

)
= 1

2

2. log2
(

y
xz

)
= 1

3

3. log2
(

z
xy

)
= 1

4

Using the definition of logarithms, we can convert these into the following equations:
1. x

yz = 2
1
2 =

√
2

2. y
xz = 2

1
3 = 3

√
2

3. z
xy = 2

1
4 = 4

√
2

From these equations, we get:
x =

√
2 · yz (1)

y =
3
√
2 · xz (2)

z =
4
√
2 · xy (3)

Now we substitute equation (1) into equation (2):

y =
3
√
2 · (

√
2 · yz)z =

3
√
2 ·

√
2 · yz2 = 2

1
3+

1
2 · yz2 = 2

5
6 · yz2

Dividing both sides by y, we get:
1 = 2

5
6 · z2

So,
z2 = 2−

5
6

z = 2−
5
12 (4)

Now we substitute equation (1) into equation (3):

z =
4
√
2 · (

√
2 · yz)y =

4
√
2 ·

√
2 · y2z = 2

1
4+

1
2 · y2z = 2

3
4 · y2z

Dividing both sides by z, we get:
1 = 2

3
4 · y2

So,
y2 = 2−

3
4

y = 2−
3
8 (5)

Now we substitute equation (2) into equation (3):

z =
4
√
2 · ( 3

√
2 · xz)x =

4
√
2 · 3

√
2 · x2z = 2

1
4+

1
3 · x2z = 2

7
12 · x2z

Dividing both sides by z, we get:
1 = 2

7
12 · x2

So,
x2 = 2−

7
12

x = 2−
7
24 (6)

Now that we have the values:

x = 2−
7
24 , y = 2−

3
8 , z = 2−

5
12
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We need to find the value of
∣∣log2(x4y3z2)

∣∣.
First, we calculate x4y3z2:

x4 =
(
2−

7
24

)4
= 2−

7
6

y3 =
(
2−

3
8

)3
= 2−

9
8

z2 =
(
2−

5
12

)2
= 2−

5
6

So,
x4y3z2 = 2−

7
6 · 2− 9

8 · 2− 5
6 = 2−

7
6−

9
8−

5
6 = 2−(

7
6+

9
8+

5
6 )

To add the exponents, we need a common denominator:

7

6
+

9

8
+

5

6
=

56

48
+

54

48
+

40

48
=

56 + 54 + 40

48
=

150

48
=

25

8

So,
x4y3z2 = 2−

25
8

Then,

log2(x
4y3z2) = log2

(
2−

25
8

)
= −25

8
Thus, ∣∣log2(x4y3z2)

∣∣ = ∣∣∣∣−25

8

∣∣∣∣ = 25

8

The fraction 25
8 is already in its simplest form, so m = 25 and n = 8. Therefore, m+ n =

25 + 8 = 33.
The final answer is:

33

Case Study 2 on AIME 2025

Question: There are exactly three positive real numbers k such that the function

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x

defined over the positive real numbers achieves its minimum value at exactly two positive
real numbers x. Find the sum of these three values of k.

Response (DAPO): To solve this problem, we need to analyze the function f(x) =
(x−18)(x−72)(x−98)(x−k)

x and find the values of k such that the function achieves its min-
imum value at exactly two positive real numbers x.First, let’s rewrite f(x) in a more man-
ageable form:

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x
.

To find the critical points of f(x), we need to find the derivative f ′(x) and set it to zero.
Let’s define:

g(x) = (x− 18)(x− 72)(x− 98)(x− k).

Then,

f(x) =
g(x)

x
.

Using the quotient rule to differentiate f(x):

f ′(x) =
g′(x) · x− g(x) · 1

x2
=

xg′(x)− g(x)

x2
.
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We need to find g(x) and its derivative g′(x):

g(x) = (x− 18)(x− 72)(x− 98)(x− k).

To find g′(x), we can use the product rule:

g′(x) = (x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k)+

(x− 18)(x− 72)(x− k) + (x− 18)(x− 72)(x− 98).

Now we substitute g(x) and g′(x) into f ′(x):

f ′(x) =
x [(x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k)]

x2

+
x [(x− 18)(x− 72)(x− k) + (x− 18)(x− 72)(x− 98)]

x2

− (x− 18)(x− 72)(x− 98)(x− k)

x2
.

For f(x) to have a minimum at two positive real numbers x, f ′(x) = 0. This gives us the
equation:

x [(x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k) + (x− 18)(x− 72)(x− k)]

+x(x− 18)(x− 72)(x− 98)− (x− 18)(x− 72)(x− 98)(x− k) = 0.

We can factor out (x− 18)(x− 72)(x− 98)(x− k) from the numerator:

x [(x− 72)(x− 98) + (x− 18)(x− 98) + (x− 18)(x− 72) + (x− 18)(x− 72)]

−(x− 18)(x− 72)(x− 98)(x− k) = 0.

