
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COUNT COUNTS: MOTIVATING EXPLORATION IN
LLM REASONING WITH COUNT-BASED INTRINSIC
REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement Learning (RL) has become a compelling way to strengthen the
multi step reasoning ability of Large Language Models (LLMs). However, preva-
lent RL paradigms still lean on sparse outcome-based rewards and limited ex-
ploration, which often drives LLMs toward repetitive and suboptimal reasoning
patterns. In this paper, we study the central question of how to design explo-
ration for LLM reasoning and introduce MERCI (Motivating Exploration in LLM
Reasoning with Count-based Intrinsic Rewards), a novel RL algorithm that aug-
ments policy optimization with a principled intrinsic reward. Building on the
idea of count-based exploration, MERCI leverages a lightweight Coin Flipping
Network (CFN) to estimate the pseudo count and further epistemic uncertainty
over reasoning trajectories, and converts them into an intrinsic reward that val-
ues novelty while preserving the learning signal from task rewards. We integrate
MERCI into some advanced RL frameworks like Group Relative Policy Opti-
mization (GRPO). Experiments on complex reasoning benchmarks demonstrate
that MERCI encourages richer and more varied chains of thought, significantly
improves performance over strong baselines, and helps the policy escape local
routines to discover better solutions. It indicates that our targeted intrinsic moti-
vation can make exploration reliable for language model reasoning.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) has become a cornerstone of advancing the
multi-step reasoning capabilities of Large Language Models (LLMs), enabling them to tackle com-
plex domains like competitive mathematics and code generation (Jaech et al., 2024; Guo et al., 2025;
MAA, 2025). However, these tasks feature sparse rewards, with feedback available only after com-
pleting a lengthy reasoning chain, making exploration a critical challenge. Recent breakthroughs,
such as Group Relative Policy Optimization (GRPO) (Shao et al., 2024) and Dynamic sAmpling
Policy Optimization (DAPO) (Yu et al., 2025), have streamlined the training process by eliminating
the need for an explicit value function. This yields local variability at the token level, but it does not
produce exploration that is coherent across the length of a reasoning trajectory. To guide exploration
in such frameworks, many prevalent techniques rely on entropy regularization to encourage local
policy diversity. While effective, this approach is limited for complex, long-horizon tasks. We see
an opportunity to design complementary strategies that provide more directed, temporally-consistent
exploration signals particularly for those tasks, motivating our investigation into principled explo-
ration strategies compatible with modern value-free RL.

The exploration-exploitation trade-off is a classic challenge in RL (Jin et al., 2018; Azar et al., 2017).
Simple approaches such as ϵ-greedy (Mnih et al., 2015) or Boltzmann exploration with entropy-
based regularization (Mnih et al., 2016), inject undirected noise to encourage stochasticity (Osband
et al., 2016a). While these “shallow” exploration methods visit all states theoretically, they can be
exponentially inefficient in simple yet illustrative examples (Osband et al., 2016b; Kakade, 2003). In
notoriously difficult exploration tasks like the video game Montezuma’s Revenge, these methods fail
because the chance of discovering long, precise action sequences needed for reward is vanishingly
small. In contrast, “deep exploration” strategies are both theoretically and empirically superior in
such scenarios. These methods follow the principle of “optimism in the face of uncertainty” (Kearns

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

& Singh, 2002; Brafman & Tennenholtz, 2002; O’Donoghue et al., 2017), encouraging the agent to
explore regions of the state-action space where its knowledge is limited. This is often implemented
by generating an intrinsic reward to densify the sparse signal from the environment. Canonical
examples include pseudo-counts (Bellemare et al., 2016; Ostrovski et al., 2017), Bootstrapped DQN
(Osband et al., 2016a), Random Network Distillation (RND) (Burda et al., 2019), the intrinsic cu-
riosity module (ICM) (Pathak et al., 2017), and methods based on the Uncertainty Bellman Equation
(UBE) (O’Donoghue et al., 2017).

Although desirable, existing methods for estimating epistemic uncertainty (Mannor et al., 2007) do
not scale to modern LLMs. Deep Ensembles (Osband et al., 2016a; Lakshminarayanan et al., 2017),
which train multiple independent models, are prohibitively expensive. Monte Carlo dropout (Gal
& Ghahramani, 2016), though cheaper, still adds significant inference overhead. Other methods
face architectural or theoretical hurdles: pseudo-count techniques (Bellemare et al., 2016; Ostro-
vski et al., 2017) depend on normalized probability densities and preclude efficient batching, while
curiosity-driven methods (Burda et al., 2019; Pathak et al., 2017) lack theoretical guarantees on how
the exploration bonus should decay. The UBE framework (O’Donoghue et al., 2017), while princi-
pled, relies on estimating local uncertainty, a notoriously difficult task often relegated to heuristics.
This fundamental mismatch between classic uncertainty quantification and the scale of LLMs ne-
cessitates a novel approach.

Our work is founded on a critical insight applicable to a broad class of LLM reasoning
tasks—specifically those that are self-contained, such as mathematical problem-solving, where the
model operates without an external, stochastic world. In this context of autoregressive genera-
tion, the underlying Markov Decision Process (MDP) has known and deterministic transitions.
When an LLM in a state s (the token sequence generated so far) selects an action a (the next token),
the subsequent state s′ = (s, a) is determined without ambiguity. This property dramatically simpli-
fies the Uncertainty Bellman Equation, which propagates uncertainty from two sources: the reward
function estimate (r̂) and the transition function estimate (P̂). With known transitions, the epistemic
uncertainty of P̂ is zero. The UBE thus reduces to a simple accumulation of local reward uncertainty
along a trajectory. This reframes the intractable problem of estimating Q-value uncertainty into the
more manageable one of estimating local reward uncertainty. To make this tangible, we propose
to proxy this uncertainty using a measure of state novelty—a practical and effective approach in
sparse-reward settings. To this end, we employ the “Flipping Coins” method (Lobel et al., 2023),
a computationally lightweight and theoretically grounded pseudo-counting technique that provides
a scalable estimator for this purpose. We formalize this entire approach in our proposed algorithm,
MERCI (Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards).

To our knowledge, this is the first work to derive and apply a deep exploration algorithm for LLM
reasoning directly from a principled simplification of the UBE. By recognizing that the LLM serves
as its own perfectly known world model, we bridge the gap between model-aware RL theory and
the typically model-free application of RL to LLMs. Our method integrates this simplified UBE
framework with the “Flipping Coins” pseudo-count module to generate an intrinsic reward. This
reward, expressed as an exploration bonus, guides policy optimization algorithms like GRPO to
explore novel reasoning trajectories based on a coherent, temporally-consistent signal of epistemic
uncertainty. Experiments on complex reasoning benchmarks demonstrate that this approach signifi-
cantly improves performance, effectively mitigating the tendency of standard algorithms to converge
on repetitive and suboptimal solutions. Our main contributions are summarized as follows:

1. A Novel Theoretical Framework for LLM Exploration. We establish a new framework
based on a key insight: the LLM’s known and deterministic transition dynamics simplify
the Uncertainty Bellman Equation. This renders principled, uncertainty-driven exploration
tractable at scale by reducing the intractable problem of Q-value uncertainty to a manage-
able estimation of local reward uncertainty.

2. A Practical and Scalable Exploration Algorithm. We propose MERCI, a novel algo-
rithm that operationalizes our theoretical framework. MERCI employs a highly scalable
counting method to translate state novelty into a potent intrinsic reward signal, designed
for seamless integration with modern, value-free policy optimization methods like GRPO.

3. State-of-the-Art Performance on Complex Reasoning. Our extensive empirical evidence
on challenging reasoning benchmarks, including MATH and SQL generation, demonstrate

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that MERCI beats strong baselines. Its directed exploration mechanism mitigates prema-
ture convergence and leads to the discovery of more robust and accurate solutions.

2 PRELIMINARIES

Coin Flip Network (CFN) CFN is a computationally efficient method of count-based exploration,
which estimates a state’s visitation count by solving a simple regression problem. The core idea
is that a state’s visitation count can be estimated by leveraging the statistical properties of the
Rademacher distribution (i.e., random coin flips) (Lobel et al., 2023). The method works by set-
ting up a supervised learning problem where a neural network fϕ, i.e., the CFN, is trained to predict
the average of random coin-flip vectors associated with each state it encounters.

For every visit to a state si, a new random vector yi (i.e., the coin flips) is sampled from {−1, 1}d.
The CFN fϕ is learned by solving argmin

ϕ
E(si,yi)∼Dcfn

[L(si, yi)], where L is the mean-square error

loss function and Dcfn is a dataset of state-label pairs. Considering the fair coin-flip distribution C
over outcomes {−1, 1}, we can flip this coin n times and average the results into zn. Specifically,
the second moment of the sample mean zn is related to the inverse count: M2(zn) = E[z2n] =∑

i Pr(zn = i) ∗ i2 = 1
n . E[z2n] is the variance of the sample mean of the coin-flip distribution.

Furthermore, by flipping d coins each time, the variance of z2n can be reduced by a factor of 1
d , which

implies a reliable way for estimating the inverse count. To this end, we generate a d-dimensional
random vector ci ∼ {−1, 1}d as a label yi for state si. The learning objective is described as:

f∗
ϕ(s) = argmin

ϕ
E(si,yi)∼Dcfn

[L(si, yi)] = argmin
ϕ

|Dcfn|∑
i=1

∥ci − fϕ(si)∥2. (1)

In the dataset Dcfn, each occurrence of the same state will be paired with a different random vector.
f∗
ϕ cannot learn a perfect mapping from states to labels since there are more than one (i.e., m)

instances of the same state si. Thus, it instead minimizes L by outputting the mean random vector
for all instances of a given state: f∗

ϕ(s) =
1
n

∑n
i=1 ci. The pseudo-count can be estimated by:

1

d
∥fϕ(s)∥2 =

1

d

d∑
j=1

E

(n∑
i=1

cij
n

)2
 =

1

d

d∑
j=1

E
[
z2n
]
=

1

n
. (2)

By training fϕ on the objective described in Equation 1, we can map states to approximate the count
by: 1

d∥fϕ(s)∥
2 ≈ 1

N (s) , where N (s) denote the counts of state s.

Group Relative Policy Optimization (GRPO) GRPO (Shao et al., 2024) discards the value net-
work in PPO (Schulman et al., 2017) by calculating the advantage of each reasoning step against the
value of the entire completed sequence. For each question q and its ground-truth answer a, GRPO
samples a group of outputs {oi}Gi=1 from the old policy πθold with corresponding outcome rewards
{Ri}Gi=1, and then computes the normalized reward in each group as the estimated advantage:

Âi
t =

ri −mean
(
{Ri}Gi=1

)
std
(
{Ri}Gi=1

) , where Ri =

{
1.0 if is equivalent(a, oi),

0.0 otherwise.
(3)

Adding a KL penalty term to the clipped objective in PPO, the objective of GRPO is expressed as:

JGRPO(θ) = E(q,a)∼D, {oi}Gi=1∼πθold
(·|q)

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
rit(θ)Â

i
t, clip(rit(θ), 1− ϵ, 1 + ϵ)Âi

t

)
− β DKL

[
πθ ∥πref

])]
, where rit(θ) =

πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
.

(4)

Decouple Clip and Dynamic sAmpling Policy Optimization (DAPO) Building on GRPO,
DAPO (Yu et al., 2025) removes the KL penalty, introduces a clip-higher strategy and dynamic
sampling, applies a token-level policy gradient loss, and adopts overlong reward shaping.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

State Encoding

Trajectory 𝐲 Hidden expression 𝒔𝒉𝒊𝒅𝒅𝒆𝒏

the final hidden layer

Epistemic Uncertainty (MERCI)

𝒔𝒉𝒊𝒅𝒅𝒆𝒏

Coin Flipping Network Head
𝑓!(#)

Query 𝒒

Uncertainty
U (𝒔𝒉𝒊𝒅𝒅𝒆𝒏)

Train a CFN Head

Trajectory & Reward

Query 𝒒 Trajectory 𝐲 Reward 𝐑 Update Policy

Add Uncertainty-Guided
Intrinsic Rewards to

motivate exploration

A B C D E F

A B C D E F
A B C D E
A B C D
A B C
A B
A

e.g. one 𝐲 contains 6 token-level states

𝒒

𝒒

𝒒

𝒒

𝒒

𝒒

U (𝒔𝒉𝒊𝒅𝒅𝒆𝒏) :=
𝟏

𝒩(𝒔𝒉𝒊𝒅𝒅𝒆𝒏)
≈
𝟏
𝒅 𝑓&(𝒔𝒉𝒊𝒅𝒅𝒆𝒏)

𝟐

𝒇𝝓∗ (s) = arg min
&

𝔼 𝒔𝒊,𝒚𝒊 ~𝓓𝒄𝒇𝒏 𝓛(𝒔𝒊, 𝒚𝒊)

= arg min
&

8
𝒊/𝟏

𝓓𝒄𝒇𝒏

𝒄𝒊 − 𝑓&(𝒔𝒊)
𝟐

Figure 1: Overview of the MERCI framework. Two separate networks are used: a policy network πθ

trained with RL, and a CFN network that provides an intrinsic reward. The CFN network, initialized
from the same SFT checkpoint π0, estimates state novelty to guide the exploration of πθ.

3 METHODOLOGY

In this section, we first establish the theoretical foundation for our approach by simplifying the
Uncertainty Bellman Equation for the specific case of LLMs, and then introduce the full details of
our novel algorithm, MERCI.

3.1 THE UNCERTAINTY BELLMAN EQUATION WITH KNOWN TRANSITIONS

The Uncertainty Bellman Equation (UBE) provides a principled mechanism for propagating epis-
temic uncertainty—quantified as the variance of the posterior distribution over Q-values—through
time (O’Donoghue et al., 2017). For clarity, we will use the terms ”uncertainty” and ”variance”
interchangeably throughout this section. Our core theoretical contribution stems from a key insight:
the Markov Decision Process (MDP) underlying LLM reasoning has a known and determin-
istic transition function, P . This property dramatically simplifies the general form of the UBE,
leading to a more direct and tractable equation for uncertainty propagation.

