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Abstract

During the fine-tuning process of Pre-trained
Language Models (PLMs), they encounter rela-
tively small datasets that may have spurious cor-
relation patterns. Counterfactually Augmented
Data (CAD) has emerged as a solution to make
models less sensitive to such spurious patterns.
While there has been progress in generating
CAD due to advancements in generation mod-
els, the focus has primarily been on the quality
of CAD, with limited attention given to training
models for robustness. We introduce CADCon,
a novel contrastive learning approach to en-
hance robustness by effectively utilizing CAD,
rather than simply augmenting it. Firstly, we
utilize an LLM-based generative model to gen-
erate counterfactual samples from original sen-
tences. This is achieved by using a simple
prompt, without human intervention or addi-
tional models. Secondly, we propose a tagging-
based noise infusion method, which infuses
noise into sentences without altering genuine
tokens that have causal relationships with la-
bels. Lastly, we perform contrastive learning
so that counterfactual samples are distant from
the original sentences and noise-infused sam-
ples are close. Our method effectively mitigates
spurious correlations and improves robustness.
We demonstrate that our method outperforms
in both counterfactual task and domain gener-
alization task.

1 Introduction

Pre-trained language models (PLMs) (Radford
et al., 2018; Devlin et al., 2019; Liu et al., 2019)
trained on a large amount of unlabeled data have
shown superior performance through fine-tuning
in various tasks. PLMs can perform well with less
data, but they are easily exposed to spurious cor-
relation (Tu et al., 2020) between text and label,
which is called shortcuts, by biasing the distribu-
tion within the training data. For example, when a
model is trained on a majority of positive reviews

for Spielberg movies, the word “Spielberg" will
have a spurious correlation with the positive la-
bel (Wang and Culotta, 2020; Wang et al., 2022).
Even if a negative comment about the movie is pro-
vided, a model trained on positive reviews would
still predict a positive review for Spielberg. This
phenomenon of shortcuts can lead to overfitting
and a lack of generalization, resulting in challenges
when dealing with out-of-domain (OOD) data. To
mitigate these spurious correlations, research has
explored two main approaches: 1) generating coun-
terfactual augmented data (CAD), and 2) distin-
guishing causal features.

The first approach mainly focused on generat-
ing CAD (Kaushik et al., 2020; Samory et al.,
2021), which is generated by minimally perturb-
ing examples to flip the label. CAD was initially
performed through manual annotation by humans.
But due to the high cost, the approach shifted to-
wards automatic generation methods. Yang et al.
(2021) utilized a sentiment dictionary and Wang
and Culotta (2021) used a statistical matching ap-
proach and pre-defined antonyms to automatically
generate CAD. But, these methods were limited in
generating high-quality CAD by using dictionary
or statistics. Recent works tried to utilize PLMs
for CAD generation, such as T5 (Zhou et al., 2022;
Wen et al., 2022), GPT-2 (Madaan et al., 2021; Wu
et al., 2021) and GPT-3 (Dixit et al., 2022; Liu
et al., 2022; Chen et al., 2023). However, these pre-
vious works only concentrate on the generation of
high-quality CAD. So, they result in subsequent
costs associated with human intervention or the
utilization of additional models for post-generation
filtering. Moreover, they focus on augmenting CAD
for training purposes only, without addressing the
crucial issue of enhancing robustness through a
model training perspective.

The second approach aims to mitigate spurious
correlation and enhance robustness by distinguish-
ing causal features through a classifier without



requiring additional augmented data. This allows
the model to ignore shortcut tokens and focus on
genuine tokens during the learning process. To de-
fine shortcut tokens, Wang and Culotta (2020) uti-
lized magnitude coefficients through a classifier
and Wang et al. (2022) used the attention scores
of the model and the frequency of domain-specific
word. Choi et al. (2022) identified genuine tokens
using the gradient from a fine-tuned model and out-
put values from a masked language model. These
studies distinguished these tokens using models
trained on the train dataset. However, relying on
such models, which are already biased due to spuri-
ous correlations, leads to inaccurate discrimination
of these tokens.

In this paper, we propose a novel approach to
effectively address the limitations of previous stud-
ies, aiming to resolve the spurious correlation prob-
lem and enhance model robustness. Our approach
takes into account both data generation methods
and model training strategies to offer a comprehen-
sive and effective learning strategy. Our contribu-
tions can be summarized as follows:

* We leverage the knowledge of Large Lan-
guage Models (LLMs) to generate counter-
factual samples effectively using a simple-
prompt approach. We analyze the datasets gen-
erated based on different prompts and demon-
strate their excellence through experimental
results.

* We introduce a Tagging-based Noise Infusion
(TNI) technique and contrastive learning ap-
proach to effectively grasp the patterns of both
original and counterfactual samples. This ap-
proach contributes to efficient representation
learning, leading to improved robustness.

