
IAGA: Identity-Aware Gaussian Approximation for Efficient 3D Molecular Generation

Anonymous Author(s)

Affiliation
Address
email

Abstract

1 Gaussian Probability Path based Generative Models (GPPGMs) generate data by
2 reversing a stochastic process that progressively corrupts samples with Gaussian
3 noise. While these models have achieved state-of-the-art performance in 3D
4 molecular generation, their practical deployment remains constrained by the high
5 computational cost of long generative trajectories, involving hundreds to thousands
6 of steps during model training and sampling. In this work, we introduce a novel
7 method that improves the efficiency of 3D molecular generation without sacrificing
8 training granularity or inference fidelity. Our key insight is that different data
9 modalities will exhibit markedly different rates of convergence to Gaussianity in
10 the forward process of GPPGMs. We analytically identify a characteristic step at
11 which the data has acquired sufficient Gaussianity, and then replace the remaining
12 generation trajectory with a closed-form Gaussian approximation. Unlike existing
13 techniques that accelerate the generation process via reformulating or coarsening
14 the trajectories, our method preserves the full resolution of learning dynamics
15 while avoiding redundant distributional transport with little data identity remained.
16 Empirical results across different 3D molecular generation datasets demonstrate
17 substantial improvements in both sample quality and computational efficiency.

18

1 Introduction

19 Generative models, particularly Gaussian Probability Path based Generative Models (GPPGMs),
20 have demonstrated impressive performance across diverse domains such as images [Li et al., 2019],
21 text [Austin et al., 2021], and molecules [Zhang et al., 2023]. However, the generative trajectories are
22 typically modeled as the solution to a stochastic differential equation (SDE) or ordinary differential
23 equation (ODE), which are often represented by hundreds to thousands of steps for better learning
24 granularity. The heavy computational demand thus becomes one of their key limitations, especially
25 for 3D molecular data. To improve the efficiency, prior work has largely focused on sampling
26 acceleration, for example, coarsening trajectories with reduced-step solvers [Song et al., 2020, Lu
27 et al., 2022, Karras et al., 2022] and retrieval-based methods [Zhang et al., 2025]. While effective
28 for inference, these approaches either compromise trajectory granularity or leave training costs
29 unaffected. Efforts closer to training, such as adaptive priors [Lee et al., 2021, Vignac et al., 2022]
30 and leapfrog initializers for trajectory prediction [Mao et al., 2023], still depend on modifications of
31 the noising process or specialized architectures, rendering them domain-specific and difficult to apply
32 to 3D molecular generation.

33 In this work, we propose a novel method that improves both training and sampling efficiency of
34 GPPGMs via Gaussian Approximation (GA). A key feature of our framework is that it naturally
35 applies to zero-mean invariant modalities, a broad and practically important class including molecular
36 graphs and 3D geometric data, where zero-mean is a common data regularization method without
37 information loss. Rather than coarsening the generative trajectories or modifying the predefined noise

38 schedule, our method identifies a characteristic time step T^* at which the input data distribution has
 39 effectively lost its specific identity while gaining sufficient Gaussianity. *Based on this point, the*
 40 *generation trajectory can be truncated, and the final distribution can be approximated by a tractable*
 41 *Gaussian reference distribution with analytically derived mean and variance, as shown in Fig. 1.*
 42 **This design yields two key merits absent in existing methods: (1) ability for training acceleration**
 43 **via eliminating ineffective optimization on over-noised inputs, and (2) sampling fidelity preser-**
 44 **vation by maintaining the accuracy and granularity of the original generative trajectories.** We
 45 empirically validate our method across different 3D molecular datasets, demonstrating significant
 46 improvements in both sampling and training efficiency with high-quality generation.

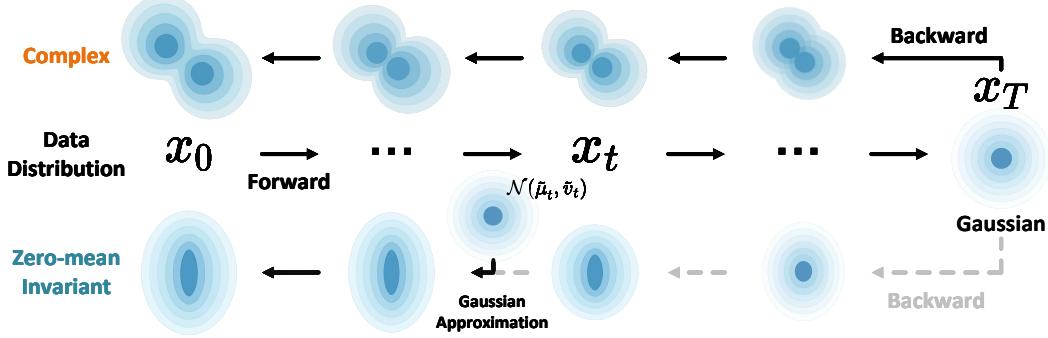


Figure 1: The flowchart of the IAGA. When the noised data distribution \mathbf{x}_t has lost its identity at timestep t , we approximate it with a reference Gaussian $\mathcal{N}(\bar{\mu}_t, \bar{v}_t)$. In such case, the length of the generative trajectory can be reduced from T steps to t steps.

47 2 Preliminaries

48 2.1 Gaussian Probability Path based Generative Models

49 GPPGMs construct complex data distributions by learning to reverse a reference stochastic process
 50 that progressively corrupts clean data with Gaussian noise. Given a data sample \mathbf{x}_0 drawn from
 51 the target distribution $p_{\text{data}}(\mathbf{x})$, we define a forward (noising) process that maps \mathbf{x}_0 to a sequence
 52 of latent states $\{\mathbf{x}_t\}_{t=1}^T$. A commonly used instantiation of this noising process is a time-indexed
 53 Gaussian perturbation:

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t \mid \sqrt{\bar{\alpha}_t} \mathbf{x}_0, \bar{\sigma}_t^2 \mathbf{I}), \quad (1)$$

54 where $\bar{\alpha}_t \in [0, 1]$ controls the decay of the signal power over time. Typically, $\bar{\alpha}_t$ is defined as
 55 $\bar{\alpha}_t = \prod_{s=1}^t \alpha_s$, with $\alpha_t \in (0, 1)$ monotonically decreasing such that $\bar{\alpha}_0 \approx 1$ and $\bar{\alpha}_T \approx 0$, ensuring
 56 that \mathbf{x}_T approaches a tractable reference distribution, often taken to be $\mathcal{N}(\mathbf{0}, \bar{\sigma}_T^2 \mathbf{I})$.

57 In the case of variance-preserving (VP) forward processes, defined by $\bar{\sigma}_t = \sqrt{1 - \bar{\alpha}_t}$, the forward
 58 process admits the following Markov factorization:

$$q(\mathbf{x}_{1:T} \mid \mathbf{x}_0) = \prod_{t=1}^T q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \prod_{t=1}^T \mathcal{N}(\mathbf{x}_t \mid \alpha_{t|t-1} \mathbf{x}_{t-1}, \sigma_{t|t-1}^2 \mathbf{I}), \quad (2)$$

59 where $\alpha_{t|t-1} = \bar{\alpha}_t / \bar{\alpha}_{t-1}$ and $\sigma_{t|t-1}^2 = 1 - \alpha_{t|t-1}^2$. The VP forward process is the most commonly
 60 used formulation in the design of GPPGMs. Unless otherwise specified, we adopt the VP noising
 61 schedule throughout this work.

62 The reverse (denoising) process, which models $p(\mathbf{x}_{t-1} \mid \mathbf{x}_t)$, admits a closed-form expression under
 63 the Gaussian assumption:

$$q(\mathbf{x}_{t-1} \mid \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1} \mid \mu_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\sigma}_t^2 \mathbf{I}), \quad (3)$$

64 where

$$\mu_t(\mathbf{x}_t, \mathbf{x}_0) = \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \bar{\alpha}_t)}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_0 + \frac{\sqrt{\bar{\alpha}_t}(\bar{\alpha}_{t-1} - \bar{\alpha}_t)}{1 - \bar{\alpha}_{t-1}} \mathbf{x}_t, \quad \tilde{\sigma}_t^2 = \frac{(1 - \bar{\alpha}_t)(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t-1}}.$$

65 This Gaussian formulation facilitates a tractable variational objective and enables efficient sampling
 66 algorithms that are central to GPPGMs.