Formally, we consider a finite horizon, finite state and action space MDP, with horizon length H ∈
N, state space S, action space A and rewards at time period h denoted by rh ∈ R. A policy
π = (π1, . . . , πH) is a sequence of functions where each πh : S × A → R+ is a mapping from
state-action pair to the probability of taking that action at that state, i.e., πh

sa is the probability of
taking action a at state s at time-step h and

∑
a π

h
sa = 1 for all s ∈ S. At each time-step h the agent

receives a state sh and a reward rh and selects an action ah from the policy πh, and the agent moves
to the next state sh+1, which is sampled with probability Ph

s′sa. The Q-value, at time step h of a
particular state under policy π is the expected total return from taking that action at that state and
following π thereafter, i.e., Qπ,h(s, a) = E

[∑H
t=h r

t | st = s, at = a, π
]
.

We adopt a Bayesian perspective as that in (O’Donoghue et al., 2017). We assume a prior over the
mean reward function, r(s), and collect a history of interactions Ft (states, actions, and rewards
up to episode t) generated by a policy π. This history is used to form a posterior distribution over
the mean rewards, which we denote ϕr|Ft

. If we draw a reward function estimate r̂ ∼ ϕr|Ft
, the

corresponding Q-function estimate, Q̂π , must satisfy the posterior Bellman equation for that sample:

Q̂π,h(s, a) = r̂h(s) +
∑
s′,a′

πh
s′,a′Ph

s′sa[Q̂
π,h+1(s′, a′)], (5)

for all timesteps h = 1, . . . , H , with Q̂π,H+1 = 0.

Since the transition function P for an LLM is a known delta function (i.e., for a given state s and
action a, the next state s′ = (s, a)), we have P rather than its posterior P̂ in equation 5. This leads to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

a recursive equation for the variance of the Q-value posterior, as stated in the following proposition.
In the following discussions, we may use the word uncertainty and variance (w.r.t. the posterios
distribution) interchangeably. we denoteVtx as the variance of random variable x conditioned on
the history Ft, which is E

(
(x− E(x|Ft))

2
∣∣∣Ft

)
.

Proposition 1 (Uncertainty Bellman Equation for Known Transitions) Let Uh(s, a) ≜
Vt[Q̂

π,h(s, a)] be the posterior variance of the Q-value at step h, conditioned on the history
Ft. Given a known and deterministic transition function, this uncertainty propagates according to
the following Bellman equation:

Uh(s, a) ≤ Vt[r̂
h(s)] +

∑
s′,a′

πh
s′,a′Ph

s′saU
h+1(s′, a′),

where s′ is the unique next state reached from (s, a), and UH+1(·) = 0.

The proof follows from the analysis in O’Donoghue et al. (2017) by applying the law of total vari-
ance to equation 5. This result provides a powerful recursive formula: the uncertainty of a state-
action pair is bounded by the immediate reward uncertainty plus the expected uncertainty of
the unique subsequent state, where the expectation is over the policy’s next actions. This reframes
the complex problem of estimating Q-value variance into the more manageable task of estimating
the local reward uncertainty, Vt[r̂

h(s)]. The resulting Q-value variance, Uh(s, a), can be used to
define an exploration bonus inspired by Upper Confidence Bound (UCB) algorithms (Lattimore &
Szepesvári, 2020). Specifically, the policy can be encouraged to explore by modifying the optimiza-
tion objective to Qπ,h(s, a)+α

√
Uh(s, a), where α is a hyperparameter balancing exploitation and

exploration. This approach is backed by strong theoretical guarantees for achieving low regret (Auer
et al., 2008; Jin et al., 2018).

From standard concentration inequalities, we know that the uncertainty over a mean reward estimate
is inversely proportional to the number of times that state has been visited, i.e., Vt[r̂

h(s)] ∝ 1/N (s).
However, in the high-dimensional state space of language, exact state visitations are exceedingly
rare. This necessitates a method to generalize counting to unseen but similar states. In the fol-
lowing section, we describe how we use a scalable pseudo-count mechanism to estimate this local
uncertainty.

3.2 ESTIMATE VARIANCE OF REWARD VIA CFN

Standard policy optimization driven by sparse, outcome-based rewards (e.g., GRPO) can lead to
premature convergence on suboptimal solutions. MERCI addresses it via a dedicated mechanism
for principled exploration. The framework is illustrated in Figure 1.

Our framework employs two distinct Large Language Models operating in parallel:

1. The Policy Network (πθ): This is the agent that generates reasoning trajectories. It is
initialized from a supervised fine-tuned (SFT) checkpoint, π0, and its parameters θ are
exclusively updated by the policy optimization algorithm (e.g., GRPO).

2. The CFN Network: This network’s sole purpose is to estimate epistemic uncertainty. It is
a separate instance of the LLM, also initialized from the same checkpoint π0. A lightweight
MLP, which we call the CFN head (fϕ), is attached to its final hidden layer. CFN network
is updated together via a supervised regression objective (detailed in Section 2).

The training process integrates these two networks as follows. During a training step, a reasoning
trajectory τ is first generated by the current policy network πθ. In the sequential decision-making
process, we define the state at each step as the contextual hidden representation shidden output by the
LLM backbone at that token position, which inherently captures the entire prefix of the generated
sequence. The state shidden is then processed by the CFN head fϕ(s) to estimate the variance of the
reward, computed by V[r̂(s)] = 1

d∥fϕ(s)∥
2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Percentile Filtering Spatial Coherence Filtering Noise-suppression Filtering

retains only a fixed fraction of the
strongest signals within each sample

keeps tokens that belong to contiguous regions
of elevated bonus and discards isolated spikes

removes incentives attached to content that is
unrelated to solving the problem

No Filter Applied
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \(k \) white buckets , all initially empty . In each
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket
must be proportional to the number of times it was
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . **
Graph Theory Interpret ation ** : - We can
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex (the number of times a
bucket was selected) must be the same for all
vertices in the same set (all red or all white). 4 .
** Degree Condition ** : - Let \(d \) be the
common degree of each vertex in the graph . Since
each red bucket is connected to \(d \) white buckets
and each white bucket is connected to \(d \) red
buckets , the total number of edges in the graph is \(
1 0 0 d \) (from the red side) and also \(kd \) (

from the white side). Therefore , we have the
equation : \ [1 0 0 d = kd \] - If \(d \ ne q 0 \
), we can divide both sides by \(d \) to get : \ [1
0 0 = k \] 5 . ** Conclusion ** : - The only possible
value for \(k \) that satisfies the conditions of the
problem is \(k = 1 0 0 \). Thus , the only possible
value of \(k \) is \ (\ boxed { 1 0 0 }\). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Percentile Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \(k \) white buckets , all initially empty . In each
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket
must be proportional to the number of times it was
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . **
Graph Theory Interpret ation ** : - We can
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex (the number of times a
bucket was selected) must be the same for all
vertices in the same set (all red or all white). 4 .
** Degree Condition ** : - Let \(d \) be the
common degree of each vertex in the graph . Since
each red bucket is connected to \(d \) white buckets
and each white bucket is connected to \(d \) red
buckets , the total number of edges in the graph is \(
1 0 0 d \) (from the red side) and also \(kd \) (

from the white side). Therefore , we have the
equation : \ [1 0 0 d = kd \] - If \(d \ ne q 0 \
), we can divide both sides by \(d \) to get : \ [1
0 0 = k \] 5 . ** Conclusion ** : - The only possible
value for \(k \) that satisfies the conditions of the
problem is \(k = 1 0 0 \). Thus , the only possible
value of \(k \) is \ (\ boxed { 1 0 0 }\). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Spatial Coherence Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets
and \(k \) white buckets , all initially empty . In each
move , a red and a white bucket are selected and an
equal amount of water is added to both . After a
certain number of moves , no bucket is empty , and for
every pair of buckets that were selected together at
least once , the amount of water in these buckets is the
same . 2 . ** Key Observ ations ** : - Since the
amount of water added to each pair of buckets is the
same , the final amount of water in each bucket
must be proportional to the number of times it was
selected . - Since no bucket is empty , each bucket
must have been selected at least once . 3 . **
Graph Theory Interpret ation ** : - We can
interpret the problem using a bip art ite graph where
the red buckets and white buckets are the two sets
of vertices , and an edge between a red and a white
bucket indicates that they were selected together in a
move . - The condition that the amount of water in
buckets that were selected together is the same implies
that the degree of each vertex (the number of times a
bucket was selected) must be the same for all
vertices in the same set (all red or all white). 4 .
** Degree Condition ** : - Let \(d \) be the
common degree of each vertex in the graph . Since
each red bucket is connected to \(d \) white buckets
and each white bucket is connected to \(d \) red
buckets , the total number of edges in the graph is \(
1 0 0 d \) (from the red side) and also \(kd \) (

from the white side). Therefore , we have the
equation : \ [1 0 0 d = kd \] - If \(d \ ne q 0 \
), we can divide both sides by \(d \) to get : \ [1
0 0 = k \] 5 . ** Conclusion ** : - The only possible
value for \(k \) that satisfies the conditions of the
problem is \(k = 1 0 0 \). Thus , the only possible
value of \(k \) is \ (\ boxed { 1 0 0 }\). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

After Noise-suppression Filtering
1 . ** Initial Setup **: We have 1 0 0 red buckets and
\(k \) white buckets , all initially empty . In each move ,
a red and a white bucket are selected and an equal
amount of water is added to both . After a certain
number of moves , no bucket is empty , and for every pair
of buckets that were selected together at least once , the
amount of water in these buckets is the same . 2 . **
Key Observ ations ** : - Since the amount of water
added to each pair of buckets is the same , the final
amount of water in each bucket must be proportional
to the number of times it was selected . - Since no
bucket is empty , each bucket must have been selected
at least once . 3 . ** Graph Theory Interpret ation ** :
- We can interpret the problem using a bip art ite
graph where the red buckets and white buckets are
the two sets of vertices , and an edge between a red
and a white bucket indicates that they were selected
together in a move . - The condition that the amount
of water in buckets that were selected together is the
same implies that the degree of each vertex (the
number of times a bucket was selected) must be the
same for all vertices in the same set (all red or all
white). 4 . ** Degree Condition ** : - Let \(d \) be
the common degree of each vertex in the graph . Since
each red bucket is
connected to \(d \) white buckets and each white
bucket is connected to \(d \) red buckets , the total
number of edges in the graph is \(
1 0 0 d \) (from the red side) and also \(kd \)

(from the white side). Therefore , we have the
equation : \ [1 0 0 d = kd \] - If \(d \ ne q 0\),
we can divide both sides by \(d \) to get : \
[1 0 0 = k \] 5 . ** Conclusion ** : - The only
possible value for \(k \) that satisfies the conditions of
the problem is \(k = 1 0 0 \). Thus , the only possible
value of \(k \) is \ (\ boxed { 1 0 0 }\). Let 's confirm
this with Python code to ensure the accuracy of the
result . ``` python # The ... """ output 1 8 9 ```

Figure 2: The entire pipeline of bonus filtering. Step 1: We rank all tokens within a response by
their associated bonus values and retain only those falling within a predefined top percentile (e.g.,
the top 50% in this figure). Step 2: We only preserve clusters of adjacent tokens that consistently
exhibit elevated bonuses (e.g., 3 consecutive tokens in this figure). Step 3: For example, in a math
reasoning task without external tools, any Python code potentially generated during LLM rollouts is
semantically irrelevant and noisy, so we exclude them from the overall bonus calculation.

3.3 ADVANTAGE ESTIMATION

Calculating the Intrinsic Reward from Cumulative Uncertainty A critical detail of our method,
derived directly from Proposition 1, is the precise calculation of the exploration bonus. The cor-
rect approach to determine the uncertainty of a trajectory’s value is to first sum the local reward
variances at each step (we use the monte carlo estimation here), and only then take the square root
of the total sum. This resulting value represents the standard deviation of the cumulative Q-value
posterior and serves as our intrinsic reward.

This stands in stark contrast to a common but theoretically flawed heuristic in many RL explo-
ration algorithms. Those methods often compute a per-step bonus proportional to the local stan-
dard deviation and apply a standard RL algorithm to the modified, “bonused” rewards. As demon-
strated by O’Donoghue et al. (2017), this latter approach—which is equivalent to summing standard
deviations—leads to a significant overestimation of uncertainty over long horizons. This miscalcula-
tion can cause the agent to become overly optimistic, leading to prolonged and inefficient exploration
of paths that are long but not necessarily promising. To illustrate the difference, consider a trajectory
of horizon H where the local reward variance at each step is σ2 = 1. Correct Bonus (MERCI): The
cumulative variance is

∑H
h=1 1 = H . The bonus, or standard deviation, is correctly calculated as√

H . Heuristic Bonus: The per-step bonus is
√
1 = 1. Summing these bonuses results in an overes-

timated total bonus of
∑H

h=1 1 = H . MERCI adheres strictly to the former, theoretically-grounded
calculation, ensuring the exploration signal accurately reflects the true cumulative epistemic uncer-
tainty. Indeed, we compare this two calculation in our ablation study G.2.4.

Budget-Aware Exploration Bonus Control The non-sparse exploration bonus introduces its own
considerable instabilities when becoming indiscriminately dense, which would invite LLMs seeking
through aimless exploration. So, we enforce budgeted exploration, which reduces gradient variance
and in turn stabilizes optimization and lowers noise in final answers. Concretely, three filtering
stages are applied, shaping where and how the bonus can act. (1) Percentile filtering retains only a
fixed fraction of the strongest signals within each sample, which tracks the gradual decline in bonus
magnitude over training without manual retuning. (2) Spatial coherence filtering keeps tokens that
belong to contiguous regions of elevated bonus and discards isolated spikes even when numerically
large, thereby yielding steadier updates. (3) Noise-suppression filtering removes incentives at-
tached to content that is unrelated to solving the problem, such as meaningless repetition, gratuitous

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

code blocks, or rare characters generated solely to chase the bonus. Together these stages allocate
a controlled exploration budget that preserves useful exploration while safeguarding the primary
reward signal. The overall pipeline of bonus control is illustrated in Figure 2.