» To demonstrate the superiority of the proposed
method, we show that it is superior in terms
of robustness with improved generalization
ability in both conventional fine-tuning and
prompt-based fine-tuning with some interest-
ing ablation.

2 Related Work
2.1 Counterfactually Augmented Dataset

A counterfactual text sample is a sentence that
is generated by making minimal changes to the
original text in order to flip its label. Prior stud-
ies (Kaushik et al., 2020; Samory et al., 2021)

employed human annotators to create CAD. This
augmented data was combined with the original
dataset to train models, with the goal of improving
the robustness and generalization of text classifi-
cation models. However, manually annotating by
humans is time-consuming and costly, so recent
research has been focusing on automatically gen-
erating CAD. Yang et al. (2021) proposed an ap-
proach to automatically generate CAD by utilizing
a sentiment dictionary. Madaan et al. (2021) uti-
lized pre-trained GPT-2 to generate counterfactual
samples based on conditions such as named-entity
tags, semantic role labels, or sentiment. Wen et al.
(2022) handled specific rationales as masked spans
and employed a controllable text generation model
to create CAD.

Recent studies have explored the use of Large
Language Models (LLMs), such as GPT-3, for
CAD generation. Dixit et al. (2022) proposed a
CAD generation framework by combining a Coun-
terfactual retrieval model with the GPT-3 model.
Liu et al. (2022) proposed an effective dataset cre-
ation method through collaboration between hu-
man workers and LLMs, where human filtering
was applied to the NLI dataset generated by LLM.
Chen et al. (2023) constructed high-quality CAD
without relying on human workers, utilizing GPT-3
generated CAD filtered by a teacher model. While
the advancement of generation models has led to a
surge in CAD generation, many of the mentioned
studies focus on how to generate CAD accurately
and effectively. As a result, they often require hu-
man validation or additional complex models for
data verification. Furthermore, these sophisticat-
edly generated datasets are only used for straight-
forward augmentation in training, without introduc-
ing practical training methods aimed at effectively
improving robustness.

2.2 Robust for Text classification

Gunel et al. (2021) jointly optimized cross-entropy
loss and Supcon (Khosla et al., 2020) loss during
the fine-tuning stage, demonstrating improved per-
formance not only in general text classification but
also enhanced robustness in few-shot and noisy
environments. However, this approach has limita-
tions in directly addressing the spurious correlation
problem. The following studies aim to tackle the
problem of spurious correlations, often referred
to as shortcut issues, to enhance robustness in text
classification. Wang and Culotta (2020) utilized fea-
tures derived from matched samples to distinguish
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Figure 1: Overview of our proposed model. L, is the triplet loss for learning the representation for the original
sentence, negative sentence, and positive sentence, and L¢ g is the cross entropy loss for each label of the original

sentence and the counterfactual sentence.

shortcuts from genuine ones. By removing words
predicted to be shortcuts, they enhanced robustness
in text classification. Wang et al. (2022) ensured
robustness by distinguishing spurious tokens from
important ones through cross-domain dataset anal-
ysis and knowledge-aware perturbation. Choi et al.
(2022) proposed causally contrastive learning, train-
ing models to distinguish causal features. However,
these methods all rely on gradient-based techniques
to extract crucial words or utilize fine-tuned clas-
sifiers for consistency filtering in generated CAD.
A notable drawback of these methods is their de-
pendence on already-biased classifiers, which have
encountered the spurious correlation problem.

3 Method

We propose a novel approach, CADCon, which
utilizes simple prompts to generate counterfactual
samples and effectively tackles the issue of spuri-
ous correlation through contrastive learning with
CAD. Firstly, we utilize the GPT-3.5 generative
model to generate counterfactual sentences from
the original sentence by altering only minimally
genuine tokens, those tokens that have an impact
on the label. Next, we use the tagging information
extracted from the original sentence to distinguish
non-causal words that do not affect the sentence
label. We then infuse noise into tokens associated
with the identified non-causal tagging information
to create positive sentences. We aim to learn the
underlying patterns of the generated counterfac-
tual and positive data in the representation space,
focusing on capturing the key patterns associated
with their influence on labels. Figure 1 provides an

overview of CADCon, consisting of the following
three processes: 1) Counterfactual Sample Genera-
tion Using GPT-3.5, 2) Tagging-based Noise Infu-
sion, and 3) Contrastive Learning with Triplets.

