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Summary
We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local struc-

ture and geometry of environments used for training reinforcement learning (RL) agents. We show that regions
with positive or negative ORC correspond to areas where random walks converge or diverge, respectively, offer-
ing insight into the environment’s navigational geometry. ORC is shown to correlate strongly with established
measures of environment complexity. Building on this, we propose an ORC-based intrinsic reward that signifi-
cantly enhances exploration efficiency across a range of environments.

Contribution(s)
1. We reveal a novel connection between the successor representation (Dayan, 1993), a key technique for decou-

pling reward structure from environment dynamics in reinforcement learning, and Ollivier-Ricci Curvature
(ORC) (Ollivier, 2009), an information-geometric measure that captures local curvature in the environment’s
state space.
Context: Successor representation and Ollivier-Ricci Curvature have independently been used in reinforce-
ment learning and information geometry. However, to the best of our knowledge, this is the first work to
formally link these two concepts.

2. We show that states with positive Ollivier-Ricci Curvature correspond to regions where random walks tend to
converge, while states with negative curvature indicate regions where random walks tend to diverge.
Context: While ORC has been used in the graph literature to detect bottlenecks and community structure (Ni
et al., 2019), a thorough analysis of its role in reinforcement learning, both for characterizing environment’s
geometrical complexity and guiding agent behavior, has not been explored in prior work.

3. We show that Ollivier-Ricci Curvature is highly correlated with established metrics for assessing the difficulty
of environments used in reinforcement learning.
Context: We compare our method with the metrics analyzed by Laidlaw et al. (2023). Unlike their approach,
which only provides global complexity scores for entire environments, our method can measure complexity
both locally and globally.

4. We propose using Ollivier-Ricci Curvature as an intrinsic reward signal that encourages agents to visit diver-
gent regions of the environment more frequently—regions that facilitate exploration—while avoiding highly
connected convergent regions that often act as traps.
Context: Our curvature-based intrinsic reward outperforms both a random policy and a count-based entropy
maximization baseline across a variety of environments.
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Abstract

We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local1
structure of reinforcement learning (RL) environments. We establish a novel connection between ORC2
and the Successor Representation (SR), enabling a geometric interpretation of environment dynamics3
decoupled from reward signals. Our analysis shows that states with positive and negative ORC values4
correspond to regions where random walks converge and diverge respectively, which are often critical5
for effective exploration. ORC is highly correlated with established environment complexity metrics,6
yet integrates naturally with standard RL frameworks based on SR and provides both global and local7
complexity measures. Leveraging this property, we propose an ORC-based intrinsic reward that guides8
agents toward divergent regions and away from convergent traps. Empirical results demonstrate that9
our curvature-driven reward substantially improves exploration performance across diverse environments,10
outperforming both random and count-based intrinsic reward baselines.11

1 Introduction12

Estimating and understanding the local and structural complexity of reinforcement learning (RL) environments is13
important for building learning algorithms that are both robust and sample efficient. While global properties like14
overall task difficulty (Laidlaw et al., 2023), benchmark performance (Aitchison et al., 2023), or reward sparsity15
(Ecoffet et al., 2019) are often studied, local complexity, which looks at how different parts of the environment vary in16
connectivity or transition dynamics, is less explored.17

In this work, we propose using Ollivier-Ricci Curvature (ORC) (Ollivier, 2009) as a well-established and interpretable18
measure of local structure in RL environments. ORC quantifies how random walks under a policy behave at different19
regions of space, revealing whether local trajectories tend to converge (positive curvature) or diverge (negative curva-20
ture). This provides a geometric and probabilistic perspective on environment structure that goes beyond simple state21
counts or visitation frequency. To apply ORC in reinforcement learning, we connect it to the Successor Representation22
(SR), a common method that separates environment dynamics from the reward. This connection allows us to compute23
ORC in a way that fits RL goals and can be used with existing SR-based methods. Next, we show that ORC is strongly24
related to well-known measures of environment complexity. Using this, we propose a new intrinsic reward based on25
curvature that encourages exploring divergent areas and avoids highly connected regions, leading to better exploration26
through more uniform and diverse state coverage.27

2 Motivation and Background28

In this section, we first introduce the concept of Ricci curvature (Ricci & Levi-Civita, 1900), focusing specifically on29
Ollivier-Ricci curvature. We then present the successor representation, originally proposed by Dayan (1993). Finally,30
we connect these two concepts and describe a unified framework for computing the Ollivier-Ricci curvature between31
states based on a given policy and justify the reason behind using this metric to control exploration.32
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2.1 Ollivier-Ricci Curvature (ORC)33