Advantage Normalization and Bonus Integration After bonus filtering, the normalized bonus B
is computed by first averaging the squared CFN outputs across all retained tokens and then applying
square-root compression:

B =

√
1

l

∑
i∈I

(1
d
∥fϕ(sihidden)∥2

)
, (6)

where l is the length of a trajectory, d is the dimension of CFN’s outputs, and I is the set of retained
tokens’ indices.

To ensure comparability across trajectories sampled under the same prompt, we standardize
trajectory-aggregated bonuses within each group of size G and truncate negative values, preserv-
ing only positive exploratory incentives:

Âi
exploration = max

(
0,

Bi − µ

σ

)
,where µ =

1

G

G∑
j=1

Bj , σ =

√√√√ 1

G

G∑
j=1

(Bj − µ)2. (7)

To prevent the bonus from overpowering outcome-based rewards, we scale the standardized intrinsic
bonus term by an exploration coefficient γ, and add it to the base advantage Âi

old. For trajectories
whose base advantage is negative, we cap the augmented advantage with a clipping factor α ∈ (0, 1)
to prevent the intrinsic term from overwhelming the outcome signal:

Âi
new =

min
(
Âi

old + γÂi
exploration, (1 + α)Âi

old

)
, if Âi

old ≥ 0;

min
(
Âi

old + γÂi
exploration, (1− α)Âi

old

)
, if Âi

old < 0.
(8)

We give an algorithmic description in Algorithm 1 in Appendix C.

4 RELATED WORK

4.1 REINFORCEMENT LEARNING FOR LLM REASONING

Reinforcement learning (RL) (Sutton & Barto, 2018), particularly Reinforcement Learning with
Verifiable Rewards (RLVR), has been widely used to improve the reasoning abilities of large lan-
guage models (LLMs). PPO is a foundational policy gradient method, which ensures stable policy
updates via clipped objectives, proving effective in reasoning tasks (Schulman et al., 2017). It treats
token positions in reasoning trajectories of LLM as distinct states for advantage estimation, but
this approach comes at the cost of computational overhead from its joint policy-value optimization.
Starting from PPO, recent efforts have developed some efficient and advanced frameworks such as
GRPO (Shao et al., 2024). By evaluating and normalizing rewards across a group of entire gener-
ated sequences, GRPO provides a more robust and efficient method for advantage estimation. This
method of relative, sequence-level comparison sidesteps the complexities of token-level advantage
estimation, proving far more effective for multi-step reasoning. The success of this holistic approach
is highlighted by its adoption and extension in subsequent research, such as DAPO (Yu et al., 2025),
VAPO (Yue et al., 2025) and Dr. GRPO (Liu et al., 2025). However, even advanced RL methods
for LLMs face a critical bottleneck: their dependence on external static and sparse reward struc-
tures limits effective exploration. To overcome this, we integrate count-based intrinsic motivation
into GRPO-like frameworks, incentivizing the model to explore more novel and diverse reasoning
trajectories guided by epistemic uncertainty during training.

4.2 EXPLORATION IN REINFORCEMENT LEARNING

Effective exploration in RL is critical for navigating the fundamental dilemma between exploit-
ing known rewards and exploring uncertain options to discover better policies. Some traditional

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

exploration methods like RND (Burda et al., 2019), ICM (Pathak et al., 2017), and Count-Based
Exploration (Ostrovski et al., 2017; Tang et al., 2017a), encourage agents to explore novel or under-
visited states via intrinsic rewards. However, their application to LLMs faces significant challenges:
the dynamic response length and vast action space. Most approaches for LLMs rely on undirected
exploration, such as simply encouraging exploration from an entropy perspective (Wen et al., 2024;
Wang et al., 2025; Cheng et al., 2025). These heuristic approaches often lack solid theoretical foun-
dation to guide policy models to identify which states warrant greater exploration, leading to subop-
timal policies. To address these limitations, recent work has developed active exploration strategies
to estimate uncertainty from historical data and plan optimistically (Zhang et al., 2024; Bai et al.,
2025; Cen et al.; Chen et al., 2025; Gao et al., 2025; Zhang et al., 2025; Dai et al., 2025). However,
curiosity-driven methods (Bougie & Watanabe, 2025; Gao et al., 2025; Dai et al., 2025) lack theo-
retical guarantees on how the exploration bonus should decay, and the classical density-based meth-
ods for calculating pseudo-counts (Ostrovski et al., 2017; Bai et al., 2021) are resource-intensive,
time-consuming, and hard to fulfill. Some methods (Tang et al., 2017b; Rashid et al., 2019; Lobel
et al., 2023) instead explored alternatives to eliminate the usage of density models. In our work, we
formally show that the deterministic nature of LLM transitions simplifies the general Uncertainty
Bellman Equation to a tractable form, providing the principled justification for how to aggregate
the local pseudo-counts into a sum-of-variance trajectory bonus, thereby distinguishing our method
from purely heuristic exploration techniques. We take CFN (Lobel et al., 2023) as our theoretical
foundation for estimating the pseudo-count, introducing a simple supervised learning objective to
estimate a visitation count and further integrates intrinsic motivation.

5 EXPERIMENTS

To validate our hypothesis that encouraging novelty via MERCI promotes the policy’s ability to
discover more optimal solutions, we conduct a comprehensive set of experiments on two types of
benchmarks: mathematical reasoning and SQL generation, and further provide in-depth analyses.

5.1 EXPERIMENTAL SETUP

Mathematical Reasoning Our backbone model is Qwen2.5-Math-7B (Yang et al., 2024). Our
training dataset is sourced from DAPO-17K (Yu et al., 2025), and we evaluate models on a diverse
set of challenging mathematical reasoning benchmarks, including AIME2024/2025 (MAA, 2025),
MATH500 (Hendrycks et al., 2021), OlympiadBench (He et al., 2024), College Math (Tang et al.,
2024), and Minerva (Lewkowycz et al., 2022).

SQL Generation Our experiments are conducted on Llama-3.1-8B-Instruct (Grattafiori et al.,
2024). We trained on the Bird training set (Li et al., 2023) and evaluated performance on the Bird
and Spider test sets (Yu et al., 2019).

Baselines and Configurations We conduct RL training experiments on both vanilla GRPO and
DAPO using the veRL framework (Sheng et al., 2025). We additionally introduce two algorithms
designed to encourage exploration as baselines: one uses entropy-based advantage shaping(Cheng
et al., 2025), and the other incorporates intrinsic rewards via RND training (Gao et al., 2025). In
our experimental results, we refer to them as Entropy Adv. and iMentor, respectively. For the
implementation of CFN, we set the dimensionality d, which can be intuitively interpreted as how
many times we have flipped a coin, to 20. Detailed hyperparameters are presented in Appendix E.

5.2 MAIN RESULTS

5.2.1 COIN FLIP NETWORK

To evaluate the effectiveness of the CFN, i.e., our exploration model, and enhance exploration ef-
ficiency during RL training, we first generate responses from the backbone model on the training
dataset and use these responses to perform a preliminary training of the CFN. This process enables
it to develop a basic understanding of which states are likely to occur more rarely.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: Performance on mathematical reasoning benchmarks with pass@k and mean@k. The
highlighted color represents the best within RL models, while underlined represents the second best.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

Qwen2.5-Math 53.3 70.0 50.4 88.6 56.7 44.2 60.5
+ GRPO 53.3 76.7 64.0 91.8 59.7 49.2 65.8
+ GRPO w/ Entropy Adv. 56.7 76.7 62.5 91.2 59.4 48.9 65.9
+ GRPO w/ iMentor 60.0 76.7 61.4 90.4 60.4 49.3 66.4
+ GRPO w/ MERCI (ours) 60.0 ↑ 80.0 ↑ 63.2 91.4 60.9 ↑ 48.9 67.4 ↑

+ DAPO 56.7 76.7 66.9 92.0 60.9 48.3 66.9
+ DAPO w/ Entropy Adv. 60.0 83.3 66.5 91.4 57.6 48.5 67.9
+ DAPO w/ iMentor 56.7 76.7 68.0 92.0 60.0 50.1 67.3
+ DAPO w/ MERCI (ours) 60.0 ↑ 83.3 ↑ 66.5 91.8 62.1 ↑ 50.2 ↑ 69.0 ↑

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

Qwen2.5-Math 4.4 10.7 16.9 47.5 64.6 22.1 20.3
+ GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5
+ GRPO w/ Entropy Adv. 12.1 28.9 42.0 81.0 40.6 42.6 41.2
+ GRPO w/ iMentor 11.9 29.0 42.2 78.9 40.7 42.4 40.9
+ GRPO w/ MERCI (ours) 13.4 ↑ 29.6 ↑ 44.1 ↑ 80.7 ↑ 42.6 ↑ 42.9 ↑ 42.2 ↑

+ DAPO 16.5 31.9 41.0 81.5 41.4 41.0 42.2
+ DAPO w/ Entropy Adv. 17.2 33.3 44.5 80.9 41.4 41.6 43.2
+ DAPO w/ iMentor 17.4 32.0 46.7 82.3 42.8 43.3 44.1
+ DAPO w/ MERCI (ours) 18.4 ↑ 35.2 ↑ 44.8 ↑ 82.4 ↑ 44.3 ↑ 44.2 ↑ 44.9 ↑

For this pretrained CFN, we conduct two evaluations: (1) Within a single response, we visualize the
estimated uncertainty assigned by the CFN to each token position; (2) For all collected responses,
we apply the method described in Section 3.3 to select the top 30% of tokens with the highest bonus
in each response, filter them accordingly, and then perform statistical analysis on the retained token
sequences. The results of Experiment (1) and (2) are presented in Figure 3, 4, 5, 6 and Figure 7
in Appendix G, respectively. We can observe that token sequences assigned higher uncertainty by
the CFN predominantly correspond to novel reasoning paths, Python code along with its outputs,
or specialized mathematical terminologies. This observation aligns with our hypothesis that more
novel token positions tend to induce higher epistemic uncertainty and are therefore assigned higher
values by our CFN.

In addition, the CFN exhibits three further important findings: (1) when directly applied to esti-
mate the uncertainty of responses in the SQL Generation task, the CFN trained on mathematical
reasoning tasks produces estimates that align well with our intuition and analysis, which indicates
the generalization ability of CFN; (2) for reasoning trajectories that are linguistically close but not
identical, the CFN successfully captures their semantic similarity, yielding correspondingly similar
uncertainty estimates; (3) our CFN bonus provides a non-redundant signal and effectively measures
the policy’s epistemic uncertainty (i.e., lack of knowledge). The detailed results are shown in Figure
8, 9, 10 and Figure 11 in Appendix G.1.

5.2.2 RL TRAINING

The CFN in the RL phase is initialized using the pretrained CFN and is then co-trained with the
policy model during RL training.

Our primary results for RL training are summarized in Table 1 and Table 2. As shown in Table 1,
MERCI delivers consistent gains over both vanilla GRPO and DAPO across mathematical reason-
ing benchmarks when measured by pass@k and mean@k. Gains are most pronounced on the AIME
suites, which is the most challenging, and remain robust on the other datasets. Consistently higher
mean@k suggest better overall sample quality with uniform and stable gains. In addition, MERCI
also yields improvements in pass@k, pointing to enhanced exploration and calibration rather than

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Performance on SQL generation benchmarks with greedy sampling and pass@k.

Model Bird (in domain) Spider (out of domain)

Greedy Pass@8 Pass@16 Greedy Pass@8 Pass@16

Llama-3.1-8B-Instruct 42.4 68.5 75.1 69.0 91.0 94.6
+ GRPO 60.7 72.2 74.6 74.7 81.0 82.9
+ GRPO w/ Entropy Adv. 60.8 72.1 73.9 74.7 83.2 84.5
+ GRPO w/ iMentor 62.8 72.3 74.2 75.0 84.1 85.2
+ GRPO w/ MERCI (ours) 63.0 ↑ 72.8 ↑ 74.9 ↑ 78.0 ↑ 84.1 85.6 ↑

+ DAPO 63.2 73.9 75.9 76.8 86.1 87.2
+ DAPO w/ Entropy Adv. 62.3 73.2 75.9 77.5 86.1 87.6
+ DAPO w/ iMentor 62.7 73.9 76.1 77.2 86.4 88.2
+ DAPO w/ MERCI (ours) 64.1 ↑ 73.6 76.1 77.3 86.9 ↑ 88.5 ↑

narrow best-case gains. As shown in Table 2, SQL generation results on Bird and Spider also mirror
the earlier findings. Especially, MERCI yields larger out-of-domain gains, i.e., the Spider test set.
It indicates that MERCI effectively pushes LLMs to use general SQL patterns that transfer better
to different schemas. Additionally, the cross-domain experiments in Appendix G.2.1 indicate that
our MERCI play an important role in improving out-of-domain robustness, even when the under-
lying training data is highly domain-specialized.As evidenced by the training dynamics in Figure
13 in Appendix G and our case study in Appendix G.2.6, we further observe that MERCI enhances
exploration and calibration by densifying multiple valid reasoning trajectories while discouraging
gratuitous chain elongation. It concentrates probability mass on more diverse yet more reliable good
solutions that are expressed in shorter, more focused traces, raising the floor of candidate quality.
Besides, our case study also indicates an increased proportion of steps devoted to higher-level rea-
soning abilities. This shift from length-based search to concise, well-calibrated reasoning improves
sample efficiency and reduces error correlation. It learns to prune task-irrelevant branches and con-
centrate computation on promising hypotheses, yielding more intelligent and efficient exploration.

5.3 ABLATION STUDIES AND SCALING EXPERIMENTS

We conducted these experiments on the mathematical reasoning task and vanilla GRPO. The detailed
experimental results are presented in Appendix G.2.2 and Appendix G.2.4. From these results,
we first confirm that crucial components, including bonus filtering and our normalized trajectory-
aggregated uncertainty estimation, are fundamental to the method’s success. Furthermore, the results
reveal MERCI’s superior exploratory efficiency: our algorithm not only identifies good solutions
efficiently and yields strong pass@k performance, but also demonstrates remarkable stability over
the long term in scaling experiments. Finally, sensitivity analysis on the key hyperparameter choices,
e.g., the γ cosine schedule and Top-p% in bonus filtering, are included in Appendix G.2.5.