3.1 Counterfactual Sample Generation Using
GPT-3.5

Given a collection of sentences {A;};",, we
construct a collection of counterfactual samples
{N;}, using GPT-3.5. In contrast to recent stud-
ies that use GPT-3.5 to generate CAD (Dicxit et al.,
2022; Liu et al., 2022; Chen et al., 2023), we con-
centrate on generating counterfactual samples us-
ing simple prompts, without the need for human
intervention or additional models. We constructed
the dataset by conducting experiments with the
following three prompt instructions. Instruction 1
contains the “Please make it a negative sentence.”
which outlines the intended behavior of the model.
Instruction 2 provides the current task and label
information for the sentence. In instruction 3, we
offer specific guidance with phrases “Just change a
few words” and “while preserving the original text
as much as possible.” We use a similarly-designed
prompt with instruction 3 corresponding to each
task and label. Please refer to the Appendix B for a
detailed description of the prompt instructions used
for this purpose.

3.2 Tagging-based Noise Infusion (TNI)

In this paragraph, we introduce a method for con-
structing a collection of positive sentences { P, };" |
aimed at addressing the fundamental issue of spu-
rious correlation by preventing bias towards non-
causal words that are not directly associated with



the label. Previous data augmentation methods in
contrastive learning (Gao et al., 2021b; Gunel et al.,
2021), techniques such as dropout noise, EDA (Wei
and Zou, 2019), and back translation (Sugiyama
and Yoshinaga, 2019) have been used to gener-
ate positive samples. However, these augmentation
techniques do not effectively address the aim of
reducing spurious correlation, because they might
destroy existing semantics. To address the issue
of spurious correlation, distinguishing whether a
token is a shortcut token or not is crucial. However,
identifying tokens learned as shortcuts in the fine-
tuned model is highly challenging. Therefore, we
use a universal Part-of-speech (POS) tag set (Petrov
et al., 2012) which is widely utilized across vari-
ous NLP tasks to enhance performance. And, we
utilize the logit output from the fine-tuned Model
f to define the tagging that is not relevant to the
labels. We iteratively removed tokens with specific
tagging information to calculate the significance of
their influence as described in Equation 1. Suppose
that there is an input text S = [wg, w1, ..., wy,] and
universal POS tag set 7" = [VERB, NOUN, ..., DET ...].
The degree of accuracy reduction for the original
model when removing all tokens belonging to each
POS tag set is denoted as the importance Ir. It is
represented by the following equation:

ITi = f(S) - f(S\wiETi) (1)

We consider cases where the accuracy reduction
is less than 0 as POS tagging information that does
not influence the label. We define this as the non-
causal tag set G. And then, when given input S,
we propose a noise infusion method to generate
new positive samples by extracting k£ word tokens
belonging to the set G' and replacing these words
with the [UNK] token. This approach allows us to
maintain genuine tokens that influence the label
while infusing noise for tokens that do not have
an impact, thereby reducing bias towards shortcut
tokens. Here, k is determined by multiplying a scal-
ing factor « that reflects the average number of
non-casual words in the train dataset. See the Ap-
pendix A for details on the k used for each dataset.
In the example shown in Figure 1, words such as
‘For’, ‘and’, ... etc. can be decided for non-causal
words. Especially, key point is that considering
different non-causal words with varying noise in-
fusion at each epoch allows us to consider multi-
views. This helps reduce the tendency to become
biased towards spurious correlation as the training
progress.

3.3 Contrastive Learning with Triplets

We introduce contrastive learning for the effective
training of models on the generated counterfactual
and positive samples. First, the counterfactual sen-
tences generated by altering only genuine tokens
are considered not only to be a loss for direct la-
bel prediction but also to be a loss that encourages
them to move further away from the original sen-
tence in the latent space. Next, by bringing the
positive samples generated through tagging-based
noise infusion closer to the original samples in the
representation space, we effectively mitigate the
bias towards non-causal words and enhance the
model’s generalization ability. In summary, we aim
to emphasize important features and eliminate un-
necessary shortcuts through the generated triplets.
In conventional fine-tuning models, the [CLS]
hidden representations from PLM M pass through
a classifier head to produce the probability distribu-
tion on the label set y. As a result, the parameters
0 of the entire model are trained in the direction
of minimizing the cross-entropy loss between the
predicted label ¢ and the ground-truth label ¥:

N C
Lop =YY Yic 108 )

i=1 c=1

where N denotes a batch of training examples of
size and C' denotes classes.

Recently, in order to narrow the gap between
pre-training and downstream tasks prompt-based
Fine-tuning models are attracting attention and few-
shot setting (Brown et al., 2020; Gao et al., 2021a)
Most prompt-based learning approach (Shin et al.,
2020; Schick and Schiitze, 2021; Gao et al., 2021a)
utilize task-specific templates consisting of discrete
prompts alongside input sentences. These prompts
contain a [MASK] token and are designed to con-
struct an objective that is similar to MLM training,
where the goal is to map the [MASK] token to the
right label (a specific word) with a pre-defined ver-
balizer. The probability distribution over the label
is shown below:

P (IMASK] = v|T(z))|v € V) 3)

where 7T'(-) is a task-specific template and V/, is the
label words of y.

