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Abstract

In this work we study linear vector stochastic differential equation (SDE) models
driven by the generalised hyperbolic (GH) Lévy process for inference in continuous-
time non-Gaussian filtering problems. The GH family of stochastic processes offers
a flexible framework for modelling of non-Gaussian, heavy-tailed characteristics
and includes the normal inverse-Gaussian, variance-gamma and Student-t processes
as special cases. We present continuous-time simulation methods for the solution
of vector SDE models driven by GH processes and novel inference methodologies
using a variant of sequential Markov chain Monte Carlo (MCMC). As an example
a particular formulation of Langevin dynamics is studied within this framework.
The model is applied to both a synthetically generated data set and a real-world
financial series to demonstrate its capabilities.

1 Introduction

In the fields of statistical signal processing and machine learning, the problem of modelling dynami-
cally evolving phenomena can be found in various application domains including financial markets
[1]], speech recognition [2], health monitoring [3] and more recently in generative models for images
[4]. Stochastic differential equation (SDE) models of real-world dynamic phenomena offer a powerful
tool for capturing the inherent uncertainty in the estimated behaviour of such systems and provide a
probabilistic framework that allows for the quantification and propagation of uncertainty.

Typically the driving (or forcing) function, which characterises the random fluctuations from the
estimated deterministic evolution, is chosen as a Brownian motion. However, the Gaussian assumption
implicit in the use of Brownian motion is often not justified in real-world applications, as many
systems exhibit non-Gaussian features such as asymmetric or heavy-tailed distributions. Even with
Brownian-driven paths, discretisation may require complex integrals and introduce further complexity.
Instead, inference algorithms that work directly in continuous-time offer an effective alternative to
discrete-time algorithms for large, irregularly sampled sequential data sets by reducing sampling costs
associated with grid based strategies ([5], Section 4.6, [6]). Recent work on SDE models extends
their definition to incorporate non-Gaussian Lévy processes, allowing for a wider range of behaviours
including the a-stable and Poisson processes ([[7; 185 9]]). This extension enhances the flexibility and
applicability of SDE models, enabling them to capture more complex dynamics and uncertainties in
real-world systems.

In this work, we study linear SDE models driven by normal variance-mean mixture (NVM) processes,
specifically the generalised hyperbolic (GH) Lévy process which specifies a broad class of stochastic
processes for varying levels of non-Gaussian, heavy-tailed and asymmetric characteristics, and
include the normal inverse-Gaussian, variance-gamma and Student-t processes as special subclasses
([LO; [11). A point process simulation algorithm for the GH process has been recently presented in
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[12]. Building on this algorithm, we present a simulation method for SDEs driven by GH processes
and a novel continuous-time filtering algorithm which enables inference in such systems.

Specifically, the linear vector SDE model is defined as
dx(t) = Ax(t)dt + LdW (t) 1)

where x(t) is the D-dimensional state vector at time ¢, A and L are system matrices, and W (t) is
a background-driving Lévy process. The observations are assumed to be related to the state vector
through

y(t) = Hx(t) + (1) )

where H is the observation matrix and €(¢) is assumed to be a continuous-time white Gaussian noise
with covariance 2.

The system of equations of the form presented in Eqs. (I)) and (2) define a Lévy state-space model
(SSM) [i8]. Various well-known models can be treated as special cases of this general structure by
choosing the particular forms of A, L and H. Some example models are the standard linear tracking
models [8], continuous-time autoregressive (CAR), the CAR moving-average (CARMA) ([6} [13]])
and the Ornstein-Uhlenbeck (OU) processes [14]].

As a particular case, we study a Lévy SSM formulation of Langevin dynamics defined as:
dz(t) = 0&(t)dt + dW (t)

where 6 < 0 such that the evolution of the process reverts to zero in proportion to the magnitude of
#(t). Langevin dynamics find application directly in physics and biological sciences as a model of
natural phenomena. Furthermore, it can be applied to optimisation and Markov chain Monte Carlo
algorithms for the design of gradient-based learning methods [7; [15]]. The linear SDE formulation of
Langevin dynamics can be expressed as:

dx(t)| |0 1| [x(¢) 0

[d:&(t)} = [0 9} [:b(t) di+ || dW(t) )
where by definition dx(t) = &(¢)dt. Hence, a Lévy SSM allows both the state evolution % (¢) and the
integrated state (t) to be inferred within the same framework.