6 CONCLUSION

In this study we introduced MERCI, a principled exploration strategy for LLM reasoning that har-
nesses the deterministic transitions of language trajectories. By reframing the Uncertainty Bellman
Equation under known transitions we replaced expensive Q variance estimation with a tractable
count based proxy for reward uncertainty. The result is an intrinsic signal that guides Group Rela-
tive Policy Optimization and its variants toward diverse and coherent reasoning paths. Experiments
on challenging mathematics and SQL benchmarks reveal consistent gains in pass rates and in mean
score, verifying that our method steers policies away from shallow entropy driven randomness and
toward productive inquiry. The Coin Flip Network delivers this benefit with minimal compute over-
head and can be trained in parallel with the policy model, which makes the approach attractive
for large scale systems. Experiments on mathematical reasoning and SQL generation show stable
training dynamics, diverse reasoning paths, accurate solutions, and robust outcomes at scale.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. In this study, no human subjects or animal ex-
perimentation was involved. All datasets used were sourced in compliance with relevant usage

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

guidelines, ensuring no violation of privacy. We have taken care to avoid any biases or discrimi-
natory outcomes in our research process. No personally identifiable information was used, and no
experiments were conducted that could raise privacy or security concerns. We are committed to
maintaining transparency and integrity throughout the research process.

8 REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible. All
models and datasets used in our work are publicly available, and the code is openly available at:
https://anonymous.4open.science/r/MERCI-2E46. The experimental setup, includ-
ing training steps, model configurations, and hardware details, is described in detail in the appendix.
We have also provided a full description to assist others in reproducing our experiments.

REFERENCES

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International conference on machine learning, pp. 263–272. PMLR, 2017.

Chenjia Bai, Lingxiao Wang, Lei Han, Jianye Hao, Animesh Garg, Peng Liu, and Zhaoran Wang.
Principled exploration via optimistic bootstrapping and backward induction. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning,
volume 139 of Proceedings of Machine Learning Research, pp. 577–587. PMLR, 18–24 Jul 2021.
URL https://proceedings.mlr.press/v139/bai21d.html.

Chenjia Bai, Yang Zhan, Shuang Qiu, Qiaosheng Zhang, Kang Xu, and Xuelong Li. Online prefer-
ence alignment for language models via count-based exploration. In International Conference on
Learning Representations, 2025.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Nicolas Bougie and Narimasa Watanabe. Exploring Beyond Curiosity Rewards: Language-driven
exploration in RL. In Vu Nguyen and Hsuan-Tien Lin (eds.), Proceedings of the 16th Asian
Conference on Machine Learning, volume 260 of Proceedings of Machine Learning Research,
pp. 127–142. PMLR, 05–08 Dec 2025. URL https://proceedings.mlr.press/v260/
bougie25a.html.

Ronen I Brafman and Moshe Tennenholtz. R-max-a general polynomial time algorithm for near-
optimal reinforcement learning. Journal of Machine Learning Research, 3(Oct):213–231, 2002.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=H1lJJnR5Ym.

Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schu-
urmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach
to online and offline rlhf. In The Thirteenth International Conference on Learning Representa-
tions.

Mingyu Chen, Yiding Chen, Wen Sun, and Xuezhou Zhang. Avoiding exp(Rmax) scaling in
rlhf through preference-based exploration, 2025. URL https://arxiv.org/abs/2502.
00666.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective, 2025. URL https://arxiv.
org/abs/2506.14758.

11

https://anonymous.4open.science/r/MERCI-2E46
https://proceedings.mlr.press/v139/bai21d.html
https://proceedings.mlr.press/v260/bougie25a.html
https://proceedings.mlr.press/v260/bougie25a.html
https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://arxiv.org/abs/2502.00666
https://arxiv.org/abs/2502.00666
https://arxiv.org/abs/2506.14758
https://arxiv.org/abs/2506.14758

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Runpeng Dai, Linfeng Song, Haolin Liu, Zhenwen Liang, Dian Yu, Haitao Mi, Zhaopeng Tu, Rui
Liu, Tong Zheng, Hongtu Zhu, and Dong Yu. Cde: Curiosity-driven exploration for efficient
reinforcement learning in large language models, 2025. URL https://arxiv.org/abs/
2509.09675.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Jingtong Gao, Ling Pan, Yejing Wang, Rui Zhong, Chi Lu, Qingpeng Cai, Peng Jiang, and Xi-
angyu Zhao. Navigate the unknown: Enhancing llm reasoning with intrinsic motivation guided
exploration. arXiv preprint arXiv:2505.17621, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, and et al. The llama 3
herd of models. 2024. URL https://arxiv.org/abs/2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
ment learning. Nature, 645(8081):633–638, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting
agi with olympiad-level bilingual multimodal scientific problems. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
3828–3850, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably effi-
cient? Advances in neural information processing systems, 31, 2018.

Sham Machandranath Kakade. On the sample complexity of reinforcement learning. University of
London, University College London (United Kingdom), 2003.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time. Ma-
chine learning, 49(2):209–232, 2002.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Aitor Lewkowycz, Anders Johan Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative rea-
soning problems with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=IFXTZERXdM7.

Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C. C. Chang, Fei
Huang, Reynold Cheng, and Yongbin Li. Can llm already serve as a database interface? a big
bench for large-scale database grounded text-to-sqls, 2023.

12

https://arxiv.org/abs/2509.09675
https://arxiv.org/abs/2509.09675
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=IFXTZERXdM7

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Sam Lobel, Akhil Bagaria, and George Konidaris. Flipping coins to estimate pseudocounts for
exploration in reinforcement learning. In International Conference on Machine Learning, 2023.

MAA. American invitational mathematics examination (aime), 2025. https://maa.org/.

Shie Mannor, Duncan Simester, Peng Sun, and John N Tsitsiklis. Bias and variance approximation
in value function estimates. Management Science, 53(2):308–322, 2007.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PmLR, 2016.

Brendan O’Donoghue, Ian Osband, Rémi Munos, and Volodymyr Mnih. The uncertainty bell-
man equation and exploration. In International Conference on Machine Learning, 2017. URL
https://api.semanticscholar.org/CorpusID:6201691.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via random-
ized value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR,
2016b.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Tabish Rashid, Bei Peng, Wendelin Boehmer, and Shimon Whiteson. Optimistic exploration even
with a pessimistic initialisation. In International Conference on Learning Representations, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y.K. Li,
Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models, 2024. URL https://arxiv.org/abs/2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings
of the Twentieth European Conference on Computer Systems, EuroSys ’25, pp. 1279–1297. ACM,
March 2025. doi: 10.1145/3689031.3696075. URL http://dx.doi.org/10.1145/
3689031.3696075.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. #exploration: A study of count-based exploration for deep
reinforcement learning. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017a. URL https://proceedings.neurips.cc/paper_
files/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf.

13

https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://maa.org/
https://api.semanticscholar.org/CorpusID:6201691
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
http://dx.doi.org/10.1145/3689031.3696075
http://dx.doi.org/10.1145/3689031.3696075
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3a20f62a0af1aa152670bab3c602feed-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017b.

Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscale: Scaling instruction
tuning for mathematical reasoning. In International Conference on Machine Learning, pp. 47885–
47900. PMLR, 2024.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning, 2025. URL https://arxiv.org/abs/
2506.01939.

Muning Wen, Junwei Liao, Cheng Deng, Jun Wang, Weinan Zhang, and Ying Wen. Entropy-
regularized token-level policy optimization for language agent reinforcement, 2024. URL
https://arxiv.org/abs/2402.06700.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement, 2024. URL https://arxiv.org/abs/2409.12122.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale human-
labeled dataset for complex and cross-domain semantic parsing and text-to-sql task, 2019. URL
https://arxiv.org/abs/1809.08887.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang
Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. Vapo: Efficient and
reliable reinforcement learning for advanced reasoning tasks, 2025. URL https://arxiv.
org/abs/2504.05118.

Kongcheng Zhang, QI YAO, Shunyu Liu, Yingjie Wang, Baisheng Lai, Jieping Ye, Mingli Song,
and Dacheng Tao. Consistent paths lead to truth: Self-rewarding reinforcement learning for LLM
reasoning. In The Thirty-ninth Annual Conference on Neural Information Processing Systems,
2025. URL https://openreview.net/forum?id=ckW70ls93V.

Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhao-
ran Wang. Self-exploring language models: Active preference elicitation for online alignment.
arXiv preprint arXiv:2405.19332, 2024.

A THE USE OF LARGE LANGUAGE MODELS

We utilize an LLM to assist with paper editing and correcting grammatical errors.

B ENTROPY REGULARIZATION AS A GENERALIZED ϵ-GREEDY
EXPLORATION

We provide a mathematical derivation showing that entropy regularization corresponds to a softmax
exploration strategy. This can be interpreted as a generalized form of ϵ-greedy exploration that
intelligently allocates exploration probability based on the relative quality of suboptimal actions.

14

https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2402.06700
https://arxiv.org/abs/2409.12122
https://arxiv.org/abs/1809.08887
https://arxiv.org/abs/2504.05118
https://arxiv.org/abs/2504.05118
https://openreview.net/forum?id=ckW70ls93V

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Entropy-regularized policy improvement. Given a state s and advantage estimates A(s, a) for
actions a ∈ A, consider the entropy-regularized optimization:

π⋆ = arg max
π(·|s)

∑
a

π(a|s)A(s, a) + βH(π(·|s)),

where H(π) = −
∑

a π(a|s) log π(a|s) and β > 0 is the entropy coefficient. The well-known
solution is the Boltzmann/softmax distribution:

πβ(a|s) =
exp(A(s, a)/β)∑
b∈A exp(A(s, b)/β)

.

Connection to ϵ-greedy. Let a⋆ ∈ argmaxa A(s, a) and denote the advantage gaps ∆a =
A(s, a⋆)−A(s, a) ≥ 0. The probability of selecting the optimal action is

p⋆ = πβ(a
⋆|s) = 1

1 +
∑

a̸=a⋆ exp(−∆a/β)
.

We can define a state- and value-dependent exploration probability ϵβ(s) = 1− p⋆. This allows us
to decompose the policy as:

πβ(·|s) = (1− ϵβ(s)) δa⋆ + ϵβ(s) qβ(·|s),

where qβ(a|s) ∝ exp(−∆a/β) is a probability distribution over the set of suboptimal actions.

This formulation reveals that softmax exploration is a generalized form of ϵ-greedy. However, unlike
the standard ϵ-greedy rule, its exploration is not uniform. The distribution qβ intelligently assigns
higher probability to suboptimal actions that are closer to optimal (i.e., having a smaller advantage
gap ∆a). Only under the strong and often unrealistic condition that all suboptimal actions are equally
bad (∆a ≈ const. for a ̸= a⋆) does qβ approach a uniform distribution, making the strategy resem-
ble standard ϵ-greedy. Thus, entropy regularization typically leads to a more efficient exploration
strategy than its uniform counterpart.

C ADDITION DESCRIPTIONS FOR OUR METHOD

Our algorithmic description for MERCI is as follows:

Algorithm 1 Motivating Exploration in LLM Reasoning with Count-based Intrinsic Rewards

Input: policy model πθ, coin flipping network fϕ, dataset D, iterations N , outcome-based reward
function R, exploration coefficient γ, clipping factor α.
for i = 1 to N do

Generate y ∼ πθ(·|x) for each prompt x in Di, and use R to compute Âold via Equation 3.
Extract hidden expression shidden of each token in y as described in Section 3.2.
Compute y’s bonus with the process introduced in Section 3.3 and Figure 2, then incorporate it
into the original advantage by applying γ and α via Equation 8.
Generate random vectors c and update the parameter ϕ via Equation 1.
Update the LLM policy πθ using Ânew in Equation 8.

end for
Output: Fine-tuned πθ and fϕ.

In the pipeline of bonus filtering, the step 3, i.e., Noise-suppression Filtering, can vary across tasks
and can be optionally applied or configured depending on specific task requirements.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D PROOF OF PROPOSITION 1

The proof follows the methodology presented in (O’Donoghue et al., 2017). According to the defi-
nition of the conditional variance, we have:

Vt[Q̂
h(s, a)] = Et

[
(Q̂h(s, a)−Et[Q̂

h(s, a)])2
]

= Et


r̂h(s)−Et[r̂

h(s)] +
∑
s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


= Et

[
(r̂h(s)−Et[r̂

h(s)])2
]

+Et


∑

s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


The second equality holds by expanding the square and assuming that the reward estimate r̂h(s)

and the next-step Q-value estimate Q̂h+1(s′, a′) are conditionally independent, which makes their
cross-product term zero.

Now, we focus on the second term. Noting that
∑

s′,a′ πh
s′a′Ph

s′sa′ = 1, this term represents a
weighted sum. Since the function f(x) = x2 is convex, we can apply Jensen’s inequality.

For a convex function f , weights wi that sum to 1, and random variables Zi, Jensen’s inequality
states:

E

[
f

(∑
i

wiZi

)]
≤
∑
i

wiE [f(Zi)]

Applying this to our expression gives:

Et


∑

s′,a′

πh
s′a′Ph

s′sa′(Q̂h+1(s′, a′)−Et[Q̂
h+1(s′, a′)])

2


≤
∑
s′,a′

πh
s′a′Ph

s′sa′ Et

[
(Q̂h+1(s′, a′)−Et[Q̂

h+1(s′, a′)])2
]

=
∑
s′,a′

πh
s′a′Ph

s′sa′ Vt[Q̂
h+1(s′, a′)]

Combining the results, we arrive at the final inequality:

Vt[Q̂
h(s, a)] ≤ Vt[r̂

h(s)] +
∑
s′,a′

πh
s′a′Ph

s′sa′ Vt[Q̂
h+1(s′, a′)]

This shows that the variance of the Q-value at step h is bounded by the variance of the immediate
reward plus the expected variance of the Q-value at the next step, h+ 1.

E DETAILED TRAINING CONFIGURATIONS

E.1 TRAINING DATA AND REWARD FUNCTION

Mathematical Reasoning For both our train dataset and test dataset, we use the following system
prompt:

System Prompt

Please reason step by step, and put your final answer within \boxed{}.

