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Abstract

Gaussian Probability Path based Generative Models (GPPGMs) generate data by1

reversing a stochastic process that progressively corrupts samples with Gaussian2

noise. While these models have achieved state-of-the-art performance in 3D3

molecular generation, their practical deployment remains constrained by the high4

computational cost of long generative trajectories, involving hundreds to thousands5

of steps during model training and sampling. In this work, we introduce a novel6

method that improves the efficiency of 3D molecular generation without sacrificing7

training granularity or inference fidelity. Our key insight is that different data8

modalities will exhibit markedly different rates of convergence to Gaussianity in9

the forward process of GPPGMs. We analytically identify a characteristic step at10

which the data has acquired sufficient Gaussianity, and then replace the remaining11

generation trajectory with a closed-form Gaussian approximation. Unlike existing12

techniques that accelerate the generation process via reformulating or coarsening13

the trajectories, our method preserves the full resolution of learning dynamics14

while avoiding redundant distributional transport with little data identity remained.15

Empirical results across different 3D molecular generation datasets demonstrate16

substantial improvements in both sample quality and computational efficiency.17

1 Introduction18

Generative models, particularly Gaussian Probability Path based Generative Models (GPPGMs),19

have demonstrated impressive performance across diverse domains such as images [Li et al., 2019],20

text [Austin et al., 2021], and molecules [Zhang et al., 2023]. However, the generative trajectories are21

typically modeled as the solution to a stochastic differential equation (SDE) or ordinary differential22

equation (ODE), which are often represented by hundreds to thousands of steps for better learning23

granularity. The heavy computational demand thus becomes one of their key limitations, especially24

for 3D molecular data. To improve the efficiency, prior work has largely focused on sampling25

acceleration, for example, coarsening trajectories with reduced-step solvers [Song et al., 2020, Lu26

et al., 2022, Karras et al., 2022] and retrieval-based methods [Zhang et al., 2025]. While effective27

for inference, these approaches either compromise trajectory granularity or leave training costs28

unaffected. Efforts closer to training, such as adaptive priors [Lee et al., 2021, Vignac et al., 2022]29

and leapfrog initializers for trajectory prediction [Mao et al., 2023], still depend on modifications of30

the noising process or specialized architectures, rendering them domain-specific and difficult to apply31

to 3D molecular generation.32

In this work, we propose a novel method that improves both training and sampling efficiency of33

GPPGMs via Gaussian Approximation (GA). A key feature of our framework is that it naturally34

applies to zero-mean invariant modalities, a broad and practically important class including molecular35

graphs and 3D geometric data, where zero-mean is a common data regularization method without36

information loss. Rather than coarsening the generative trajectories or modifying the predefined noise37
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schedule, our method identifies a characteristic time step T ∗ at which the input data distribution has38

effectively lost its specific identity while gaining sufficient Gaussianity. Based on this point, the39

generation trajectory can be truncated, and the final distribution can be approximated by a tractable40

Gaussian reference distribution with analytically derived mean and variance, as shown in Fig. 1.41

This design yields two key merits absent in existing methods: (1) ability for training acceleration42

via eliminating ineffective optimization on over-noised inputs, and (2) sampling fidelity preser-43

vation by maintaining the accuracy and granularity of the original generative trajectories. We44

empirically validate our method across different 3D molecular datasets, demonstrating significant45

improvements in both sampling and training efficiency with high-quality generation.46
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Figure 1: The flowchart of the IAGA. When the noised data distribution xt has lost its identity at
timestep t, we approximate it with a reference Gaussian N (µ̃t, ṽt). In such case, the length of the
generative trajectory can be reduced from T steps to t steps.

2 Preliminaries47

2.1 Gaussian Probability Path based Generative Models48

GPPGMs construct complex data distributions by learning to reverse a reference stochastic process49

that progressively corrupts clean data with Gaussian noise. Given a data sample x0 drawn from50

the target distribution pdata(x), we define a forward (noising) process that maps x0 to a sequence51

of latent states {xt}Tt=1. A commonly used instantiation of this noising process is a time-indexed52

Gaussian perturbation:53

q(xt | x0) = N (xt |
√
ᾱtx0, σ̄

2
t I), (1)

where ᾱt ∈ [0, 1] controls the decay of the signal power over time. Typically, ᾱt is defined as54

ᾱt =
∏t

s=1 αs, with αt ∈ (0, 1) monotonically decreasing such that ᾱ0 ≈ 1 and ᾱT ≈ 0, ensuring55

that xT approaches a tractable reference distribution, often taken to be N (0, σ̄2
T I).56

In the case of variance-preserving (VP) forward processes, defined by σ̄t =
√
1− ᾱt, the forward57

process admits the following Markov factorization:58

q(x1:T | x0) =

T∏
t=1

q(xt | xt−1) =

T∏
t=1

N (xt | αt|t−1xt−1, σ
2
t|t−1I), (2)

where αt|t−1 = ᾱt/ᾱt−1 and σ2
t|t−1 = 1− α2

t|t−1. The VP forward process is the most commonly59

used formulation in the design of GPPGMs. Unless otherwise specified, we adopt the VP noising60

schedule throughout this work.61

The reverse (denoising) process, which models p(xt−1 | xt), admits a closed-form expression under62

the Gaussian assumption:63

q(xt−1 | xt,x0) = N (xt−1 | µt(xt,x0), σ̃
2
t I), (3)

where64

µt(xt,x0) =

√
ᾱt−1 (1− ᾱt)

1− ᾱt−1
x0 +

√
αt (ᾱt−1 − ᾱt)

1− ᾱt−1
xt, σ̃2

t =
(1− ᾱt) (1− ᾱt−1)

1− ᾱt−1
.