Ricci curvature is a concept from information geometry that characterizes how different regions of a space contract or34
expand. Computing the exact Ricci curvature typically involves complex tensor-based calculations. As an alternative,35
Ollivier-Ricci Curvature (ORC) provides an approximation based on optimal transport theory and the probability36
distributions induced by random walks.37

For two points x and y in a metric space, ORC compares the Wasserstein-1 distance (W1) (Villani et al., 2008) between38
the probability measures centered at these points (µx and µy) with the geodesic distance d(x, y). These probability39
measures describe how mass is distributed to neighboring points if we initiate random walks at x and y, respectively.40
for example, in graphs, µx can be defined as the uniform or weighted distribution over the neighbors of x. The41
curvature between x and y is defined as:42

κ(x, y) = 1− W1(µx, µy)

d(x, y)
. (1)

This quantity measures how much closer (or farther) the local probability distributions are compared to the geodesic43
distance between the points. The following three cases may arise (illustrated in Figure 1):44

• Negative ORC: Random walks originating from x and y tend to diverge (left image).45

• Zero ORC: Random walks from x and y neither diverge nor converge significantly (center image).46

• Positive ORC: Random walks from x and y tend to converge (right image).47

Figure 1: Illustration of ORC. Left: negative curvature where random walk distributions diverge. Center: zero curva-
ture with neutral behavior. Right: positive curvature where distributions converge.

2.2 Successor Representation (SR)48

The successor representation (SR) was first introduced by (Dayan, 1993) in the context of reinforcement learning49
as a method to disentangle the reward function from the environment dynamics. SR provides a notion of long-run50
neighborhoods under a given policy. In other words, instead of viewing states as isolated points in the state space,51
SR characterizes each state by the distribution of future states it is expected to visit. Mathematically, the SR between52
states s and s′ is defined as:53

SRπ(s, s′) = Eπ

[ ∞∑
t=0

γt I{st = s′}

∣∣∣∣∣ s0 = s

]
(2)

This expression captures the expected discounted future occupancy of state s′, starting from state s and following54
policy π. s is the starting state and γ is the discount factor.55

2.3 Connecting SR and ORC56

To compute ORC between two states in an RL environment, a probability measure must be defined at each state.57
A common approach is to construct a non-uniform distribution over immediate neighbors based on edge weights58
in the connectivity graph. However, this method, used by papers such as Ni et al. (2019), only considers the local59
neighborhood structures, which does not give information about the distribution induced on all other states in a long60
run. In this work, we define the probability measure at each state using the normalized rows of the SR matrix SRπ ,61
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computed by approximating Equation 2. This reflects the distribution over future state occupancies induced by starting62
a random walk from state s. Specifically, in Equation 1, we define µs as:63

µs(s
′) =

SRπ(s, s′)∑
i SR

π(s, s′i)
(3)

2.4 Justification64

Based on the mathematical foundations discussed above, we can understand how states with different ORC values can65
influence the efficiency of reinforcement learning algorithms:66

• Positive ORC: Ricci curvature provides a lower bound for the spectral gap of a Markov chain (Paulin, 2016). Since67
the mixing time (i.e., the time required to reach the steady-state distribution) is inversely proportional to the spectral68
gap (Bubley & Dyer, 1997), increasing the maximum Ricci curvature accelerates convergence. While this leads to69
faster mixing, it may hinder exploration by prematurely concentrating the visitation distribution.70

• Negative ORC: In states with negative curvature, random walks starting nearby tend to diverge and explore distinct71
regions of the space. This divergence promotes broader and more effective exploration.72

Therefore, favoring visitation of states with large negative ORC and reducing the frequency of visits to states with73
large positive ORC can lead to more expansive and efficient exploration. We justify this claim empirically in the74
Experiment section.75

3 Methodology76

In this section, we explain how we estimate SR and ORC in an offline way before starting the RL task to be used as77
an intrinsic reward in the RL task. In Appendix B we explain how SR and ORC can be calculated in an online way as78
well.79

3.1 SR Calculation80

To estimate the successor representation (SR), we iterate over all states. For each state, we initiate a random walk of81
length LSR. At each step t, we take an action based on the policy and increment the entry corresponding to the visited82
state by γt. This process is repeated NSR times per starting state. Finally, we divide the accumulated values by NSR83
to obtain the average. The resulting matrix has rows representing the discounted state visitation counts for random84
walks of length LSR starting from each state. The pseudocode is shown in 1.85

Algorithm 1 Estimate Successor Representation SRπ

Require: Set of states S, discount factor γ ∈ (0, 1], walk length LSR, number of walks NSR, policy π(a | s)
Ensure: Successor representation matrix SRπ ∈ R|S|×|S|

