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Abstract

During the fine-tuning process of Pre-trained001
Language Models (PLMs), they encounter rela-002
tively small datasets that may have spurious cor-003
relation patterns. Counterfactually Augmented004
Data (CAD) has emerged as a solution to make005
models less sensitive to such spurious patterns.006
While there has been progress in generating007
CAD due to advancements in generation mod-008
els, the focus has primarily been on the quality009
of CAD, with limited attention given to training010
models for robustness. We introduce CADCon,011
a novel contrastive learning approach to en-012
hance robustness by effectively utilizing CAD,013
rather than simply augmenting it. Firstly, we014
utilize an LLM-based generative model to gen-015
erate counterfactual samples from original sen-016
tences. This is achieved by using a simple017
prompt, without human intervention or addi-018
tional models. Secondly, we propose a tagging-019
based noise infusion method, which infuses020
noise into sentences without altering genuine021
tokens that have causal relationships with la-022
bels. Lastly, we perform contrastive learning023
so that counterfactual samples are distant from024
the original sentences and noise-infused sam-025
ples are close. Our method effectively mitigates026
spurious correlations and improves robustness.027
We demonstrate that our method outperforms028
in both counterfactual task and domain gener-029
alization task.030

1 Introduction031

Pre-trained language models (PLMs) (Radford032

et al., 2018; Devlin et al., 2019; Liu et al., 2019)033

trained on a large amount of unlabeled data have034

shown superior performance through fine-tuning035

in various tasks. PLMs can perform well with less036

data, but they are easily exposed to spurious cor-037

relation (Tu et al., 2020) between text and label,038

which is called shortcuts, by biasing the distribu-039

tion within the training data. For example, when a040

model is trained on a majority of positive reviews041

for Spielberg movies, the word “Spielberg" will 042

have a spurious correlation with the positive la- 043

bel (Wang and Culotta, 2020; Wang et al., 2022). 044

Even if a negative comment about the movie is pro- 045

vided, a model trained on positive reviews would 046

still predict a positive review for Spielberg. This 047

phenomenon of shortcuts can lead to overfitting 048

and a lack of generalization, resulting in challenges 049

when dealing with out-of-domain (OOD) data. To 050

mitigate these spurious correlations, research has 051

explored two main approaches: 1) generating coun- 052

terfactual augmented data (CAD), and 2) distin- 053

guishing causal features. 054

The first approach mainly focused on generat- 055

ing CAD (Kaushik et al., 2020; Samory et al., 056

2021), which is generated by minimally perturb- 057

ing examples to flip the label. CAD was initially 058

performed through manual annotation by humans. 059

But due to the high cost, the approach shifted to- 060

wards automatic generation methods. Yang et al. 061

(2021) utilized a sentiment dictionary and Wang 062

and Culotta (2021) used a statistical matching ap- 063

proach and pre-defined antonyms to automatically 064

generate CAD. But, these methods were limited in 065

generating high-quality CAD by using dictionary 066

or statistics. Recent works tried to utilize PLMs 067

for CAD generation, such as T5 (Zhou et al., 2022; 068

Wen et al., 2022), GPT-2 (Madaan et al., 2021; Wu 069

et al., 2021) and GPT-3 (Dixit et al., 2022; Liu 070

et al., 2022; Chen et al., 2023). However, these pre- 071

vious works only concentrate on the generation of 072

high-quality CAD. So, they result in subsequent 073

costs associated with human intervention or the 074

utilization of additional models for post-generation 075

filtering. Moreover, they focus on augmenting CAD 076

for training purposes only, without addressing the 077

crucial issue of enhancing robustness through a 078

model training perspective. 079

The second approach aims to mitigate spurious 080

correlation and enhance robustness by distinguish- 081

ing causal features through a classifier without 082
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requiring additional augmented data. This allows083