We use an outcome-based reward function that assigns +1 for correct final answers and -1 otherwise.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 3: Our CFN training configurations on mathematical reasoning tasks.

Hyperparameter Value

Optimizer AdamW
Learning rate in the pretraining process 1e-3
Learning rate in the RL training process 1e-4
Training batch size 512× 8
Mini-batch size 8

Table 4: Our CFN training configurations on SQL generation tasks.

Hyperparameter Value

Optimizer AdamW
Learning rate in the pretraining process 3e-4
Learning rate in the RL training process 1e-4
Training batch size 128× 8
Mini-batch size 8

SQL Generation For both our train dataset and test dataset, we do not explicitly use any system
prompt. We add the following contents at the beginning of the user prompt:

Prompt

Task Overview:
You are a data science expert. Below, you are provided with a database schema and a natural
language question. Your task is to understand the schema and generate a valid SQL query to
answer the question.

The outcome-based reward function is dense: final score = answer score + format score, where:

answer score =

{
1.0, if Result(S) = Result(G)

min
(

count2
|gold dict|×|result dict| , 1.0

)
× 0.8 if Result(S) ̸= Result(G)

(9)

Above, S is the generated solution string (predicted SQL query), and G is the ground truth query.
Result(Q) is the set of execution results returned by the database when executing the SQL query Q.

E.2 CFN TRAINING CONFIGURATION

For CFN training, we first generate rollouts from the backbone model on the training dataset and use
these responses to perform a preliminary training of the CFN. This process enables it to develop a
basic understanding of which states are likely to occur more rarely. During the RL training phase, we
initialize the exploration model with the parameters of the pretrained CFN to prevent the information
it provides at the outset from misleading the policy model.

Mathematical Reasoning We use the hyperparameters in Table 3 for CFN training on mathemat-
ical reasoning tasks.

SQL Generation We use the hyperparameters in Table 4 for CFN training on SQL generation
tasks.

E.3 RL TRAINING CONFIGURATION

Our experiments were conducted on 32 NVIDIA H20-96GB GPUs. For the reproduced Entropy
Adv. and iMentor methods, we adopt the same general training hyperparameters as listed in Table 5
and Table 6, while their method-specific hyperparameters follow the configurations reported in the
original papers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 5: Our RL training configurations on mathematical reasoning tasks.

Hyperparameter Value

General training hyperparameters
Optimizer AdamW
Policy learning rate 1e-6
Training batch size 512
Samples per prompt 8
Mini-batch size 32
Max prompt length 1024
Max response length 3072
Rollout temperature 1.0

Method-specific hyperparameters
Top p% in step 1 of bonus filtering 30%
Initial γ in Equation 8 0.4
α in Equation 8 0.5

Table 6: Our RL training configurations on SQL generation tasks.

Hyperparameter Value

General training hyperparameters
Optimizer AdamW
Policy learning rate 1e-6
Training batch size 128
Samples per prompt 8
Mini-batch size 64
Max prompt length 8192
Max response length 4096
Rollout temperature 1.0

Method-specific hyperparameters
Top p% in step 1 of bonus filtering 20%
Initial γ in Equation 8 0.1
α in Equation 8 0.5

Mathematical Reasoning We use the hyperparameters in Table 5 for RL training on mathematical
reasoning tasks. Notably, during RL training, we applied a cosine decay schedule to the discount
factor γ, configured so that by step 200 it reached 10% of its initial value. The same applies in the
SQL generation task.

In addition to focusing on mean@k, we also place considerable emphasis on pass@k. However, we
observe that as vanilla GRPO training progresses, increases in mean@k are generally accompanied
by sharp decreases in pass@k, which is also presented in Appendix G.2.2. Therefore, to ensure
comparability across both types of metrics, we train each experiment for 120 steps on vanilla GRPO.
For DAPO, we train each experiment for 160 steps (including data sampling and filtering).

SQL Generation We use the hyperparameters in Table 6 for RL training on SQL generation tasks.

We train each experiment for 160 steps on vanilla GRPO, and 240 steps on DAPO (including data
sampling and filtering).

F INFERENCE CONFIGURATIONS

Mathematical Reasoning We use a rollout temperature of 0.6, top-p sampling with p = 0.95,
and a maximum response length of 4096 tokens. We adopt k = 256 for the small but challenging

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

To determine the value of \(c \) such that the graphs of the equation \(y = | x - 2 0 | + | x + 1 8 | \) and the

 line \(y = x + c \) intersect at exactly one point , we need to analyze the behavior of the function \(y = | x - 2 0

| + | x + 1 8 | \). The function \(y = | x - 2 0 | + | x + 1 8 | \) can be broken down into different cases based

 on the value of \(x \): 1 . When \(x \ ge q 2 0 \): \[y = (x - 2 0) + (x + 1 8) = 2 x - 2 \] 2 . When

 \(- 1 8 \ le q x < 2 0 \): \[y = (2 0 - x) + (x + 1 8) = 3 8 \] 3 . When \(x < - 1 8 \): \[y = (2 0 -

 x) + (- x - 1 8) = 2 - 2 x \] The function \(y = | x - 2 0 | + | x + 1 8 | \) is a piece wise function that

 looks like a " V " shape with a flat bottom between \(x = - 1 8 \) and \(x = 2 0 \). The line \(y = x + c \)

 will intersect this piece wise function at exactly one point if it is tangent to the flat bottom segment \(y = 3 8 \) (

since the line \(y = x + c \) has a slope of 1 and will intersect the " V " shape at two points unless it is tangent

 to the flat bottom). For the line \(y = x + c \) to be tangent to the flat bottom segment \(y = 3 8 \), the line

 must intersect the segment at some point \((x , 3 8) \). The equation of the line at this point is \(3 8 = x + c \

), so \(x = 3 8 - c \). Since \(- 1 8 \ le q x < 2 0 \), we have \(- 1 8 \ le q 3 8 - c < 2 0 \). Sol ving

 these inequalities : 1 . \(- 1 8 \ le q 3 8 - c \) gives \(c \ le q 5 6 \) 2 . \(3 8 - c < 2 0 \) gives \(c >

 1 8 \) Since the line must be tangent to the flat bottom segment , \(c \) must be such that the line intersects the

 segment exactly once . The only value that satisfies both inequalities and ensures the line is tangent to the flat bottom

 segment is \(c = 1 9 \). This is because if \(c = 1 9 \), then \(x = 3 8 - 1 9 = 1 9 \), which lies within

 the interval \(- 1 8 \ le q x < 2 0 \). Therefore , the value of \(c \) is \(\ boxed { 1 9 } \).
0.4

0.6

0.8

1.0

1.2

1.4

1.6

po
sit

iv
e_

va
ria

nc
e

Figure 3: An example of token-level estimated epistemic uncertainty within a response. Red regions
indicate relatively higher uncertainty estimates assigned by the CFN to the corresponding token
positions, while blue regions indicate relatively lower estimates. The same applies hereafter.

Let 's denote the numbers thought by the students as $ a _ 1 , a _ 2 , \ ld ots , a _{ 1 0 } $. According to the problem , each

 student announces the arithmetic mean of the two numbers they learned from their neighbors . The arithmetic mean announced by

 the $ i $ - th student is given by : $ \ frac { a _{ i - 1 } + a _{ i + 1 }} { 2 } = i $ where the indices are taken modulo 1

0 (i .e ., $ a _ 0 = a _{ 1 0 }$ and $ a _{ 1 1 } = a _ 1 $). We can rewrite the above equation as : $ a _{ i - 1 } + a _{ i +

1 } = 2 i $ Let 's start by analyzing the given information . The announced numbers are : $ 1 , 2 , 3 , 4 , 5 , 6 ,

7 , 8 , 9 , 1 0 $ We can write down the equations based on these numbers : 1 . $ a _ 1 + a _ 3 = 2 $ 2 . $ a _ 2 + a _

4 = 4 $ 3 . $ a _ 3 + a _ 5 = 6 $ 4 . $ a _ 4 + a _ 6 = 8 $ 5 . $ a _ 5 + a _ 7 = 1 0 $ 6 . $ a _ 6 + a _ 8 = 1 2 $ 7

. $ a _ 7 + a _ 9 = 1 4 $ 8 . $ a _ 8 + a _{ 1 0 } = 1 6 $ 9 . $ a _ 9 + a _ 1 = 1 8 $ 1 0 . $ a _{ 1 0 } + a _ 2 = 2 0

$ Notice that the sums are increasing by 2 each time . Next , we can sum all the equations : $ (a _ 1 + a _ 3) + (a _

2 + a _ 4) + \ ld ots + (a _ 9 + a _ 1) + (a _{ 1 0 } + a _ 2) = 2 + 4 + 6 + 8 + 1 0 + 1 2 + 1 4 + 1 6 +

1 8 + 2 0 $ This simpl ifies to : $ 2 (a _ 1 + a _ 2 + \ ld ots + a _{ 1 0 }) = 1 1 0 $ Thus , the sum of all numbers

 is : $ a _ 1 + a _ 2 + \ ld ots + a _{ 1 0 } = 5 5 $ Now , let 's focus on the student who announced the number $ 6 $.

 From the equation $ a _ 3 + a _ 5 = 6 $, we need to find $ a _ 3 $ and $ a _ 5 $. To solve for $ a _ 3 $ and $ a _ 5 $, we

 need additional information . However , given the symmetry in the problem setup and the arithmetic sequence of the announced

 numbers , we can hypo thesize that the numbers are evenly distributed around the mean . Ass uming an evenly distributed pattern

, we can estimate $ a _ 3 $ and $ a _ 5 $ by considering the average of the numbers around them . Since $ a _ 3 $ and $ a _ 5 $

 are part of the sequence $ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 $, a reasonable assumption is that $ a _ 3 $ and $

a _ 5 $ are close to the middle of this sequence . Given the symmetry and the announced means , a possible distribution could be

: $ a _ 1 = 1 , a _ 2 = 2 , a _ 3 = 3 , a _ 4 = 4 , a _ 5 = 5 , a _ 6 = 6 , a _ 7 = 7 , a _ 8 = 8 , a _ 9 = 9 ,

 a _{ 1 0 } = 1 0 $ Thus , the number thought by the student who publicly announced the number $ 6 $ is : $ \ boxed { 6 } $

 This solution assumes a simple linear increase in the numbers thought by the students , which is consistent with the given

 arithmetic means .

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

po
sit

iv
e_

va
ria

nc
e

Figure 4: An example of token-level estimated epistemic uncertainty within a response.

AIME2024/2025 datasets (30 problems each), k = 16 for Minerva, MATH500, and Olympiad-
Bench, and k = 8 for College Math, balancing computational cost and difficulty.

SQL Generation We use a top-p sampling with p = 0.95, and a maximum response length of
4096 tokens. We use a rollout temperature of 0.0 for greedy sampling, and a rollout temperature of
1.0 to evaluate pass@k.

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 COIN FLIPPING NETWORK

Uncertainty Estimation We conduct two experiments to evaluate CFN as described in Section
5.2.1, and the detailed results are presented as follows in Figure 3, 4, 5, 6 and Figure 7.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

To solve the given summ ation \ (\ sum _{ k = 1 } ^{ 3 6 0 } \ frac { 1 }{ k \ sqrt {k + 1 } + (k + 1)\ sqrt {k }} \), we need to

 simplify the general term of the summ ation . Let 's start by simpl ifying the expression \ (\ frac { 1 }{ k \ sqrt {k + 1 } + (k +

1)\ sqrt {k }} \). The expression can be simplified by rational izing the denominator . We multiply the numerator and the

 denominator by the conjug ate of the denominator : \ [\ frac { 1 }{ k \ sqrt {k + 1 } + (k + 1)\ sqrt {k }} \ cdot \ frac {k \

sqrt {k + 1 } - (k + 1)\ sqrt {k }} { k \ sqrt {k + 1 } - (k + 1)\ sqrt {k }} = \ frac {k \ sqrt {k + 1 } - (k + 1)\ sqrt {k }} {(k

 \ sqrt {k + 1 }) ^ 2 - ((k + 1)\ sqrt {k }) ^ 2 } \] S impl ifying the denominator : \ [(k \ sqrt {k + 1 }) ^ 2 - ((k + 1)\ sqrt

{k }) ^ 2 = k ^ 2 (k + 1) - (k + 1)^ 2 k = k ^ 3 + k ^ 2 - (k ^ 3 + 2 k ^ 2 + k) = - k ^ 2 - k = - k (k + 1) \] So

 the expression becomes : \ [\ frac {k \ sqrt {k + 1 } - (k + 1)\ sqrt {k }} {- k (k + 1)} = \ frac {(k \ sqrt {k + 1 } - (k + 1

)\ sqrt {k }) }{ - k (k + 1)} = \ frac {(k \ sqrt {k + 1 } - (k + 1)\ sqrt {k }) }{ - k (k + 1)} = \ frac {(k \ sqrt {k + 1 } - (k +

1)\ sqrt {k }) }{ - k (k + 1)} = - \ frac {k \ sqrt {k + 1 }} { k (k + 1)} + \ frac {(k + 1)\ sqrt {k }} { k (k + 1)} = - \ frac {\ sqrt

{k + 1 }} { k + 1 } + \ frac {\ sqrt {k }} { k } = \ frac {\ sqrt {k }} { k } - \ frac {\ sqrt {k + 1 }} { k + 1 } = \ frac { 1 }{ \ sqrt {k

}} - \ frac { 1 }{ \ sqrt {k + 1 }} \] So the general term simpl ifies to : \ [\ frac { 1 }{ k \ sqrt {k + 1 } + (k + 1)\ sqrt {k

}} = \ frac { 1 }{ \ sqrt {k }} - \ frac { 1 }{ \ sqrt {k + 1 }} \] This is a telesc oping series . When we sum this from \(k = 1

\) to \(k = 3 6 0 \), most terms will cancel out : \ [\ sum _{ k = 1 } ^{ 3 6 0 } \ left (\ frac { 1 }{ \ sqrt {k }} - \ frac { 1

}{ \ sqrt {k + 1 }} \ right) = \ left (\ frac { 1 }{ \ sqrt { 1 }} - \ frac { 1 }{ \ sqrt { 2 }} \ right) + \ left (\ frac { 1 }{ \

sqrt { 2 }} - \ frac { 1 }{ \ sqrt { 3 }} \ right) + \ cd ots + \ left (\ frac { 1 }{ \ sqrt { 3 6 0 }} - \ frac { 1 }{ \ sqrt { 3 6 1 }}

 \ right) \] All intermediate terms cancel out , leaving : \ [1 - \ frac { 1 }{ \ sqrt { 3 6 1 }} = 1 - \ frac { 1 }{ 1 9 } =

 \ frac { 1 9 }{ 1 9 } - \ frac { 1 }{ 1 9 } = \ frac { 1 8 }{ 1 9 } \] So the sum is \ (\ frac { 1 8 }{ 1 9 }\). The integers \(m

\) and \(n \) are 1 8 and 1 9 , respectively , and they are relatively prime . Therefore , \(m + n = 1 8 + 1 9 = 3 7 \

). The final answer is \ (\ boxed { 3 7 }\).