1: Initialize SRπ ← 0|S|×|S|

2: for each s ∈ S do
3: for i = 1 to NSR do
4: scurr ← s
5: for t = 0 to LSR − 1 do
6: SRπ[s, scurr]← SRπ[s, scurr] + γt

7: Sample action a ∼ π(· | scurr)
8: scurr ← Take Action(a)
9: end for

10: end for
11: SRπ[s, :]← SRπ[s, :]/NSR

12: end for
13: return SRπ
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3.2 ORC Calculation86

After computing the successor representation (SR) for all states, we estimate the Ollivier-Ricci curvature (ORC),87
which requires geodesic distances to compute both the Wasserstein distance (numerator) and the ground distance88
(denominator) in Equation 1. These distances are approximated by the shortest-path lengths on a connectivity graph89
over the state space. To construct this graph, we perform NORC random walks of length LORC starting from each90
state. At each step t, an action a is sampled from the policy π(a | s), and the next state s′ is reached. If there is91
no edge between s and s′ in the adjacency matrix, a weight of t is assigned. If an edge already exists, the weight is92
updated to min(current weight, t). This process records the shortest observed step-count at which s′ is reachable from93
s. After constructing the connectivity graph, we compute the Ollivier-Ricci curvature κπ(s, s′) between each state s94
and its neighbors using Equation 1. The overall curvature at state s is given by the average of all pairwise curvatures95
κπ(s, ·). The pseudocode is shown in 2.

Algorithm 2 Estimate Ollivier-Ricci Curvature κπ

Require: Set of states S, policy π(a | s), number of walks NORC , walk length LORC

Ensure: Curvature values κπ(s) for all s ∈ S
1: Initialize adjacency matrix A←∞|S|×|S| ▷ Initialize with no edges
2: for each s ∈ S do
3: for i = 1 to NORC do
4: scurr ← s
5: for t = 1 to LORC do
6: Sample action a ∼ π(· | scurr)
7: snext ← transition(scurr, a)
8: if A[s, snext] > t then
9: A[s, snext]← t

10: end if
11: scurr ← snext
12: end for
13: end for
14: end for

▷ Now compute ORC using Equation 1
15: for each s ∈ S do
16: Let N (s)← {s′ | A[s, s′] <∞}
17: for each s′ ∈ N (s) do
18: Compute κπ(s, s′) using Equation 1
19: end for
20: κπ(s)← 1

|N (s)|
∑

s′∈N (s) κ
π(s, s′)

21: end for
22: return κπ(s) for all s

96

4 Experiments97

In the following experiments, we aim to address the following research questions:98

1. RQ1: What are the geometric interpretations of positive and negative ORC values?99

2. RQ2: Can statistical properties of ORC values serve as a measure of environmental complexity for RL tasks?100

3. RQ3: Are ORC values useful as an intrinsic reward?101

To answer these questions, we used the following tabular environments:102

• Mazes: We generated random mazes with varying sizes, branching factors, and path "wiggliness" to study the103
relationship between ORC and topological complexity.104
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• Rooms Connected with Bridges: These environments consists of empty rooms with different sizes connected by105
narrow bridges. This structure allows us to demonstrate the effectiveness of ORC in identifying critical bottleneck106
regions such as bridges between rooms.107

• Tabular Atari: We used the dataset provided by Laidlaw et al. (2023), which includes transition and reward matrices108
for several Atari games. This dataset is particularly well-suited to our analysis, as it enables the computation of Ricci109
curvature in a discrete state space. Furthermore, for each game, the authors provide some complexity metrics based110
on random roll-outs, which are used to justify correlation of ORC and global complexity of environments.111

4.1 RQ1: What is the geometric interpretation of positive/negative Ricci curvature values?112

As explained in Section 2, different Ricci curvature values correspond to different types of states:113

1. Positive and large Ricci values (Ricci ≫ 0): These states are characterized by the convergence of random walks114
starting from nearby states into a common neighborhood. They indicate regions of the connectivity graph where115
states are highly interconnected. Examples include dead ends in mazes or corners within a room.116

2. Ricci values close to zero (Ricci ≈ 0): At these states, random walks neither converge nor diverge significantly.117
These regions correspond to areas of the environment with simple or flat geometry, such as straight, non-winding118
corridors in a maze or the center of an empty room.119

3. Large negative Ricci values (Ricci ≪ 0): These states exhibit divergent random walks, indicating bottlenecks or120
bridges between distinct regions of high connectivity. Examples include branching points in mazes.121

In this section, we aim to empirically evaluate how well this theoretical understanding of ORC aligns with the actual122
computed values across various regions of environments.123

Figure 2: Ricci curvature values across different locations in mazes with varying Branching and Winding factors. As
observed, dead-ends (end of branches) and winding segments tend to exhibit large positive Ricci values, branching
points correspond to large negative values, and straight corridors typically have Ricci values close to zero.

