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Abstract

Gaussian Probability Path based Generative Models (GPPGMs) generate data by
reversing a stochastic process that progressively corrupts samples with Gaussian
noise. While these models have achieved state-of-the-art performance in 3D
molecular generation, their practical deployment remains constrained by the high
computational cost of long generative trajectories, involving hundreds to thousands
of steps during model training and sampling. In this work, we introduce a novel
method that improves the efficiency of 3D molecular generation without sacrificing
training granularity or inference fidelity. Our key insight is that different data
modalities will exhibit markedly different rates of convergence to Gaussianity in
the forward process of GPPGMs. We analytically identify a characteristic step at
which the data has acquired sufficient Gaussianity, and then replace the remaining
generation trajectory with a closed-form Gaussian approximation. Unlike existing
techniques that accelerate the generation process via reformulating or coarsening
the trajectories, our method preserves the full resolution of learning dynamics
while avoiding redundant distributional transport with little data identity remained.
Empirical results across different 3D molecular generation datasets demonstrate
substantial improvements in both sample quality and computational efficiency.

1 Introduction

Generative models, particularly Gaussian Probability Path based Generative Models (GPPGMs),
have demonstrated impressive performance across diverse domains such as images [Li et al., 2019],
text [Austin et al.,2021]], and molecules [Zhang et al.;[2023|]. However, the generative trajectories are
typically modeled as the solution to a stochastic differential equation (SDE) or ordinary differential
equation (ODE), which are often represented by hundreds to thousands of steps for better learning
granularity. The heavy computational demand thus becomes one of their key limitations, especially
for 3D molecular data. To improve the efficiency, prior work has largely focused on sampling
acceleration, for example, coarsening trajectories with reduced-step solvers [Song et al., 2020, Lu
et al.} 2022| [Karras et al., [2022] and retrieval-based methods [Zhang et al.,[2025]]. While effective
for inference, these approaches either compromise trajectory granularity or leave training costs
unaffected. Efforts closer to training, such as adaptive priors [Lee et al.}|2021} Vignac et al.| 2022]]
and leapfrog initializers for trajectory prediction [Mao et al., [2023]], still depend on modifications of
the noising process or specialized architectures, rendering them domain-specific and difficult to apply
to 3D molecular generation.

In this work, we propose a novel method that improves both training and sampling efficiency of
GPPGMs via Gaussian Approximation (GA). A key feature of our framework is that it naturally
applies to zero-mean invariant modalities, a broad and practically important class including molecular
graphs and 3D geometric data, where zero-mean is a common data regularization method without
information loss. Rather than coarsening the generative trajectories or modifying the predefined noise

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



38
39
40
41
42
43
44
45
46

47

48

49
50
51
52
53

54
55
56

57
58

59

60
61

62
63

64

65
66

schedule, our method identifies a characteristic time step 7™ at which the input data distribution has
effectively lost its specific identity while gaining sufficient Gaussianity. Based on this point, the
generation trajectory can be truncated, and the final distribution can be approximated by a tractable
Gaussian reference distribution with analytically derived mean and variance, as shown in Fig.[I]
This design yields two key merits absent in existing methods: (1) ability for training acceleration
via eliminating ineffective optimization on over-noised inputs, and (2) sampling fidelity preser-
vation by maintaining the accuracy and granularity of the original generative trajectories. We
empirically validate our method across different 3D molecular datasets, demonstrating significant
improvements in both sampling and training efficiency with high-quality generation.
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Figure 1: The flowchart of the IAGA. When the noised data distribution x; has lost its identity at
timestep ¢, we approximate it with a reference Gaussian N (ji¢, 9;). In such case, the length of the
generative trajectory can be reduced from 7 steps to ¢ steps.

2 Preliminaries

2.1 Gaussian Probability Path based Generative Models

GPPGMs construct complex data distributions by learning to reverse a reference stochastic process
that progressively corrupts clean data with Gaussian noise. Given a data sample xy drawn from
the target distribution pgat. (), we define a forward (noising) process that maps x to a sequence
of latent states {x;}7_,. A commonly used instantiation of this noising process is a time-indexed

Gaussian perturbation:

q(zy | o) = N(@: | Varzo, 671), M
where a; € [0, 1] controls the decay of the signal power over time. Typically, a; is defined as
Qp = HZ:I as, with ay € (0, 1) monotonically decreasing such that &y = 1 and @ ~ 0, ensuring
that z7 approaches a tractable reference distribution, often taken to be (0, 52I).

In the case of variance-preserving (VP) forward processes, defined by 6; = /1 — a4, the forward
process admits the following Markov factorization:

T T
Q(CBLT | CBO) = Hq(wt | wtfl) = HN(ﬂft | Qp|t—1Lt—1, O-t2|t71]:)a 2
t=1 t=1
where oy ;1 = ay/a;—1 and O’?‘t_l =1- af‘t_l. The VP forward process is the most commonly
used formulation in the design of GPPGMs. Unless otherwise specified, we adopt the VP noising
schedule throughout this work.