In the standard (conventional) FT approach, rep-
resentation learning was conducted using the hid-
den states of the [CLS] token as the representations
of sentences. However, in the prompt-based FT ap-
proach, as demonstrated in (Jian et al., 2022), the



final classification is performed using the [MASK]
token. Therefore, representation learning was in-
tuitively and effectively carried out using the rep-
resentations of the [MASK] token, rather than the
[CLS] token. We utilized a loss function similar to
the training approach in C2L (Choi et al., 2022),
which applied a margin-based ranking loss. The
specific calculation of the triplet loss is as follows:

L, = max(0,
M 4
% > d(Ai, P) - %d(Az}Ni) + a) @
i=1
where M is the number of sentences, A; repre-
sents the i-th original sentence, /N; is the negative
sentence generated from the i-th original sentence
by the GPT model, P; is the positive sentence gen-
erated from the i-th original sentence by TNI, « is
a margin value enforced between positive and neg-
ative pairs, and d(-) computes the distance between
the hidden states at [CLS] tokens or [MASK] tokens
as the representations of two sentences. The final
loss is as follows:

L=(1—-MXLcg+ ALcp 5

A is a scalar weighting hyperparameter that we tune
for each downstream task.

4 Experiments

4.1 Datasets

Counterfactul Task Datasets To identify and ad-
dress the phenomenon of being biased by spurious
correlation in training data, we use two datasets
(Kaushik et al., 2020; Samory et al., 2021), where
the counterfactually-revised dataset (CF) is paired
with the original dataset (O). Following Kaushik
et al. (2020), we use the same train/valid/test
datasets in sentiment analysis. In the sexism dataset
(Samory et al., 2021), unlike sentiment analysis,
there are pairs annotated by the crowdworkers only
to make the sexist sentence a non-sexist sentence.
Therefore, we used the original-counterfactual
pairs from the dataset and ensured label balance by
constructing a non-sexist dataset sampled from non-
pairs within the dataset. Further, in the standard FT
experiment, the dataset was split in a 9:1 ratio for
training and testing, respectively. And we use 10%
of the train dataset for validation. In both tasks, we
also utilized the CF train dataset, which was not
utilized during training, as a test dataset to demon-
strate the impact of spurious correlations. Appendix

A shows the statistical details of the counterfac-
tual task datasets. We used YELP (Asghar, 2016),
SST2 (Socher et al., 2013), FineFood (McAuley
and Leskovec, 2013), and Tweet! as test data for
sentiment analysis and Tweet” for Sexism classi-
fication as Out-Of-Distribution (OOD) datasets to
evaluate the generalization ability.

Cross-Domain Generalization Datasets For
cross-domain experiments, we use sentiment anal-
ysis datasets on SST-2 (Socher et al., 2013), IMDb
(Maas et al.,, 2011), FineFood (McAuley and
Leskovec, 2013) datasets. In standard FT, we uti-
lized official train, validation, and test sets if avail-
able. In cases where such datasets were not pro-
vided, we randomly split the data into training and
validation sets with an 8:2 ratio for each seed.

4.2 Baselines

Supcon In Gunel et al. (2021), the joint optimiza-
tion of cross-entropy loss and SupCon loss (Khosla
et al., 2020) in PLM fine-tuning was applied, show-
ing enhanced robustness and improved generaliza-
tion performance in text classification tasks.

C2L  To enhance robustness, Choi et al. (2022) re-
lies on the classifier model to identify causal words
that significantly influence the label. They treat
the masking of causal words as negative examples,
and the masking of less significant words as regu-
lar positive examples, thereby jointly optimizing
triplet loss and cross-entropy. We used the publicly
available code on our experimental setup.

EDA Easy Data Augmentation (EDA) (Wei and
Zou, 2019) proposed a method of augmenting
sentences by randomly applying four heuristic
techniques: synonym replacement, word insertion,
word deletion, and word swapping. We employed
this method to augment our dataset by applying
one augmentation per sentence.

SSMBA Ng et al. (2020) proposed a corrupt-and-
reconstruct text data augmentation technique using
the BERT pre-trained model, showing performance
improvements on out-of-domain datasets. In our
experiments, we adopted the approach of augment-
ing data while keeping the labels unchanged. We

"https://www.kaggle.com/c/tweet-sentiment-extraction.
We use only positive and negative tweets, excluding neutral
labels.

“https://www.kaggle.com/datasets/dgrosz/sexist-
workplace-statements.