the model to ignore shortcut tokens and focus on084

genuine tokens during the learning process. To de-085

fine shortcut tokens, Wang and Culotta (2020) uti-086

lized magnitude coefficients through a classifier087

and Wang et al. (2022) used the attention scores088

of the model and the frequency of domain-specific089

word. Choi et al. (2022) identified genuine tokens090

using the gradient from a fine-tuned model and out-091

put values from a masked language model. These092

studies distinguished these tokens using models093

trained on the train dataset. However, relying on094

such models, which are already biased due to spuri-095

ous correlations, leads to inaccurate discrimination096

of these tokens.097

In this paper, we propose a novel approach to098

effectively address the limitations of previous stud-099

ies, aiming to resolve the spurious correlation prob-100

lem and enhance model robustness. Our approach101

takes into account both data generation methods102

and model training strategies to offer a comprehen-103

sive and effective learning strategy. Our contribu-104

tions can be summarized as follows:105

• We leverage the knowledge of Large Lan-106

guage Models (LLMs) to generate counter-107

factual samples effectively using a simple-108

prompt approach. We analyze the datasets gen-109

erated based on different prompts and demon-110

strate their excellence through experimental111

results.112

• We introduce a Tagging-based Noise Infusion113

(TNI) technique and contrastive learning ap-114

proach to effectively grasp the patterns of both115

original and counterfactual samples. This ap-116

proach contributes to efficient representation117

learning, leading to improved robustness.118

• To demonstrate the superiority of the proposed119

method, we show that it is superior in terms120

of robustness with improved generalization121

ability in both conventional fine-tuning and122

prompt-based fine-tuning with some interest-123

ing ablation.124

2 Related Work125

2.1 Counterfactually Augmented Dataset126

A counterfactual text sample is a sentence that127

is generated by making minimal changes to the128

original text in order to flip its label. Prior stud-129

ies (Kaushik et al., 2020; Samory et al., 2021)130

employed human annotators to create CAD. This 131

augmented data was combined with the original 132

dataset to train models, with the goal of improving 133

the robustness and generalization of text classifi- 134

cation models. However, manually annotating by 135

humans is time-consuming and costly, so recent 136

research has been focusing on automatically gen- 137

erating CAD. Yang et al. (2021) proposed an ap- 138

proach to automatically generate CAD by utilizing 139

a sentiment dictionary. Madaan et al. (2021) uti- 140

lized pre-trained GPT-2 to generate counterfactual 141

samples based on conditions such as named-entity 142

tags, semantic role labels, or sentiment. Wen et al. 143

(2022) handled specific rationales as masked spans 144

and employed a controllable text generation model 145

to create CAD. 146

Recent studies have explored the use of Large 147

Language Models (LLMs), such as GPT-3, for 148

CAD generation. Dixit et al. (2022) proposed a 149

CAD generation framework by combining a Coun- 150

terfactual retrieval model with the GPT-3 model. 151

Liu et al. (2022) proposed an effective dataset cre- 152

ation method through collaboration between hu- 153

man workers and LLMs, where human filtering 154

was applied to the NLI dataset generated by LLM. 155

Chen et al. (2023) constructed high-quality CAD 156

without relying on human workers, utilizing GPT-3 157

generated CAD filtered by a teacher model. While 158

the advancement of generation models has led to a 159

surge in CAD generation, many of the mentioned 160

studies focus on how to generate CAD accurately 161

and effectively. As a result, they often require hu- 162

man validation or additional complex models for 163

data verification. Furthermore, these sophisticat- 164

edly generated datasets are only used for straight- 165

forward augmentation in training, without introduc- 166

ing practical training methods aimed at effectively 167

improving robustness. 168

2.2 Robust for Text classification 169

Gunel et al. (2021) jointly optimized cross-entropy 170

loss and Supcon (Khosla et al., 2020) loss during 171

the fine-tuning stage, demonstrating improved per- 172

formance not only in general text classification but 173

also enhanced robustness in few-shot and noisy 174

environments. However, this approach has limita- 175

tions in directly addressing the spurious correlation 176

problem. The following studies aim to tackle the 177

problem of spurious correlations, often referred 178

to as shortcut issues, to enhance robustness in text 179

classification. Wang and Culotta (2020) utilized fea- 180

tures derived from matched samples to distinguish 181

2



Encoder

(Roberta-large)

Shared Parameters

Classifier 

Head

𝑳𝑪𝑬

Classifier 

Head

𝑳𝑪𝑳

Negative

Original

Positive

Tagging-based Noise Infusion

Counterfactual sample 

Generation Using GPT-3.5

For an inexpensive chili it is good, and well worth the buy.

For an inexpensive chili it is not great, and not worth the buy.

For an inexpensive chili it is good, [UNK] well worth the buy. 

Shared Parameters

Encoder

(Roberta-large)

Encoder

(Roberta-large)

Figure 1: Overview of our proposed model. LCL is the triplet loss for learning the representation for the original
sentence, negative sentence, and positive sentence, and LCE is the cross entropy loss for each label of the original
sentence and the counterfactual sentence.