0.4

0.6

0.8

1.0

1.2

1.4

po
sit

iv
e_

va
ria

nc
e

Figure 5: An example of token-level estimated epistemic uncertainty within a response.

To solve this problem , we need to understand the structure of a triang ulation of a regular polygon and the properties of the

 triangles formed . In a triang ulation of a regular $ 1 8 0 $ - gon , each triangle formed will have angles that are sums of the

 angles of the original polygon . The key insight here is that in a regular $ 1 8 0 $ - gon , the angles of the triangles will

 be determined by the positions of the vertices . ### Step -by - Step Reason ing : 1 . ** Understanding the Tri ang ulation **: A

 regular $ 1 8 0 $ - gon can be triang ulated into $ 1 7 8 $ triangles . Each triangle will have angles that are sums of the angles

 of the original polygon . The key is to understand the distribution of these angles . 2 . ** Angles in the Tri angles **: In a

 regular $ 1 8 0 $ - gon , each internal angle is $\ frac {(1 8 0 - 2) \ cdot 1 8 0 }{ 1 8 0 } = 1 7 8 ^\ circ $. When triang ulating

, the angles of the triangles will be sums of the angles of the original polygon . However , the key observation is that each

 triangle will have at most one $ 1 ^\ circ $ angle , because the angles of the triangles are sums of the angles of the original

 polygon , and the smallest angle in a regular $ 1 8 0 $ - gon is $ 1 ^\ circ $. 3 . ** Expected Number of $ 1 ^\ circ $ Ang les

**: Since each triangle in the triang ulation of a regular $ 1 8 0 $ - gon can have at most one $ 1 ^\ circ $ angle , and since

 the triang ulation is random , the expected number of $ 1 ^\ circ $ angles in a randomly selected triangle is the probability that

 a triangle has a $ 1 ^\ circ $ angle . This probability is $\ frac { 2 }{ 1 7 8 }$, because each triangle can have at most one $

1 ^\ circ $ angle , and there are $ 1 7 8 $ possible positions for the $ 1 ^\ circ $ angle in each triangle . 4 . ** Expected Value

 Calculation **: The expected number of $ 1 ^\ circ $ angles in a randomly selected triangle is $\ frac { 2 }{ 1 7 8 } = \ frac { 1 }{

8 9 } $. This fraction is already in its simplest form , so $ a = 1 $ and $ b = 8 9 $. 5 . ** Final Calculation **: The

 value of $ 1 0 0 a + b $ is $ 1 0 0 \ cdot 1 + 8 9 = 1 8 9 $. Let 's confirm this with Python code to ensure the accuracy

 of the result . ``` python # The expected number of 1 Â° angles in a randomly selected triangle is 1 / 8 9 a = 1 b = 8

9 # Calculate 1 0 0 a + b result = 1 0 0 * a + b print (result) `` ` ``` output 1 8 9 `` ` The expected number of $ 1

^\ circ $ angles in a randomly selected triangle from a triang ulation of a regular $ 1 8 0 $ - gon is $\ frac { 1 }{ 8 9 } $.

 Therefore , the value of $ 1 0 0 a + b $ is $\ boxed { 1 8 9 } $.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

po
sit

iv
e_

va
ria

nc
e

Figure 6: An example of token-level estimated epistemic uncertainty within a response.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175
Frequency

{or}
using the quadratic formula

3. **Find the
{and}

we need to find the
2. **Determine

2. **Find the
3. **Calculate the

By Vieta's formulas
Angle Bisector Theorem
is already in its simplest

2. **Calculate the
, we need to find

3. **Determine
4. **Find the

isosceles triangle
**Understanding the Problem:

the trapezoid
- We need to
Rearranging

we can use the fact
). Substituting

**Understand the Problem
, we can use the

we can equate the
we need to consider the

which simplifies to
This simplifies to
3. **Finding the

we need to check if
using Heron's formula

Ph
ra

se

165
152

144
134

132
108

104
103

99
92

88
85

84
78
78

77
77

75
74

71
69

65
65

63
59
59

57
56

55
54

50

Figure 7: A statistical analysis of the occurrence frequency of contiguous token segments within
each response that fall within the top 30% of bonus values (after filtering out code-related segments).

To find the lowest three eligible free rates for students aged 5 - 1 7 in continuation schools , we need to follow these steps : 1 . Identify the

table that contains the necessary information . 2 . Select the relevant columns from the table . 3 . Filter the data based on the criteria (contin

uation schools and students aged 5 - 1 7). 4 . Calculate the eligible free rate for each row . 5 . Sort the results in ascending order based on the

eligible free rate . 6 . Limit the results to the lowest three rates . Let 's go through each step in detail : 1 . The table that contains the

necessary information is ` s ats cores `. 2 . The relevant columns from the table are ` cd s `, ` s name `, ` d name `, ` cname `, ` Num T st T ak r

`, and ` Avg Scr Read `. 3 . We need to filter the data based on the criteria (contin uation schools and students aged 5 - 1 7). In the ` schools

` table , we can find the school type (` Ed Ops Name `) and the district type (` DOC Type `). For continuation schools , ` Ed Ops Name ` should be `'

Contin uation School ' `, and for students aged 5 - 1 7 , ` DOC Type ` should be `' K - 1 2 Schools (Public)' `. 4 . We need to calculate the

eligible free rate for each row . The formula given is ` Free Meal Count (A ges 5 - 1 7)` / ` En rollment (A ges 5 - 1 7) `. 5 . We need to

sort the results in ascending order based on the eligible free rate . 6 . We need to limit the results to the lowest three rates . Now , let 's write

the SQL query : ``` sql SELECT s .s name , s .d name , s .c name , s .Num T st T ak r , s .A vg Scr Read , (s .Num T st T ak r * s .A vg Scr

Read) / s .Num T st T ak r AS eligible _free _rate FROM s ats cores s JOIN schools s 2 ON s .C DS Code = s 2 .C DS Code WHERE s 2 .Ed Ops

Name = ' Contin uation School ' AND s 2 .D OC Type = ' K - 1 2 Schools (Public)' ORDER BY eligible _free _rate ASC LIMIT 3 ; `` ` This query

selects the necessary columns from the ` s ats cores ` and ` schools ` tables , filters the data based on the criteria , calculates the eligible free

rate , sorts the results in ascending order , and limits the results to the lowest three rates . The final SQL query is : ``` sql -- Your SQL query

SELECT s .s name , s .d name , s .c name , s .Num T st T ak r , s .A vg Scr Read , (s .Num T st T ak r * s .A vg Scr Read) / s .Num T st T

ak r AS eligible _free _rate FROM s ats cores s JOIN schools s 2 ON s .C DS Code = s 2 .C DS Code WHERE s 2 .Ed Ops Name = ' Contin uation

School ' AND s 2 .D OC Type = ' K - 1 2 Schools (Public)' ORDER BY eligible _free _rate ASC LIMIT 3 ; ```

0.6

0.8

1.0

1.2

1.4

po
sit

iv
e_

va
ria

nc
e

Figure 8: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

Generalization Ability of CFN We directly apply the CFN trained on mathematical reasoning
tasks to estimate the uncertainty of responses in the SQL Generation task, and some examples are
shown in Figure 8, Figure 9 and Figure 10. Since SQL code is indeed infrequently encountered, it
exhibits higher uncertainty, and the CFN correspondingly produces noticeably elevated estimates. In
contrast, the uncertainty values assigned to other natural language reasoning sequences are largely
consistent with our intuition and expectations. This directly demonstrates that the CFN is capable of
leveraging the LLM’s general features and translating them into an effective novelty estimate across
domains.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

To identify molecules in which there is carbon , we need to follow these steps : 1 . Join the ` atom ` and ` m olecule ` tables on the ` m olecule

_id ` column to get the molecule _id for each atom . 2 . Filter the results to only include atoms where the ` element ` column is ' c '. 3 . Group

the results by ` m olecule _id ` to get the molecule _id for each molecule containing carbon . 4 . Select the ` m olecule _id ` column from the

grouped results . Here 's the SQL query that accompl ishes this : ``` sql SELECT molecule _id FROM (SELECT molecule _id FROM atom JOIN

molecule ON atom .m olecule _id = molecule .m olecule _id WHERE element = ' c ') AS sub query ; `` ` The generated SQL query is : ``` sql SELECT

molecule _id FROM (SELECT molecule _id FROM atom JOIN molecule ON atom .m olecule _id = molecule .m olecule _id WHERE element = ' c ') AS

sub query ; ```

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

po
sit

iv
e_

va
ria

nc
e

Figure 9: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

To solve this problem , we need to identify the triple bond type molecules and extract the atom IDs of the first and second atoms . Let 's break down

the steps : 1 . Identify the triple bond type molecules : - We need to select the molecules where the bond type is '# '. - We can use the ` m

olecule ` table and the ` bond ` table to find the relevant molecules . 2 . Extract the atom IDs of the first and second atoms : - We need to join

the ` m olecule ` table with the ` connected ` table to get the atom IDs . - We can use the ` m olecule _id ` column to match the molecules and the

` atom _id ` and ` atom _id 2 ` columns to get the atom IDs . Here 's the SQL query that accompl ishes this : ``` sql SELECT atom _id , atom _id 2

FROM connected JOIN molecule ON connected .m olecule _id = molecule .m olecule _id WHERE bond _id IN (SELECT bond _id FROM bond WHERE bond _type =

'# ') ORDER BY atom _id ; `` ` Let 's break down the query step by step : 1 . ` SELECT atom _id , atom _id 2 `: This selects the atom IDs of the

first and second atoms . 2 . ` FROM connected `: This specifies the ` connected ` table . 3 . ` JOIN molecule ON connected .m olecule _id = molecule

.m olecule _id `: This joins the ` connected ` table with the ` m olecule ` table on the ` m olecule _id ` column . 4 . ` WHERE bond _id IN (SELECT

bond _id FROM bond WHERE bond _type = '# ') `: This filters the results to only include the bond IDs where the bond type is '# '. 5 . ` ORDER BY atom

_id `: This orders the results by the ` atom _id ` column . Now , let 's execute the query and retrieve the results : ``` sql -- Your SQL query ``

` Please execute the query and verify that the results are correct . If necessary , refine the query and execute it again to ensure accuracy .
0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

po
sit

iv
e_

va
ria

nc
e

Figure 10: An example of token-level estimated epistemic uncertainty within a response for the SQL
generation task. The CFN is trained on mathematical reasoning tasks.

1. Counting Subsets:

Since 𝑆 has 6 elements, its
power set contains 2! =
64 subsets.

2. Selecting 𝑨 and 𝑩:
Both subsets are chosen
uniformly from all 64 subsets,
giving a total of 64 × 64 = 4096
ordered pairs (𝐴, 𝐵).

3. Condition for 𝑩 to be Contained
in 𝑨 or 𝑺-𝑨:
 Fix a particular 𝐴, 𝐵 is
acceptable precisely when it is
either a subset of 𝐴 or or a
subset of the complement 𝑆 − 𝐴.
There are 2 " subsets of 𝐴 and
𝑆 − 𝐴 is 2!# " subsets of 𝑆 − 𝐴.
Thus, the number of possible 𝐵’s
is 2 " + 2!# " -1.

0.2323

1. Total Number of Subsets:

The set 𝑆 has 2! = 64 subsets
(since 𝑆 has 6 elements).

2. Choosing Subsets 𝑨 and 𝑩:
Both 𝐴 and 𝐵 can be any subset

of 𝑆. Therefore, there are
64 × 64 = 4096 possible pairs of
(𝐴, 𝐵).

3. Condition for 𝑩 to be
Contained in 𝑨 or 𝑺-𝑨:

For a given subset 𝐴, 𝐵 can be
any subset of 𝐴 or any subset of
𝑆 − 𝐴. The number of subsets of
𝐴 is 2 " and the number of
subsets of 𝑆 − 𝐴 is 2!# " .
Therefore, for each subset 𝐴,
there are 2 " + 2!# " -1 valid
subsets 𝐵.

0.2547

1. Elementwise Perspective:

Instead of counting subsets
directly, view the process per
element: each element of 𝑆
independently lands in 𝐴, 𝐵, both,
or neither.

2. Characterizing the Event:
No element can simultaneously

lie in 𝐵 and also in both 𝐴 and 𝑆 −
𝐴. Thus, every element must
choose from a restricted set of
valid membership patterns.

3. Configuration Counting:.
For each element, determine

how many assignments of
membership in 𝐴 and 𝐵 satisfy the
constraint; then raise that
number to the 6th power

0.3452

(1) (2) (3)

Figure 11: An example of reasoning trajectories and corresponding aggregated uncertainties.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(a) (b) (c)

Figure 12: Relations between the CFN Uncertainty Esitimation and Entropy, Score and Rollouts
Variance.

Semantic Capturing To assess the CFN’s ability to capture semantic similarity and to determine
whether it can provide reasonable uncertainty estimates for sequences that are linguistically close
but not identical, we present in Figure 11 several example statements along with their corresponding
aggregated trajectory uncertainties. The results are obtained from the CFN at training step 80.