The reverse (denoising) process, which models p(x;—1 | «+), admits a closed-form expression under
the Gaussian assumption:

Q(mt—l | $t7$0) = N(mt_l | /.l,t($t,ﬂ}0), 5’?1)7 (3)
where
a1 (1 —a Gt — @ 1—a)(1—a
l‘l’t(wtawo) — \/m( at)w() + \/(Tt(at 1 Oét)mt7 5_t2 _ ( at)( Ot 1).

11—y 11— 11—

This Gaussian formulation facilitates a tractable variational objective and enables efficient sampling
algorithms that are central to GPPGMs.
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Learning the Reverse Process A key feature of GPPGMs is that the reverse-time generative
process is constructed to approximate the true posterior q(x;—1 | €, o). Since the original sample
X is unavailable during generation, it is replaced by a neural estimate &y = ¢ (¢, t) inferred from
the current noisy observation. The generative transition distribution is then defined as:

p(xi—1 ‘ iBt) = N(wtfl | (e, 2o), 531)7 4)
where the mean and variance retain the form of the true posterior, with xy replaced by its approxi-

mation &y. Given this generative model, we can derive a variational lower bound on the marginal
log-likelihood:

T
Ing(xO) > ['0 =+ ['base + Z ['ta (5
t=1
where Lo = logp(xo | 1) is the terminal reconstruction term, Lpase = —KL(g(x7 | x0) || p(2T))
regularizes the marginal at the final time step, and
Ly = —KL(q(®:-1 | mo, 1) || p(we—1 | @), fort=1,....T. (6)

In practice, the base KL term L},5. becomes negligible when ar =~ 0, and the data term L is
often near zero for discrete g when o = 1. Meanwhile, |[Ho et al. [2020] found it more stable to
parameterize ¢ as a noise predictor: rather than outputting & directly, the network predicts the noise
vector € such that x; ~ a;xg + o;€. In this case, &g can be recovered via &y = a% (xy — o1€). This
formulation leads to a simplified training objective, where each KL term £, reduces to a weighted
denoising score-matching loss:

1 .
£ =Beion |gurle el a)

where w;y is a scalar weight derived from the noise schedule. This structure naturally extends
to various GPPGM frameworks, including diffusion models [Ho et al.l [2020]] and flow-matching
models [Lipman et al.| [2022]], both of which aim to approximate the conditional dynamics of the
reverse process via supervised regression on progressively removed noise.

2.2 Zero-Mean Invariance

A data modality is zero-mean invariant if centering each sample by subtracting its empirical mean
preserves all the information necessary for downstream modeling. Formally, let x € R? denote a data
sample, and define its centered version as:

d
~ 1
w:w—g;wzwld, (8)

where 1, € R? is the vector of all 1-s. A data modality is said to satisfy zero-mean invariance if, for
all « in the support of the data distribution p(z), the transformation & — & retains the semantic or
structural information of the original input.

This property is common in domains where only internal relationships among dimensions carry
information, while global offsets are irrelevant or redundant. 3Typical examples include any rep-
resentations defined up to an affine baseline or possessing a shift-symmetric structure, such as
configurations invariant to global alignment, label encodings invariant to additive bias, or features
embedded in contrastive spaces. We provide some detailed examples and the corresponding analysis
in Appendix.[A] Zero-mean invariance permits generative models to operate in a reduced subspace
orthogonal to the mean direction, eliminating redundant degrees of freedom. In 3D molecular data,
zero-mean invariance is widely employed due to its translational invariance [Hoogeboom et al.| 2022}
Hong et al.} [2025] [Xu et al.} 2023]].

3 Identity-Aware Gaussian Approximation

Building on the preliminaries, we now introduce our framework for shortening the generative
trajectory in GPPGMs via truncation. Rather than executing the full generation trajectories, we
identify a characteristic timestep 7 at which the data effectively loses its identity and exhibits
sufficient Gaussianity. This enables an analytic truncation, whereby the remaining trajectory is
replaced with a direct Gaussian approximation. It significantly improves computational efficiency
without compromising generative fidelity.
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3.1 Gaussian Approximation

Gaussian approximations (GA) are commonly employed in statistics to represent intractable condi-
tional or marginal distributions [Berry, (1941, Deng and Zhang} 2020} |(Chernozhukov et al.| [2013]].
This modeling choice facilitates closed-form expressions for critical quantities, including transition
densities, posterior distributions, and variational bounds, which are essential for both optimization
and sampling procedures. In GPPGMs, the forward process can be interpreted as progressively
pushing the data toward a Gaussian distribution. As illustrated in (T)), the marginal and transition
densities of the trajectories at any finite time index remain Gaussian:

q(ms | o) = Ny | Vaseo; X¢), where Xy := (1 —ay)L 9)

However, the intractability of data distribution prevent us from directly calculating the mean and
variance of approximated Gaussian. For data modalities that are zero-mean invariant, such as
molecular coordinates, point clouds, or categorical embeddings, the difficulty of estimating mean
can be avoided by enforcing zero-centering as a preprocessing step. Such centering preserves
structural information and symmetries (e.g., translational invariance) [Hoogeboom et al.||[2022], while
consistently ensuring /i = 0, as analyzed in Appendix [A]

In addition, the variance remains intractable to obtain exactly. In this paper, we estimate it through
the per-sample statistics. Given a dataset D = {m(z) MY with x(® € R?, we compute

d .
>z, (10)
j=1

and aggregate across the dataset to obtain the average per-sample variance: v = % Ef\il v This

estimator is unbiased under mild moment conditions [Vershynin, 2012]], and we empirically verify
that it’s an available choice for GA in GPPGMs.