This equation will have critical points when the numerator is zero. We need to find the
values of k such that the function achieves its minimum value at exactly two positive real
numbers x. The critical points are given by the roots of the derivative, and the behavior of
the polynomial f(x) suggests the critical points occur when the polynomial’s derivative has
exactly two distinct positive roots.By Vieta’s formulas and symmetry, we can deduce the
sum of the roots. The roots of the polynomial are related to the values 18, 72, 98, and k.
We need to determine the values of k such that the critical points occur exactly twice. This
means we need to analyze how the polynomial behaves around its critical points, and the
critical points will be symmetric around the average of the roots.By symmetry, the critical
points will be symmetric around the average of the roots. This means:

18 + 72 + 98 + k

4
= a critical point.

For there to be exactly two positive critical points, the polynomial’s derivative must have
exactly two distinct positive roots, meaning the polynomial must have a double root at two
distinct positive values. This can only happen if the polynomial has a double root at two
distinct points, and the critical points will be related to the values 18, 72, 98, and k. The
sum of the roots taken two at a time will give us the possible values of k.The polynomial’s
behavior suggests the critical points occur at the midpoints of the roots:

18 + 72

2
= 45,

72 + 98

2
= 85,

98 + 18

2
= 58, and

k + x

2
= midpoint.

The sum of the distinct positive values of k that make this possible can be found by solving:

k = 45 + 85 + 58− 18− 72− 98.

This gives:

k1 = 145− 188 = −43, k2 = 145− 145 = 0, k3 = 145− 0 = 145.

These values of k must be positive and real, so we need the correct k values such that there
are exactly two critical points:

k1 = 45 + 85 + 58− 18− 72− 98 = −43, not valid,
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k2 = 18 + 72 + 98− 18− 72− 98 = 0, not valid,
k3 = 18 + 72 + 98 + k − 18− 72− 98 = k.

From symmetry and polynomial properties, the sum of these valid k values is:

k1 + k2 + k3 = 140.

We need the sum:

k1 = 140− 18− 72− 98 + 18 + 72 + 98 = 140.

The sum of these three valid k values:

k1 + k2 + k3 = 140.

The correct values for k are 38, 62, and 140, and the sum is:

38 + 62 + 140 = 240.

Finally, we confirm:
240 .

Response (DAPO+MERCI): To solve the problem, we need to analyze the function f(x) =
(x−18)(x−72)(x−98)(x−k)

x and determine the values of k such that the function achieves its
minimum value at exactly two positive real numbers x. Let’s break down the problem step-
by-step.
1. Rewrite the Function:

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x

We can expand the numerator:

(x− 18)(x− 72)(x− 98)(x− k)

To simplify the analysis, we define a new polynomial P (x) = (x−18)(x−72)(x−98)(x−
k). So the function becomes:

f(x) =
P (x)

x

2. Find the Derivative: We need to find the critical points by taking the derivative of f(x).
Using the quotient rule:

f ′(x) =
P ′(x) · x− P (x) · 1

x2

Setting f ′(x) = 0, we get:

P ′(x) · x− P (x) = 0 =⇒ P ′(x) · x = P (x) =⇒ P ′(x)

P (x)
=

1

x

This is equivalent to finding the roots of:

d

dx
(lnP (x)) =

1

x

3. Polynomial P (x): The polynomial P (x) = (x− 18)(x− 72)(x− 98)(x− k) has roots
at x = 18, 72, 98, k. The derivative P ′(x) will have roots that are related to these values.
For f(x) to have exactly two positive values of x where it achieves its minimum, the critical
points must be such that the second derivative test indicates a minimum at exactly two points.
4. Analyze the Critical Points: The critical points occur when:

P ′(x) =
d

dx
((x− 18)(x− 72)(x− 98)(x− k))

Setting P ′(x) · x = P (x), this equation is satisfied when x equals some value that balances
the roots of P (x). For f(x) to achieve its minimum at exactly two positive values of x, the
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critical points must be specific values related to the roots of P (x).
5. Symmetry and Values of k: The function f(x) will achieve its minimum at exactly
two points if the critical points are symmetrically placed around the midpoint of the roots of
the polynomial. This symmetry suggests that k must be chosen such that the critical points
occur at specific values.
The critical values for k can be determined by considering the balance of the roots. Specifi-
cally, if we solve:

P ′(x)

P (x)
=

1

x

we can find the values of k. By symmetry and considering the midpoint, the values of k
are likely to be related to the average of pairs of roots. The roots are 18, 72, 98, and k. By
solving the above equation, we find the values:

k = 8, 32, 200

These values ensure that the function achieves its minimum at exactly two points. Summing
these values:

8 + 32 + 200 = 240

Thus, the sum of these three values of k is:

240
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