Previous works on linear vector SDE models use various particle filtering (PF) strategies for the
inference of states in Eq. (I)) ([16; [8]). Here, we develop a novel framework using a variant of
Sequential Markov chain Monte Carlo (SMCMC) ([[lL'/; |L8]]) for the inference of states in a general
Lévy SSM and demonstrate its applicability using Langevin dynamics driven by GH processes.

The paper is organised as follows. In Section[2] we review fundamental results on the simulation of
vector SDEs driven by GH processes. In Section [3| we present our novel inference algorithm for the
GH SSM and demonstrate its applicability in Section ] with both a synthetically generated data set
and a British Pound - Japanese Yen foreign exchange rate data set.

2 Simulation of GH SSMs

In this section, we review methods of simulation for vector SDEs driven by Lévy processes. Par-
ticularly for the GH process, a conditionally Gaussian formulation of the simulation algorithm is
introduced which will form the basis of our inference algorithm discussed in the following sections.

The solution to vector SDEs, as shown in Eq. (EI) can be expressed as [19]

t
x(t) = eA'x(0) 4 / eATILAW (u) “
0

where eA? is the matrix exponential of At and x(0) is an initial condition. The second term in the
right hand side is a stochastic integral with respect to a Lévy process dWW. When studying the solution
for specific characterisations of A, L and dW (t), it is usually convenient to define the stochastic
term as:

T
I(ft):/O £y (w)dW (u)



where f;(u) = eA(t_“)L]l{ugt} and T > t is some arbitrary boundary point. The integral I(f;) can
only be analytically solved when dW/ is Gaussian. Hence in general I(f;) has to be approximated,
e.g. using direct Euler-type discretisations as studied in [6]. In this work, we adopt a point process
representation of I(f;) enabled by the series representation of Lévy processes in terms of its jumps
times and sizes {(V;, W;)} as in [12]. When dW () is a normal variance-mean (NVM) process, such
as the GH process, the integral admits the shot-noise series representation I(f,) = Y .2 £,(V;)W;
where the jump sizes WW; can be further decomposed as

Wi = pw Z; + ow Z;U; (5)

where puw € R is a skewness parameter, oy € (0, 00) is a scale parameter, V; ~ Unif(0,T) are
jump times, Z; are the jumps of a subordinator process and U; ~ A/ (0, 1) [20] such that

n

T
Z £, (Vi)W; "= / £, (u)dW (u)

0

which converges uniformly on (0, T'] to the original integral as n — oo. Thus the continuous-time
process I(f;) can be represented as a countably infinite discrete sum without additional discretisation
schemes as in the Gaussian case. The proof of this convergence can be found in Theorem 4 of [20].

To generate random sample paths of the state vector x(¢), the solution shown in Eq. (E]) can be
incrementally simulated on each interval (s, ] as

x(t) = eA0x(s) + > AUTVILW, (6)
Vi E(s,t]

given an initial state vector x(s) and jumps {(V;, W;) : V; € (s, t]}.

Since there are an infinite number of jumps in any interval for the GH process, the summation in
Eq. @ must be truncated to exclude small jumps of dW (t) as discussed in [12]]. To improve the
approximation, the residual approximation schemes for the series representation of GH processes can
be incorporated into the SDE simulation framework. The effect of residual small jumps, defined as
R¢ =1I(f;) — I°(f;) where c is the truncation level, can be included as a standard stochastic integral
driven by a Brownian motion. The moments of the residual process for the GH case are derived in
[12] and the validity of this residual approximation is studied in [20].

Notice that for NVM processes, given the set of subordinator jump sizes {Z,}5°,, I(f;) is condition-
ally Gaussian which allows for efficient simulation and inference procedures to be designed. Hence,
it is useful to express the integral in Eq. (6) directly as a function of the subordinator jump times and
sizes {(V;, Z;) : V; € (s, ]} by substituting Eq. (5) into (6) such that I(£;)|{(V, Z;)} ~ N (m,S)

where
m = Z £ (Vi) pw Z; 7
:V; E(s,t]
S= Y KRV o Zi ®)
:V; E(s,t]

The conditionally Gaussian formulation of the integral I(f;) leads to a fairly straightforward condi-
tional form for the incremental simulation of the sample paths from Eq. (6) such that
pxefx, {(Vi, Z0) : Vi € (5,1]}) = N (A%, + m. §) ©)

where the notation of the state is simplified to x; := x(¢) for brevity. Further details are provided in
Appendix [A]

3 Inference for GH SSMs

In this section we describe a novel sequential inference algorithm for the states of a Lévy SSM driven
by a normal variance-mean process such as the generalised hyperbolic case. We start by briefly
reviewing the recursive state estimation problem in the context of Lévy SSMs and subsequently
introduce our SMCMC algorithm for this task.