This Gaussian formulation facilitates a tractable variational objective and enables efficient sampling65

algorithms that are central to GPPGMs.66
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Learning the Reverse Process A key feature of GPPGMs is that the reverse-time generative67

process is constructed to approximate the true posterior q(xt−1 | xt,x0). Since the original sample68

x0 is unavailable during generation, it is replaced by a neural estimate x̂0 = ϕ(xt, t) inferred from69

the current noisy observation. The generative transition distribution is then defined as:70

p(xt−1 | xt) = N (xt−1 | µt(xt, x̂0), σ̃
2
t I), (4)

where the mean and variance retain the form of the true posterior, with x0 replaced by its approxi-71

mation x̂0. Given this generative model, we can derive a variational lower bound on the marginal72

log-likelihood:73

log p(x0) ≥ L0 + Lbase +

T∑
t=1

Lt, (5)

where L0 = log p(x0 | x1) is the terminal reconstruction term, Lbase = −KL(q(xT | x0) ∥ p(xT ))74

regularizes the marginal at the final time step, and75

Lt = −KL(q(xt−1 | x0,xt) ∥ p(xt−1 | xt)), for t = 1, . . . , T. (6)

In practice, the base KL term Lbase becomes negligible when αT ≈ 0, and the data term L0 is76

often near zero for discrete x0 when α0 ≈ 1. Meanwhile, Ho et al. [2020] found it more stable to77

parameterize ϕ as a noise predictor: rather than outputting x̂0 directly, the network predicts the noise78

vector ϵ̂ such that xt ≈ αtx0 + σtϵ. In this case, x̂0 can be recovered via x̂0 = 1
αt

(xt − σtϵ̂). This79

formulation leads to a simplified training objective, where each KL term Lt reduces to a weighted80

denoising score-matching loss:81

Lt = Eϵ∼N (0,I)

[
1

2
wt ∥ϵ− ϵ̂∥2

]
, (7)

where wt is a scalar weight derived from the noise schedule. This structure naturally extends82

to various GPPGM frameworks, including diffusion models [Ho et al., 2020] and flow-matching83

models [Lipman et al., 2022], both of which aim to approximate the conditional dynamics of the84

reverse process via supervised regression on progressively removed noise.85

2.2 Zero-Mean Invariance86

A data modality is zero-mean invariant if centering each sample by subtracting its empirical mean87

preserves all the information necessary for downstream modeling. Formally, let x ∈ Rd denote a data88

sample, and define its centered version as:89

x̃ = x− 1

d

d∑
i=1

xi · 1d, (8)

where 1d ∈ Rd is the vector of all 1-s. A data modality is said to satisfy zero-mean invariance if, for90

all x in the support of the data distribution p(x), the transformation x 7→ x̃ retains the semantic or91

structural information of the original input.92

This property is common in domains where only internal relationships among dimensions carry93

information, while global offsets are irrelevant or redundant. 3Typical examples include any rep-94

resentations defined up to an affine baseline or possessing a shift-symmetric structure, such as95

configurations invariant to global alignment, label encodings invariant to additive bias, or features96

embedded in contrastive spaces. We provide some detailed examples and the corresponding analysis97

in Appendix. A. Zero-mean invariance permits generative models to operate in a reduced subspace98

orthogonal to the mean direction, eliminating redundant degrees of freedom. In 3D molecular data,99

zero-mean invariance is widely employed due to its translational invariance [Hoogeboom et al., 2022,100

Hong et al., 2025, Xu et al., 2023].101

3 Identity-Aware Gaussian Approximation102

Building on the preliminaries, we now introduce our framework for shortening the generative103

trajectory in GPPGMs via truncation. Rather than executing the full generation trajectories, we104

identify a characteristic timestep T ∗ at which the data effectively loses its identity and exhibits105

sufficient Gaussianity. This enables an analytic truncation, whereby the remaining trajectory is106

replaced with a direct Gaussian approximation. It significantly improves computational efficiency107

without compromising generative fidelity.108
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3.1 Gaussian Approximation109

Gaussian approximations (GA) are commonly employed in statistics to represent intractable condi-110

tional or marginal distributions [Berry, 1941, Deng and Zhang, 2020, Chernozhukov et al., 2013].111

This modeling choice facilitates closed-form expressions for critical quantities, including transition112

densities, posterior distributions, and variational bounds, which are essential for both optimization113

and sampling procedures. In GPPGMs, the forward process can be interpreted as progressively114

pushing the data toward a Gaussian distribution. As illustrated in (1), the marginal and transition115

densities of the trajectories at any finite time index remain Gaussian:116

q(xt | x0) = N (xt |
√
ᾱtx0; Σt), where Σt := (1− ᾱt)I. (9)

However, the intractability of data distribution prevent us from directly calculating the mean and117

variance of approximated Gaussian. For data modalities that are zero-mean invariant, such as118

molecular coordinates, point clouds, or categorical embeddings, the difficulty of estimating mean119

can be avoided by enforcing zero-centering as a preprocessing step. Such centering preserves120

structural information and symmetries (e.g., translational invariance) [Hoogeboom et al., 2022], while121

consistently ensuring µ̂ = 0, as analyzed in Appendix A.122

In addition, the variance remains intractable to obtain exactly. In this paper, we estimate it through123

the per-sample statistics. Given a dataset D = {x(i)}Ni=1 with x(i) ∈ Rd, we compute124

v(i) =
1

d− 1

d∑
j=1

(x
(i)
j − µ(i))2, where µ(i) =

1

d

d∑
j=1

x
(i)
j , (10)

and aggregate across the dataset to obtain the average per-sample variance: v̂ = 1
N

∑N
i=1 v

(i). This125

estimator is unbiased under mild moment conditions [Vershynin, 2012], and we empirically verify126

that it’s an available choice for GA in GPPGMs.127

Under the variance-preserving (VP) forward process on zero-meaned data, these choices yield the128

following analytic form for the mean and variance of xt:129

µ̃t = 0, ṽt = 1− ᾱt(1− v̂). (11)

Consequently, for zero-meaned data, once sufficient noise has been injected at timestep T ∗, the130

marginal distribution of xT∗ can be approximated by N (0, ṽT∗ I) which serves as the foundation for131

our trajectory-shortening strategy.132

3.2 Gaussian Approximation and Initial Data Distribution133

The analysis above shows that, once sufficient noise is injected, the forward process admits a tractable134

Gaussian approximation. Nevertheless, the following question arises:135

(Q) How do we determine T ∗ at which the injected noise becomes sufficient for this approxima-
tion? Is it the same across different tasks?