67 **Learning the Reverse Process** A key feature of GPPGMs is that the reverse-time generative
 68 process is constructed to approximate the true posterior $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)$. Since the original sample
 69 \mathbf{x}_0 is unavailable during generation, it is replaced by a neural estimate $\hat{\mathbf{x}}_0 = \phi(\mathbf{x}_t, t)$ inferred from
 70 the current noisy observation. The generative transition distribution is then defined as:

$$p(\mathbf{x}_{t-1} | \mathbf{x}_t) = \mathcal{N}(\mathbf{x}_{t-1} | \boldsymbol{\mu}_t(\mathbf{x}_t, \hat{\mathbf{x}}_0), \tilde{\sigma}_t^2 \mathbf{I}), \quad (4)$$

71 where the mean and variance retain the form of the true posterior, with \mathbf{x}_0 replaced by its approxi-
 72 mation $\hat{\mathbf{x}}_0$. Given this generative model, we can derive a variational lower bound on the marginal
 73 log-likelihood:

$$\log p(\mathbf{x}_0) \geq \mathcal{L}_0 + \mathcal{L}_{\text{base}} + \sum_{t=1}^T \mathcal{L}_t, \quad (5)$$

74 where $\mathcal{L}_0 = \log p(\mathbf{x}_0 | \mathbf{x}_1)$ is the terminal reconstruction term, $\mathcal{L}_{\text{base}} = -\text{KL}(q(\mathbf{x}_T | \mathbf{x}_0) \| p(\mathbf{x}_T))$
 75 regularizes the marginal at the final time step, and

$$\mathcal{L}_t = -\text{KL}(q(\mathbf{x}_{t-1} | \mathbf{x}_0, \mathbf{x}_t) \| p(\mathbf{x}_{t-1} | \mathbf{x}_t)), \quad \text{for } t = 1, \dots, T. \quad (6)$$

76 In practice, the base KL term $\mathcal{L}_{\text{base}}$ becomes negligible when $\alpha_T \approx 0$, and the data term \mathcal{L}_0 is
 77 often near zero for discrete \mathbf{x}_0 when $\alpha_0 \approx 1$. Meanwhile, Ho et al. [2020] found it more stable to
 78 parameterize ϕ as a noise predictor: rather than outputting $\hat{\mathbf{x}}_0$ directly, the network predicts the noise
 79 vector $\hat{\boldsymbol{\epsilon}}$ such that $\mathbf{x}_t \approx \alpha_t \mathbf{x}_0 + \sigma_t \boldsymbol{\epsilon}$. In this case, $\hat{\mathbf{x}}_0$ can be recovered via $\hat{\mathbf{x}}_0 = \frac{1}{\alpha_t} (\mathbf{x}_t - \sigma_t \hat{\boldsymbol{\epsilon}})$. This
 80 formulation leads to a simplified training objective, where each KL term \mathcal{L}_t reduces to a weighted
 81 denoising score-matching loss:

$$\mathcal{L}_t = \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\frac{1}{2} w_t \|\boldsymbol{\epsilon} - \hat{\boldsymbol{\epsilon}}\|^2 \right], \quad (7)$$

82 where w_t is a scalar weight derived from the noise schedule. This structure naturally extends
 83 to various GPPGM frameworks, including diffusion models [Ho et al., 2020] and flow-matching
 84 models [Lipman et al., 2022], both of which aim to approximate the conditional dynamics of the
 85 reverse process via supervised regression on progressively removed noise.

86 2.2 Zero-Mean Invariance

87 A data modality is *zero-mean invariant* if centering each sample by subtracting its empirical mean
 88 preserves all the information necessary for downstream modeling. Formally, let $\mathbf{x} \in \mathbb{R}^d$ denote a data
 89 sample, and define its centered version as:

$$\tilde{\mathbf{x}} = \mathbf{x} - \frac{1}{d} \sum_{i=1}^d \mathbf{x}_i \cdot \mathbf{1}_d, \quad (8)$$

90 where $\mathbf{1}_d \in \mathbb{R}^d$ is the vector of all 1-s. A data modality is said to satisfy zero-mean invariance if, for
 91 all \mathbf{x} in the support of the data distribution $p(\mathbf{x})$, the transformation $\mathbf{x} \mapsto \tilde{\mathbf{x}}$ retains the semantic or
 92 structural information of the original input.

93 This property is common in domains where only internal relationships among dimensions carry
 94 information, while global offsets are irrelevant or redundant. Typical examples include any rep-
 95 resentations defined up to an affine baseline or possessing a shift-symmetric structure, such as
 96 configurations invariant to global alignment, label encodings invariant to additive bias, or features
 97 embedded in contrastive spaces. We provide some detailed examples and the corresponding analysis
 98 in Appendix A. Zero-mean invariance permits generative models to operate in a reduced subspace
 99 orthogonal to the mean direction, eliminating redundant degrees of freedom. In 3D molecular data,
 100 zero-mean invariance is widely employed due to its translational invariance [Hoogeboom et al., 2022,
 101 Hong et al., 2025, Xu et al., 2023].

102 3 Identity-Aware Gaussian Approximation

103 Building on the preliminaries, we now introduce our framework for shortening the generative
 104 trajectory in GPPGMs via truncation. Rather than executing the full generation trajectories, we
 105 identify a characteristic timestep T^* at which the data effectively loses its identity and exhibits
 106 sufficient Gaussianity. This enables an analytic truncation, whereby the remaining trajectory is
 107 replaced with a direct Gaussian approximation. It significantly improves computational efficiency
 108 without compromising generative fidelity.

109 **3.1 Gaussian Approximation**

110 Gaussian approximations (GA) are commonly employed in statistics to represent intractable conditional or marginal distributions [Berry, 1941, Deng and Zhang, 2020, Chernozhukov et al., 2013].
 111 This modeling choice facilitates closed-form expressions for critical quantities, including transition
 112 densities, posterior distributions, and variational bounds, which are essential for both optimization
 113 and sampling procedures. In GPPGMs, the forward process can be interpreted as progressively
 114 pushing the data toward a Gaussian distribution. As illustrated in (1), the marginal and transition
 115 densities of the trajectories at any finite time index remain Gaussian:
 116

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t \mid \sqrt{\bar{\alpha}_t} \mathbf{x}_0; \Sigma_t), \quad \text{where } \Sigma_t := (1 - \bar{\alpha}_t) \mathbf{I}. \quad (9)$$

117 However, the intractability of data distribution prevent us from directly calculating the mean and
 118 variance of approximated Gaussian. For data modalities that are *zero-mean invariant*, such as
 119 molecular coordinates, point clouds, or categorical embeddings, the difficulty of estimating mean
 120 can be avoided by enforcing zero-centering as a preprocessing step. Such centering preserves
 121 structural information and symmetries (e.g., translational invariance) [Hoogeboom et al., 2022], while
 122 consistently ensuring $\hat{\mu} = 0$, as analyzed in Appendix A.

123 In addition, the variance remains intractable to obtain exactly. In this paper, we estimate it through
 124 the per-sample statistics. Given a dataset $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^N$ with $\mathbf{x}^{(i)} \in \mathbb{R}^d$, we compute

$$v^{(i)} = \frac{1}{d-1} \sum_{j=1}^d (\mathbf{x}_j^{(i)} - \mu^{(i)})^2, \quad \text{where } \mu^{(i)} = \frac{1}{d} \sum_{j=1}^d \mathbf{x}_j^{(i)}, \quad (10)$$

125 and aggregate across the dataset to obtain the *average per-sample variance*: $\hat{v} = \frac{1}{N} \sum_{i=1}^N v^{(i)}$. This
 126 estimator is unbiased under mild moment conditions [Vershynin, 2012], and we empirically verify
 127 that it's an available choice for GA in GPPGMs.

128 Under the variance-preserving (VP) forward process on zero-meanned data, these choices yield the
 129 following analytic form for the mean and variance of \mathbf{x}_t :

$$\tilde{\mu}_t = \mathbf{0}, \quad \tilde{v}_t = 1 - \bar{\alpha}_t (1 - \hat{v}). \quad (11)$$

130 Consequently, for zero-meanned data, once sufficient noise has been injected at timestep T^* , the
 131 marginal distribution of \mathbf{x}_{T^*} can be approximated by $\mathcal{N}(\mathbf{0}, \tilde{v}_{T^*} \mathbf{I})$ which serves as the foundation for
 132 our trajectory-shortening strategy.