Under the variance-preserving (VP) forward process on zero-meaned data, these choices yield the
following analytic form for the mean and variance of x;:

fir =0, o =1—a(l—0). (11)

Ul

d
() — _~ (@) _ ()2 (1) —
v = o jgzl(a:j w')*, where p'* =

Consequently, for zero-meaned data, once sufficient noise has been injected at timestep 7™, the
marginal distribution of @7+ can be approximated by A (0, o7« I) which serves as the foundation for
our trajectory-shortening strategy.

3.2 Gaussian Approximation and Initial Data Distribution

The analysis above shows that, once sufficient noise is injected, the forward process admits a tractable
Gaussian approximation. Nevertheless, the following question arises:

(Q) How do we determine T™ at which the injected noise becomes sufficient for this approxima-
tion? Is it the same across different tasks?

To answer this question, we first present Proposition to show that T is related to properties of
the initial data distribution.

Proposition 3.1. Givent € [0,T) and K > 3, and the Gaussianity evaluation functional

K
HE) (z) = ﬂHHDJ_(COV(.’E))HF + ZwkHC(k)(x)HF. (12)
k=3

where B > 0 and wy, > 0 (k > 3). D := {Diag(v) : v € R%} is the diagonal subspace and
IIp(X) := Diag(diagX), Ipi(X):=X —Ip(X). (13)

are the orthogonal projections. Cov(-) and C*)(X) are the covariance calculator and the k-th
cumulant tensor, respectively. Let A, B be two initial data distribution, where

H () < H(@P) forallm =2,3,... K (14)
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Figure 2: Comparisons of the forward noising process across different data modalities. (a) shows
a continuous-valued image matrix, while (b) and (c) illustrate the distribution of molecular data
consisting of one-hot vectors for atom types and 3D Euclidean coordinates for atom positions,
respectively. The same noise schedule is applied across all modalities, with the number of steps
T up to 1000. Despite identical signal-to-noise ratios, image data retains recognizable identities for
significantly more steps, whereas molecular data lost it much earlier.

holds with at least one strict inequality. Then for every s > t,
HE (@) < HE) (D).
Consequently, for every € > 0,

T =inf{s >t : HI) (@) < e} < inf{s >t: HE)(xB) < e} =T}, (15)

A formal proof is provided in Appendix [B| This proposition establishes that if the initial data
distribution is inherently closer to Gaussian, then the corrupted samples achieve sufficient Gaussianity
earlier, and the corresponding GA timestep 7™ can be smaller. In particular, sparse molecular
coordinates around equilibrium are closer to Gaussian [[Frenkel and Smit| [2023]], then approximation
can start at a smaller 7, as shown in Fig. |Zl As different initial data distribution induces different GA
time steps, we need a principled way to identify the precise 7. Therefore, in Sec.[3.3] we develop a
statistical Gaussianity evaluator that serves as an operational test, combining dependency-sensitive
functionals and distributional similarity criteria to precisely identify the GA timestep T*.

3.3 Evaluating Gaussianity: Data Identity and Distributional Similarity

While the preceding analysis suggests that ; may be approximated by a Gaussian, the validity of this
approximation fundamentally depends on whether the - has gained sufficient Gaussianity for GA.
In this section, we present the Gaussianity evaluation method from the perspectives of data identity
and distributional similarity for our IAGA framework.

Data Identity Decay. The timestep at which data loses its structural identity under progressive
noise perturbation is critical for establishing a valid Gaussian approximation. Since the Gaussian
distribution in GA is independent, the disappearance of identity in x; directly indicates that the data
has lost its dependency, which can be well approximated by N (ji;, 9:1). As illustrated in Fig. @ the
rate at which identity vanishes strongly depends on the underlying data modality. Monitoring the
decay of data identity thus provides a principled criterion for determining the characteristic timestep
T* at which Gaussian approximation becomes valid.

Since structural identity is inherently reflected by the presence of dependencies among variables,
we quantify identity decay by measuring statistical dependency in o;. Concretely, we adopt the
mutual information (MI) test [Kraskov et al.}[2004] as our dependency functional. Because exact
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independence occurs only at the terminal prior r ~ AN (0,I), we adopt a tolerance e4¢p > 0 and
define the identity-loss timestep as

Tip := min {t ‘ Dep(x:) < €dep }7 (16)

where Dep(+) denotes the MI-based dependency evaluator. The implementation details are provided
in Appendix This evaluator provides a concrete condition under which GA becomes valid from
the perspective of data identity.