136

To answer this question, we first present Proposition 3.1 to show that T ∗ is related to properties of137

the initial data distribution.138

Proposition 3.1. Given t ∈ [0, T ) and K ≥ 3, and the Gaussianity evaluation functional139

H(K)(x) := β
∥∥ΠD⊥(Cov(x))

∥∥
F

+

K∑
k=3

wk

∥∥C(k)(x)
∥∥
F
. (12)

where β > 0 and wk > 0 (k ≥ 3). D := {Diag(v) : v ∈ Rd} is the diagonal subspace and140

ΠD(Σ) := Diag(diag Σ), ΠD⊥(Σ) := Σ−ΠD(Σ). (13)

are the orthogonal projections. Cov(·) and C(k)(X) are the covariance calculator and the k-th141

cumulant tensor, respectively. Let A,B be two initial data distribution, where142

H(m)(xA
t ) ≤ H(m)(xB

t ) for all m = 2, 3, . . . ,K (14)
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Figure 2: Comparisons of the forward noising process across different data modalities. (a) shows
a continuous-valued image matrix, while (b) and (c) illustrate the distribution of molecular data
consisting of one-hot vectors for atom types and 3D Euclidean coordinates for atom positions,
respectively. The same noise schedule is applied across all modalities, with the number of steps
T up to 1000. Despite identical signal-to-noise ratios, image data retains recognizable identities for
significantly more steps, whereas molecular data lost it much earlier.

holds with at least one strict inequality. Then for every s > t,143

H(K)(xA
s ) < H(K)(xB

s ).

Consequently, for every ϵ > 0,144

T ∗
A = inf{s > t : H(K)(xA

s ) ≤ ϵ} < inf{s > t : H(K)(xB
s ) ≤ ϵ} = T ∗

B . (15)

A formal proof is provided in Appendix B. This proposition establishes that if the initial data145

distribution is inherently closer to Gaussian, then the corrupted samples achieve sufficient Gaussianity146

earlier, and the corresponding GA timestep T ∗ can be smaller. In particular, sparse molecular147

coordinates around equilibrium are closer to Gaussian [Frenkel and Smit, 2023], then approximation148

can start at a smaller T ∗, as shown in Fig. 2. As different initial data distribution induces different GA149

time steps, we need a principled way to identify the precise T ∗. Therefore, in Sec. 3.3, we develop a150

statistical Gaussianity evaluator that serves as an operational test, combining dependency-sensitive151

functionals and distributional similarity criteria to precisely identify the GA timestep T ∗.152

3.3 Evaluating Gaussianity: Data Identity and Distributional Similarity153

While the preceding analysis suggests that xt may be approximated by a Gaussian, the validity of this154

approximation fundamentally depends on whether the xT∗ has gained sufficient Gaussianity for GA.155

In this section, we present the Gaussianity evaluation method from the perspectives of data identity156

and distributional similarity for our IAGA framework.157

Data Identity Decay. The timestep at which data loses its structural identity under progressive158

noise perturbation is critical for establishing a valid Gaussian approximation. Since the Gaussian159

distribution in GA is independent, the disappearance of identity in xt directly indicates that the data160

has lost its dependency, which can be well approximated by N (µ̃t, ṽtI). As illustrated in Fig. 2, the161

rate at which identity vanishes strongly depends on the underlying data modality. Monitoring the162

decay of data identity thus provides a principled criterion for determining the characteristic timestep163

T ∗ at which Gaussian approximation becomes valid.164

Since structural identity is inherently reflected by the presence of dependencies among variables,165

we quantify identity decay by measuring statistical dependency in xt. Concretely, we adopt the166

mutual information (MI) test [Kraskov et al., 2004] as our dependency functional. Because exact167
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independence occurs only at the terminal prior xT ∼ N (0, I), we adopt a tolerance εdep > 0 and168

define the identity-loss timestep as169

TID := min
{
t
∣∣∣ Dep(xt) ≤ εdep

}
, (16)

where Dep(·) denotes the MI-based dependency evaluator. The implementation details are provided170

in Appendix C.1. This evaluator provides a concrete condition under which GA becomes valid from171

the perspective of data identity.172

Distributional Similarity. While data identity decay captures the disappearance of dependence,173

Gaussian approximation also requires that the marginals of xt align with those of a Gaussian distribu-174

tion. To assess this, we measure the distributional similarity between xt and the reference Gaussian175

N (µ̃t, ṽtI) with matching variance using the Kolmogorov–Smirnov (KS) distance [Massey Jr, 1951].176

Concretely, for each dimension x
(j)
t , we compare its empirical cumulative distribution function177

(CDF) Ft,j(x) with the Gaussian CDF Φṽt(x), and average across all dimensions:178

Dt =
1

d

d∑
j=1

Dt,j , where Dt,j = sup
x

∣∣Ft,j(x)− Φṽt(x)
∣∣. (17)

A smaller Dt indicates closer alignment with Gaussian marginals and therefore stronger justification179

for approximation by N (µ̃t, ṽtI). Since exact convergence only holds at the terminal prior xT ∼180

N (µ̃t, I), we adopt a tolerance εDS > 0 and define the distributional-similarity timestep as181

TDS := min
{
t
∣∣∣ Dt ≤ εDS

}
. (18)

As illustrated in Fig. 2, molecular datasets exhibit rapid decay in Dt, reflecting fast convergence to182

Gaussian marginals, while image datasets maintain larger Dt values over many more noise steps.183

From the perspectives of dependency decay and distributional similarity, we obtain a concrete and184

quantitative characterization of the Gaussianity of xt, ensuring that the approximated xT∗ is both185

sufficiently independent and marginally Gaussian. In addition, we define the operational Gaussian-186

approximation timestep as187

T ∗ = max(TID, TDS), (19)

which ensures that xT∗ is both sufficiently independent and marginally Gaussian.188

4 Experiments189

In this section, we empirically evaluate the proposed method on standard molecular generation190

benchmarks. We present the experimental setup, define the evaluation metrics, and report quantitative191

results on both generation quality and efficiency. Additional details on the Gaussianity tests and192

experimental configurations are provided in Appendix C and Appendix D, respectively.193