133 **3.2 Gaussian Approximation and Initial Data Distribution**

134 The analysis above shows that, once sufficient noise is injected, the forward process admits a tractable
 135 Gaussian approximation. Nevertheless, the following question arises:

136 **(Q)** *How do we determine T^* at which the injected noise becomes sufficient for this approxima-
 137 tion? Is it the same across different tasks?*

138 To answer this question, we first present Proposition 3.1 to show that T^* is related to properties of
 139 the initial data distribution.

139 **Proposition 3.1.** *Given $t \in [0, T)$ and $K \geq 3$, and the Gaussianity evaluation functional*

$$\mathcal{H}^{(K)}(x) := \beta \|\Pi_{\mathbf{D}^\perp}(\text{Cov}(x))\|_F + \sum_{k=3}^K w_k \|C^{(k)}(x)\|_F. \quad (12)$$

140 where $\beta > 0$ and $w_k > 0$ ($k \geq 3$). $\mathbf{D} := \{\text{Diag}(v) : v \in \mathbb{R}^d\}$ is the diagonal subspace and

$$\Pi_{\mathbf{D}}(\Sigma) := \text{Diag}(\text{diag } \Sigma), \quad \Pi_{\mathbf{D}^\perp}(\Sigma) := \Sigma - \Pi_{\mathbf{D}}(\Sigma). \quad (13)$$

141 are the orthogonal projections. $\text{Cov}(\cdot)$ and $C^{(k)}(X)$ are the covariance calculator and the k -th
 142 cumulant tensor, respectively. Let A, B be two initial data distribution, where

$$\mathcal{H}^{(m)}(\mathbf{x}_t^A) \leq \mathcal{H}^{(m)}(\mathbf{x}_t^B) \quad \text{for all } m = 2, 3, \dots, K \quad (14)$$

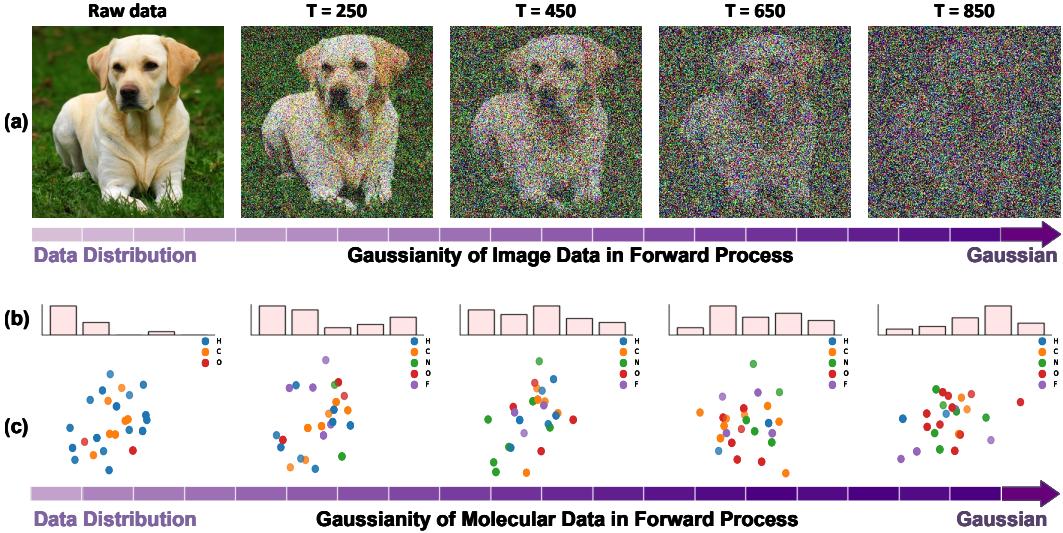


Figure 2: Comparisons of the forward noising process across different data modalities. (a) shows a continuous-valued image matrix, while (b) and (c) illustrate the distribution of molecular data consisting of one-hot vectors for atom types and 3D Euclidean coordinates for atom positions, respectively. **The same noise schedule is applied across all modalities, with the number of steps T up to 1000.** Despite identical signal-to-noise ratios, image data retains recognizable identities for significantly more steps, whereas molecular data lost it much earlier.

143 *holds with at least one strict inequality. Then for every $s > t$,*

$$\mathcal{H}^{(K)}(\mathbf{x}_s^A) < \mathcal{H}^{(K)}(\mathbf{x}_s^B).$$

144 *Consequently, for every $\epsilon > 0$,*

$$T_A^* = \inf\{s > t : \mathcal{H}^{(K)}(\mathbf{x}_s^A) \leq \epsilon\} < \inf\{s > t : \mathcal{H}^{(K)}(\mathbf{x}_s^B) \leq \epsilon\} = T_B^*. \quad (15)$$

145 A formal proof is provided in Appendix B. This proposition establishes that if the initial data
 146 distribution is inherently closer to Gaussian, then the corrupted samples achieve sufficient Gaussianity
 147 earlier, and the corresponding GA timestep T^* can be smaller. In particular, sparse molecular
 148 coordinates around equilibrium are closer to Gaussian [Frenkel and Smit, 2023], then approximation
 149 can start at a smaller T^* , as shown in Fig. 2. As different initial data distribution induces different GA
 150 time steps, we need a principled way to identify the precise T^* . Therefore, in Sec. 3.3, we develop a
 151 statistical Gaussianity evaluator that serves as an operational test, combining dependency-sensitive
 152 functionals and distributional similarity criteria to precisely identify the GA timestep T^* .

153 **3.3 Evaluating Gaussianity: Data Identity and Distributional Similarity**

154 While the preceding analysis suggests that \mathbf{x}_t may be approximated by a Gaussian, the validity of this
 155 approximation fundamentally depends on whether the \mathbf{x}_{T^*} has gained sufficient Gaussianity for GA.
 156 In this section, we present the Gaussianity evaluation method from the perspectives of data identity
 157 and distributional similarity for our IAGA framework.

158 **Data Identity Decay.** The timestep at which data loses its structural identity under progressive
 159 noise perturbation is critical for establishing a valid Gaussian approximation. Since the Gaussian
 160 distribution in GA is independent, the disappearance of identity in \mathbf{x}_t directly indicates that the data
 161 has lost its dependency, which can be well approximated by $\mathcal{N}(\tilde{\mu}_t, \tilde{\sigma}_t I)$. As illustrated in Fig. 2, the
 162 rate at which identity vanishes strongly depends on the underlying data modality. Monitoring the
 163 decay of data identity thus provides a principled criterion for determining the characteristic timestep
 164 T^* at which Gaussian approximation becomes valid.

165 Since structural identity is inherently reflected by the presence of dependencies among variables,
 166 we quantify identity decay by measuring statistical dependency in \mathbf{x}_t . Concretely, we adopt the
 167 mutual information (MI) test [Kraskov et al., 2004] as our dependency functional. Because exact

168 independence occurs only at the terminal prior $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, we adopt a tolerance $\varepsilon_{\text{dep}} > 0$ and
 169 define the identity-loss timestep as

$$T_{\text{ID}} := \min \left\{ t \mid \text{Dep}(\mathbf{x}_t) \leq \varepsilon_{\text{dep}} \right\}, \quad (16)$$

170 where $\text{Dep}(\cdot)$ denotes the MI-based dependency evaluator. The implementation details are provided
 171 in Appendix C.1. This evaluator provides a concrete condition under which GA becomes valid from
 172 the perspective of data identity.