The underlying rationale and semantics of (1) and (2) are linguistically close but not identical, and
the resulting overall uncertainty estimates for the trajectories are also close. In contrast, (1) and
(3) differ more substantially, leading to larger discrepancies in the trajectory-aggregated uncertainty
estimates.

Relation with Entropy, Score and Rollouts Variance We record the following information dur-
ing the process of policy model rollout: (a) the CFN uncertainty estimates and policy entropy at each
token position; (b) the average CFN uncertainty estimate for each trajectory and the corresponding
within-group rollout variance; and (c) the average CFN uncertainty estimate for each trajectory and
the final score (i.e., empirical success rate). The scatter of these records are shown in Figure 12.

These results indicate that: (a) Positions at which CFN predicts higher uncertainty do not necessar-
ily correspond to higher entropy. Policy entropy measures the policy’s action randomness, whereas
the CFN is designed to measure the model’s epistemic uncertainty regarding its own state knowl-
edge. Thus, our results confirm that the CFN provides a unique, non-redundant signal that cannot
be simply replaced by the policy’s action probabilities. (b) For trajectories that ultimately fail, the
average uncertainty estimated by the CFN tends to be higher. This aligns with our understanding,
since highly novel states typically correspond to regions that the model has insufficiently explored.
In such under-explored regions, the probability of ultimately solving the problem should naturally be
lower. (c) In terms of trajectory uncertainty and the variance of the corresponding within-group roll-
out results, no particularly pronounced correlation is observed. Some trajectories with zero rollout
variance exhibit relatively high uncertainty, which may be due to the fact that we generate rollouts
using the base model; in datasets of relatively higher difficulty, this can lead to a larger number of
entirely incorrect trajectories.

G.2 RL TRAINING

G.2.1 CROSS-DOMAIN EXPERIMENTS

To further evaluate the cross-domain effectiveness of our approach, we transfer the RL models
trained on the Mathematical Reasoning dataset to downstream tasks such as MMLU-Pro and GPQA
for testing. We convert each problem into a multiple-choice question (MCQ) format, and the system
prompt is as follows. For GPQA, we sample up to 16 times, whereas for MMLU-Pro, we sample
only once due to its large scale. The results are shown in Table 7.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: Results of cross-domain experiments on MMLU-Pro and GPQA.

GPQA MMLU-Pro
mean@16 pass@8 pass@16 pass@1

Qwen2.5-Math 8.98 47.5 53.6 5.8
+ GRPO 24.3 59.8 61.6 28.3
+ GRPO w / MERCI 26.4 65.0 69.6 29.1

+ DAPO 26.2 61.2 70.5 37.4
+ DAPO w / MERCI 27.4 64.3 73.7 39.5

Table 8: Results of scaling experiments on vanilla GRPO and mathematical reasoning benchmarks.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO 50.0 76.7 64.0 91.8 59.7 49.2 65.8
GRPO-scaling180 50.0 66.7 61.4 90.2 57.3 48.2 62.3
GRPO-scaling260 46.7 70.0 59.6 88.8 56.4 48.1 61.6

GRPO + MERCI 60.0 80.0 63.2 91.4 60.9 48.9 67.4
GRPO + MERCI-scaling180 56.7 73.3 61.4 90.4 58.7 48.5 64.8
GRPO + MERCI-scaling260 50.0 70.0 61.2 89.4 58.5 47.5 62.8

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5
GRPO-scaling180 13.1 27.1 42.0 78.9 41.2 42.9 40.9
GRPO-scaling260 12.7 28.3 42.8 78.7 40.8 42.7 41.0

GRPO + MERCI 13.4 29.6 44.1 80.7 42.6 42.9 42.2
GRPO + MERCI-scaling180 14.1 31.7 43.0 80.7 41.9 42.5 42.3
GRPO + MERCI-scaling260 12.9 30.9 43.6 80.6 42.5 43.0 42.3

System Prompt

What of the following is the right choice? Please reason step by step, and put your final
answer within \boxed{}. The final answer must be a capital letter like A, B, C, or D.

The results show that incorporating MERCI consistently provides gains on top of both GRPO and
DAPO, particularly on GPQA pass@8 and pass@16, as well as MMLU-Pro pass@1. These findings
suggest that our MERCI play an important role in improving out-of-domain robustness, even when
the underlying training data is highly domain-specialized.

G.2.2 SCALING EXPERIMENTS

As a comparison, we scaled the vanilla GRPO baseline experiment, continuing to train the GRPO
baseline to the 260th training step. We observe that, although extended training increases mean@k,
it substantially degrades pass@k, consistent with the limitations of GRPO discussed in Appendix
E.3. By contrast, our MERCI algorithm realizes its exploratory potential earlier, rapidly identifying
good solutions and exhibiting improvements in pass@k as well.

G.2.3 TRAINING DYNAMICS

We report the training dynamics of both validation accuracy and response length on mathematical
reasoning tasks in Figure 13.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120 140
Training Step

0.68

0.70

0.72

0.74

0.76

0.78

0.80
Validation Accuracy

GRPO
GRPO+MERCI

0 20 40 60 80 100 120 140
Training Step

900

950

1000

1050

1100

1150

1200
Response Length

0 20 40 60 80 100 120 140
Training Step

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82
Validation Accuracy

DAPO
DAPO+MERCI

0 20 40 60 80 100 120 140
Training Step

900

1000

1100

1200

1300

Response Length

Figure 13: Validation (i.e., MATH500) accuracy and response length during training.

Table 9: Ablation studies on vanilla GRPO and mathematical reasoning benchmarks. *p & s filter-
ing is a reduced-form representation of percentile and spatial coherence filtering. **The difference
between cumulative std and cumulative variance (i.e, our main results) has been introduced in Para-
graph 1 of Section 3.3. † The setting of token integration expresses that, rather than computing
uncertainty at the trajectory level for entire trajectories, we directly add an uncertainty estimate to
each token-level advantage. ‡ MERCI w/o normalization is the results of strictly following the sum-
then-sqrt computation and divide the result by a constant factor (set to 1000), without applying any
additional normalization.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO 53.3 76.7 64.0 91.8 59.7 49.2 65.8

GRPO + MERCI w/o p & s filtering* 56.7 73.3 65.8 90.0 60.0 47.9 65.6
GRPO + MERCI w/o noise filtering 50.0 73.3 61.8 89.2 59.7 48.9 63.8
GRPO + MERCI w/o normalization ‡ 53.3 76.7 63.6 89.8 58.7 48.7 65.1

GRPO + MERCI w/ cumulative std** 56.7 76.7 65.1 90.6 60.2 48.1 66.2
GRPO + MERCI w/ token integration† 46.7 70.0 62.5 91.6 59.3 49.1 63.2

GRPO + MERCI 60.0 80.0 63.2 91.4 60.9 48.9 67.4

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO 11.2 28.7 41.8 79.0 40.3 42.0 40.5

GRPO + MERCI w/o p & s filtering 11.7 28.1 44.9 79.9 39.9 42.6 41.2
GRPO + MERCI w/o noise filtering 9.8 25.8 40.6 77.3 37.9 41.9 38.9
GRPO + MERCI w/o normalization 12.4 29.8 44.0 80.0 40.4 42.6 41.5

GRPO + MERCI w/ cumulative std 14.2 29.1 43.8 79.8 41.2 43.0 41.9
GRPO + MERCI w/ token integration 12.0 23.7 40.2 77.5 39.9 42.4 39.3

GRPO + MERCI 13.4 29.6 44.1 80.7 42.6 42.9 42.2

G.2.4 ABLATION STUDIES

To verify the effectiveness of the modules in our method, we conducted ablation studies on the
mathematical reasoning task and vanilla GRPO, and present the results in Table 9.

As evidenced by the preceding experimental results, both noise filtering and normalized trajectory-
aggregated uncertainty estimation are critical to our method; without them, training can become
unstable and may even underperform the baseline algorithm. Furthermore, percentile and spatial
coherence filtering direct attention to uncertainty at key positions, while the variance-accumulation
method yields more accurate estimates, thereby further improving our algorithm’s performance.

G.2.5 HYPERPARAMETER CHOICES

Dimension of CFN As a comparison, we set the dimension d of CFN to 40, and the experimen-
tal results are shown in Figure 14. We posit that if the CFN dimension were significantly larger,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
Training Step

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Validation Accuracy

GRPO
GRPO+MERCI(d=20)
GRPO+MERCI(d=40)

Figure 14: Validation (i.e., MATH500) accuracy during training across different choices on the
dimension of CFN.

Table 10: Results of the speed of cosine schedule decay.

(a) pass@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
pass@256 pass@256 pass@16 pass@16 pass@16 pass@8

GRPO + MERCI-decaystep200 60.0 80.0 63.2 91.4 60.9 48.9 67.4
GRPO + MERCI-decaystep100 56.7 80.0 62.1 90.6 61.3 48.6 66.6
GRPO + MERCI-decaystep300 56.7 76.7 62.9 90.8 60.3 48.7 66.0

(b) mean@k results

AIME25 AIME24 Minerva MATH500 OlympiadBench College Avg.
mean@256 mean@256 mean@16 mean@16 mean@16 mean@8

GRPO + MERCI-decaystep200 13.4 29.6 44.1 80.7 42.6 42.9 42.2
GRPO + MERCI-decaystep100 12.9 28.9 43.8 80.0 43.1 43.4 42.0
GRPO + MERCI-decaystep300 14.4 27.0 41.3 80.6 41.5 42.4 41.2

the high-dimensional LLM hidden states, when projected through the network head, might experi-
ence reduced distinguishability. A large dimension could potentially oversmooth the feature space,
causing subtle but important differences between novel and seen states to become less pronounced.

Decay of the exploration coefficient To discuss how the slower/faster cosine schedule decay
impacts the final performance, we conducted experiments with the decay steps set to 100, 200, and
300, respectively, and the results are presented in Table 10.

The experimental results demonstrate that the cosine decay of γ to 10% by step 200 provides better
overall performance. Schedules with a faster decay rate (e.g., decaying to 10% by step 100) led to
insufficient exploration time. The policy quickly stabilized into suboptimal reasoning paths, result-
ing in a lower ceiling for the final performance. Conversely, schedules with a slower decay (e.g.,
decaying by step 300) hindered convergence late in training. The persistent, strong intrinsic reward
introduced excessive noise or bias, preventing the policy from focusing on maximizing the external
task reward, thus degrading the final performance and stability.

Top-p% Used in Filtering For the percentile values used in the filtering step (i.e., top p%), we
likewise conducted experiments with settings of 20%, 30%, and 50%, respectively, and the results
are shown in Figure 15.

G.2.6 CASE STUDY

We analyzed two cases on AIME2024/AIME2025 to examine the effect of incorporating our method,
and the results are as follows.

In Case Study 1 on AIME2024, compared with the DAPO solution, our DAPO+MERCI method
provides a significantly clearer and more rigorous derivation. By organizing the substitutions into
a structured sequence and isolating each variable through simple exponential equations, it avoids

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
Training Step

0.68

0.70

0.72

0.74

0.76

0.78

0.80
Validation Accuracy

GRPO
GRPO+MERCI(20%)
GRPO+MERCI(30%)
GRPO+MERCI(50%)

0 20 40 60 80 100 120
Training Step

0.68

0.70

0.72

0.74

0.76

0.78

0.80
Validation Accuracy

GRPO
GRPO+MERCI(decay_step100)
GRPO+MERCI(decay_step200)
GRPO+MERCI(decay_step300)

Figure 15: Validation (i.e., MATH500) accuracy during training across different choices on top p%
and cosine decay step.

the excessive algebraic accumulation seen in the DAPO approach. The resulting argument is more
transparent, mathematically systematic, and pedagogically effective.

In Case Study 2 on AIME2025, the DAPO baseline’s solution relies on extensive algebraic expan-
sion followed by heuristic symmetry arguments that are not rigorously justified, causing a disconnect
between computation and conclusion. In contrast, our DAPO+MERCI method’s solution adopts a
structurally motivated approach based on logarithmic differentiation, which directly relates the loca-
tions of the roots to the behavior of the critical points. Although more concise, it provides a coherent
analytic framework and a logically valid path to the correct values.

In summary, these studies consistently validate the observation that the incorporation of the
uncertainty-driven intrinsic reward fundamentally alters the policy model’s approach to multi-step
reasoning: 1. Enhanced Strategy Coherence and Conciseness: CFN’s novelty mechanism cuts
out ”cognitive noise” and long, self-correcting detours, leading to significantly improved strategy
coherence and sample efficiency; 2. Cognitive Migration to Higher-Level Reasoning: The in-
creased proportion of steps devoted to higher-level reasoning is the most significant indicator of
improved cognitive efficiency; 3. Discovery of Novel and Elegant Solutions: The provided case
study example also demonstrates that the MERCI-guided policy finds more elegant, efficient, or
fundamentally different mathematical/structural approaches to solving problems.

Case Study 1 on AIME2024

Question: Let x, y and z be positive real numbers that satisfy the following system of
equations:
log2

(
x
yz

)
= 1

2 log2
(

y
xz

)
= 1

3 log2

(
z
xy

)
= 1

4

Then the value of
∣∣log2(x4y3z2)

∣∣ is m
n where m and n are relatively prime positive integers.

Find m+ n.

Response (DAPO): Let’s solve the given system of equations step by step. The system of
equations provided is:

log2

(
x

yz

)
=

1

2

log2

(y

xz

)
=

1

3

log2

(
z

xy

)
=

1

4

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

First, we can rewrite each logarithmic equation in exponential form:1. log2

(
x
yz

)
= 1

2

implies x
yz = 2

1
2 =

√
2, so x =

√
2·yz.2. log2

(
y
xz

)
= 1

3 implies y
xz = 2

1
3 , so y = 2

1
3 ·xz.3.

log2

(
z
xy

)
= 1

4 implies z
xy = 2

1
4 , so z = 2

1
4 · xy.