shortcuts from genuine ones. By removing words182

predicted to be shortcuts, they enhanced robustness183

in text classification. Wang et al. (2022) ensured184

robustness by distinguishing spurious tokens from185

important ones through cross-domain dataset anal-186

ysis and knowledge-aware perturbation. Choi et al.187

(2022) proposed causally contrastive learning, train-188

ing models to distinguish causal features. However,189

these methods all rely on gradient-based techniques190

to extract crucial words or utilize fine-tuned clas-191

sifiers for consistency filtering in generated CAD.192

A notable drawback of these methods is their de-193

pendence on already-biased classifiers, which have194

encountered the spurious correlation problem.195

3 Method196

We propose a novel approach, CADCon, which197

utilizes simple prompts to generate counterfactual198

samples and effectively tackles the issue of spuri-199

ous correlation through contrastive learning with200

CAD. Firstly, we utilize the GPT-3.5 generative201

model to generate counterfactual sentences from202

the original sentence by altering only minimally203

genuine tokens, those tokens that have an impact204

on the label. Next, we use the tagging information205

extracted from the original sentence to distinguish206

non-causal words that do not affect the sentence207

label. We then infuse noise into tokens associated208

with the identified non-causal tagging information209

to create positive sentences. We aim to learn the210

underlying patterns of the generated counterfac-211

tual and positive data in the representation space,212

focusing on capturing the key patterns associated213

with their influence on labels. Figure 1 provides an214

overview of CADCon, consisting of the following 215

three processes: 1) Counterfactual Sample Genera- 216

tion Using GPT-3.5, 2) Tagging-based Noise Infu- 217

sion, and 3) Contrastive Learning with Triplets. 218

3.1 Counterfactual Sample Generation Using 219

GPT-3.5 220

Given a collection of sentences {Ai}mi=1, we 221

construct a collection of counterfactual samples 222

{Ni}mi=1 using GPT-3.5. In contrast to recent stud- 223

ies that use GPT-3.5 to generate CAD (Dixit et al., 224

2022; Liu et al., 2022; Chen et al., 2023), we con- 225

centrate on generating counterfactual samples us- 226

ing simple prompts, without the need for human 227

intervention or additional models. We constructed 228

the dataset by conducting experiments with the 229

following three prompt instructions. Instruction 1 230

contains the “Please make it a negative sentence.” 231

which outlines the intended behavior of the model. 232

Instruction 2 provides the current task and label 233

information for the sentence. In instruction 3, we 234

offer specific guidance with phrases “Just change a 235

few words” and “while preserving the original text 236

as much as possible.” We use a similarly-designed 237

prompt with instruction 3 corresponding to each 238

task and label. Please refer to the Appendix B for a 239

detailed description of the prompt instructions used 240

for this purpose. 241

3.2 Tagging-based Noise Infusion (TNI) 242

In this paragraph, we introduce a method for con- 243

structing a collection of positive sentences {Pi}mi=1 244

aimed at addressing the fundamental issue of spu- 245

rious correlation by preventing bias towards non- 246

causal words that are not directly associated with 247
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the label. Previous data augmentation methods in248