173 **Distributional Similarity.** While data identity decay captures the disappearance of dependence,
 174 Gaussian approximation also requires that the marginals of \mathbf{x}_t align with those of a Gaussian distribu-
 175 tion. To assess this, we measure the distributional similarity between \mathbf{x}_t and the reference Gaussian
 176 $\mathcal{N}(\tilde{\mu}_t, \tilde{\nu}_t \mathbf{I})$ with matching variance using the Kolmogorov–Smirnov (KS) distance [Massey Jr, 1951].
 177 Concretely, for each dimension $\mathbf{x}_t^{(j)}$, we compare its empirical cumulative distribution function
 178 (CDF) $F_{t,j}(x)$ with the Gaussian CDF $\Phi_{\tilde{\nu}_t}(x)$, and average across all dimensions:

$$D_t = \frac{1}{d} \sum_{j=1}^d D_{t,j}, \quad \text{where} \quad D_{t,j} = \sup_x |F_{t,j}(x) - \Phi_{\tilde{\nu}_t}(x)|. \quad (17)$$

179 A smaller D_t indicates closer alignment with Gaussian marginals and therefore stronger justification
 180 for approximation by $\mathcal{N}(\tilde{\mu}_t, \tilde{\nu}_t \mathbf{I})$. Since exact convergence only holds at the terminal prior $\mathbf{x}_T \sim$
 181 $\mathcal{N}(\tilde{\mu}_t, \mathbf{I})$, we adopt a tolerance $\varepsilon_{\text{DS}} > 0$ and define the distributional-similarity timestep as

$$T_{\text{DS}} := \min \left\{ t \mid D_t \leq \varepsilon_{\text{DS}} \right\}. \quad (18)$$

182 As illustrated in Fig. 2, molecular datasets exhibit rapid decay in D_t , reflecting fast convergence to
 183 Gaussian marginals, while image datasets maintain larger D_t values over many more noise steps.
 184 From the perspectives of dependency decay and distributional similarity, we obtain a concrete and
 185 quantitative characterization of the Gaussianity of \mathbf{x}_t , ensuring that the approximated \mathbf{x}_{T^*} is both
 186 sufficiently independent and marginally Gaussian. In addition, we define the operational Gaussian-
 187 approximation timestep as

$$T^* = \max(T_{\text{ID}}, T_{\text{DS}}), \quad (19)$$

188 which ensures that \mathbf{x}_{T^*} is both sufficiently independent and marginally Gaussian.

189 4 Experiments

190 In this section, we empirically evaluate the proposed method on standard molecular generation
 191 benchmarks. We present the experimental setup, define the evaluation metrics, and report quantitative
 192 results on both generation quality and efficiency. Additional details on the Gaussianity tests and
 193 experimental configurations are provided in Appendix C and Appendix D, respectively.

194 4.1 Experimental Setup

195 **Datasets.** We conduct experiments on widely-used molecular datasets, QM9 [Ramakrishnan et al.,
 196 2014] and GEOM-Drugs [Axelrod and Gomez-Bombarelli, 2022]. QM9 contains 130k small
 197 molecules with up to 29 atoms, while GEOM-Drugs comprises 450k drug-like molecules with an
 198 average of 44 and up to 181 atoms. The configuration of datasets follows Hoogeboom et al. [2022]
 199 for regular generation and Xu et al. [2023] for latent-space generation, respectively.

200 **Baselines.** For molecule generation, we conduct comparison experiments on several competitive
 201 baselines. G-Schnet [Gebauer et al., 2019] and Equivariant Normalizing Flows (ENF) [Garcia Satorras
 202 et al., 2021] employ autoregressive models for molecule generation. Equivariant Graph Diffusion
 203 Model (EDM) [Hoogeboom et al., 2022], Geometric Latent Diffusion Model (GeoLDM) [Xu et al.,
 204 2023], and Equivariant Flow Matching model (EquiFM) [Song et al., 2023] are three representative
 205 GPPGMs from different perspectives for molecule generation, including regular diffusion, latent
 206 diffusion, and flow-matching, respectively. Moreover, the invariant versions of EDM (GDM) and
 207 GeoLDM (GraphLDM) are also employed for comparison.

208 **Metrics** We evaluate our method on standard molecular generation benchmarks using two broad
 209 classes of metrics: generation quality and efficiency. For generation quality, we report **validity**
 210 (the proportion of chemically valid molecules according to standard valency checks), **uniqueness**
 211 (the proportion of distinct molecules among generated samples), **molecular stability** (the fraction
 212 of generated molecules satisfying correct valency constraints), and **atom stability** (the fraction
 213 of generated atoms satisfying correct valency constraints). Following prior work [Hong et al.,
 214 2025], these metrics are computed using RDKit-based validation and duplicate filtering over 10,000
 215 generated samples. For efficiency, we record the average **sampling time (S-Time)** in GPU seconds
 216 per sample and total **training time (T-Time)** in GPU days, both measured on identical hardware
 217 before and after applying our Gaussian approximation strategy. Moreover, the **trajectory length**
 218 (**Steps**) T^* is also shown in the results. These metrics collectively quantify the fidelity, diversity, and
 219 practical computational benefits of our method.

220 **4.2 Quantitative Performance**

Table 1: Quantitative results on the QM9 dataset. The best results are shown in **bold**. Metrics are calculated using 10,000 samples generated from each model. We run the evaluation for 3 times and report the mean value. Compared with previous methods, GA benefits all methods, achieving up to a 2.3% improvement in the *Valid * Uniq* metric, and significantly reduces the generation trajectory length by 40% without harming learning accuracy. All GA-compared baselines are tested using our implementation. The best results are shown in **bold**.

Model	Generation Performance				Efficiency		
	Atom Sta (%)	Mol Sta (%)	Valid (%)	Valid * Uniq (%)	S-Time (GPU sec.)	T-Time (GPU day)	Traj. Len. (Steps)
Data	99.0	95.2	97.7	97.7	-	-	-
ENF	85.0	4.9	40.2	39.4	-	-	-
G-Schnet	95.7	68.1	85.5	80.3	-	-	-
GDM-AUG	97.6	71.6	90.4	89.5	0.52	2.9	1000
GraphLDM	97.2	70.5	83.6	82.7	0.36	5.7	1000
EDM	98.4	81.8	91.9	90.7	0.65	5.6	1000
EDM + IAGA	98.9	85.6	94.7	92.0	0.36	3.1	550
GeoLDM	98.9	89.8	94.0	91.9	0.64	11.7	1000
GeoLDM + IAGA	99.2	92.3	96.7	94.4	0.42	7.2	650
EquiFM	98.5	87.3	94.9	93.4	0.17	6.2	1000
EquiFM + IAGA	99.0	91.2	96.2	93.7	0.15	4.9	800

‘-’ denotes the invalid or not recorded setting in the original publication.

221 We evaluate the effectiveness of the proposed Gaussian Approximation (GA) across multiple molecu-
 222 lar generative baselines on both the QM9 and GEOM-Drugs datasets. As shown in Tables 1 and 2,
 223 GA consistently improves generation quality while significantly reducing both training and sampling
 224 cost. Crucially, our method shortens the diffusion trajectory, by up to 40%, without degrading the
 225 learning accuracy of the generative model. This is because GA does not alter the original noise
 226 schedule or variance scaling used during training; instead, it exploits the observation that molecular
 227 data loses its identity rapidly in the diffusion process, allowing training and sampling to begin from an
 228 earlier noise step without violating the underlying stochastic process. On the QM9 dataset, GA yields
 229 up to a 2.3% improvement in the *Valid * Uniq* metric, reflecting gains in both chemical correctness
 and diversity of the generated molecules

Table 2: Quantitative results on GEOM dataset. Metrics are calculated using 10,000 samples generated from each model. We run the evaluation for 3 times and report the mean value. In general, GA improves generation performance and provides better efficiency across models. The best results are shown in **bold**.

Model	Generation Performance		Efficiency	
	Atom Sta (%)	Valid (%)	S-Time (GPU sec.)	Traj. Len. (Steps)
Data	86.5	99.9	-	-
GDM-AUG	77.7	91.8	-	1000
GraphLDM	76.2	97.2	-	1000
EDM	81.3	92.6	10.9	1000
EDM + IAGA	84.3	93.4	6.4	650
GeoLDM	84.4	99.3	10.2	1000
GeoLDM + IAGA	89.3	98.0	7.1	650

230 ‘-’ denotes the invalid or not recorded setting in the original publication.

231 Similar benefits are observed on the more challenging GEOM-Drugs dataset. In this experiment,
232 we omit metrics such as uniqueness (which is consistently close to 100%) and molecule stability
233 (which remains near 0%) due to their limited discriminative value across different methods. Overall,
234 GA consistently improves atom-level stability and reduces the training and sampling time across
235 various baselines. These improvements are particularly noteworthy given that GA requires no changes
236 to model architecture or parameters. Instead, it modifies only the generation trajectory length by
237 leveraging the rapid identity decay characteristic of molecular structures. This enables the model
238 to focus on denoising stages where the molecular structure begins to emerge, leading to faster
239 convergence without incurring additional transport cost or unnecessary noise inference from the
240 skipped steps.