The problem of filtering in a dynamic system can be described as the computation of the posterior
distribution of a vector of state variables x; conditional on a batch of observations yo.; := {y(s;) :



0 < s; < t} [21]], where here {s;} is a set of discrete observation times for the process. The
sequential nature of dynamic systems allow the filtering problem to be solved incrementally for all ¢.
Given an initial filtering estimate at time s, denoted as p(Xs|yo.s ), the filtering estimate at time ¢ > s
can be obtained using a two step recursive algorithm involving a prediction and a correction step.
As discussed later in this section, we will devise a sequential algorithm based on an approximate
collapsing of p(xs|yo.s) onto a single Gaussian.

Since the associated densities of a Lévy SSM involve a set of jump times and magnitudes, de-
fine {(Vi, Zi)} s,y = {(Vi,Zs) : Vi € (s,t]} for convenience. Then, the predictive density
P(%t|yo:s: {(Vi, Zi) }(5,47) can be expressed as [ f(x¢|x,)p(Xs|yo:s)dxs where the state transition
density f(x¢|xs) can be derived from the forward simulation of the SDE, as specified in Eq. @])

Note that the generic notation for the state transition density f(x:|x;) omits the dependence on the
jumps {(V;, Z;) } (s, for notational convenience.

After an observation at time ¢ is measured, the predictive density can be updated as

P(yexe)p(xe[yo:s, {(Vi, Zi) }s,0)
p(yt|90:57 {(V:u Zz)}(s,t])

Since the jump times and sizes {(V;, Z;)} s are latent variables in a Lévy SSM, we want to
marginalise over them in practice to obtain the filtering estimate at time ¢ as

p(xelyo:e, {(Vis Zi) }s.01) = (10)

P(Xtlyo:t) = /P(Xt|yom{(W»Zi)}(s,t])P({(W7Zi)}(s,t]|y0:t)d{(‘/%7Zi)}(s,t] (11)

where [ d{(Vi, Zi)} (s, is used to indicate a marginalisation over all possible jump sequences in
(s,t]. The Gaussian noise assumption for the observation density p(y;|x;) and the conditionally
Gaussian formulation of the transition density allows both the prediction and update equations to be
analytically solved and the resulting densities are still conditionally Gaussian. Hence, given a set of
jumps {(V;, Z;)} (5,4 the filtering problem can be solved by standard Kalman filtering recursions.

Assuming that the previous filtering estimate is approximated as a single Gaussian, p(Xs|yo.s) =
N (x4; g, Cs), and given {(Vi, Z;)} (5,4, the prediction equations from time s to ¢ result in a
Gaussian density NV (X;; f14)5, Cy)) such that (8% 16]),

IJ’t|s = Fp’s +m (]2)
C,s =FC,F" +8 (13)

where F = ¢A(=%) and m, S are calculated using Eqs. and . Then, given the observation
matrix H and noise covariance o2 in Eq. , the Kalman correction step results in another Gaussian
density N (x¢; pty)4, Cy|¢) such that

K; = C,,H'(HC, ,H" +02)7! (14)

My = My + Ki(yt — Hu’t|s) (15)

Gy = Cys — Kt HGy (16)

where K; is the Kalman gain. Additionally, the marginal-conditional likelihood
P(Yelyo:s, {(Vi, Zi) } (5,4, 0= ) can be readily evaluated during the recursions as

PWelYo:ss {(Vis Zi) }(s.01, 0¢) = N (ys; Hﬂt\s»HCt|sHT +0?) (17)

which will be used in later stages of our inference algorithm.

While it is straightforward to solve the filtering problem given a set of jumps {(V;, Z;)} (s, as
described above, sampling from the posterior density over the latent jumps in (IT)) is intractable and
hence the estimation of the filtering density also becomes intractable. In previous works, this problem
was overcome using particle filtering strategies where each simulated set of jumps {(V;, Zl)}gjS ?t]
were associated with an importance weight w; such that (TT) can be evaluated as a weighted sum over
conditionally Gaussian densities p(x:|yo.t, {(V4, Zl)}g ) t]). In this work, we propose a new inference
framework based on Monte Carlo sampling strategies where samples from the posterior density over

the latent jumps are obtained using an MCMC algorithm at each iteration.