contrastive learning (Gao et al., 2021b; Gunel et al.,249

2021), techniques such as dropout noise, EDA (Wei250

and Zou, 2019), and back translation (Sugiyama251

and Yoshinaga, 2019) have been used to gener-252

ate positive samples. However, these augmentation253

techniques do not effectively address the aim of254

reducing spurious correlation, because they might255

destroy existing semantics. To address the issue256

of spurious correlation, distinguishing whether a257

token is a shortcut token or not is crucial. However,258

identifying tokens learned as shortcuts in the fine-259

tuned model is highly challenging. Therefore, we260

use a universal Part-of-speech (POS) tag set (Petrov261

et al., 2012) which is widely utilized across vari-262

ous NLP tasks to enhance performance. And, we263

utilize the logit output from the fine-tuned Model264

f to define the tagging that is not relevant to the265

labels. We iteratively removed tokens with specific266

tagging information to calculate the significance of267

their influence as described in Equation 1. Suppose268

that there is an input text S = [w0, w1, ..., wn] and269

universal POS tag set T = [VERB, NOUN, ..., DET ...].270

The degree of accuracy reduction for the original271

model when removing all tokens belonging to each272

POS tag set is denoted as the importance ITi . It is273

represented by the following equation:274

ITi = f(S)− f(S\wi∈Ti
) (1)275

We consider cases where the accuracy reduction276

is less than θ as POS tagging information that does277

not influence the label. We define this as the non-278

causal tag set G. And then, when given input S,279

we propose a noise infusion method to generate280

new positive samples by extracting k word tokens281

belonging to the set G and replacing these words282

with the [UNK] token. This approach allows us to283

maintain genuine tokens that influence the label284

while infusing noise for tokens that do not have285

an impact, thereby reducing bias towards shortcut286

tokens. Here, k is determined by multiplying a scal-287

ing factor α that reflects the average number of288

non-casual words in the train dataset. See the Ap-289

pendix A for details on the k used for each dataset.290

In the example shown in Figure 1, words such as291

‘For’,‘and’, ... etc. can be decided for non-causal292

words. Especially, key point is that considering293

different non-causal words with varying noise in-294

fusion at each epoch allows us to consider multi-295

views. This helps reduce the tendency to become296

biased towards spurious correlation as the training297

progress.298

3.3 Contrastive Learning with Triplets 299

We introduce contrastive learning for the effective 300

training of models on the generated counterfactual 301

and positive samples. First, the counterfactual sen- 302

tences generated by altering only genuine tokens 303

are considered not only to be a loss for direct la- 304

bel prediction but also to be a loss that encourages 305

them to move further away from the original sen- 306

tence in the latent space. Next, by bringing the 307

positive samples generated through tagging-based 308

noise infusion closer to the original samples in the 309

representation space, we effectively mitigate the 310

bias towards non-causal words and enhance the 311

model’s generalization ability. In summary, we aim 312

to emphasize important features and eliminate un- 313

necessary shortcuts through the generated triplets. 314

In conventional fine-tuning models, the [CLS] 315

hidden representations from PLM M pass through 316

a classifier head to produce the probability distribu- 317

tion on the label set y. As a result, the parameters 318

θ of the entire model are trained in the direction 319

of minimizing the cross-entropy loss between the 320

predicted label ŷ and the ground-truth label y: 321

LCE =
N∑
i=1

C∑
c=1

yi,c · log ŷi,c (2) 322

where N denotes a batch of training examples of 323

size and C denotes classes. 324

Recently, in order to narrow the gap between 325

pre-training and downstream tasks prompt-based 326

Fine-tuning models are attracting attention and few- 327

shot setting (Brown et al., 2020; Gao et al., 2021a) 328

Most prompt-based learning approach (Shin et al., 329

2020; Schick and Schütze, 2021; Gao et al., 2021a) 330

utilize task-specific templates consisting of discrete 331

prompts alongside input sentences. These prompts 332

contain a [MASK] token and are designed to con- 333

struct an objective that is similar to MLM training, 334

where the goal is to map the [MASK] token to the 335

right label (a specific word) with a pre-defined ver- 336

balizer. The probability distribution over the label 337

is shown below: 338

PM ([MASK] = v|T (x))|v ∈ Vy) (3) 339

where T (·) is a task-specific template and Vy is the 340

label words of y. 341

In the standard (conventional) FT approach, rep- 342

resentation learning was conducted using the hid- 343

den states of the [CLS] token as the representations 344

of sentences. However, in the prompt-based FT ap- 345

proach, as demonstrated in (Jian et al., 2022), the 346
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final classification is performed using the [MASK]347

token. Therefore, representation learning was in-348

tuitively and effectively carried out using the rep-349

resentations of the [MASK] token, rather than the350

[CLS] token. We utilized a loss function similar to351

the training approach in C2L (Choi et al., 2022),352

which applied a margin-based ranking loss. The353

specific calculation of the triplet loss is as follows:354

LCL = max(0,

1

M

M∑
i=1

d(Ai, Pi)−
1

M
d(Ai, Ni) + α)

(4)355

where M is the number of sentences, Ai repre-356

sents the i-th original sentence, Ni is the negative357

sentence generated from the i-th original sentence358

by the GPT model, Pi is the positive sentence gen-359

erated from the i-th original sentence by TNI, α is360

a margin value enforced between positive and neg-361

ative pairs, and d(·) computes the distance between362

the hidden states at [CLS] tokens or [MASK] tokens363

as the representations of two sentences. The final364

loss is as follows:365

L = (1− λ)LCE + λLCL (5)366

λ is a scalar weighting hyperparameter that we tune367

for each downstream task.368

4 Experiments369

4.1 Datasets370

Counterfactul Task Datasets To identify and ad-371

dress the phenomenon of being biased by spurious372

correlation in training data, we use two datasets373

(Kaushik et al., 2020; Samory et al., 2021), where374

the counterfactually-revised dataset (CF) is paired375

with the original dataset (O). Following Kaushik376

et al. (2020), we use the same train/valid/test377

datasets in sentiment analysis. In the sexism dataset378

(Samory et al., 2021), unlike sentiment analysis,379

there are pairs annotated by the crowdworkers only380

to make the sexist sentence a non-sexist sentence.381

Therefore, we used the original-counterfactual382

pairs from the dataset and ensured label balance by383

constructing a non-sexist dataset sampled from non-384

pairs within the dataset. Further, in the standard FT385

experiment, the dataset was split in a 9:1 ratio for386

training and testing, respectively. And we use 10%387

of the train dataset for validation. In both tasks, we388

also utilized the CF train dataset, which was not389

utilized during training, as a test dataset to demon-390

strate the impact of spurious correlations. Appendix391

A shows the statistical details of the counterfac- 392

tual task datasets. We used YELP (Asghar, 2016), 393

SST2 (Socher et al., 2013), FineFood (McAuley 394

and Leskovec, 2013), and Tweet1 as test data for 395

sentiment analysis and Tweet2 for Sexism classi- 396

fication as Out-Of-Distribution (OOD) datasets to 397

evaluate the generalization ability. 398

Cross-Domain Generalization Datasets For 399

cross-domain experiments, we use sentiment anal- 400

ysis datasets on SST-2 (Socher et al., 2013), IMDb 401

(Maas et al., 2011), FineFood (McAuley and 402

Leskovec, 2013) datasets. In standard FT, we uti- 403

lized official train, validation, and test sets if avail- 404

able. In cases where such datasets were not pro- 405

vided, we randomly split the data into training and 406

validation sets with an 8:2 ratio for each seed. 407

4.2 Baselines 408

Supcon In Gunel et al. (2021), the joint optimiza- 409

tion of cross-entropy loss and SupCon loss (Khosla 410

et al., 2020) in PLM fine-tuning was applied, show- 411

ing enhanced robustness and improved generaliza- 412

tion performance in text classification tasks. 413

C2L To enhance robustness, Choi et al. (2022) re- 414

lies on the classifier model to identify causal words 415

that significantly influence the label. They treat 416

the masking of causal words as negative examples, 417

and the masking of less significant words as regu- 418

lar positive examples, thereby jointly optimizing 419

triplet loss and cross-entropy. We used the publicly 420

available code on our experimental setup. 421

EDA Easy Data Augmentation (EDA) (Wei and 422

Zou, 2019) proposed a method of augmenting 423

sentences by randomly applying four heuristic 424

techniques: synonym replacement, word insertion, 425

word deletion, and word swapping. We employed 426

this method to augment our dataset by applying 427

one augmentation per sentence. 428

SSMBA Ng et al. (2020) proposed a corrupt-and- 429

reconstruct text data augmentation technique using 430

the BERT pre-trained model, showing performance 431

improvements on out-of-domain datasets. In our 432

experiments, we adopted the approach of augment- 433

ing data while keeping the labels unchanged. We 434

1https://www.kaggle.com/c/tweet-sentiment-extraction.
We use only positive and negative tweets, excluding neutral
labels.