Distributional Similarity. While data identity decay captures the disappearance of dependence,
Gaussian approximation also requires that the marginals of x; align with those of a Gaussian distribu-
tion. To assess this, we measure the distributional similarity between x; and the reference Gaussian
N (jig, ;1) with matching variance using the Kolmogorov—Smirnov (KS) distance [Massey Jr, [1951].

Concretely, for each dimension ng), we compare its empirical cumulative distribution function
(CDF) F; j(x) with the Gaussian CDF @, (x), and average across all dimensions:

d
1
D; = i ZDW’ where Dy ; = sup |Fj(x) — @5, ()] (17)

J=1

A smaller D; indicates closer alignment with Gaussian marginals and therefore stronger justification
for approximation by N (ji;, 0;I). Since exact convergence only holds at the terminal prior z7 ~
N (fis,I), we adopt a tolerance epg > 0 and define the distributional-similarity timestep as

Tos = min{t’Dt gsDS}. (18)

As illustrated in Fig. 2] molecular datasets exhibit rapid decay in Dy, reflecting fast convergence to
Gaussian marginals, while image datasets maintain larger D; values over many more noise steps.
From the perspectives of dependency decay and distributional similarity, we obtain a concrete and
quantitative characterization of the Gaussianity of x;, ensuring that the approximated x~ is both
sufficiently independent and marginally Gaussian. In addition, we define the operational Gaussian-
approximation timestep as

T* = max(Tip, ITps), (19)

which ensures that - is both sufficiently independent and marginally Gaussian.

4 Experiments

In this section, we empirically evaluate the proposed method on standard molecular generation
benchmarks. We present the experimental setup, define the evaluation metrics, and report quantitative
results on both generation quality and efficiency. Additional details on the Gaussianity tests and
experimental configurations are provided in Appendix [Cland Appendix [D] respectively.

4.1 Experimental Setup

Datasets. We conduct experiments on widely-used molecular datasets, QM9 [Ramakrishnan et al.|
2014] and GEOM-Drugs [Axelrod and Gomez-Bombarelli, 2022]. QM9 contains 130k small
molecules with up to 29 atoms, while GEOM-Drugs comprises 450k drug-like molecules with an
average of 44 and up to 181 atoms. The configuration of datasets follows Hoogeboom et al.| [2022]]
for regular generation and [Xu et al.|[2023]] for latent-space generation, respectively.

Baselines. For molecule generation, we conduct comparison experiments on several competitive
baselines. G-Schnet [Gebauer et al.,[2019] and Equivariant Normalizing Flows (ENF) [Garcia Satorras
et al., |2021]] employ autoregressive models for molecule generation. Equivariant Graph Diffusion
Model (EDM) [Hoogeboom et al.,|2022[, Geometric Latent Diffusion Model (GeoLDM) [Xu et al.,
2023]], and Equivariant Flow Matching model (EquiFM) [Song et al., 2023]] are three representative
GPPGMs from different perspectives for molecule generation, including regular diffusion, latent
diffusion, and flow-matching, respectively. Moreover, the invariant versions of EDM (GDM) and
GeoLDM (GraphLDM) are also employed for comparison.
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Metrics We evaluate our method on standard molecular generation benchmarks using two broad
classes of metrics: generation quality and efficiency. For generation quality, we report validity
(the proportion of chemically valid molecules according to standard valency checks), uniqueness
(the proportion of distinct molecules among generated samples), molecular stability (the fraction
of generated molecules satisfying correct valency constraints), and atom stability (the fraction
of generated atoms satisfying correct valency constraints). Following prior work [Hong et al.|
2023]], these metrics are computed using RDKit-based validation and duplicate filtering over 10,000
generated samples. For efficiency, we record the average sampling time (S-Time) in GPU seconds
per sample and total training time (T-Time) in GPU days, both measured on identical hardware
before and after applying our Gaussian approximation strategy. Moreover, the trajectory length
(Steps) T is also shown in the results. These metrics collectively quantify the fidelity, diversity, and
practical computational benefits of our method.

4.2 Quantitative Performance

Table 1: Quantitative results on the QM9 dataset. The best results are shown in bold. Metrics are
calculated using 10,000 samples generated from each model. We run the evaluation for 3 times and
report the mean value. Compared with previous methods, GA benefits all methods, achieving up to a
2.3% improvement in the Valid * Uniq metric, and significantly reduces the generation trajectory
length by 40% without harming learning accuracy. All GA-compared baselines are tested using our
implementation. The best results are shown in bold.

Generation Performance Efficiency
Atom Sta Mol Sta Valid Valid * Uniq | S-Time T-Time  Traj. Len.