In-Domain Dataset

Out-Of-Distribtuion Dataset

Methods Overall
O-Test CF-Test CF-Train | YELP SST2 Food Tweet

Standard Fine-Tuning (full-data)

RoBERTa-large (Liu et al., 2019) 93.85 93.31 89.75 9538 86.00 95.65 78.75 90.38

Robust Learning

SupCon (Gunel et al., 2021) 93.85 88.11 84.20 95.26  86.20 9532  74.90 88.18

C2L (Choi et al., 2022) 93.92 91.67 89.55 9522 8847 9532 80.66 90.69

Data Augmentation

EDA (Wei and Zou, 2019) 94.33 93.51 91.88 95.59 89.22 95.71 80.31 91.51

SSMBA (Ng et al., 2020) 93.60 92.69 89.06 9590 89.40 96.12 78.75 90.79

AugGPT (Dai et al., 2023) 93.37 91.46 87.97 95.32  90.21 94.18 78.66 90.17

Counterfactually Augmented Dataset

Human-CAD 93.17 97.47 99.02 92.16 88.65 9426 80.66 92.20

CORE-CAD 90.64 95.42 92.35 90.32 87.86 92.18 87.39 90.88

CADCon \ 93.37 95.83 95.04 \ 9529 91.07 94.89 88.62 \ 93.44

Table 1: The accuracy (%) of various approaches in sentiment analysis for the counterfactual task under standard

fine-tuning setting.

Methods O-Test CF-Test CF-Train \ Tweet
Baseline 92.69 49.23 45.14 \ 81.00
SupCon 91.79 22.56 20.21 76.28
C2L 93.21 37.69 30.76 77.92
EDA 91.67 37.69 28.99 81.59
SSMBA 92.82 25.64 19.18 79.36
AugGPT 92.31 29.23 23.39 78.83
Human-CAD  91.79 91.80 98.04 83.11
CADCon 90.13 88.97 88.10 \ 82.82

Table 2: The accuracy (%) of various approaches in
sexism task under standard fine-tuning setting

also employed this method to augment our dataset
by applying one augmentation per sentence.

AugGPT Dai et al. (2023) used GPT-3 to aug-
ment data, enhancing the performance of text clas-
sification in a few-shot setting. In our experiments,
we augment data using single-turn dialogues with
the prompt “Please rephrase the following sen-
tence.”

Human-CAD This method, often compared in
papers that predominantly explore the automated
generation of CAD, involves augmenting CAD gen-
erated by human annotators (Kaushik et al., 2020)
and training it alongside the original train dataset.

CORE-CAD Dixit et al. (2022) proposed a
retrieval-augmented generation framework for gen-
erating CAD using a combination of a retrieval
model and GPT-3. In our approach, we use the pub-
licly available dataset on our experimental setup.

5 Results and Discussion

Firstly, we demonstrate the superior performance
of our proposed approach over existing previous
methods for robust text classification through two
counterfactual tasks. Secondly, we conducted an
8-shot experiment with extremely low data volume
and a cross-domain generalization experiment for
typical dataset environments to illustrate the en-
hancement of robustness. Lastly, we validate the
superiority of the proposed method through a com-
prehensive ablation study.

5.1 Main results

Spurious Correlation in Counterfactual task
As shown in Table 1 and 2, especially in the sex-
ism task, the Roberta-large model trained on the
original train dataset using standard FT achieves
an accuracy of 92.69% on the original test dataset
(O-Test). However, its accuracy drops significantly
to 49.23% on the CF test dataset (CF-Test). In
the case of sentiment analysis, the performance
drop on the CF-Test dataset is relatively small by
0.5%, whil implies that larger PLMs are less sen-
sitive to spurious patterns, as also noted by Yang
et al. (2021). Nevertheless, for demonstrating the
issue of shortcuts in the train dataset, we report
the performance of the CF train dataset (CF-Train),
which was not used during training. This results in
a considerable performance drop in both sentiment
analysis and sexism datasets. Furthermore, the low
performance in Out-Of-Distribution dataset (OOD)
suggests that both datasets suffer from spurious
correlation within the training data, leading to poor



Methods (8-shot) In-Domain Dataset Out-Of-Distribtuion Dataset Overall
O-Test CF-Test CF-Train | YELP SST2 Food Tweet

Prompt-based Fine-Tuning

RoBERTa-large (Liu et al., 2019) 92.21 90.33 90.95 93.54 82.61 94.85 7241 88.13

Robust Learning

SupCon (Gunel et al., 2021) 91.52 90.45 91.38 9531 84.16 95.28 73.51 88.80

Data Augmentation

EDA (Wei and Zou, 2019) 91.02 91.64 92.71 94.18 8434 9479 71.00 88.53

SSMBA (Ng et al., 2020) 92.25 92.13 92.55 9391 8470 9528 74.63 89.35

AugGPT (Dai et al., 2023) 92.13 92.30 92.69 92.68 81.55 94.64 70.53 88.07

Counterfactually Augmented Dataset

Human-CAD 91.19 93.16 93.61 94.01 85.13 9496 78.45 90.07

CORE-CAD 91.76 92.95 93.09 93.36  88.30 93.72 81.50 90.67

CADCon | 91.11 91.93 93.09 | 9528 89.59 9537 8223 | 91.23

Table 3: The accuracy (%) of various approaches in sentiment analysis for the counterfactual task under the prompt-
based fine-tuning setting.