241 5 Related Work

242 **Probability Path-based Generative Models (PPGMs).** PPGMs generate samples over data dis-
243 tributions by learning a transport process that maps simple prior distributions to complex data
244 distributions through a sequence of structured transformations, i.e., the probability path. Specifically,
245 diffusion-based generative models simulate this sequential transformation via stochastic differential
246 equations, which have emerged as a powerful paradigm for multi-modal data synthesis [Croitoru
247 et al., 2023, Kementzidis et al., 2025, Xu et al.]. However, their iterative sampling (often requiring
248 hundreds of steps) poses a significant speed bottleneck. A variety of techniques aim to accelerate
249 diffusion sampling, such as progressive distillation [Salimans and Ho, 2022] and learned noising
250 schedules [Williams et al., 2024]. Nevertheless, the training process still typically requires hundreds
251 of steps. Beyond diffusion models, Flow Matching offers a fresh perspective on acceleration. Flow
252 Matching trains a continuous normalizing flow by regressing an optimal vector field along prescribed
253 paths. Lipman et al. [2022] showed that using diffusion-style Gaussian paths in flow matching yields
254 more robust training and faster ODE-based sampling. However, the nonlinear and high-curvature
255 nature of learned transport fields makes it challenging to accurately approximate such trajectories
256 with few discretization steps during training [Hassan et al., 2024, Eijkelboom et al., 2024].

257 **Gaussian Approximation (GA).** GA has long been a cornerstone in machine learning theory
258 and practice. The Central Limit Theorem provides a classical justification: aggregates of many
259 random factors tend toward a Gaussian distribution, which often explains why high-dimensional
260 features or latent codes appear approximately normal [Hazra et al., 2021, Dürker et al., 2024]. Some
261 researchers have explored the potential of the Gaussian approximation in generative modeling. For
262 instance, Wang and Vastola observe that at high noise levels, the learned diffusion score can be
263 well-approximated by a linear Gaussian model. Therefore, they can skip 15–30% of the sampling
264 steps without degrading output fidelity. Such findings reinforce the idea that Gaussian assumptions
265 can serve as an effective proxy for complex distributions in certain regimes, providing practical
266 speedups without significant fidelity loss.

267 6 Conclusion and Future Work

268 In this work, we introduced a principled framework for efficient GPPGMs on 3D molecular generation.
269 By leveraging zero-mean preprocessing and empirical variance estimation, we proposed an analytic
270 Gaussian approximation that identifies a characteristic time step T^* at which data identity effectively
271 vanishes and the forward process becomes distributionally Gaussian. This approximation enables
272 the truncation of redundant noise steps, which are inefficient transport between “Gaussian-like”
273 distributions. Therefore, our IAGA can improve the efficiency of both sampling and training and yields
274 consistent improvements in generation quality across multiple molecular generation benchmarks.

275 **Future Work.** Despite its empirical success, the current framework assumes that the data modality
276 is zero-mean invariant. While this assumption holds in many geometric and categorical domains, it
277 is not valid for modalities like natural images or videos, where the absolute mean carries semantic
278 information. Extending our methodology to such domains requires further methods for determining
279 identity loss and Gaussianity without relying on zero-mean centering.

280 **References**

281 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
282 denoising diffusion models in discrete state-spaces. *Advances in neural information processing*
283 *systems*, 34:17981–17993, 2021.

284 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
285 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

286 Andrew C Berry. The accuracy of the gaussian approximation to the sum of independent variates.
287 *Transactions of the american mathematical society*, 49(1):122–136, 1941.

288 Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier
289 bootstrap for maxima of sums of high-dimensional random vectors. 2013.

290 Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
291 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
292 10850–10869, 2023.

293 Hang Deng and Cun-Hui Zhang. Beyond gaussian approximation. *The Annals of Statistics*, 48(6):
294 3643–3671, 2020.

295 Marie-Christine Düker, Robert Lund, and Vladas Pipiras. High-dimensional latent gaussian count
296 time series: Concentration results for autocovariances and applications. *Electronic Journal of*
297 *Statistics*, 18(2):5484–5562, 2024.

298 Floor Eijkelboom, Grigory Bartosh, Christian Andersson Naesseth, Max Welling, and Jan-Willem
299 van de Meent. Variational flow matching for graph generation. *Advances in Neural Information*
300 *Processing Systems*, 37:11735–11764, 2024.

301 Daan Frenkel and Berend Smit. *Understanding molecular simulation: from algorithms to applications*.
302 Elsevier, 2023.

303 Victor Garcia Satorras, Emiel Hoogeboom, Fabian Fuchs, Ingmar Posner, and Max Welling. E (n)
304 equivariant normalizing flows. *Advances in Neural Information Processing Systems*, 34:4181–4192,
305 2021.

306 Niklas Gebauer, Michael Gastegger, and Kristof Schütt. Symmetry-adapted generation of 3d point
307 sets for the targeted discovery of molecules. *Advances in neural information processing systems*,
308 32, 2019.

309 Majdi Hassan, Nikhil Shenoy, Jungyoon Lee, Hannes Stärk, Stephan Thaler, and Dominique Beaini.
310 Et-flow: Equivariant flow-matching for molecular conformer generation. *Advances in Neural*
311 *Information Processing Systems*, 37:128798–128824, 2024.

312 Arnab Hazra, Raphaël Huser, and Árni V Jóhannesson. Latent gaussian models for high-dimensional
313 spatial extremes. *arXiv preprint arXiv:2110.02680*, 2021.

314 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *arXiv preprint*
315 *arXiv:2006.11239*, 2020.

316 Haokai Hong, Wanyu Lin, and Kay Chen Tan. Accelerating 3d molecule generation via jointly geo-
317 metric optimal transport. In *The Thirteenth International Conference on Learning Representations*,
318 2025.

319 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
320 for molecule generation in 3d. In *International conference on machine learning*, pages 8867–8887.
321 PMLR, 2022.

322 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
323 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
324 2022.

325 Georgios Kementzidis, Erin Wong, John Nicholson, Ruichen Xu, and Yuefan Deng. An it-
326 erative framework for generative backmapping of coarse grained proteins. *arXiv preprint*
327 *arXiv:2505.18082*, 2025.

328 Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. Estimating mutual information.
329 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 69(6):066138, 2004.

330 Greg Landrum et al. Rdkit: Open-source cheminformatics, 2016.

331 Sang-gil Lee, Heeseung Kim, Chaehun Shin, Xu Tan, Chang Liu, Qi Meng, Tao Qin, Wei Chen,
332 Sungroh Yoon, and Tie-Yan Liu. Priorgrad: Improving conditional denoising diffusion models
333 with data-dependent adaptive prior. *arXiv preprint arXiv:2106.06406*, 2021.

334 Bowen Li, Xiaojuan Qi, Thomas Lukasiewicz, and Philip Torr. Controllable text-to-image generation.
335 *Advances in neural information processing systems*, 32, 2019.

336 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
337 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

338 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
339 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural*
340 *Information Processing Systems*, 35:5775–5787, 2022.

341 Weibo Mao, Chenxin Xu, Qi Zhu, Siheng Chen, and Yanfeng Wang. Leapfrog diffusion model for
342 stochastic trajectory prediction. In *Proceedings of the IEEE/CVF conference on computer vision*
343 *and pattern recognition*, pages 5517–5526, 2023.

344 Frank J Massey Jr. The kolmogorov-smirnov test for goodness of fit. *Journal of the American*
345 *statistical Association*, 46(253):68–78, 1951.

346 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
347 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

348 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
349 *preprint arXiv:2202.00512*, 2022.

350 Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E (n) equivariant graph neural networks.
351 In *International conference on machine learning*, pages 9323–9332. PMLR, 2021.

352 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
353 *preprint arXiv:2010.02502*, 2020.

354 Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
355 and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport for 3d molecule
356 generation. *Advances in Neural Information Processing Systems*, 36:549–568, 2023.

357 Roman Vershynin. How close is the sample covariance matrix to the actual covariance matrix?
358 *Journal of Theoretical Probability*, 25(3):655–686, 2012.

359 Clement Vignac, Igor Krawczuk, Antoine Sraordin, Bohan Wang, Volkan Cevher, and Pascal Frossard.
360 Digress: Discrete denoising diffusion for graph generation. *arXiv preprint arXiv:2209.14734*,
361 2022.

362 Bin Xu Wang and John Vastola. The unreasonable effectiveness of gaussian score approximation for
363 diffusion models and its applications. *Transactions on Machine Learning Research*.

364 Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal
365 diffusion schedules. *arXiv preprint arXiv:2412.07877*, 2024.

366 Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geometric
367 diffusion model for molecular conformation generation. In *International Conference on Learning*
368 *Representations*.

369 Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
370 diffusion models for 3d molecule generation. In *International Conference on Machine Learning*,
371 pages 38592–38610. PMLR, 2023.