4.1 Experimental Setup194

Datasets. We conduct experiments on widely-used molecular datasets, QM9 [Ramakrishnan et al.,195

2014] and GEOM-Drugs [Axelrod and Gomez-Bombarelli, 2022]. QM9 contains 130k small196

molecules with up to 29 atoms, while GEOM-Drugs comprises 450k drug-like molecules with an197

average of 44 and up to 181 atoms. The configuration of datasets follows Hoogeboom et al. [2022]198

for regular generation and Xu et al. [2023] for latent-space generation, respectively.199

Baselines. For molecule generation, we conduct comparison experiments on several competitive200

baselines. G-Schnet [Gebauer et al., 2019] and Equivariant Normalizing Flows (ENF) [Garcia Satorras201

et al., 2021] employ autoregressive models for molecule generation. Equivariant Graph Diffusion202

Model (EDM) [Hoogeboom et al., 2022], Geometric Latent Diffusion Model (GeoLDM) [Xu et al.,203

2023], and Equivariant Flow Matching model (EquiFM) [Song et al., 2023] are three representative204

GPPGMs from different perspectives for molecule generation, including regular diffusion, latent205

diffusion, and flow-matching, respectively. Moreover, the invariant versions of EDM (GDM) and206

GeoLDM (GraphLDM) are also employed for comparison.207
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Metrics We evaluate our method on standard molecular generation benchmarks using two broad208

classes of metrics: generation quality and efficiency. For generation quality, we report validity209

(the proportion of chemically valid molecules according to standard valency checks), uniqueness210

(the proportion of distinct molecules among generated samples), molecular stability (the fraction211

of generated molecules satisfying correct valency constraints), and atom stability (the fraction212

of generated atoms satisfying correct valency constraints). Following prior work [Hong et al.,213

2025], these metrics are computed using RDKit-based validation and duplicate filtering over 10,000214

generated samples. For efficiency, we record the average sampling time (S-Time) in GPU seconds215

per sample and total training time (T-Time) in GPU days, both measured on identical hardware216

before and after applying our Gaussian approximation strategy. Moreover, the trajectory length217

(Steps) T ∗ is also shown in the results. These metrics collectively quantify the fidelity, diversity, and218

practical computational benefits of our method.219

4.2 Quantitative Performance220

Table 1: Quantitative results on the QM9 dataset. The best results are shown in bold. Metrics are
calculated using 10,000 samples generated from each model. We run the evaluation for 3 times and
report the mean value. Compared with previous methods, GA benefits all methods, achieving up to a
2.3% improvement in the Valid * Uniq metric, and significantly reduces the generation trajectory
length by 40% without harming learning accuracy. All GA-compared baselines are tested using our
implementation. The best results are shown in bold.

Generation Performance Efficiency

Model
Atom Sta

(%)
Mol Sta

(%)
Valid
(%)

Valid * Uniq
(%)

S-Time
(GPU sec.)

T-Time
(GPU day)

Traj. Len.
(Steps)

Data 99.0 95.2 97.7 97.7 - - -
ENF 85.0 4.9 40.2 39.4 - - -
G-Schnet 95.7 68.1 85.5 80.3 - - -
GDM-AUG 97.6 71.6 90.4 89.5 0.52 2.9 1000
GraphLDM 97.2 70.5 83.6 82.7 0.36 5.7 1000
EDM 98.4 81.8 91.9 90.7 0.65 5.6 1000
EDM + IAGA 98.9 85.6 94.7 92.0 0.36 3.1 550
GeoLDM 98.9 89.8 94.0 91.9 0.64 11.7 1000
GeoLDM + IAGA 99.2 92.3 96.7 94.4 0.42 7.2 650
EquiFM 98.5 87.3 94.9 93.4 0.17 6.2 1000
EquiFM + IAGA 99.0 91.2 96.2 93.7 0.15 4.9 800

‘-’ denotes the invalid or not recorded setting in the original publication.

We evaluate the effectiveness of the proposed Gaussian Approximation (GA) across multiple molecu-221

lar generative baselines on both the QM9 and GEOM-Drugs datasets. As shown in Tables 1 and 2,222

GA consistently improves generation quality while significantly reducing both training and sampling223

cost. Crucially, our method shortens the diffusion trajectory, by up to 40%, without degrading the224

learning accuracy of the generative model. This is because GA does not alter the original noise225

schedule or variance scaling used during training; instead, it exploits the observation that molecular226

data loses its identity rapidly in the diffusion process, allowing training and sampling to begin from an227

earlier noise step without violating the underlying stochastic process. On the QM9 dataset, GA yields228

up to a 2.3% improvement in the Valid * Uniq metric, reflecting gains in both chemical correctness229

and diversity of the generated molecules

Table 2: Quantitative results on GEOM dataset. Metrics are calculated using 10,000 samples
generated from each model. We run the evaluation for 3 times and report the mean value. In general,
GA improves generation performance and provides better efficiency across models. The best results
are shown in bold.

Generation Performance Efficiency
Model Atom Sta (%) Valid (%) S-Time (GPU sec.) Traj. Len. (Steps)
Data 86.5 99.9 – –
GDM-AUG 77.7 91.8 – 1000
GraphLDM 76.2 97.2 – 1000
EDM 81.3 92.6 10.9 1000
EDM + IAGA 84.3 93.4 6.4 650
GeoLDM 84.4 99.3 10.2 1000
GeoLDM + IAGA 89.3 98.0 7.1 650

‘-’ denotes the invalid or not recorded setting in the original publication.
230
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Similar benefits are observed on the more challenging GEOM-Drugs dataset. In this experiment,231

we omit metrics such as uniqueness (which is consistently close to 100%) and molecule stability232

(which remains near 0%) due to their limited discriminative value across different methods. Overall,233