Methods | S=1 S—F|I=-S I—-F|F—=S F—I| Overall
Standard Fine-Tuning (full-data)

RoBERTa-large (Liu et al., 2019) 91.67 93.08 | 89.16 91.13 | 8248 90.22 89.62
Robust Learning

SupCon (Gunel et al., 2021) 90.82 89.64 | 91.21 9495 | 7340  89.68 88.28
C2L (Choi et al., 2022) 90.52 91.61 | 89.90 94.64 | 81.18  90.50 89.72
Data Augmentation

EDA (Wei and Zou, 2019) 91.64 93.51 | 90.76 94.12 | 80.18 89.29 89.92
SSMBA (Ng et al., 2020) 90.71  90.78 | 9421 9396 | 78.75 89.31 89.62
CADCon | 89.58 93.75 | 90.88 94.96 | 87.30 89.76 | 91.04

Table 4: The accuracy (%) of cross-domain generalization task. We denote each sentiment dataset as follows: SST-2

(S), IMDB (I), and FineFood (F).

generalization capabilities. We can also see that
existing methods that do not utilize CAD still fail
to catch spurious correlations.

Robustness in Counterfactual Task Table 1 and
3 shows that the proposed method outperforms
various baselines in both settings (full-data, 8-
shot) on the In-Domain Dataset (IDD) and OOD.
Also, in the case of Human-CAD, which is di-
rectly generated by human, the performance on
IDD is the highest since CF-Train was used for
training. However, the performance on OOD is
consistently lower compared to CADCon across
all four datasets. This highlights that the proposed
method demonstrates a remarkable performance
by enhancing the generalization capabilities and
ensuring model robustness, dramatically improv-
ing overall performance. While previous methods
might exhibit better performance on the O-Test, this
advantage can be attributed to their incorporation
of biases from the spurious correlations present in
the train dataset. However, their lack of adaptation

to CF-Test and OOD becomes evident. In contrast,
CADCon shows mostly dramatic performance im-
provements on IDD and OOD. Furthermore, in
Table 1 and 2 considering the CF-Train, which
demonstrated performance of 95.04% and 88.10%
for the two tasks, it can be observed that the pro-
posed approach is suitable for mitigating spurious
correlations and enhancing robustness, which is the
main aim of this paper.

Robustness in Domain Generalization Task In
an environment with relatively abundant training
data, we report the performance of domain gen-
eralization task to demonstrate that our proposed
method is effective in securing robustness and
enhancing generalization capabilities. As evident
from Table 4, there is a substantial increase in per-
formance, particularly in IMDB — FineFood and
FineFood — SST2. This indicates that the efforts
to address spurious correlations in CADCon can
potentially contribute to improving generalization
abilities even when the domain undergoes a shift.



Models Data Augmentation Loss Datasets

Neg Pos CE Triplet-Neg  Triplet-Pos | IDD  ODD
Human-CAD Human X O X X 96.55 88.93
CORE-CAD GPT X (0] X X 92.8 89.44
GPT-CAD Our GPT X (0] X X 94.85 89.63
Human-CADCon Human TNI O O O 96.60 90.08
CORE-CADCon GPT TNI (0] (0] O 93.39 89.33
CADCon-Chat Our GPT Chat-Aug | O O (0] 94.19 91.46
CADCon-EDA Our GPT EDA (0] (0] (6] 94.64 9141
CADCon-Variant | Our GPT+ TNI TNI O O O 95.12  90.61
CADCon Our GPT TNI (0] (0] (6] 9475 92.47

Table 5: The accuracy (%) based on variations in CADCon. Our GPT refers to counterfactual samples generated by
GPT-3.5 using instruction3 as a prompt, and TNI stands for Tagging-based Noise Infusion to generate positives
from the original sentences. IDD represents the average accuracy on the In-Domain Dataset, and ODD represents

the average accuracy on the Out-Of-Distribution Dataset.

5.2 Ablation Study

Analysis on generated CAD We evaluate our
generated GPT-CAD in three metrics, as shown
in Table 11. First, we measure the number of new
corpora that did not appear in the original train
dataset to evaluate diversity. Second, we calculate
the overlap as a metric for the ratio of corpora that
overlap with the original train dataset’s corpora.
Lastly, to examine how well the generated counter-
factual sentences maintain the existing context, we
use BERTScore (Zhang* et al., 2020), which com-
putes cosine similarity between the original sen-
tences and the generated counterfactual sentences
using BERT encodings. Through these three met-
rics, we observe that our GPT-CAD exhibits sim-
ilarity to Human-CAD, where humans manually
generate counterfactual sentences. This suggests
its suitability to preserve the original context while
altering keywords. This tendency is evident in Ta-
ble 5, where Human-CADCon and CADCon show
significant performance improvement, indicating
the effective application of our framework.