2https://www.kaggle.com/datasets/dgrosz/sexist-
workplace-statements.
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Methods In-Domain Dataset Out-Of-Distribtuion Dataset Overall
O-Test CF-Test CF-Train YELP SST2 Food Tweet

Standard Fine-Tuning (full-data)
RoBERTa-large (Liu et al., 2019) 93.85 93.31 89.75 95.38 86.00 95.65 78.75 90.38

Robust Learning
SupCon (Gunel et al., 2021) 93.85 88.11 84.20 95.26 86.20 95.32 74.90 88.18
C2L (Choi et al., 2022) 93.92 91.67 89.55 95.22 88.47 95.32 80.66 90.69

Data Augmentation
EDA (Wei and Zou, 2019) 94.33 93.51 91.88 95.59 89.22 95.71 80.31 91.51
SSMBA (Ng et al., 2020) 93.60 92.69 89.06 95.90 89.40 96.12 78.75 90.79
AugGPT (Dai et al., 2023) 93.37 91.46 87.97 95.32 90.21 94.18 78.66 90.17

Counterfactually Augmented Dataset
Human-CAD 93.17 97.47 99.02 92.16 88.65 94.26 80.66 92.20
CORE-CAD 90.64 95.42 92.35 90.32 87.86 92.18 87.39 90.88

CADCon 93.37 95.83 95.04 95.29 91.07 94.89 88.62 93.44

Table 1: The accuracy (%) of various approaches in sentiment analysis for the counterfactual task under standard
fine-tuning setting.

Methods O-Test CF-Test CF-Train Tweet

Baseline 92.69 49.23 45.14 81.00

SupCon 91.79 22.56 20.21 76.28
C2L 93.21 37.69 30.76 77.92
EDA 91.67 37.69 28.99 81.59
SSMBA 92.82 25.64 19.18 79.36
AugGPT 92.31 29.23 23.39 78.83
Human-CAD 91.79 91.80 98.04 83.11

CADCon 90.13 88.97 88.10 82.82

Table 2: The accuracy (%) of various approaches in
sexism task under standard fine-tuning setting

also employed this method to augment our dataset435

by applying one augmentation per sentence.436

AugGPT Dai et al. (2023) used GPT-3 to aug-437

ment data, enhancing the performance of text clas-438

sification in a few-shot setting. In our experiments,439

we augment data using single-turn dialogues with440

the prompt “Please rephrase the following sen-441

tence.”442

Human-CAD This method, often compared in443

papers that predominantly explore the automated444

generation of CAD, involves augmenting CAD gen-445

erated by human annotators (Kaushik et al., 2020)446

and training it alongside the original train dataset.447

CORE-CAD Dixit et al. (2022) proposed a448

retrieval-augmented generation framework for gen-449

erating CAD using a combination of a retrieval450

model and GPT-3. In our approach, we use the pub-451

licly available dataset on our experimental setup.452

5 Results and Discussion 453

Firstly, we demonstrate the superior performance 454

of our proposed approach over existing previous 455

methods for robust text classification through two 456

counterfactual tasks. Secondly, we conducted an 457

8-shot experiment with extremely low data volume 458

and a cross-domain generalization experiment for 459

typical dataset environments to illustrate the en- 460

hancement of robustness. Lastly, we validate the 461

superiority of the proposed method through a com- 462

prehensive ablation study. 463

5.1 Main results 464

Spurious Correlation in Counterfactual task 465

As shown in Table 1 and 2, especially in the sex- 466

ism task, the Roberta-large model trained on the 467

original train dataset using standard FT achieves 468

an accuracy of 92.69% on the original test dataset 469

(O-Test). However, its accuracy drops significantly 470

to 49.23% on the CF test dataset (CF-Test). In 471

the case of sentiment analysis, the performance 472

drop on the CF-Test dataset is relatively small by 473

0.5%, whil implies that larger PLMs are less sen- 474

sitive to spurious patterns, as also noted by Yang 475

et al. (2021). Nevertheless, for demonstrating the 476

issue of shortcuts in the train dataset, we report 477

the performance of the CF train dataset (CF-Train), 478

which was not used during training. This results in 479

a considerable performance drop in both sentiment 480

analysis and sexism datasets. Furthermore, the low 481

performance in Out-Of-Distribution dataset (OOD) 482

suggests that both datasets suffer from spurious 483

correlation within the training data, leading to poor 484
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Methods (8-shot) In-Domain Dataset Out-Of-Distribtuion Dataset Overall
O-Test CF-Test CF-Train YELP SST2 Food Tweet

Prompt-based Fine-Tuning
RoBERTa-large (Liu et al., 2019) 92.21 90.33 90.95 93.54 82.61 94.85 72.41 88.13