372 Hui Zhang, Zuxuan Wu, Zhen Xing, Jie Shao, and Yu-Gang Jiang. Adadiff: Adaptive step selection
373 for fast diffusion models. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
374 volume 39, pages 9914–9922, 2025.

375 Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
376 Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
377 Wang, Haiyang Yu, YuQing Xie, Xiang Fu, Alex Strasser, Shenglong Xu, Yi Liu, Yuanqi Du,
378 Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Edwards,
379 Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani, Rui Wang,
380 Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung, Minkai Xu,
381 Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán Aspuru-Guzik,
382 Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano Ermon, Pietro
383 Liò, Rose Yu, Stephan Günnemann, Jure Leskovec, Heng Ji, Jimeng Sun, Regina Barzilay,
384 Tommi Jaakkola, Connor W. Coley, Xiaoning Qian, Xiaofeng Qian, Tess Smidt, and Shuiwang Ji.
385 Artificial intelligence for science in quantum, atomistic, and continuum systems. *arXiv preprint*
386 *arXiv:2307.08423*, 2023.

387 **Appendix**

388 **A Examples and Analysis of Zero-mean Invariant Data**

389 We aim to show that for data modalities satisfying zero-mean invariance, the operation of mean-
 390 centering preserves all structural information relevant to generative modeling. We mainly discuss the
 391 Euclidean and non-uniform one-hot cases, which are tested in our experiments.

392 **Euclidean Data.** Let $\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^d$ denote a collection of n vectors (e.g., 3D Euclidean coordinates of atoms). Define the sample mean $\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$, and let $\tilde{\mathbf{x}}_i = \mathbf{x}_i - \bar{\mathbf{x}}$ be the centered representation. We claim that pairwise Euclidean distances are invariant under mean-centering:

$$\|\tilde{\mathbf{x}}_i - \tilde{\mathbf{x}}_j\|_2 = \|(\mathbf{x}_i - \bar{\mathbf{x}}) - (\mathbf{x}_j - \bar{\mathbf{x}})\|_2 = \|\mathbf{x}_i - \mathbf{x}_j\|_2. \quad (20)$$

395 Hence, all geometric properties that depend on inter-point distances, such as adjacency structures, bond lengths, or conformational shapes, are preserved exactly under centering. Consequently, zero-mean projection retains full information about the relational structure of the data.

398 **Non-Uniform One-Hot Categorical Vectors.** Let $h_i \in \{0, 1\}^d$ denote a one-hot encoded vector
 399 satisfying $\sum_{j=1}^d (h_i)_j = 1$, and let $\bar{h} = \frac{1}{n} \sum_{i=1}^n h_i$ be the sample mean across a batch of n such
 400 vectors. Define the centered vector $\tilde{h}_i = h_i - \bar{h}$. Note that each $\tilde{h}_i \in \mathbb{R}^d$ lies in a subspace orthogonal
 401 to the constant vector $\mathbf{1}_d$, since:

$$\sum_{j=1}^d (\tilde{h}_i)_j = \sum_{j=1}^d (h_i - \bar{h})_j = 1 - \sum_{j=1}^d \bar{h}_j = 0. \quad (21)$$

402 Moreover, the inner product between two centered vectors \tilde{h}_i and \tilde{h}_j satisfies:

$$\langle \tilde{h}_i, \tilde{h}_j \rangle = \langle h_i, h_j \rangle - \langle h_i, \bar{h} \rangle - \langle \bar{h}, h_j \rangle + \langle \bar{h}, \bar{h} \rangle, \quad (22)$$

403 from which it follows that pairwise centered dot products retain sufficient information to distinguish
 404 between original categorical identities once the category set is not degenerate (e.g., uniform). Since
 405 each one-hot vector h_i is uniquely defined by a single active index, subtracting the global mean \bar{h}
 406 merely induces a translation within the categorical simplex. The position of the maximal entry in
 407 \tilde{h}_i still identifies the active class as long as \bar{h} does not collapse distinct h_i vectors onto the same
 408 centered value. Therefore, for any non-uniform categorical data embedded via one-hot encoding,
 409 mean-centering preserves the identity of the active component up to an affine transformation of the
 410 ambient space. As a result, zero-mean preprocessing retains the categorical semantics necessary for
 411 generative modeling under Euclidean approximation schemes.

412 **B Proof of Proposition 3**

413 **Cumulants.** Let $X \in \mathbb{R}^d$ have moment generating function (mgf) $M_X(u) = \mathbb{E}[e^{u^\top X}]$ and cumu-
 414 lant generating function $K_X(u) = \log M_X(u)$, $u \in \mathbb{R}^d$. The k -th cumulant tensor is

$$(C^{(k)}(X))_{i_1, \dots, i_k} = \left. \frac{\partial^k K_X(u)}{\partial u_{i_1} \cdots \partial u_{i_k}} \right|_{u=0}, \quad k \geq 1.$$

415 In particular $C^{(1)}(X) = \mu := \mathbb{E}[X]$, $C^{(2)}(X) = \Sigma := \text{Cov}(X)$, and $C^{(k)}(G) = 0$ for all $k \geq 3$ if
 416 G is Gaussian.

417 **Setup (VP forward map).** Let $\{\mathbf{x}_t\}_{t=0}^T$ be the forward (noising) trajectory under a variance-
 418 preserving schedule. Fix $t \in [0, T)$ and $s > t$. Then

$$\mathbf{x}_s = \sqrt{\bar{\alpha}_{s|t}} \mathbf{x}_t + \sqrt{1 - \bar{\alpha}_{s|t}} \boldsymbol{\varepsilon}, \quad \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\varepsilon} \perp \mathbf{x}_t, \quad \bar{\alpha}_{s|t} := \bar{\alpha}_s / \bar{\alpha}_t \in (0, 1). \quad (23)$$

419 **Gaussianity-and-independence functional (definition).** Let $D := \{\text{Diag}(v) : v \in \mathbb{R}^d\}$ be the
420 diagonal subspace and define the orthogonal projections

$$\Pi_D(\Sigma) := \text{Diag}(\text{diag } \Sigma), \quad \Pi_{D^\perp}(\Sigma) := \Sigma - \Pi_D(\Sigma).$$

421 For weights $\beta > 0$ and $w_k > 0$ ($k \geq 3$), define for any random vector $x \in \mathbb{R}^d$

$$\mathcal{H}^{(K)}(x) := \beta \|\Pi_{D^\perp}(\text{Cov}(x))\|_F + \sum_{k=3}^K w_k \|C^{(k)}(x)\|_F. \quad (24)$$

422 **Lemma B.1** (VP propagation of moments/cumulants and contraction of $\mathcal{H}^{(K)}$). *Let $t \in [0, T)$ and
423 $s > t$, and write $a := \bar{\alpha}_{s|t} \in (0, 1)$. Under (23), with $\Sigma_t := \text{Cov}(\mathbf{x}_t)$ and $B_{k,t} := \|C^{(k)}(\mathbf{x}_t)\|_F$ for
424 $k \geq 3$,*

$$\mu_s = \sqrt{a} \mu_t, \quad \Sigma_s = a \Sigma_t + (1 - a) \mathbf{I}, \quad \|C^{(k)}(\mathbf{x}_s)\|_F = a^{k/2} B_{k,t} \quad (k \geq 3).$$

425 Consequently,

$$\mathcal{H}^{(K)}(\mathbf{x}_s) = \beta a \|\Pi_{D^\perp}(\Sigma_t)\|_F + \sum_{k=3}^K w_k a^{k/2} B_{k,t}, \quad (25)$$

426 and

$$\frac{\partial}{\partial a} \mathcal{H}^{(K)}(\mathbf{x}_s) = \beta \|\Pi_{D^\perp}(\Sigma_t)\|_F + \sum_{k=3}^K w_k \frac{k}{2} a^{k/2-1} B_{k,t} > 0$$

427 whenever $\|\Pi_{D^\perp}(\Sigma_t)\|_F + \sum_{k=3}^K B_{k,t} > 0$. Hence, since $a = \bar{\alpha}_{s|t}$ decreases strictly in s for a VP
428 schedule, $\mathcal{H}^{(K)}(\mathbf{x}_s)$ is strictly decreasing in s unless \mathbf{x}_t is already an independent Gaussian (in
429 which case $\mathcal{H}^{(K)}(\mathbf{x}_s) \equiv 0$).