Model (%) (%) (%) (%) (GPU sec.) (GPU day) (Steps)
Data 99.0 95.2 97.7 97.7 - - -
ENF 85.0 4.9 40.2 394 - - -
G-Schnet 95.7 68.1 85.5 80.3 - - -
GDM-AUG 97.6 71.6 90.4 89.5 0.52 2.9 1000
GraphLDM 97.2 70.5 83.6 82.7 0.36 5.7 1000
EDM 98.4 81.8 91.9 90.7 0.65 5.6 1000
EDM + IAGA 98.9 85.6 94.7 92.0 0.36 3.1 550
GeoLDM 98.9 89.8 94.0 91.9 0.64 11.7 1000
GeoLDM + IAGA 99.2 92.3 96.7 94.4 0.42 7.2 650
EquiFM 98.5 87.3 94.9 93.4 0.17 6.2 1000
EquiFM + IAGA 99.0 91.2 96.2 93.7 0.15 4.9 800

‘-> denotes the invalid or not recorded setting in the original publication.

We evaluate the effectiveness of the proposed Gaussian Approximation (GA) across multiple molecu-
lar generative baselines on both the QM9 and GEOM-Drugs datasets. As shown in Tables|I]and 2}
GA consistently improves generation quality while significantly reducing both training and sampling
cost. Crucially, our method shortens the diffusion trajectory, by up to 40%, without degrading the
learning accuracy of the generative model. This is because GA does not alter the original noise
schedule or variance scaling used during training; instead, it exploits the observation that molecular
data loses its identity rapidly in the diffusion process, allowing training and sampling to begin from an
earlier noise step without violating the underlying stochastic process. On the QM9 dataset, GA yields
up to a 2.3% improvement in the Valid * Uniq metric, reflecting gains in both chemical correctness
and diversity of the generated molecules

Table 2: Quantitative results on GEOM dataset. Metrics are calculated using 10,000 samples
generated from each model. We run the evaluation for 3 times and report the mean value. In general,
GA improves generation performance and provides better efficiency across models. The best results
are shown in bold.

Generation Performance Efficiency

Model Atom Sta (%) Valid (%) | S-Time (GPU sec.) Traj. Len. (Steps)
Data 86.5 99.9 - -
GDM-AUG 77.7 91.8 - 1000
GraphLDM 76.2 97.2 - 1000

EDM 81.3 92.6 10.9 1000

EDM + IAGA 84.3 93.4 6.4 650
GeoLDM 84.4 99.3 10.2 1000
GeoLDM + IAGA 89.3 98.0 7.1 650

‘-” denotes the invalid or not recorded setting in the original publication.
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Similar benefits are observed on the more challenging GEOM-Drugs dataset. In this experiment,
we omit metrics such as uniqueness (which is consistently close to 100%) and molecule stability
(which remains near 0%) due to their limited discriminative value across different methods. Overall,
GA consistently improves atom-level stability and reduces the training and sampling time across
various baselines. These improvements are particularly noteworthy given that GA requires no changes
to model architecture or parameters. Instead, it modifies only the generation trajectory length by
leveraging the rapid identity decay characteristic of molecular structures. This enables the model
to focus on denoising stages where the molecular structure begins to emerge, leading to faster
convergence without incurring additional transport cost or unnecessary noise inference from the
skipped steps.

5 Related Work

Probability Path-based Generative Models (PPGMs). PPGMs generate samples over data dis-
tributions by learning a transport process that maps simple prior distributions to complex data
distributions through a sequence of structured transformations, i.e., the probability path. Specifically,
diffusion-based generative models simulate this sequential transformation via stochastic differential
equations, which have emerged as a powerful paradigm for multi-modal data synthesis [Croitoru
et al., 2023 [Kementzidis et al.| 2025 Xu et al.. However, their iterative sampling (often requiring
hundreds of steps) poses a significant speed bottleneck. A variety of techniques aim to accelerate
diffusion sampling, such as progressive distillation [Salimans and Ho, 2022]] and learned noising
schedules [Williams et al., 2024]|. Nevertheless, the training process still typically requires hundreds
of steps. Beyond diffusion models, Flow Matching offers a fresh perspective on acceleration. Flow
Matching trains a continuous normalizing flow by regressing an optimal vector field along prescribed
paths. [Lipman et al.|[2022] showed that using diffusion-style Gaussian paths in flow matching yields
more robust training and faster ODE-based sampling. However, the nonlinear and high-curvature
nature of learned transport fields makes it challenging to accurately approximate such trajectories
with few discretization steps during training [Hassan et al., {2024 |[Eijkelboom et al., 2024].

Gaussian Approximation (GA). GA has long been a cornerstone in machine learning theory
and practice. The Central Limit Theorem provides a classical justification: aggregates of many
random factors tend toward a Gaussian distribution, which often explains why high-dimensional
features or latent codes appear approximately normal [Hazra et al.||2021] |Diiker et al.| 2024]]. Some
researchers have explored the potential of the Gaussian approximation in generative modeling. For
instance, |[Wang and Vastolal observe that at high noise levels, the learned diffusion score can be
well-approximated by a linear Gaussian model. Therefore, they can skip 15-30% of the sampling
steps without degrading output fidelity. Such findings reinforce the idea that Gaussian assumptions
can serve as an effective proxy for complex distributions in certain regimes, providing practical
speedups without significant fidelity loss.