GA consistently improves atom-level stability and reduces the training and sampling time across234

various baselines. These improvements are particularly noteworthy given that GA requires no changes235

to model architecture or parameters. Instead, it modifies only the generation trajectory length by236

leveraging the rapid identity decay characteristic of molecular structures. This enables the model237

to focus on denoising stages where the molecular structure begins to emerge, leading to faster238

convergence without incurring additional transport cost or unnecessary noise inference from the239

skipped steps.240

5 Related Work241

Probability Path-based Generative Models (PPGMs). PPGMs generate samples over data dis-242

tributions by learning a transport process that maps simple prior distributions to complex data243

distributions through a sequence of structured transformations, i.e., the probability path. Specifically,244

diffusion-based generative models simulate this sequential transformation via stochastic differential245

equations, which have emerged as a powerful paradigm for multi-modal data synthesis [Croitoru246

et al., 2023, Kementzidis et al., 2025, Xu et al.]. However, their iterative sampling (often requiring247

hundreds of steps) poses a significant speed bottleneck. A variety of techniques aim to accelerate248

diffusion sampling, such as progressive distillation [Salimans and Ho, 2022] and learned noising249

schedules [Williams et al., 2024]. Nevertheless, the training process still typically requires hundreds250

of steps. Beyond diffusion models, Flow Matching offers a fresh perspective on acceleration. Flow251

Matching trains a continuous normalizing flow by regressing an optimal vector field along prescribed252

paths. Lipman et al. [2022] showed that using diffusion-style Gaussian paths in flow matching yields253

more robust training and faster ODE-based sampling. However, the nonlinear and high-curvature254

nature of learned transport fields makes it challenging to accurately approximate such trajectories255

with few discretization steps during training [Hassan et al., 2024, Eijkelboom et al., 2024].256

Gaussian Approximation (GA). GA has long been a cornerstone in machine learning theory257

and practice. The Central Limit Theorem provides a classical justification: aggregates of many258

random factors tend toward a Gaussian distribution, which often explains why high-dimensional259

features or latent codes appear approximately normal [Hazra et al., 2021, Düker et al., 2024]. Some260

researchers have explored the potential of the Gaussian approximation in generative modeling. For261

instance, Wang and Vastola observe that at high noise levels, the learned diffusion score can be262

well-approximated by a linear Gaussian model. Therefore, they can skip 15–30% of the sampling263

steps without degrading output fidelity. Such findings reinforce the idea that Gaussian assumptions264

can serve as an effective proxy for complex distributions in certain regimes, providing practical265

speedups without significant fidelity loss.266

6 Conclusion and Future Work267

In this work, we introduced a principled framework for efficient GPPGMs on 3D molecular generation.268

By leveraging zero-mean preprocessing and empirical variance estimation, we proposed an analytic269

Gaussian approximation that identifies a characteristic time step T ∗ at which data identity effectively270

vanishes and the forward process becomes distributionally Gaussian. This approximation enables271

the truncation of redundant noise steps, which are inefficient transport between “Gaussian-like”272

distributions. Therefore, our IAGA can improve the efficiency of both sampling and training and yields273

consistent improvements in generation quality across multiple molecular generation benchmarks.274

Future Work. Despite its empirical success, the current framework assumes that the data modality275

is zero-mean invariant. While this assumption holds in many geometric and categorical domains, it276

is not valid for modalities like natural images or videos, where the absolute mean carries semantic277

information. Extending our methodology to such domains requires further methods for determining278

identity loss and Gaussianity without relying on zero-mean centering.279

8



References280

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured281

denoising diffusion models in discrete state-spaces. Advances in neural information processing282

systems, 34:17981–17993, 2021.283

Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations284

for property prediction and molecular generation. Scientific Data, 9(1):185, 2022.285

Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent variates.286

Transactions of the american mathematical society, 49(1):122–136, 1941.287

Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier288

bootstrap for maxima of sums of high-dimensional random vectors. 2013.289

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models290

in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9):291

10850–10869, 2023.292

Hang Deng and Cun-Hui Zhang. Beyond gaussian approximation. The Annals of Statistics, 48(6):293

3643–3671, 2020.294

Marie-Christine Düker, Robert Lund, and Vladas Pipiras. High-dimensional latent gaussian count295

time series: Concentration results for autocovariances and applications. Electronic Journal of296

Statistics, 18(2):5484–5562, 2024.297

Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem298

van de Meent. Variational flow matching for graph generation. Advances in Neural Information299

Processing Systems, 37:11735–11764, 2024.300

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications.301

Elsevier, 2023.302

Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)303

equivariant normalizing flows. Advances in Neural Information Processing Systems, 34:4181–4192,304

2021.305

Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point306

sets for the targeted discovery of molecules. Advances in neural information processing systems,307

32, 2019.308

Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.309

Et-flow: Equivariant flow-matching for molecular conformer generation. Advances in Neural310

Information Processing Systems, 37:128798–128824, 2024.311

Arnab Hazra, Raphaël Huser, and Árni V Jóhannesson. Latent gaussian models for high-dimensional312

spatial extremes. arXiv preprint arXiv:2110.02680, 2021.313

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint314

arXiv:2006.11239, 2020.315

Haokai Hong, Wanyu Lin, and Kay Chen Tan. Accelerating 3d molecule generation via jointly geo-316

metric optimal transport. In The Thirteenth International Conference on Learning Representations,317

2025.318

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion319

for molecule generation in 3d. In International conference on machine learning, pages 8867–8887.320

PMLR, 2022.321

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-322

based generative models. Advances in neural information processing systems, 35:26565–26577,323

2022.324

9



Georgios Kementzidis, Erin Wong, John Nicholson, Ruichen Xu, and Yuefan Deng. An it-325

erative framework for generative backmapping of coarse grained proteins. arXiv preprint326

arXiv:2505.18082, 2025.327

Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.328

Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 69(6):066138, 2004.329

Greg Landrum et al. Rdkit: Open-source cheminformatics, 2016.330

Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen,331

Sungroh Yoon, and Tie-Yan Liu. Priorgrad: Improving conditional denoising diffusion models332

with data-dependent adaptive prior. arXiv preprint arXiv:2106.06406, 2021.333

Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Controllable text-to-image generation.334