Robust Learning
SupCon (Gunel et al., 2021) 91.52 90.45 91.38 95.31 84.16 95.28 73.51 88.80

Data Augmentation
EDA (Wei and Zou, 2019) 91.02 91.64 92.71 94.18 84.34 94.79 71.00 88.53
SSMBA (Ng et al., 2020) 92.25 92.13 92.55 93.91 84.70 95.28 74.63 89.35
AugGPT (Dai et al., 2023) 92.13 92.30 92.69 92.68 81.55 94.64 70.53 88.07

Counterfactually Augmented Dataset
Human-CAD 91.19 93.16 93.61 94.01 85.13 94.96 78.45 90.07
CORE-CAD 91.76 92.95 93.09 93.36 88.30 93.72 81.50 90.67

CADCon 91.11 91.93 93.09 95.28 89.59 95.37 82.23 91.23

Table 3: The accuracy (%) of various approaches in sentiment analysis for the counterfactual task under the prompt-
based fine-tuning setting.

Methods S → I S → F I → S I → F F → S F → I Overall

Standard Fine-Tuning (full-data)
RoBERTa-large (Liu et al., 2019) 91.67 93.08 89.16 91.13 82.48 90.22 89.62

Robust Learning
SupCon (Gunel et al., 2021) 90.82 89.64 91.21 94.95 73.40 89.68 88.28
C2L (Choi et al., 2022) 90.52 91.61 89.90 94.64 81.18 90.50 89.72

Data Augmentation
EDA (Wei and Zou, 2019) 91.64 93.51 90.76 94.12 80.18 89.29 89.92
SSMBA (Ng et al., 2020) 90.71 90.78 94.21 93.96 78.75 89.31 89.62

CADCon 89.58 93.75 90.88 94.96 87.30 89.76 91.04

Table 4: The accuracy (%) of cross-domain generalization task. We denote each sentiment dataset as follows: SST-2
(S), IMDB (I), and FineFood (F).

generalization capabilities. We can also see that485

existing methods that do not utilize CAD still fail486

to catch spurious correlations.487

Robustness in Counterfactual Task Table 1 and488

3 shows that the proposed method outperforms489

various baselines in both settings (full-data, 8-490

shot) on the In-Domain Dataset (IDD) and OOD.491

Also, in the case of Human-CAD, which is di-492

rectly generated by human, the performance on493

IDD is the highest since CF-Train was used for494

training. However, the performance on OOD is495

consistently lower compared to CADCon across496

all four datasets. This highlights that the proposed497

method demonstrates a remarkable performance498

by enhancing the generalization capabilities and499

ensuring model robustness, dramatically improv-500

ing overall performance. While previous methods501

might exhibit better performance on the O-Test, this502

advantage can be attributed to their incorporation503

of biases from the spurious correlations present in504

the train dataset. However, their lack of adaptation505

to CF-Test and OOD becomes evident. In contrast, 506

CADCon shows mostly dramatic performance im- 507

provements on IDD and OOD. Furthermore, in 508

Table 1 and 2 considering the CF-Train, which 509

demonstrated performance of 95.04% and 88.10% 510

for the two tasks, it can be observed that the pro- 511

posed approach is suitable for mitigating spurious 512

correlations and enhancing robustness, which is the 513

main aim of this paper. 514

Robustness in Domain Generalization Task In 515

an environment with relatively abundant training 516

data, we report the performance of domain gen- 517

eralization task to demonstrate that our proposed 518

method is effective in securing robustness and 519

enhancing generalization capabilities. As evident 520

from Table 4, there is a substantial increase in per- 521

formance, particularly in IMDB → FineFood and 522

FineFood → SST2. This indicates that the efforts 523

to address spurious correlations in CADCon can 524

potentially contribute to improving generalization 525

abilities even when the domain undergoes a shift. 526
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Models Data Augmentation Loss Datasets
Neg Pos CE Triplet-Neg Triplet-Pos IDD ODD

Human-CAD Human X O X X 96.55 88.93
CORE-CAD GPT X O X X 92.8 89.44
GPT-CAD Our GPT X O X X 94.85 89.63

Human-CADCon Human TNI O O O 96.60 90.08
CORE-CADCon GPT TNI O O O 93.39 89.33

CADCon-Chat Our GPT Chat-Aug O O O 94.19 91.46
CADCon-EDA Our GPT EDA O O O 94.64 91.41
CADCon-Variant Our GPT+ TNI TNI O O O 95.12 90.61
CADCon Our GPT TNI O O O 94.75 92.47

Table 5: The accuracy (%) based on variations in CADCon. Our GPT refers to counterfactual samples generated by
GPT-3.5 using instruction3 as a prompt, and TNI stands for Tagging-based Noise Infusion to generate positives
from the original sentences. IDD represents the average accuracy on the In-Domain Dataset, and ODD represents
the average accuracy on the Out-Of-Distribution Dataset.