6 Conclusion and Future Work

In this work, we introduced a principled framework for efficient GPPGMs on 3D molecular generation.
By leveraging zero-mean preprocessing and empirical variance estimation, we proposed an analytic
Gaussian approximation that identifies a characteristic time step 7™ at which data identity effectively
vanishes and the forward process becomes distributionally Gaussian. This approximation enables
the truncation of redundant noise steps, which are inefficient transport between “Gaussian-like”
distributions. Therefore, our IAGA can improve the efficiency of both sampling and training and yields
consistent improvements in generation quality across multiple molecular generation benchmarks.

Future Work. Despite its empirical success, the current framework assumes that the data modality
is zero-mean invariant. While this assumption holds in many geometric and categorical domains, it
is not valid for modalities like natural images or videos, where the absolute mean carries semantic
information. Extending our methodology to such domains requires further methods for determining
identity loss and Gaussianity without relying on zero-mean centering.
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Appendix

A Examples and Analysis of Zero-mean Invariant Data

We aim to show that for data modalities satisfying zero-mean invariance, the operation of mean-
centering preserves all structural information relevant to generative modeling. We mainly discuss the
Euclidean and non-uniform one-hot cases, which are tested in our experiments.

Euclidean Data. Let {z;}!" ; C R? denote a collection of n vectors (e.g., 3D Euclidean coordi-
nates of atoms). Define the sample mean & = % Z?:l x;, and let &; = x; — T be the centered
representation. We claim that pairwise Euclidean distances are invariant under mean-centering:

[Z:i — Zjl2 = [[(xi — &) — (z; — Z)[|]2 = ||i — ]2 (20)

Hence, all geometric properties that depend on inter-point distances, such as adjacency structures,
bond lengths, or conformational shapes, are preserved exactly under centering. Consequently,
zero-mean projection retains full information about the relational structure of the data.

Non-Uniform One-Hot Categorical Vectors. Let h; € {0,1}¢ denote a one-hot encoded vector
satisfying ijl(hi) ;=1,andleth = % >, h; be the sample mean across a batch of n such

vectors. Define the centered vector BZ = h; — h. Note that each iLl € R?%liesin a subspace orthogonal
to the constant vector 1,4, since:

d ~
> (hi); =

Jj=1 J

(hi —h); =1~
1 i

h; = 0. @)

d
= 1

d

Moreover, the inner product between two centered vectors BZ- and ﬁj satisfies:
<Bia ﬁ?) = <hi’ hj> - <hi’ B> - <Bv hj) + <B7 B>7 (22)

from which it follows that pairwise centered dot products retain sufficient information to distinguish
between original categorical identities once the category set is not degenerate (e.g., uniform). Since
each one-hot vector h; is uniquely defined by a single active index, subtracting the global mean h
merely induces a translation within the categorical simplex. The position of the maximal entry in
h; still identifies the active class as long as i does not collapse distinct h; vectors onto the same
centered value. Therefore, for any non-uniform categorical data embedded via one-hot encoding,
mean-centering preserves the identity of the active component up to an affine transformation of the
ambient space. As a result, zero-mean preprocessing retains the categorical semantics necessary for
generative modeling under Euclidean approximation schemes.

B Proof of Proposition 3

Cumulants. Let X € R? have moment generating function (mgf) Mx (u) = E[e“TX | and cumu-
lant generating function Ky (u) = log Mx (u), u € R%. The k-th cumulant tensor is

OFK x (u)
[ARTIN A auil ce aulk u=0

(C® (X)) k> 1.

)

In particular C(V(X) = p := E[X], C®(X) = X := Cov(X), and C*)(G) = 0 for all k > 3 if
G is Gaussian.

Setup (VP forward map). Let {x;}]_, be the forward (noising) trajectory under a variance-
preserving schedule. Fix ¢ € [0,T) and s > t. Then

Ty = SOy + /1 — g€, e~N(0,I), e Lz, a,, :=as/a€(0,1). (23)
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Gaussianity-and—independence functional (definition). Let D := {Diag(v) : v € R} be the
diagonal subspace and define the orthogonal projections

Ip(Y) := Diag(diagy),  Ip. (%) =X — Ip(L).

For weights 8 > 0 and wy, > 0 (k > 3), define for any random vector = € R

K
HE) () = ﬂHHDJ_(COV(LU))HF + ZwkHC(k)(x)HF. (24)
k=3

Lemma B.1 (VP propagation of moments/cumulants and contraction of H(*)). Lett € [0,T) and
s > t, and write a := ag, € (0,1). Under 23)), with ¥y := Cov(x;) and By, := ||C(k)(wt)”Ffor
k>3,

s = V@ [, Ys=aXi+(1—-a)l, HC(I‘C)(ws)Hank/ZBht (k >3).
Consequently,
K
HE (@) = Ba||lps (30|, + Y wa*? By, (25)
k=3
and
0

K
k _
g @) = 8[Tos (S0l + 3w a2 B > 0

whenever ||TIp. () HF + Zszs Byt > 0. Hence, since a = )y decreases strictly in s for a VP

schedule, HK )(ms) is strictly decreasing in s unless x, is already an independent Gaussian (in
which case HF) () = 0).