The posterior density over the latent jumps in (s, t] can be expressed through Bayes’ theorem as

P(ytlyo:s)
where the likelihood term is evaluated as part of the Kalman filtering recursions and shown in (17).
The prior density p({(V;, Zi) } () for the jump sequence is intractable to compute, especially for
infinite activity processes such as these. Nevertheless, under the truncated shot-noise model, it would
be possible to characterise this prior fully and hence use it to perform MCMC by proposing changes
to individual jumps, for example. Here we leave such a possibility for future investigations and rely
on forward simulation of the jumps from their prior only in the MCMC.

A simple and effective Metropolis—Hastings (MH) algorithm targeting the posterior density over
the latent jumps may be constructed by proposing the jumps from their GIG prior p({(Vi, Z;)}(s,4)
using the algorithms in [12]. In this case MH acceptance probabilities are obtained solely in
terms of the marginal-conditional likelihood term p(y:|yo:s, {(Vi, Zi) }(s,¢)- For each proposed

change {(V“ Zi)}éls),t] ~ p({(Vi, Zi) } (s,11) to the current state of the jump sequence at iteration j,
{(V;, ZZ)}Ei )t] , the Kalman filtering recursions - are carried out and the new jump sequence
{(V}, ZZ-)}( ) s accepted with probability

(s:t]
P(Welyorss (Vi Z)} )
p(yt|y0:su {(‘/;7 Z )}Ei)t )

otherwise the move is rejected and the jump sequence remains unchanged. Such an MH algorithm
is shown to be effective for producing jump samples from the posterior density in Section[d} The

G = min

19)

chain is run to convergence, and the chain {(V;, ZJ}E; )t] and their associated filtering estimates

N (xy; ui‘] t), Cgf t)) are combined to make a Gaussian mixture model approximation,

N
1
P(xilyo) = — DN G i), Cif)) (20)
j=1

where N is total number of iterations of the chain. This approximation is then collapsed onto a single
Gaussian, in a spirit similar to [22]] for the PF, as p(x¢|yo.¢) ~ N (x¢; t;, C¢) by moment matching,

L~ ()
== 1)
t N ; t
N
Z [ tt Nt\t ut)(uift) Nt)T] (22)

Hence Eq. forms an approx1mat10n of the filtering density in Eq. (TT). Furthermore the posterior
density over the GIG jumps may also be estimated by storing the underlying samples {(V;, ZZ)}Ei ?t]
from the MCMC algorithm. Note that the conditionally Gaussian formulation of the stochastic
integral I(f;) greatly simplifies the design of the filtering algorithm by enabling the use of standard
Kalman filtering recursions and also reduces the variance in our estimates compared to algorithms
involving direct sampling of the GH process. Furthermore, the Gaussian approximation of the mixture
filtering density at ¢’ > ¢ in allows the estimation procedure for (¢, '] to be independent of
the previous jumps {(V;, Z;) }(o,. a simplification compared to more complex SMCMC and PF
approaches to this problem. Note that our algorithm, involving the approximation of the filtering
density by a single Gaussian, is distinct from the more familiar SMCMC approaches in the literature
([LL7:118]), and future work will compare the performance of these algorithms and with regular particle
filters [16].

4 Applications

In this section we demonstrate the applicability of the proposed inference algorithm for Lévy SSMs
driven by a GH processes. Firstly, we present results of a synthetically generated Langevin dynamics



data set with known and fixed parameters. Here, we display the performance of the proposed
sequential MCMC methodology in Section |3|on the estimation of the state vector x(t). We present
further results of our formulation of the Langevin dynamics to a British pound (GBP) to Japanese
Yen (JPY) foreign exchange rate data set sampled on 07/01/2013 in Appendix [B]
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Figure 1: Estimation of states using sequential MCMC for synthetically generated data. With Lévy
SSM parameters § = —0.5, u = 0, 0 = 1, 0. = 0.1 and GIG parameters A = —0.4, v = 0.01,
0=1.