5.2 Ablation Study527

Analysis on generated CAD We evaluate our528

generated GPT-CAD in three metrics, as shown529

in Table 11. First, we measure the number of new530

corpora that did not appear in the original train531

dataset to evaluate diversity. Second, we calculate532

the overlap as a metric for the ratio of corpora that533

overlap with the original train dataset’s corpora.534

Lastly, to examine how well the generated counter-535

factual sentences maintain the existing context, we536

use BERTScore (Zhang* et al., 2020), which com-537

putes cosine similarity between the original sen-538

tences and the generated counterfactual sentences539

using BERT encodings. Through these three met-540

rics, we observe that our GPT-CAD exhibits sim-541

ilarity to Human-CAD, where humans manually542

generate counterfactual sentences. This suggests543

its suitability to preserve the original context while544

altering keywords. This tendency is evident in Ta-545

ble 5, where Human-CADCon and CADCon show546

significant performance improvement, indicating547

the effective application of our framework.

CAD Diversity Overlap (%) BERTScore

Human-CAD 1392 92.68 0.969
CORE-CAD 498 60.15 0.914

GPT-CAD 1218 83.28 0.955

Table 6: Analysis of CAD on sentiment analysis. GPT-
CAD is a counterfactually augmented dataset created
by utilizing Instruction 3 in Table 10.

548

Analysis on CADCon As indicated in Table 5,549

we perform ablation studies on CADCon in a senti-550

ment analysis task, focusing on two aspects. Firstly,551

CADCon demonstrates an improvement of approx-552

imately 2.84% over GPT-CAD trained by simply 553

augmenting counterfactual sentences. This indi- 554

cates that the proposed representation learning crit- 555

ically enhances the model’s generalization ability. 556

Secondly, to show the effectiveness of the proposed 557

Tagging-based Noise Infusion (TNI) for generating 558

positive samples, we compare the performance of 559

Chat-Aug and EDA for augmenting positive sam- 560

ples. Of course, the performance is better than sim- 561

ply augmenting the data, but the proposed CAD- 562

Con has the largest performance improvement, sug- 563

gesting that the proposed TNI method is more ef- 564

fective than semantic diversity for the operation of 565

CADCon. 566

6 Conclusion 567

We proposed CADCon, a novel approach for gen- 568

erating and effectively training counterfactually- 569

augmented data (CAD). It took into account both 570

data and model aspects to enhance robustness and 571

addressed the problem of spurious correlation. We 572

employed straightforward prompts to make min- 573

imal changes in the original data to create coun- 574

terfactual samples, without the need for human 575

annotators or extra models. By focusing on rep- 576

resentation learning between the generated CAD 577

and the original dataset, we aimed to effectively 578

train genuine token embeddings. Additionally, we 579

introduced the tagging-based noise infusion tech- 580

nique to produce positive samples which helps mit- 581

igate bias towards non-causal tokens, thus enhanc- 582

ing generalization capability. We demonstrated the 583

superiority of CADCon through experiments and 584

ablation studies. 585
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Limitations586

In this work, we utilized the GPT-3.5 model to587

generate the dataset. GPT-CAD for CADCon is588

data that flips the label of sentences without the589

need for human intervention or additional models.590

If the CAD we generate is re-labeled by humans or591

generated by humans, it may perform better. How-592

ever, our focus is not on meticulously generating593

CADs but rather on verifying and analyzing how594

effective learning with CADs can be. Therefore, in595

future work, if various high-quality CADs become596

available, we believe that our proposed framework597

could be utilized, much like the performance im-598

provement observed in Human-CADCon.599

Ethics Statement600

Our work will not lead to any ethical concerns.601

The data we used in the experiment is publicly ac-602

cessible, and the dataset created directly using the603

GPT-3.5 model was also used only for experimental604

research purposes.605
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A Implementation Details864

All our models are implemented with Pytorch865

framework (Paszke et al., 2019), Huggingface866

trasnformers (Wolf et al., 2020), NLTK library867

(Bird and Loper, 2004), OpenPrompt toolkit (Ding868

et al., 2021). We use RoBERTa-large (Liu et al.,869

2019) as our PLM backbone and the batch size is 8870

and the maximum sequence length is 256. Also, we871

run all experiments three times with different ran-872

dom seeds and report the mean performances. In873

few-shot experiments, we train only K=8 examples874

per class. For each number of 8-shots, we randomly875

sample 5 times from the training set with different876

random seeds and report the mean performances.877

For each experiment that includes a contrastive ob-878

jective, we conduct a grid-based hyperparameter879

sweep for coefficient λ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.880

A.1 Statistics of Counterfactual Task Dataset881

Table 9 shows the statistics of the dataset used in882

the counterfactual task.883

Task Type pos/sexist neg/non-sexist

Sentiment

O-Train 856 851
O-Test 245 243
CF-Train 851 856
CF-Test 243 245

Sexism

O-Train 1036 1036
O-Test 130 130
CF-Train - 1036
CF-Test - 130

Table 7: Statistics of counterfactual task datasets.