Proof. First, us = E[zs] = aus + V1 —aEle] = /ap;. For the covariance, write ; =
vaxi + /1 — ae and center by the means:

@, — ps = Va(ze — ) +V1—ae.
Independence and E[e] = 0 give
S =E[(zs — ps)(@s —p1s) | =aS; + (1 —a)Elee | =a%; + (1 —a) L.
Linearity of IIp. and I € D yield
Mpe(Bs) =Mpr(aXy) + (1 —a)p (I) = allpe (3),
hence [[Tp+ (3)||r = a[[Tp (X¢)]| -

For cumulants, independence implies additivity: C*)(X +Y) = C*)(X) + C**)(Y') when X L
Y (this follows from Kx.y(u) = Kx(u) + Ky (u)). Homogeneity follows from K. x(u) =
log E[e* °X] = K x (cu) and the chain rule:

ok & oF

Kex(u) =c" ——  Kx(u) = CW(eX) = oM (X).

Ouy, - - - Ouy, Ouy, - - - Ouy,

u=0

Because a Gaussian has C'*) () = 0 for k > 3,
CW () = CP (Vazy) + CH (V1 —ae) = a*2C® (x),

50 |C®) (x,) || = a*/2||C*)(z,)|| r. Plugging these identities into (24) gives (23). Finally, since
B > 0,w, > 0and By ; > 0, the displayed derivative is > 0 whenever not all terms vanish. As a
strictly decreases in s for VP, H (%) () strictly decreases in s unless already identically zero.  [J

Lemma B.2 (f-decomposition via prefix sums). For a € (0, 1), define

05(a) :=a — a’/?, O (a) == a™? —amTV/2 (3<m < K —1), O (a) == a/?,
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and form € {2,3,..., K} define the prefix functionals

H (x,) = B HHDL(Et)HF + Zwk Hc(k)(wt)HF'
k=3

Then 0., (a) > 0 for all m and a € (0, 1), and the closed form (23) admits

K
) (xy) = Z O (a) H™ (), with Z Om(a) = a’/? foreachj € {2,3,...,K}.
i 26)

Proof. For0 < a < 1, 0,,(a) = a™/?(1 — a'/?) > 0 form < K — 1 and 0k (a) = a®/? > 0. To
prove (26), expand the right-hand side:

Ze )H™ (2 (29 )BHHDL(ZOF—I-i(iGm (@) wi M) () | -

k=3 m=k

Hence it suffices to show the tail-sum identities Ziﬁ Om(a) = a and Zm:k O (a) = a*/? for
eachk € {3,...,K}.Fork < K —1,

K-1
Z (am/2 _ a(m+1)/2) 1ok = (ak/Q _ a(k+1)/2) NI (a(K—l)/2 _ aK/Q) T+ a2 = gkr2,

m=k

a telescoping sum; the case k = K is immediate. The identity for £ = 2 is the same computation
with k£ = 2. Substituting these tail-sums into the expansion recovers (23). O

Lemma B.3 (Order preservation under prefix dominance). Let A, B be two classes of data set.
Assume the prefix dominance

H () < HO(xP) forallm =2,3,... K, 27)
with at least one strict inequality. Then, for every s > t (equivalently, every a € (0,1)),

HE) (@ Z O (a) H™ ( Z Om zf) =1 (@),

and the inequality is strict because all 0,,,(a) > 0 for a € (0, 1).

Proof. By Lemma EZ HE) (@) = S, 0m(a) HU™ (2) with 0,,,(a) > 0. Applying @7)
termwise gives H (% (x ) <HE )( B). Strictness follows because at least one index m* satisfies
H D) () < H)(2P) and 0,,+ (a ) > 0, hence the weighted sum is strictly smaller. O

Lemma shows that for each initialization, s — H (%) (x,) is strictly decreasing (unless already
at an independent Gaussian). Lemma [B.3]states that if A is prefix-dominant over B at time ¢, then
HE) (24) < HE) (x8) for every s > t. Therefore, for any threshold e > 0, the hitting times

Tx(¢) :=inf{s >t : HF) (xX) < ¢}

satisfy T'4 (¢) < T'’s(e), which formalizes that under VP the speed to gain sufficient Gaussianity for
A is faster than for B whenever A starts closer to Gaussian in the sense of (27).

Moreover, if there exist nondecreasing functions @gep, ¢xs : [0,00) — [0,00) with pgep(0) =
©ks(0) = 0 such that for every s > ¢,

Dep(zs) < @aep(H 5 (2)),  D(ms) < (M E)(2y)), (28)

then, for any tolerances e4ep, eps > 0,
T = inf{s > t : Dep(x?) < egep} < T, T :=inf{s >t : D(z?) <eps} < T,

and hence T := max(Tj, Ts) < T, with strict inequality if (27) is strict for some m.
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C Gaussianity Test Details

C.1 Identity Test

By treating x; as a sample from an intractable noised data distribution, we estimate the empirical
mutual information (MI) across both the sample-wise and feature-wise dimensions of the data tensor.
MI quantifies the degree of statistical dependency between random variables by measuring the
divergence between their joint distribution and the product of their marginals. For two random vectors
X and Y, the mutual information is defined as:

I(X;Y) = //px,y(x,y)logwdx dy, (29)
px () py (y)

where px y (z, y) denotes the joint probability density, and px (), py (y) are the marginal densities
of X and Y, respectively.