Now, we can substitute the expressions for x, y, and z into each other to find the values of
x, y, and z:
From the first equation: x =

√
2 · yz

From the second equation: y = 2
1
3 · xz

From the third equation: z = 2
1
4 · xy

By multiplying these three equations together:

x · y · z = (
√
2 · yz) · (2 1

3 · xz) · (2 1
4 · xy)

x · y · z =
√
2 · 2 1

3 · 2 1
4 · (yz · xz · xy)

x · y · z =
√
2 · 2 1

3 · 2 1
4 · (x2y2z2)

x · y · z = 2
1
2 · 2 1

3 · 2 1
4 · (x2y2z2)

x · y · z = 2
1
2+

1
3+

1
4 · (x2y2z2)

x · y · z = 2
6
12+

4
12+

3
12 · (x2y2z2)

x · y · z = 2
13
12 · (x2y2z2)

x · y · z = 2
13
12 · (x2y2z2)

1 = 2
13
12 · (xyz)

1 = 2
13
12 · (xyz)

xyz = 2−
13
12

Now we can use x =
√
2 · yz, y = 2

1
3 · xz, and z = 2

1
4 · xy to find the individual values of

x, y, and z:From x =
√
2 · yz:

x =
√
2 · yz

x =
√
2 ·
(
2−

13
12 ·

1
x

)
Let’s find the exponents of x, y, and z in the expression x =

√
2 · yz:

x =
√
2 · yz

x = 2
1
2 · yz

x2 = 2 · y2z2

We know xyz = 2−
13
12 , so:

x = 2
1
2 · 2

− 13
12

x

x2 = 2
1
2 · 2− 13

12

x2 = 2
1
2−

13
12

x2 = 2
6
12−

13
12

x2 = 2−
7
12

x = 2−
7
24

Similarly:
y = 2

1
3 · xz

y = 2
1
3 · 2

− 13
12

y

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

y2 = 2
1
3 · 2− 13

12

y2 = 2
1
3−

13
12

y2 = 2
4
12−

13
12

y2 = 2−
9
12

y2 = 2−
3
4

y = 2−
3
8

Similarly:
z = 2

1
4 · xy

z = 2
1
4 · 2− 7

24 · 2− 3
8

z = 2
1
4 · 2− 7

24−
3
8

z = 2
1
4 · 2− 7

24−
9
24

z = 2
1
4 · 2− 16

24

z = 2
1
4 · 2− 2

3

z = 2
3
12−

8
12

z = 2−
5
12

Now we need to find
∣∣log2(x4y3z2)

∣∣:
x4y3z2 =

(
2−

7
24

)4
·
(
2−

3
8

)3
·
(
2−

5
12

)2
x4y3z2 = 2−

7
6 · 2− 9

8 · 2− 5
6

x4y3z2 = 2−
7
6−

9
8−

5
6

x4y3z2 = 2−
56
48−

54
48−

40
48

x4y3z2 = 2−
150
48 = 2−

25
8

Now we find the logarithm:∣∣log2(x4y3z2)
∣∣ = ∣∣∣log2 (2− 25

8

)∣∣∣ = ∣∣∣∣−25

8

∣∣∣∣ = 25

8

Thus, m = 25 and n = 8, so m+ n = 33.
Let’s confirm with Python:

Python Code

Calculating the valueimport math

Values found

x_val = 2**(-7/24)y_val = 2**(-3/8)

z_val = 2**(-5/12)

Calculate the expression xˆ4 * yˆ3 * zˆ2

expression_value = x_val**4 * y_val**3 * z_val**2

Calculate log2 of the expression value

log_value = math.log2(expression_value)

Absolute value

abs_log_value = abs(log_value)

print(abs_log_value)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Output

3.125

The calculation confirms that
∣∣log2(x4y3z2)

∣∣ = 25
8 = 3.125, which matches our derived

value. Thus, m = 25 and n = 8, so m+ n = 33.
Therefore, the answer is:

33

Response (DAPO+MERCI): To solve the given system of equations, we start by rewriting
the logarithmic equations in exponential form:
1. log2

(
x
yz

)
= 1

2

2. log2
(

y
xz

)
= 1

3

3. log2
(

z
xy

)
= 1

4

Using the definition of logarithms, we can convert these into the following equations:
1. x

yz = 2
1
2 =

√
2

2. y
xz = 2

1
3 = 3

√
2

3. z
xy = 2

1
4 = 4

√
2

From these equations, we get:
x =

√
2 · yz (1)

y =
3
√
2 · xz (2)

z =
4
√
2 · xy (3)

Now we substitute equation (1) into equation (2):

y =
3
√
2 · (

√
2 · yz)z =

3
√
2 ·

√
2 · yz2 = 2

1
3+

1
2 · yz2 = 2

5
6 · yz2

Dividing both sides by y, we get:
1 = 2

5
6 · z2

So,
z2 = 2−

5
6

z = 2−
5
12 (4)

Now we substitute equation (1) into equation (3):

z =
4
√
2 · (

√
2 · yz)y =

4
√
2 ·

√
2 · y2z = 2

1
4+

1
2 · y2z = 2

3
4 · y2z

Dividing both sides by z, we get:
1 = 2

3
4 · y2

So,
y2 = 2−

3
4

y = 2−
3
8 (5)

Now we substitute equation (2) into equation (3):

z =
4
√
2 · (3

√
2 · xz)x =

4
√
2 · 3

√
2 · x2z = 2

1
4+

1
3 · x2z = 2

7
12 · x2z

Dividing both sides by z, we get:
1 = 2

7
12 · x2

So,
x2 = 2−

7
12

x = 2−
7
24 (6)

Now that we have the values:

x = 2−
7
24 , y = 2−

3
8 , z = 2−

5
12

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We need to find the value of
∣∣log2(x4y3z2)

∣∣.
First, we calculate x4y3z2:

x4 =
(
2−

7
24

)4
= 2−

7
6

y3 =
(
2−

3
8

)3
= 2−

9
8

z2 =
(
2−

5
12

)2
= 2−

5
6

So,
x4y3z2 = 2−

7
6 · 2− 9

8 · 2− 5
6 = 2−

7
6−

9
8−

5
6 = 2−(

7
6+

9
8+

5
6)

To add the exponents, we need a common denominator:

7

6
+

9

8
+

5

6
=

56

48
+

54

48
+

40

48
=

56 + 54 + 40

48
=

150

48
=

25

8

So,
x4y3z2 = 2−

25
8

Then,

log2(x
4y3z2) = log2

(
2−

25
8

)
= −25

8
Thus, ∣∣log2(x4y3z2)

∣∣ = ∣∣∣∣−25

8

∣∣∣∣ = 25

8

The fraction 25
8 is already in its simplest form, so m = 25 and n = 8. Therefore, m+ n =

25 + 8 = 33.
The final answer is:

33

Case Study 2 on AIME 2025

Question: There are exactly three positive real numbers k such that the function

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x

defined over the positive real numbers achieves its minimum value at exactly two positive
real numbers x. Find the sum of these three values of k.

Response (DAPO): To solve this problem, we need to analyze the function f(x) =
(x−18)(x−72)(x−98)(x−k)

x and find the values of k such that the function achieves its min-
imum value at exactly two positive real numbers x.First, let’s rewrite f(x) in a more man-
ageable form:

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x
.

To find the critical points of f(x), we need to find the derivative f ′(x) and set it to zero.
Let’s define:

g(x) = (x− 18)(x− 72)(x− 98)(x− k).

Then,

f(x) =
g(x)

x
.

Using the quotient rule to differentiate f(x):

f ′(x) =
g′(x) · x− g(x) · 1

x2
=

xg′(x)− g(x)

x2
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

We need to find g(x) and its derivative g′(x):

g(x) = (x− 18)(x− 72)(x− 98)(x− k).

To find g′(x), we can use the product rule:

g′(x) = (x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k)+

(x− 18)(x− 72)(x− k) + (x− 18)(x− 72)(x− 98).

Now we substitute g(x) and g′(x) into f ′(x):

f ′(x) =
x [(x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k)]

x2

+
x [(x− 18)(x− 72)(x− k) + (x− 18)(x− 72)(x− 98)]

x2

− (x− 18)(x− 72)(x− 98)(x− k)

x2
.

For f(x) to have a minimum at two positive real numbers x, f ′(x) = 0. This gives us the
equation:

x [(x− 72)(x− 98)(x− k) + (x− 18)(x− 98)(x− k) + (x− 18)(x− 72)(x− k)]

+x(x− 18)(x− 72)(x− 98)− (x− 18)(x− 72)(x− 98)(x− k) = 0.

We can factor out (x− 18)(x− 72)(x− 98)(x− k) from the numerator:

x [(x− 72)(x− 98) + (x− 18)(x− 98) + (x− 18)(x− 72) + (x− 18)(x− 72)]

−(x− 18)(x− 72)(x− 98)(x− k) = 0.

This equation will have critical points when the numerator is zero. We need to find the
values of k such that the function achieves its minimum value at exactly two positive real
numbers x. The critical points are given by the roots of the derivative, and the behavior of
the polynomial f(x) suggests the critical points occur when the polynomial’s derivative has
exactly two distinct positive roots.By Vieta’s formulas and symmetry, we can deduce the
sum of the roots. The roots of the polynomial are related to the values 18, 72, 98, and k.
We need to determine the values of k such that the critical points occur exactly twice. This
means we need to analyze how the polynomial behaves around its critical points, and the
critical points will be symmetric around the average of the roots.By symmetry, the critical
points will be symmetric around the average of the roots. This means:

18 + 72 + 98 + k

4
= a critical point.

For there to be exactly two positive critical points, the polynomial’s derivative must have
exactly two distinct positive roots, meaning the polynomial must have a double root at two
distinct positive values. This can only happen if the polynomial has a double root at two
distinct points, and the critical points will be related to the values 18, 72, 98, and k. The
sum of the roots taken two at a time will give us the possible values of k.The polynomial’s
behavior suggests the critical points occur at the midpoints of the roots:

18 + 72

2
= 45,

72 + 98

2
= 85,

98 + 18

2
= 58, and

k + x

2
= midpoint.

The sum of the distinct positive values of k that make this possible can be found by solving:

k = 45 + 85 + 58− 18− 72− 98.

This gives:

k1 = 145− 188 = −43, k2 = 145− 145 = 0, k3 = 145− 0 = 145.

These values of k must be positive and real, so we need the correct k values such that there
are exactly two critical points:

k1 = 45 + 85 + 58− 18− 72− 98 = −43, not valid,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

k2 = 18 + 72 + 98− 18− 72− 98 = 0, not valid,
k3 = 18 + 72 + 98 + k − 18− 72− 98 = k.

From symmetry and polynomial properties, the sum of these valid k values is:

k1 + k2 + k3 = 140.

We need the sum:

k1 = 140− 18− 72− 98 + 18 + 72 + 98 = 140.

The sum of these three valid k values:

k1 + k2 + k3 = 140.

The correct values for k are 38, 62, and 140, and the sum is:

38 + 62 + 140 = 240.

Finally, we confirm:
240 .

Response (DAPO+MERCI): To solve the problem, we need to analyze the function f(x) =
(x−18)(x−72)(x−98)(x−k)

x and determine the values of k such that the function achieves its
minimum value at exactly two positive real numbers x. Let’s break down the problem step-
by-step.
1. Rewrite the Function:

f(x) =
(x− 18)(x− 72)(x− 98)(x− k)

x

We can expand the numerator:

(x− 18)(x− 72)(x− 98)(x− k)

To simplify the analysis, we define a new polynomial P (x) = (x−18)(x−72)(x−98)(x−
k). So the function becomes:

f(x) =
P (x)

x

2. Find the Derivative: We need to find the critical points by taking the derivative of f(x).
Using the quotient rule:

f ′(x) =
P ′(x) · x− P (x) · 1

x2

Setting f ′(x) = 0, we get:

P ′(x) · x− P (x) = 0 =⇒ P ′(x) · x = P (x) =⇒ P ′(x)

P (x)
=

1

x

This is equivalent to finding the roots of:

d

dx
(lnP (x)) =

1

x

3. Polynomial P (x): The polynomial P (x) = (x− 18)(x− 72)(x− 98)(x− k) has roots
at x = 18, 72, 98, k. The derivative P ′(x) will have roots that are related to these values.
For f(x) to have exactly two positive values of x where it achieves its minimum, the critical
points must be such that the second derivative test indicates a minimum at exactly two points.
4. Analyze the Critical Points: The critical points occur when:

P ′(x) =
d

dx
((x− 18)(x− 72)(x− 98)(x− k))

Setting P ′(x) · x = P (x), this equation is satisfied when x equals some value that balances
the roots of P (x). For f(x) to achieve its minimum at exactly two positive values of x, the

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

critical points must be specific values related to the roots of P (x).
5. Symmetry and Values of k: The function f(x) will achieve its minimum at exactly
two points if the critical points are symmetrically placed around the midpoint of the roots of
the polynomial. This symmetry suggests that k must be chosen such that the critical points
occur at specific values.
The critical values for k can be determined by considering the balance of the roots. Specifi-
cally, if we solve:

P ′(x)

P (x)
=

1

x

we can find the values of k. By symmetry and considering the midpoint, the values of k
are likely to be related to the average of pairs of roots. The roots are 18, 72, 98, and k. By
solving the above equation, we find the values:

k = 8, 32, 200

These values ensure that the function achieves its minimum at exactly two points. Summing
these values:

8 + 32 + 200 = 240

Thus, the sum of these three values of k is:

240

34

	Introduction
	Preliminaries
	Methodology
	The Uncertainty Bellman Equation with Known Transitions
	 Estimate Variance of Reward via CFN
	Advantage Estimation

	Related Work
	Reinforcement Learning for LLM Reasoning
	Exploration in Reinforcement Learning

	Experiments
	Experimental Setup
	Main Results
	Coin Flip Network
	RL Training

	Ablation Studies and Scaling Experiments

	Conclusion
	Ethics Statement
	Reproducibility Statement
	The Use of Large Language Models
	Entropy Regularization as a Generalized -Greedy Exploration
	Addition descriptions for our method
	Proof of Proposition 1
	Detailed Training Configurations
	Training Data and Reward Function
	CFN Training Configuration
	RL Training Configuration

	Inference Configurations
	Additional Experimental Results
	Coin Flipping Network
	RL Training
	Cross-domain Experiments
	Scaling Experiments
	Training Dynamics
	Ablation Studies
	Hyperparameter choices
	Case Study