A.2 Hyper-parameters884

We set the environment for all experiments as fol-885

lows: one NVIDIA 3090 GPU with 24GB graphic886

memory, Ubuntu 22.04, Python 3.8, and CUDA887

11.7 version. As mentioned in the paper, we employ888

different hyperparameters, denoted as k and λ, for889

each dataset. Especially in the Tagging-based Noise890

Infusion method, the parameter k, determining the891

number of word tokens to which noise is added,892

showed significant performance improvement with893

a value of 8 for the CF-IMDB dataset, particularly894

on the out-of-distribution (OOD) dataset. There-895

fore, using CF-IMDB as a reference, the scaling896

factor α was calculated. This calculation is de-897

termined by dividing the average number of non-898

causal tokens, which is 45 for CF-IMDB, resulting899

in a value of 0.18. Consequently, we calculate the900

value of k for each dataset by multiplying its re-901

spective average non-causal token count with the 902

scaling factor. Summarizing the relevant hyperpa- 903

rameters, they are presented in Table 8. 904

Dataset k λ

CF-IMDB (Kaushik et al., 2020) 8 0.9
Sexism (Samory et al., 2021) 1 0.3

SST2 (Socher et al., 2013) 1 0.1
IMDB (Maas et al., 2011) 8 0.9

FineFood (McAuley and Leskovec, 2013) 5 0.1

Table 8: Hyper-parameters of CADCon.

A.3 Prompt Templates for Prompt-based 905

Fine-tuning 906

Table 9 shows all the pre-defined prompt templates 907

and verbalizers used in few-shot setting. 908

Dataset Template Verbalizer

CF-IMDB It was <mask>. <S1> negative/positive
Sexism It was <mask>. <S1> nonsexism/sexism

SST2 It was <mask>. <S1> negative/positive
IMDB It was <mask>. <S1> negative/positive

FineFood It was <mask>. <S1> negative/positive

Table 9: Templates and verbalizer in our experiments.
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B Analysis of Prompt Instructions909

As mentioned in 3.1, we utilized the GPT-3.5 model910

to create three instructions, obtaining counterfac-911

tual sentences from the original sentences through912

prompts. A specific example of this is identical to913

Table 10. In this section, we aim to compare and an-914

alyze the performance and quality associated with915

each prompt instruction.916

Num Instructions

1 Please make it a negative sentence.
2 The following sentence is a positive sentence in

sentiment analysis. Please make it a negative sen-
tence.

3 The following sentence is a positive sentence in
sentiment analysis. Just change a few words to
make it a negative sentence while preserving the
original text as much as possible.

Table 10: Example of instructions for positive samples
in a sentiment analysis task.

B.1 Evaluations on CAD by Prompt917

Instructions918

We evaluate the generated CAD using three met-919

rics, as described in the ablation study. Addition-920

ally, we assess the performance of our CAD based921

on three prompt instructions. Instruction1, which922

simply flips labels, shows a very low word overlap923

of 55.26% with the original sentence. Particularly924

in instruction3, by incorporating the phrase "while925

preserving the original text as much as possible,"926

we identify preservation of up to 83.28% of the927

original sentence while flipping the label. More-928

over, with a diversity count of 1218, indicating the929

number of corpora not used in the original sentence,930

it can be considered the most superior CAD among931

the three instructions. The CAD generated with in-932

struction3 exhibits similarity to Human-CAD, as933

indicated by the BERTScore metric.934

CAD Diversity Overlap (%) BERTScore

Human 1392 92.68 0.969

Instruction1 758 55.26 0.895
Instruction2 1183 76.91 0.934
Instruction3 1218 83.28 0.955

Table 11: Analysis of CAD with different prompt in-
structions on sentiment analysis. The number following
“Instruction" corresponds to the instructions associated
with each number used in Table 10.

Also, we conducted an ablation study on datasets935

generated by three different prompts. Table 2 re-936

ports the performance of applying CADCon to the 937

datasets generated through instructions for the three 938

different scenarios. Interestingly, we find that even 939

in instructions where task-related information is 940

limited, such as in CADCon1, there is a significant 941

improvement in the ability to generalize to OOD 942

data compared to the baseline model Roberta-large. 943

Furthermore, the addition of task-related informa- 944

tion in CADCon2 and the inclusion of the instruc- 945

tion “while preserving the original text as much 946

as possible" in CADCon3 gradually lead to per- 947

formance improvements. Particularly, CADCon3, 948

which generates CAD with the aim of minimally 949

flipping the label by changing only genuine tokens, 950

proves to be the most effective in achieving robust- 951

ness through representation learning. Consequently, 952

we utilized the GPT-CAD generated with Instruc- 953

tion3 in all final experiments. 954

Roberta-large CADCon1 CADCon2 CADCon3
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Figure 2: The performance variations of CADCon on
datasets generated for each instruction. The number
following “CADCon" corresponds to the instructions
associated with each number used in Table 10.
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C More Detail about Tagging-based Noise955

Infusion956

In the Tagging-based Noise Infusion method, we957

defined the non-causal tag set G by iteratively re-958

moving each POS tag set for each dataset and cal-959

culating the importance. The following Figure 3960

is an ablation study on the results of calculating961

importance for each dataset. We estimated θ to be962

1%, defining the non-causal tag set as the part-of-963

speech tagging information for which the accuracy964

drop is less than 1%.965
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Figure 3: The accuracy drop of each part-of-speech
category across datasets
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