CAD \ Diversity  Overlap (%) BERTScore
Human-CAD 1392 92.68 0.969
CORE-CAD 498 60.15 0.914
GPT-CAD | 1218 83.28 0.955

Table 6: Analysis of CAD on sentiment analysis. GPT-
CAD is a counterfactually augmented dataset created
by utilizing Instruction 3 in Table 10.

Analysis on CADCon As indicated in Table 5,
we perform ablation studies on CADCon in a senti-
ment analysis task, focusing on two aspects. Firstly,
CADCon demonstrates an improvement of approx-

imately 2.84% over GPT-CAD trained by simply
augmenting counterfactual sentences. This indi-
cates that the proposed representation learning crit-
ically enhances the model’s generalization ability.
Secondly, to show the effectiveness of the proposed
Tagging-based Noise Infusion (TNI) for generating
positive samples, we compare the performance of
Chat-Aug and EDA for augmenting positive sam-
ples. Of course, the performance is better than sim-
ply augmenting the data, but the proposed CAD-
Con has the largest performance improvement, sug-
gesting that the proposed TNI method is more ef-
fective than semantic diversity for the operation of
CADCon.

6 Conclusion

We proposed CADCon, a novel approach for gen-
erating and effectively training counterfactually-
augmented data (CAD). It took into account both
data and model aspects to enhance robustness and
addressed the problem of spurious correlation. We
employed straightforward prompts to make min-
imal changes in the original data to create coun-
terfactual samples, without the need for human
annotators or extra models. By focusing on rep-
resentation learning between the generated CAD
and the original dataset, we aimed to effectively
train genuine token embeddings. Additionally, we
introduced the tagging-based noise infusion tech-
nique to produce positive samples which helps mit-
igate bias towards non-causal tokens, thus enhanc-
ing generalization capability. We demonstrated the
superiority of CADCon through experiments and
ablation studies.



Limitations

In this work, we utilized the GPT-3.5 model to
generate the dataset. GPT-CAD for CADCon is
data that flips the label of sentences without the
need for human intervention or additional models.
If the CAD we generate is re-labeled by humans or
generated by humans, it may perform better. How-
ever, our focus is not on meticulously generating
CADs but rather on verifying and analyzing how
effective learning with CADs can be. Therefore, in
future work, if various high-quality CADs become
available, we believe that our proposed framework
could be utilized, much like the performance im-
provement observed in Human-CADCon.

Ethics Statement

Our work will not lead to any ethical concerns.
The data we used in the experiment is publicly ac-
cessible, and the dataset created directly using the
GPT-3.5 model was also used only for experimental
research purposes.
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A Implementation Details

All our models are implemented with Pytorch
framework (Paszke et al., 2019), Huggingface
trasnformers (Wolf et al., 2020), NLTK library
(Bird and Loper, 2004), OpenPrompt toolkit (Ding
et al., 2021). We use RoBERTa-large (Liu et al.,
2019) as our PLM backbone and the batch size is 8
and the maximum sequence length is 256. Also, we
run all experiments three times with different ran-
dom seeds and report the mean performances. In
few-shot experiments, we train only K=8 examples
per class. For each number of 8-shots, we randomly
sample 5 times from the training set with different
random seeds and report the mean performances.
For each experiment that includes a contrastive ob-
jective, we conduct a grid-based hyperparameter
sweep for coefficient A € {0.1,0.3,0.5,0.7,0.9}.

A.1 Statistics of Counterfactual Task Dataset

Table 9 shows the statistics of the dataset used in
the counterfactual task.

Task Type pos/sexist  neg/non-sexist
O-Train 856 851
Sentiment O-Test 245 243
CMUMmENt CE-Train 851 856
CF-Test 243 245
O-Train 1036 1036
Sexism O-Test 130 130
X CF-Train - 1036
CF-Test - 130

Table 7: Statistics of counterfactual task datasets.

A.2 Hyper-parameters

We set the environment for all experiments as fol-
lows: one NVIDIA 3090 GPU with 24GB graphic
memory, Ubuntu 22.04, Python 3.8, and CUDA
11.7 version. As mentioned in the paper, we employ
different hyperparameters, denoted as k and A, for
each dataset. Especially in the Tagging-based Noise
Infusion method, the parameter k, determining the
number of word tokens to which noise is added,
showed significant performance improvement with
a value of 8 for the CF-IMDB dataset, particularly
on the out-of-distribution (OOD) dataset. There-
fore, using CF-IMDB as a reference, the scaling
factor o was calculated. This calculation is de-
termined by dividing the average number of non-
causal tokens, which is 45 for CF-IMDB, resulting
in a value of 0.18. Consequently, we calculate the
value of k for each dataset by multiplying its re-
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spective average non-causal token count with the
scaling factor. Summarizing the relevant hyperpa-
rameters, they are presented in Table 8.