430 *Proof.* First, $\mu_s = \mathbb{E}[\mathbf{x}_s] = \sqrt{a} \mu_t + \sqrt{1-a} \mathbb{E}[\boldsymbol{\varepsilon}] = \sqrt{a} \mu_t$. For the covariance, write $\mathbf{x}_s =$
431 $\sqrt{a} \mathbf{x}_t + \sqrt{1-a} \boldsymbol{\varepsilon}$ and center by the means:

$$\mathbf{x}_s - \mu_s = \sqrt{a} (\mathbf{x}_t - \mu_t) + \sqrt{1-a} \boldsymbol{\varepsilon}.$$

432 Independence and $\mathbb{E}[\boldsymbol{\varepsilon}] = 0$ give

$$\Sigma_s = \mathbb{E}[(\mathbf{x}_s - \mu_s)(\mathbf{x}_s - \mu_s)^\top] = a \Sigma_t + (1 - a) \mathbb{E}[\boldsymbol{\varepsilon} \boldsymbol{\varepsilon}^\top] = a \Sigma_t + (1 - a) \mathbf{I}.$$

433 Linearity of Π_{D^\perp} and $\mathbf{I} \in D$ yield

$$\Pi_{D^\perp}(\Sigma_s) = \Pi_{D^\perp}(a \Sigma_t) + (1 - a) \Pi_{D^\perp}(\mathbf{I}) = a \Pi_{D^\perp}(\Sigma_t),$$

434 hence $\|\Pi_{D^\perp}(\Sigma_s)\|_F = a \|\Pi_{D^\perp}(\Sigma_t)\|_F$.

435 For cumulants, independence implies additivity: $C^{(k)}(X + Y) = C^{(k)}(X) + C^{(k)}(Y)$ when $X \perp$
436 Y (this follows from $K_{X+Y}(u) = K_X(u) + K_Y(u)$). Homogeneity follows from $K_{cX}(u) =$
437 $\log \mathbb{E}[e^{u^\top cX}] = K_X(cu)$ and the chain rule:

$$\left. \frac{\partial^k}{\partial u_{i_1} \cdots \partial u_{i_k}} K_{cX}(u) \right|_{u=0} = c^k \left. \frac{\partial^k}{\partial u_{i_1} \cdots \partial u_{i_k}} K_X(u) \right|_{u=0} \Rightarrow C^{(k)}(cX) = c^k C^{(k)}(X).$$

438 Because a Gaussian has $C^{(k)}(\boldsymbol{\varepsilon}) = 0$ for $k \geq 3$,

$$C^{(k)}(\mathbf{x}_s) = C^{(k)}(\sqrt{a} \mathbf{x}_t) + C^{(k)}(\sqrt{1-a} \boldsymbol{\varepsilon}) = a^{k/2} C^{(k)}(\mathbf{x}_t),$$

439 so $\|C^{(k)}(\mathbf{x}_s)\|_F = a^{k/2} \|C^{(k)}(\mathbf{x}_t)\|_F$. Plugging these identities into (24) gives (25). Finally, since
440 $\beta > 0$, $w_k > 0$ and $B_{k,t} \geq 0$, the displayed derivative is > 0 whenever not all terms vanish. As a
441 strictly decreases in s for VP, $\mathcal{H}^{(K)}(\mathbf{x}_s)$ strictly decreases in s unless already identically zero. \square

442 **Lemma B.2** (θ -decomposition via prefix sums). *For $a \in (0, 1)$, define*

$$\theta_2(a) := a - a^{3/2}, \quad \theta_m(a) := a^{m/2} - a^{(m+1)/2} \quad (3 \leq m \leq K-1), \quad \theta_K(a) := a^{K/2},$$

443 and for $m \in \{2, 3, \dots, K\}$ define the prefix functionals

$$\mathcal{H}^{(m)}(\mathbf{x}_t) := \beta \|\Pi_{\mathbf{D}^\perp}(\Sigma_t)\|_F + \sum_{k=3}^m w_k \|C^{(k)}(\mathbf{x}_t)\|_F.$$

444 Then $\theta_m(a) > 0$ for all m and $a \in (0, 1)$, and the closed form (25) admits

$$\mathcal{H}^{(K)}(\mathbf{x}_s) = \sum_{m=2}^K \theta_m(a) \mathcal{H}^{(m)}(\mathbf{x}_t), \quad \text{with} \quad \sum_{m=j}^K \theta_m(a) = a^{j/2} \text{ for each } j \in \{2, 3, \dots, K\}. \quad (26)$$

445 *Proof.* For $0 < a < 1$, $\theta_m(a) = a^{m/2}(1 - a^{1/2}) > 0$ for $m \leq K - 1$ and $\theta_K(a) = a^{K/2} > 0$. To
446 prove (26), expand the right-hand side:

$$\sum_{m=2}^K \theta_m(a) \mathcal{H}^{(m)}(\mathbf{x}_t) = \left(\sum_{m=2}^K \theta_m(a) \right) \beta \|\Pi_{\mathbf{D}^\perp}(\Sigma_t)\|_F + \sum_{k=3}^K \left(\sum_{m=k}^K \theta_m(a) \right) w_k \|C^{(k)}(\mathbf{x}_t)\|_F.$$

447 Hence it suffices to show the *tail-sum identities* $\sum_{m=2}^K \theta_m(a) = a$ and $\sum_{m=k}^K \theta_m(a) = a^{k/2}$ for
448 each $k \in \{3, \dots, K\}$. For $k \leq K - 1$,

$$\sum_{m=k}^{K-1} (a^{m/2} - a^{(m+1)/2}) + a^{K/2} = (a^{k/2} - a^{(k+1)/2}) + \dots + (a^{(K-1)/2} - a^{K/2}) + a^{K/2} = a^{k/2},$$

449 a telescoping sum; the case $k = K$ is immediate. The identity for $k = 2$ is the same computation
450 with $k = 2$. Substituting these tail-sums into the expansion recovers (25). \square

451 **Lemma B.3** (Order preservation under prefix dominance). *Let A, B be two classes of data set.
452 Assume the prefix dominance*

$$\mathcal{H}^{(m)}(\mathbf{x}_t^A) \leq \mathcal{H}^{(m)}(\mathbf{x}_t^B) \quad \text{for all } m = 2, 3, \dots, K, \quad (27)$$

453 with at least one strict inequality. Then, for every $s > t$ (equivalently, every $a \in (0, 1)$),

$$\mathcal{H}^{(K)}(\mathbf{x}_s^A) = \sum_{m=2}^K \theta_m(a) \mathcal{H}^{(m)}(\mathbf{x}_t^A) < \sum_{m=2}^K \theta_m(a) \mathcal{H}^{(m)}(\mathbf{x}_t^B) = \mathcal{H}^{(K)}(\mathbf{x}_s^B),$$

454 and the inequality is strict because all $\theta_m(a) > 0$ for $a \in (0, 1)$.

455 *Proof.* By Lemma B.2, $\mathcal{H}^{(K)}(\mathbf{x}_s) = \sum_{m=2}^K \theta_m(a) \mathcal{H}^{(m)}(\mathbf{x}_t)$ with $\theta_m(a) > 0$. Applying (27)
456 termwise gives $\mathcal{H}^{(K)}(\mathbf{x}_s^A) \leq \mathcal{H}^{(K)}(\mathbf{x}_s^B)$. Strictness follows because at least one index m^* satisfies
457 $\mathcal{H}^{(m^*)}(\mathbf{x}_t^A) < \mathcal{H}^{(m^*)}(\mathbf{x}_t^B)$ and $\theta_{m^*}(a) > 0$, hence the weighted sum is strictly smaller. \square

458 Lemma B.1 shows that for each initialization, $s \mapsto \mathcal{H}^{(K)}(\mathbf{x}_s)$ is strictly decreasing (unless already
459 at an independent Gaussian). Lemma B.3 states that if A is *prefix-dominant* over B at time t , then
460 $\mathcal{H}^{(K)}(\mathbf{x}_s^A) < \mathcal{H}^{(K)}(\mathbf{x}_s^B)$ for every $s > t$. Therefore, for any threshold $\varepsilon > 0$, the hitting times

$$T_X(\varepsilon) := \inf\{s > t : \mathcal{H}^{(K)}(\mathbf{x}_s^X) \leq \varepsilon\}$$

461 satisfy $T_A(\varepsilon) < T_B(\varepsilon)$, which formalizes that under VP the speed to gain sufficient Gaussianity for
462 A is faster than for B whenever A starts closer to Gaussian in the sense of (27).