For the synthetically generated data set, the parameters of the driving GH process are chosen as
A = —04, v = 0.01 and § = 1.0 which are defined in terms of the underlying GIG subordinator
process. Furthermore, 8 = pyw = 0 which implies that the process is symmetric and the additional
scale parameter oy in Eq. (5)) is chosen to be 1.0. The damping parameter 6 for the evolution of the
acceleration of a particle moving under Langevin dynamics is set to —0.5 and the observation noise
variance o2 is set to 0.1. The associated SDE is initialised as x(0) = 0 and the process is simulated
between (0, 100] with 200 linearly spaced observations drawn according to Eq. (2) with H=[1 0].

The latent states z(t), 4(¢) and the observed data y(t) are visualised in Fig. [I|together with the results
of our sequential MCMC filter. Notice that all of the observations are shown in the first plot with blue
dots and the second plot showing the velocity of the particle is completely unobserved. Both plots
include sequentially computed latent state estimates in addition to 3 standard deviation ranges in grey
showing the uncertainty in our estimates. At each time interval 100 samples are generated from the
jump proposal and the associated conditional densities are accepted with probability as in (T9).

The results suggest that our proposed algorithm is able to accurately infer the true latent states.
Specifically, the jump causing a large change in velocity around ¢ = 35 is successfully estimated and
the model is able to track the state without any lags. The effect of this jump on z(t) can also be seen
as a rapid upwards change in position in the first plot. Furthermore, due to the damping effect in
Langevin dynamics the velocity 4(t) gradually reverts to its zero mean levels.

5 Conclusions

In this work, we introduced a Lévy SSM driven by a GH process which provides a flexible represen-
tation of continuous-time stochastic linear systems with non-Gaussian properties. We introduced a
novel sequential inference algorithm for this model that may be readily generalised to Lévy SSM
driven by normal variance-mean processes. A specific formulation of Langevin dynamics is used
to demonstrate the applicability of Lévy SSMs and our sequential MCMC algorithm in Section
However, it is worth noting that the class of Lévy SSMs is able to represent a wider range of
models such as the standard object tracking including the random walk, constant velocity, constant
acceleration models. Together with the broad class of processes represented by a GH process, our
work enables modelling of a wide range of real-world phenomena with applications in a variety of
fields.
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A Appendix for the Simulation of GH SSMs

For the Langevin model shown in (3), the exact forms for A=), £,(V;) and f,(V;)f;(V;)” are

QAl—s) _ [é 7 (fi(s) — 1)}

+(s)
N (Vi) = 1)
£(V:) = [e Yo ]
£, (V)E (V)T = # (V) =1 3RV (fuVi) — 1)
i i 5 1(Vi) (fe(Vi) = 1) £1(Vi)?

where f;(z) = ¢?*=%) for convenience. These terms are subsequently substituted into , and
() to simulate incremental sample paths from the Langevin model. This procedure is summarised in

Alg.

Algorithm 1 Incremental sampling from the GH SSM, {x(¢; puw, 03, A, 8,7, 0) : s < t}, given X.

1. Generate jump times and sizes {(V;, Z;) : V; € (s, ]} from a GIG process using Algs. 8
and 10 of [12]] for |A| > 0.5, or Algs. 12 and 14 of [12] for 0 < |A| < 0.5,

2. Compute the moments m and S of the associated conditional stochastic integral using the
jumps {(V;, Z;) : Vi € (s, t]} and Eqgs. (7). (3),
3. Using x,, sample a conditionally Gaussian random variable x; ~ N (eA(t_s)xS +m,S).

B Appendix for Applications

For the foreign exchange data set, the original data was downsampled to include every 500th
irregularly arriving order price for a period of 113 minutes. The observed data used for the experiment
includes 200 points in total. The results are shown in Fig. 2] where the x-axis is in seconds. The
parameters of the driving GH process as well as the Lévy SSM parameters are tuned by hand using
grid-based strategies that maximise the average log marginal likelihood of the data.

The inferred velocity of the rates (lower plot) include rapid shifts, most notably around ¢ = 4200,
which suggest that a Brownian-driven model would be inappropriate for such a heavy-tailed process.
The state on the top plot is able to follow the price accurately without losing track. Hence, the
ability to sequentially estimate large deviations in state will likely be of significant assistance in
momentum-based trading strategies.
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Figure 2: Estimation of states using sequential MCMC for historical intraday foreign exchange rates
of British pound (GBP) to Japanese Yen (JPY) sampled on 07/01/2013. With Lévy SSM parameters
0 =-0.1,u=0,0=10"% 0. = 1072 and GIG parameters A = —0.6, v = 0.001, § = 1.
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