Advances in neural information processing systems, 32, 2019.335

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching336

for generative modeling. arXiv preprint arXiv:2210.02747, 2022.337

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast338

ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural339

Information Processing Systems, 35:5775–5787, 2022.340

Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model for341

stochastic trajectory prediction. In Proceedings of the IEEE/CVF conference on computer vision342

and pattern recognition, pages 5517–5526, 2023.343

Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. Journal of the American344

statistical Association, 46(253):68–78, 1951.345

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum346

chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.347

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv348

preprint arXiv:2202.00512, 2022.349

Vıctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.350

In International conference on machine learning, pages 9323–9332. PMLR, 2021.351

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv352

preprint arXiv:2010.02502, 2020.353

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,354

and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule355

generation. Advances in Neural Information Processing Systems, 36:549–568, 2023.356

Roman Vershynin. How close is the sample covariance matrix to the actual covariance matrix?357

Journal of Theoretical Probability, 25(3):655–686, 2012.358

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pascal Frossard.359

Digress: Discrete denoising diffusion for graph generation. arXiv preprint arXiv:2209.14734,360

2022.361

Binxu Wang and John Vastola. The unreasonable effectiveness of gaussian score approximation for362

diffusion models and its applications. Transactions on Machine Learning Research.363

Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal364

diffusion schedules. arXiv preprint arXiv:2412.07877, 2024.365

Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric366

diffusion model for molecular conformation generation. In International Conference on Learning367

Representations.368

10



Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent369

diffusion models for 3d molecule generation. In International Conference on Machine Learning,370

pages 38592–38610. PMLR, 2023.371

Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection372

for fast diffusion models. In Proceedings of the AAAI Conference on Artificial Intelligence,373

volume 39, pages 9914–9922, 2025.374

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao375

Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng376

Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,377

Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards,378

Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,379

Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,380

Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik,381

Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro382

Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,383

Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.384

Artificial intelligence for science in quantum, atomistic, and continuum systems. arXiv preprint385

arXiv:2307.08423, 2023.386

11



Appendix387

A Examples and Analysis of Zero-mean Invariant Data388

We aim to show that for data modalities satisfying zero-mean invariance, the operation of mean-389

centering preserves all structural information relevant to generative modeling. We mainly discuss the390

Euclidean and non-uniform one-hot cases, which are tested in our experiments.391

Euclidean Data. Let {xi}ni=1 ⊂ Rd denote a collection of n vectors (e.g., 3D Euclidean coordi-392

nates of atoms). Define the sample mean x̄ = 1
n

∑n
i=1 xi, and let x̃i = xi − x̄ be the centered393

representation. We claim that pairwise Euclidean distances are invariant under mean-centering:394

∥x̃i − x̃j∥2 = ∥(xi − x̄)− (xj − x̄)∥2 = ∥xi − xj∥2. (20)

Hence, all geometric properties that depend on inter-point distances, such as adjacency structures,395

bond lengths, or conformational shapes, are preserved exactly under centering. Consequently,396

zero-mean projection retains full information about the relational structure of the data.397

Non-Uniform One-Hot Categorical Vectors. Let hi ∈ {0, 1}d denote a one-hot encoded vector398

satisfying
∑d

j=1(hi)j = 1, and let h̄ = 1
n

∑n
i=1 hi be the sample mean across a batch of n such399

vectors. Define the centered vector h̃i = hi− h̄. Note that each h̃i ∈ Rd lies in a subspace orthogonal400

to the constant vector 1d, since:401

d∑
j=1

(h̃i)j =

d∑
j=1

(hi − h̄)j = 1−
d∑

j=1

h̄j = 0. (21)

Moreover, the inner product between two centered vectors h̃i and h̃j satisfies:402

⟨h̃i, h̃j⟩ = ⟨hi, hj⟩ − ⟨hi, h̄⟩ − ⟨h̄, hj⟩+ ⟨h̄, h̄⟩, (22)

from which it follows that pairwise centered dot products retain sufficient information to distinguish403

between original categorical identities once the category set is not degenerate (e.g., uniform). Since404

each one-hot vector hi is uniquely defined by a single active index, subtracting the global mean h̄405

merely induces a translation within the categorical simplex. The position of the maximal entry in406

h̃i still identifies the active class as long as h̄ does not collapse distinct hi vectors onto the same407

centered value. Therefore, for any non-uniform categorical data embedded via one-hot encoding,408

mean-centering preserves the identity of the active component up to an affine transformation of the409

ambient space. As a result, zero-mean preprocessing retains the categorical semantics necessary for410

generative modeling under Euclidean approximation schemes.411

B Proof of Proposition 3412

Cumulants. Let X ∈ Rd have moment generating function (mgf) MX(u) = E[eu⊤X ] and cumu-413

lant generating function KX(u) = logMX(u), u ∈ Rd. The k-th cumulant tensor is414

(
C(k)(X)

)
i1,...,ik

=
∂kKX(u)

∂ui1 · · · ∂uik

∣∣∣∣
u=0

, k ≥ 1.

In particular C(1)(X) = µ := E[X], C(2)(X) = Σ := Cov(X), and C(k)(G) = 0 for all k ≥ 3 if415

G is Gaussian.416

Setup (VP forward map). Let {xt}Tt=0 be the forward (noising) trajectory under a variance-417

preserving schedule. Fix t ∈ [0, T ) and s > t. Then418

xs =
√

ᾱs|t xt +
√

1− ᾱs|t ε, ε ∼ N (0, I), ε ⊥ xt, ᾱs|t := ᾱs/ᾱt ∈ (0, 1). (23)
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Gaussianity–and–independence functional (definition). Let D := {Diag(v) : v ∈ Rd} be the419

diagonal subspace and define the orthogonal projections420

ΠD(Σ) := Diag(diag Σ), ΠD⊥(Σ) := Σ−ΠD(Σ).

For weights β > 0 and wk > 0 (k ≥ 3), define for any random vector x ∈ Rd421

H(K)(x) := β
∥∥ΠD⊥(Cov(x))

∥∥
F

+

K∑
k=3

wk

∥∥C(k)(x)
∥∥
F
. (24)

Lemma B.1 (VP propagation of moments/cumulants and contraction of H(K)). Let t ∈ [0, T ) and422

s > t, and write a := ᾱs|t ∈ (0, 1). Under (23), with Σt := Cov(xt) and Bk,t :=
∥∥C(k)(xt)

∥∥
F

for423

k ≥ 3,424

µs =
√
aµt, Σs = aΣt + (1− a) I,

∥∥C(k)(xs)
∥∥
F
= ak/2Bk,t (k ≥ 3).