463 Moreover, if there exist nondecreasing functions $\varphi_{\text{dep}}, \varphi_{\text{ks}} : [0, \infty) \rightarrow [0, \infty)$ with $\varphi_{\text{dep}}(0) =$
464 $\varphi_{\text{ks}}(0) = 0$ such that for every $s > t$,

$$\text{Dep}(\mathbf{x}_s) \leq \varphi_{\text{dep}}(\mathcal{H}^{(K)}(\mathbf{x}_s)), \quad D(\mathbf{x}_s) \leq \varphi_{\text{ks}}(\mathcal{H}^{(K)}(\mathbf{x}_s)), \quad (28)$$

465 then, for any tolerances $\varepsilon_{\text{dep}}, \varepsilon_{\text{DS}} > 0$,

$$T_{\text{ID}}^A := \inf\{s > t : \text{Dep}(\mathbf{x}_s^A) \leq \varepsilon_{\text{dep}}\} \leq T_{\text{ID}}^B, \quad T_{\text{DS}}^A := \inf\{s > t : D(\mathbf{x}_s^A) \leq \varepsilon_{\text{DS}}\} \leq T_{\text{DS}}^B,$$

466 and hence $T_A^* := \max(T_{\text{ID}}^A, T_{\text{DS}}^A) \leq T_B^*$, with strict inequality if (27) is strict for some m .

467 **C Gaussianity Test Details**

468 **C.1 Identity Test**

469 By treating x_t as a sample from an intractable noised data distribution, we estimate the empirical
 470 mutual information (MI) across both the sample-wise and feature-wise dimensions of the data tensor.
 471 MI quantifies the degree of statistical dependency between random variables by measuring the
 472 divergence between their joint distribution and the product of their marginals. For two random vectors
 473 X and Y , the mutual information is defined as:

$$I(X; Y) = \int \int p_{X,Y}(x, y) \log \frac{p_{X,Y}(x, y)}{p_X(x) p_Y(y)} dx dy, \quad (29)$$

474 where $p_{X,Y}(x, y)$ denotes the joint probability density, and $p_X(x), p_Y(y)$ are the marginal densities
 475 of X and Y , respectively.

476 Given a data matrix representation of x_t , we estimate the dependency across dimensions (features)
 477 within each data point and across data points for each dimension to represent the identity. Formally,
 478 let $\mathcal{X}_{\text{rows}}$ and $\mathcal{X}_{\text{cols}}$ denote the sets of row-wise and column-wise slices, respectively. Then, the
 479 empirical MI scores are given by:

$$\text{MI}_{\text{rows}} = \frac{1}{|\mathcal{X}_{\text{rows}}|} \sum_{x \in \mathcal{X}_{\text{rows}}} I(x), \quad \text{MI}_{\text{cols}} = \frac{1}{|\mathcal{X}_{\text{cols}}|} \sum_{x \in \mathcal{X}_{\text{cols}}} I(x), \quad (30)$$

480 where $I(x)$ denotes the estimated mutual information of the given vector x across its components. As
 481 t increases, these statistics decay toward zero, indicating diminishing dependency and the emergence
 482 of approximate independence in x_t .

483 **C.2 Distributional Similarity via KS-Test**

484 To evaluate whether the noised data x_t has become sufficiently similar to the Gaussian distribution
 485 $\mathcal{N}(0, \tilde{v}_t I)$, we perform statistical testing based on the Kolmogorov–Smirnov (KS) criterion. At
 486 each test timestep t , we apply the one-sample KS test dimension-wise to the components of x_t after
 487 zero-centering, treating each variable as an independent sample drawn from the empirical distribution.
 488 Specifically, for each dimension $j \in \{1, \dots, d\}$, we compute the empirical cumulative distribution
 489 function (CDF) $F_{t,j}(x)$ and compare it against the theoretical CDF $\Phi_{\tilde{v}_t}(x)$ of a univariate normal
 490 distribution with zero mean and variance \tilde{v}_t , derived analytically from the forward noise schedule.
 491 The test statistic is defined as:

$$D_{t,j} = \sup_x |F_{t,j}(x) - \Phi_{\tilde{v}_t}(x)|. \quad (31)$$

492 For each coordinate j , we test $H_0 : x_t^{(j)} \sim \mathcal{N}(0, \tilde{v}_t)$ against $H_1 : x_t^{(j)} \not\sim \mathcal{N}(0, \tilde{v}_t)$. Under H_0 ,
 493 with sample size n , the scaled statistic $\sqrt{n} D_{t,j}$ converges to the Kolmogorov distribution with
 494 CDF $1 - 2 \sum_{k=1}^{\infty} (-1)^{k-1} \exp(-2k^2 \lambda^2)$, yielding the 5% critical threshold $D_{t,j} > c_{0.05}/\sqrt{n}$ (with
 495 $c_{0.05} \approx 1.36$ asymptotically). We declare that timestep t satisfies the Gaussianity criterion if at
 496 least 95% of coordinates fail to reject H_0 , i.e., x_t is statistically indistinguishable from the reference
 497 $\mathcal{N}(0, \tilde{v}_t I)$ at 95% confidence level.

498 **D Experimental Settings**

499 **D.1 Backbone model**

500 In our experiments, all molecular generation baselines utilize the Equivariant Graph Neural Network
 501 (EGNN) [Satorras et al., 2021] as the backbone architecture for generative processing. EGNN
 502 operates on graphs embedded in Euclidean space and are designed to be equivariant under rigid-body
 503 transformations from the special Euclidean group $\text{SE}(3)$, including rotations and translations. This
 504 property ensures that molecular outputs transform consistently with the input geometry, preserving
 505 critical physical symmetries.

506 Formally, consider a molecule represented as a fully connected graph with N nodes, where each node
507 i has coordinates $\mathbf{x}_i \in \mathbb{R}^3$ and associated atom features $\mathbf{h}_i \in \mathbb{R}^d$. At each EGNN layer, node features
508 and positions are updated through message-passing operations:

$$\begin{aligned}\mathbf{m}_{ij} &= \phi_e(\mathbf{h}_i, \mathbf{h}_j, \|\mathbf{x}_i - \mathbf{x}_j\|^2), \\ \mathbf{h}'_i &= \phi_h \left(\mathbf{h}_i, \sum_{j \neq i} \alpha_{ij} \mathbf{m}_{ij} \right), \\ \mathbf{x}'_i &= \mathbf{x}_i + \sum_{j \neq i} \frac{\mathbf{x}_i - \mathbf{x}_j}{\|\mathbf{x}_i - \mathbf{x}_j\| + \epsilon} \phi_x(\mathbf{h}_i, \mathbf{h}_j, \|\mathbf{x}_i - \mathbf{x}_j\|^2),\end{aligned}\tag{32}$$

509 where ϕ_e , ϕ_h , and ϕ_x are learnable functions (typically MLPs), and α_{ij} is an optional attention or
510 reweighting term. The update rule guarantees that output features are equivariant with respect to
511 $\text{SE}(3)$ transformations. This equivariant structure is critical for molecular generative tasks, as the
512 physical properties of molecules are invariant to coordinate shifts and rotations.

513 D.2 Implementation Details

514 For all baseline models, we follow the official open-sourced codebases and retain their default
515 hyperparameters unless otherwise specified. Gaussian Approximation is applied after the truncation
516 step T^* , as estimated via our KS and MI-based Gaussianity evaluation.

517 All molecular generation evaluation metrics are computed on 10,000 generated molecules using
518 RDKit [Landrum et al., 2016]. Validity and atom stability are defined by valency correctness, and
519 uniqueness is computed as the percentage of distinct canonical SMILES. Sampling time is measured
520 as the average GPU seconds to generate one molecule, while training time reflects total GPU days
521 until the last pre-defined epochs in the official repositories.

522 All experiments are conducted on a computing cluster equipped with NVIDIA RTX 3090 GPUs,
523 each with 24 GB memory. Training is parallelized across 2 GPUs using PyTorch DDP framework,
524 while inference experiments are executed on a single GPU for fair comparison of sampling speed.
525 The CPUs are Intel(R) Core(TM) i9-12900KF. Unless otherwise specified, we report sampling time
526 as the average GPU seconds per generated sample, and training time in GPU days until the max
527 epochs from the baselines' official repositories. All baseline implementations use their official code,
528 pre-trained weights (if available) and hyperparameters to ensure comparability.