Given a data matrix representation of x;, we estimate the dependency across dimensions (features)
within each data point and across data points for each dimension to represent the identity. Formally,
let Xiows and X,os denote the sets of row-wise and column-wise slices, respectively. Then, the
empirical MI scores are given by:

1

Ml = > 1@, M= Y 1) (30)

‘ TOWS ‘ ‘ cols ‘
€ Xrows € Xeols

where I(x) denotes the estimated mutual information of the given vector x across its components. As
t increases, these statistics decay toward zero, indicating diminishing dependency and the emergence
of approximate independence in x;.

C.2 Distributional Similarity via KS-Test

To evaluate whether the noised data x; has become sufficiently similar to the Gaussian distribution
N(0,9,1), we perform statistical testing based on the Kolmogorov—Smirnov (KS) criterion. At
each test timestep ¢, we apply the one-sample KS test dimension-wise to the components of x; after
zero-centering, treating each variable as an independent sample drawn from the empirical distribution.
Specifically, for each dimension j € {1,...,d}, we compute the empirical cumulative distribution
function (CDF) F} ;(x) and compare it against the theoretical CDF ®;, () of a univariate normal
distribution with zero mean and variance v, derived analytically from the forward noise schedule.
The test statistic is defined as:

Dy j =sup|Fy () — @5, (2)]. (31)

For each coordinate j, we test Hy @, 2" ~ N(0,4;) against Hy :, 2" « A(0,%,). Under Hy,
with sample size n, the scaled statistic \/n, D; ; converges to the Kolmogorov distribution with
CDF1—2377,(—=1)*"1exp(—2k%\?), yielding the 5% critical threshold D; ; > cg.05/+/7 (with
co.05 ~ 1.36 asymptotically). We declare that timestep ¢ satisfies the Gaussianity criterion if at

least 95% of coordinates fail to reject Hy, i.e., x; is statistically indistinguishable from the reference
N(0,941) at 95% confidence level.

D Experimental Settings

D.1 Backbone model

In our experiments, all molecular generation baselines utilize the Equivariant Graph Neural Network
(EGNN) [Satorras et al.l |2021]] as the backbone architecture for generative processing. EGNN
operates on graphs embedded in Euclidean space and are designed to be equivariant under rigid-body
transformations from the special Euclidean group SE(3), including rotations and translations. This
property ensures that molecular outputs transform consistently with the input geometry, preserving
critical physical symmetries.

15



506
507
508

509
510
511
512

513

514
515
516

517
518
519
520
521

522
523
524

526
527
528

Formally, consider a molecule represented as a fully connected graph with NV nodes, where each node
i has coordinates x; € R3 and associated atom features h; € R%. At each EGNN layer, node features
and positions are updated through message-passing operations:

mi; = ¢e(hi, by, |l — ;%)

h/ = hiv 17 17 )
% Qbh ;O‘ij (32)

=it Z Har:2 - wj|| +e Tor =] £ ¢ P his Pl — 31%),

where ¢., ¢p, and ¢, are learnable functions (typically MLPs), and o, is an optional attention or
reweighting term. The update rule guarantees that output features are equivariant with respect to
SE(3) transformations. This equivariant structure is critical for molecular generative tasks, as the
physical properties of molecules are invariant to coordinate shifts and rotations.

D.2 Implementation Details

For all baseline models, we follow the official open-sourced codebases and retain their default
hyperparameters unless otherwise specified. Gaussian Approximation is applied after the truncation
step 1", as estimated via our KS and MI-based Gaussianity evaluation.

All molecular generation evaluation metrics are computed on 10,000 generated molecules using
RDK:it [Landrum et al., |2016|. Validity and atom stability are defined by valency correctness, and
uniqueness is computed as the percentage of distinct canonical SMILES. Sampling time is measured
as the average GPU seconds to generate one molecule, while training time reflects total GPU days
until the last pre-defined epochs in the official repositories.

All experiments are conducted on a computing cluster equipped with NVIDIA RTX 3090 GPUs,
each with 24 GB memory. Training is parallelized across 2 GPUs using PyTorch DDP framework,
while inference experiments are executed on a single GPU for fair comparison of sampling speed.
The CPUs are Intel(R) Core(TM) i9-12900KF. Unless otherwise specified, we report sampling time
as the average GPU seconds per generated sample, and training time in GPU days until the max
epochs from the baselines’ official repositories. All baseline implementations use their official code,
pre-trained weights (if available) and hyperparameters to ensure comparability.
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