Consequently,425

H(K)(xs) = β a
∥∥ΠD⊥(Σt)

∥∥
F
+

K∑
k=3

wk a
k/2 Bk,t, (25)

and426

∂

∂a
H(K)(xs) = β

∥∥ΠD⊥(Σt)
∥∥
F
+

K∑
k=3

wk
k

2
ak/2−1 Bk,t > 0

whenever
∥∥ΠD⊥(Σt)

∥∥
F
+

∑K
k=3 Bk,t > 0. Hence, since a = ᾱs|t decreases strictly in s for a VP427

schedule, H(K)(xs) is strictly decreasing in s unless xt is already an independent Gaussian (in428

which case H(K)(xs) ≡ 0).429

Proof. First, µs = E[xs] =
√
aµt +

√
1− aE[ε] =

√
aµt. For the covariance, write xs =430 √

axt +
√
1− a ε and center by the means:431

xs − µs =
√
a (xt − µt) +

√
1− a ε.

Independence and E[ε] = 0 give432

Σs = E
[
(xs − µs)(xs − µs)

⊤] = aΣt + (1− a)E[εε⊤] = aΣt + (1− a) I.

Linearity of ΠD⊥ and I ∈ D yield433

ΠD⊥(Σs) = ΠD⊥(aΣt) + (1− a)ΠD⊥(I) = aΠD⊥(Σt),

hence ∥ΠD⊥(Σs)∥F = a ∥ΠD⊥(Σt)∥F .434

For cumulants, independence implies additivity: C(k)(X + Y ) = C(k)(X) + C(k)(Y ) when X ⊥435

Y (this follows from KX+Y (u) = KX(u) + KY (u)). Homogeneity follows from KcX(u) =436

logE[eu⊤cX ] = KX(cu) and the chain rule:437

∂k

∂ui1 · · · ∂uik

KcX(u)

∣∣∣∣
u=0

= ck
∂k

∂ui1 · · · ∂uik

KX(u)

∣∣∣∣
u=0

⇒ C(k)(cX) = ckC(k)(X).

Because a Gaussian has C(k)(ε) = 0 for k ≥ 3,438

C(k)(xs) = C(k)(
√
axt) + C(k)(

√
1− a ε) = ak/2C(k)(xt),

so ∥C(k)(xs)∥F = ak/2∥C(k)(xt)∥F . Plugging these identities into (24) gives (25). Finally, since439

β > 0, wk > 0 and Bk,t ≥ 0, the displayed derivative is > 0 whenever not all terms vanish. As a440

strictly decreases in s for VP, H(K)(xs) strictly decreases in s unless already identically zero.441

Lemma B.2 (θ-decomposition via prefix sums). For a ∈ (0, 1), define442

θ2(a) := a− a3/2, θm(a) := am/2 − a(m+1)/2 (3 ≤ m ≤ K − 1), θK(a) := aK/2,
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and for m ∈ {2, 3, . . . ,K} define the prefix functionals443

H(m)(xt) := β
∥∥ΠD⊥(Σt)

∥∥
F
+

m∑
k=3

wk

∥∥C(k)(xt)
∥∥
F
.

Then θm(a) > 0 for all m and a ∈ (0, 1), and the closed form (25) admits444

H(K)(xs) =

K∑
m=2

θm(a)H(m)(xt), with
K∑

m=j

θm(a) = aj/2 for each j ∈ {2, 3, . . . ,K}.

(26)

Proof. For 0 < a < 1, θm(a) = am/2(1− a1/2) > 0 for m ≤ K − 1 and θK(a) = aK/2 > 0. To445

prove (26), expand the right-hand side:446

K∑
m=2

θm(a)H(m)(xt) =
( K∑

m=2

θm(a)
)
β∥ΠD⊥(Σt)∥F +

K∑
k=3

( K∑
m=k

θm(a)
)
wk∥C(k)(xt)∥F .

Hence it suffices to show the tail-sum identities
∑K

m=2 θm(a) = a and
∑K

m=k θm(a) = ak/2 for447

each k ∈ {3, . . . ,K}. For k ≤ K − 1,448

K−1∑
m=k

(
am/2 − a(m+1)/2

)
+ aK/2 =

(
ak/2 − a(k+1)/2

)
+ · · ·+

(
a(K−1)/2 − aK/2

)
+ aK/2 = ak/2,

a telescoping sum; the case k = K is immediate. The identity for k = 2 is the same computation449

with k = 2. Substituting these tail-sums into the expansion recovers (25).450

Lemma B.3 (Order preservation under prefix dominance). Let A,B be two classes of data set.451

Assume the prefix dominance452

H(m)(xA
t ) ≤ H(m)(xB

t ) for all m = 2, 3, . . . ,K, (27)

with at least one strict inequality. Then, for every s > t (equivalently, every a ∈ (0, 1)),453

H(K)(xA
s ) =

K∑
m=2

θm(a)H(m)(xA
t ) <

K∑
m=2

θm(a)H(m)(xB
t ) = H(K)(xB

s ),

and the inequality is strict because all θm(a) > 0 for a ∈ (0, 1).454

Proof. By Lemma B.2, H(K)(xs) =
∑K

m=2 θm(a)H(m)(xt) with θm(a) > 0. Applying (27)455

termwise gives H(K)(xA
s ) ≤ H(K)(xB

s ). Strictness follows because at least one index m⋆ satisfies456

H(m⋆)(xA
t ) < H(m⋆)(xB

t ) and θm⋆(a) > 0, hence the weighted sum is strictly smaller.457

Lemma B.1 shows that for each initialization, s 7→ H(K)(xs) is strictly decreasing (unless already458

at an independent Gaussian). Lemma B.3 states that if A is prefix-dominant over B at time t, then459

H(K)(xA
s ) < H(K)(xB

s ) for every s > t. Therefore, for any threshold ε > 0, the hitting times460

TX(ε) := inf{s > t : H(K)(xX
s ) ≤ ε}

satisfy TA(ε) < TB(ε), which formalizes that under VP the speed to gain sufficient Gaussianity for461

A is faster than for B whenever A starts closer to Gaussian in the sense of (27).462