Dataset | k] A

CF-IMDB (Kaushik et al., 2020) 8109
Sexism (Samory et al., 2021) 1103

SST2 (Socher et al., 2013) 1] 0.1

IMDB (Maas et al., 2011) 8109
FineFood (McAuley and Leskovec, 2013) | 5 | 0.1

Table 8: Hyper-parameters of CADCon.

A.3 Prompt Templates for Prompt-based
Fine-tuning

Table 9 shows all the pre-defined prompt templates
and verbalizers used in few-shot setting.

Dataset | Template | Verbalizer
CF-IMDB | It was <mask>. <S> negative/positive
Sexism It was <mask>. <S1> | nonsexism/sexism
SST2 It was <mask>. <S> negative/positive
IMDB It was <mask>. <S> negative/positive
FineFood | It was <mask>. <S> negative/positive

Table 9: Templates and verbalizer in our experiments.



B Analysis of Prompt Instructions

As mentioned in 3.1, we utilized the GPT-3.5 model
to create three instructions, obtaining counterfac-
tual sentences from the original sentences through
prompts. A specific example of this is identical to
Table 10. In this section, we aim to compare and an-
alyze the performance and quality associated with
each prompt instruction.

Num Instructions

1  Please make it a negative sentence.

The following sentence is a positive sentence in
sentiment analysis. Please make it a negative sen-
tence.

The following sentence is a positive sentence in
sentiment analysis. Just change a few words to
make it a negative sentence while preserving the
original text as much as possible.

Table 10: Example of instructions for positive samples
in a sentiment analysis task.

B.1 Evaluations on CAD by Prompt
Instructions

We evaluate the generated CAD using three met-
rics, as described in the ablation study. Addition-
ally, we assess the performance of our CAD based
on three prompt instructions. Instructionl, which
simply flips labels, shows a very low word overlap
of 55.26% with the original sentence. Particularly
in instruction3, by incorporating the phrase "while
preserving the original text as much as possible,"
we identify preservation of up to 83.28% of the
original sentence while flipping the label. More-
over, with a diversity count of 1218, indicating the
number of corpora not used in the original sentence,
it can be considered the most superior CAD among
the three instructions. The CAD generated with in-
struction3 exhibits similarity to Human-CAD, as
indicated by the BERTScore metric.

CAD | Diversity ~Overlap (%) BERTScore
Human | 1392 92.68 0.969
Instructionl 758 55.26 0.895
Instruction2 1183 76.91 0.934
Instruction3 1218 83.28 0.955

Table 11: Analysis of CAD with different prompt in-
structions on sentiment analysis. The number following
“Instruction” corresponds to the instructions associated
with each number used in Table 10.

Also, we conducted an ablation study on datasets
generated by three different prompts. Table 2 re-
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ports the performance of applying CADCon to the
datasets generated through instructions for the three
different scenarios. Interestingly, we find that even
in instructions where task-related information is
limited, such as in CADConl, there is a significant
improvement in the ability to generalize to OOD
data compared to the baseline model Roberta-large.
Furthermore, the addition of task-related informa-
tion in CADCon2 and the inclusion of the instruc-
tion “while preserving the original text as much
as possible” in CADCon3 gradually lead to per-
formance improvements. Particularly, CADCon3,
which generates CAD with the aim of minimally
flipping the label by changing only genuine tokens,
proves to be the most effective in achieving robust-
ness through representation learning. Consequently,
we utilized the GPT-CAD generated with Instruc-
tion3 in all final experiments.

CADCon Performance Comparison by Instructions

95

o o
) @

o

Average Accuracy (%)

Roberta-large CADConl CADCon2 CADCon3

=@ - In-Domain Dataset =B - OQut-of-Distribution Dataset =fe=Overall

Figure 2: The performance variations of CADCon on
datasets generated for each instruction. The number
following “CADCon" corresponds to the instructions

associated with each number used in Table 10.



C More Detail about Tagging-based Noise
Infusion

In the Tagging-based Noise Infusion method, we
defined the non-causal tag set G by iteratively re-
moving each POS tag set for each dataset and cal-
culating the importance. The following Figure 3
is an ablation study on the results of calculating
importance for each dataset. We estimated 6 to be
1%, defining the non-causal tag set as the part-of-

speech tagging information for which the accuracy
drop is less than 1%.

Accuracy Drop of Each Part-of-Speech Category
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Figure 3: The accuracy drop of each part-of-speech
category across datasets
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