Moreover, if there exist nondecreasing functions φdep, φks : [0,∞) → [0,∞) with φdep(0) =463

φks(0) = 0 such that for every s > t,464

Dep(xs) ≤ φdep

(
H(K)(xs)

)
, D(xs) ≤ φks

(
H(K)(xs)

)
, (28)

then, for any tolerances εdep, εDS > 0,465

TA
ID := inf{s > t : Dep(xA

s ) ≤ εdep} ≤ TB
ID, TA

DS := inf{s > t : D(xA
s ) ≤ εDS} ≤ TB

DS,

and hence T ∗
A := max(TA

ID, T
A
DS) ≤ T ∗

B , with strict inequality if (27) is strict for some m.466
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C Gaussianity Test Details467

C.1 Identity Test468

By treating xt as a sample from an intractable noised data distribution, we estimate the empirical469

mutual information (MI) across both the sample-wise and feature-wise dimensions of the data tensor.470

MI quantifies the degree of statistical dependency between random variables by measuring the471

divergence between their joint distribution and the product of their marginals. For two random vectors472

X and Y , the mutual information is defined as:473

I(X;Y ) =

∫ ∫
pX,Y (x, y) log

pX,Y (x, y)

pX(x) pY (y)
dx dy, (29)

where pX,Y (x, y) denotes the joint probability density, and pX(x), pY (y) are the marginal densities474

of X and Y , respectively.475

Given a data matrix representation of xt, we estimate the dependency across dimensions (features)476

within each data point and across data points for each dimension to represent the identity. Formally,477

let Xrows and Xcols denote the sets of row-wise and column-wise slices, respectively. Then, the478

empirical MI scores are given by:479

MIrows =
1

|Xrows|
∑

x∈Xrows

I(x), MIcols =
1

|Xcols|
∑

x∈Xcols

I(x), (30)

where I(x) denotes the estimated mutual information of the given vector x across its components. As480

t increases, these statistics decay toward zero, indicating diminishing dependency and the emergence481

of approximate independence in xt.482

C.2 Distributional Similarity via KS-Test483

To evaluate whether the noised data xt has become sufficiently similar to the Gaussian distribution484

N (0, ṽtI), we perform statistical testing based on the Kolmogorov–Smirnov (KS) criterion. At485

each test timestep t, we apply the one-sample KS test dimension-wise to the components of xt after486

zero-centering, treating each variable as an independent sample drawn from the empirical distribution.487

Specifically, for each dimension j ∈ {1, . . . , d}, we compute the empirical cumulative distribution488

function (CDF) Ft,j(x) and compare it against the theoretical CDF Φṽt(x) of a univariate normal489

distribution with zero mean and variance ṽt, derived analytically from the forward noise schedule.490

The test statistic is defined as:491

Dt,j = sup
x

|Ft,j(x)− Φṽt(x)| . (31)

For each coordinate j, we test H0 :, x
(j)
t ∼ N (0, ṽt) against H1 :, x

(j)
t ̸∼ N (0, ṽt). Under H0,492

with sample size n, the scaled statistic
√
n,Dt,j converges to the Kolmogorov distribution with493

CDF 1− 2
∑∞

k=1(−1)k−1 exp(−2k2λ2), yielding the 5% critical threshold Dt,j > c0.05/
√
n (with494

c0.05 ≈ 1.36 asymptotically). We declare that timestep t satisfies the Gaussianity criterion if at495

least 95% of coordinates fail to reject H0, i.e., xt is statistically indistinguishable from the reference496

N (0, ṽtI) at 95% confidence level.497

D Experimental Settings498

D.1 Backbone model499

In our experiments, all molecular generation baselines utilize the Equivariant Graph Neural Network500

(EGNN) [Satorras et al., 2021] as the backbone architecture for generative processing. EGNN501

operates on graphs embedded in Euclidean space and are designed to be equivariant under rigid-body502

transformations from the special Euclidean group SE(3), including rotations and translations. This503

property ensures that molecular outputs transform consistently with the input geometry, preserving504

critical physical symmetries.505
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Formally, consider a molecule represented as a fully connected graph with N nodes, where each node506

i has coordinates xi ∈ R3 and associated atom features hi ∈ Rd. At each EGNN layer, node features507

and positions are updated through message-passing operations:508

mij = ϕe(hi,hj , ∥xi − xj∥2),

h′
i = ϕh

hi,
∑
j ̸=i

αijmij

 ,

x′
i = xi +

∑
j ̸=i

xi − xj

∥xi − xj∥+ ϵ
ϕx(hi,hj , ∥xi − xj∥2),

(32)

where ϕe, ϕh, and ϕx are learnable functions (typically MLPs), and αij is an optional attention or509

reweighting term. The update rule guarantees that output features are equivariant with respect to510

SE(3) transformations. This equivariant structure is critical for molecular generative tasks, as the511

physical properties of molecules are invariant to coordinate shifts and rotations.512

D.2 Implementation Details513

For all baseline models, we follow the official open-sourced codebases and retain their default514

hyperparameters unless otherwise specified. Gaussian Approximation is applied after the truncation515

step T ∗, as estimated via our KS and MI-based Gaussianity evaluation.516

All molecular generation evaluation metrics are computed on 10,000 generated molecules using517

RDKit [Landrum et al., 2016]. Validity and atom stability are defined by valency correctness, and518

uniqueness is computed as the percentage of distinct canonical SMILES. Sampling time is measured519

as the average GPU seconds to generate one molecule, while training time reflects total GPU days520

until the last pre-defined epochs in the official repositories.521

All experiments are conducted on a computing cluster equipped with NVIDIA RTX 3090 GPUs,522

each with 24 GB memory. Training is parallelized across 2 GPUs using PyTorch DDP framework,523

while inference experiments are executed on a single GPU for fair comparison of sampling speed.524

The CPUs are Intel(R) Core(TM) i9-12900KF. Unless otherwise specified, we report sampling time525

as the average GPU seconds per generated sample, and training time in GPU days until the max526

epochs from the baselines’ official repositories. All baseline implementations use their official code,527

pre-trained weights (if available) and hyperparameters to ensure comparability.528
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