4.1.1 Mazes and Rooms Connected with Bridges124

To demonstrate how ORC varies across different regions of a maze, we calculated those values for mazes characterized125
by different Branching (B) and Winding (W ) factors. At each location, the agent can take one of three actions: (1)126
move forward, (2) turn right, or (3) turn left. The agent can also face one of four possible orientations: up, right,127
down, or left. For simplicity, we consider all four orientation states at a given location as a single aggregated state.128
The Ricci curvature at a location is thus computed as the curvature of this aggregated state. To calculate the Successor129
Representation (SR) and the connectivity graph, the agent follows a random policy, choosing each action (forward,130
left, right) with equal probability.131
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Figure 2 shows the ORC values for mazes with varying Branching and Winding factors (please refer to Appendix D to132
see larger mazes). As it can be observed: winding paths and dead-ends have large positive Ricci curvature, reflecting133
random walks that tend to remain nearby; straight corridors exhibit curvature near zero; and branching points show134
large negative curvature, indicating divergence of random walks into different regions. Figure 3 illustrates the ORC135
for rooms which are connected with narrow bridges. As anticipated, the corners of these rooms exhibit large positive136
Ricci curvature values, and bridges exhibit large negative values.137

Figure 3: Ricci curvature values in rooms connected with bridges. As expected, corners of rooms exhibit high positive
Ricci values, bridges show negative curvature, and the middle regions of rooms tend to have Ricci values close to zero.

4.1.2 Tabular Atari138

For Atari games, constructing a spatial map linking specific regions to Ricci curvature values is not feasible due to the139
high-dimensional, non-spatial nature of the observations. Moreover, interpreting a single frame often requires temporal140
context. To address this, we show sequences of five consecutive frames. Figure 4 shows four such sequences. In the141
top panel, the middle frame of both trajectories is identical, as are two frames in the bottom panel. The top sequence142
has a large negative ORC at the middle frame, while the bottom has a large positive value. In the negative case,143
subsequent frames diverge, whereas in the positive case, they converge. Additional examples from other games are144
provided in Appendix E.145

Figure 4: Sequences of five consecutive frames from Atari Pong. The top and bottom panels each contain two se-
quences with partially overlapping frames. In the top panel, the middle frame has a large negative ORC (κπ = −0.60),
leading to diverging future frames. In contrast, the middle frame in the bottom panel has a large positive ORC
(κπ = 0.48), resulting in converging trajectories.
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4.2 RQ2: Can statistical properties of ORC values serve as a measure of environmental complexity for RL146
tasks?147

In this section, we first examine how various statistics of ORC values change as a function of three maze characteristics:148
(1) Size, (2) Branching Factor, and (3) Winding Factor. We then analyze the correlation between these Ricci curvature149
statistics and three measures of environment complexity, as introduced by Laidlaw et al. (2023): (1) Effective Horizon150
(higher values indicate greater complexity and shows long-horizon planning is needed), (2) Probability of Finding the151
Optimal Reward (lower values indicate greater complexity), and (3) Minimum State-Action Occupancy (lower values152
indicate greater complexity).153

4.2.1 Mazes154

Room Size (B, W) Min Max Mean(|ORC|) STD Range Entropy Diff α
(0.1, 0.1) -0.04 0.35 0.11 0.06 0.40 0.18 42.29

15x15 (0.5, 0.5) -0.13 0.37 0.13 0.08 0.51 0.21 45.91
(0.9, 0.9) -0.17 0.38 0.14 0.10 0.55 0.24 64.14
(0.1, 0.1) -0.06 0.37 0.14 0.08 0.44 0.38 59.57

21x21 (0.5, 0.5) -0.14 0.37 0.15 0.09 0.52 0.43 63.39
(0.9, 0.9) -0.18 0.40 0.17 0.10 0.57 0.45 67.76

Table 1: Change in Ricci Curvature’s statistics by changing the maze’s characteristics. Values are averaged over 10
mazes.

Table 1 presents statistical summaries of Ricci curvature across different maze configurations, highlighting how struc-155
tural properties, branching factor (B), winding factor (W), and maze size, affect curvature, exploration, and state-156
space coverage. Each row corresponds to a particular combination of (B,W ) in mazes of size 15 × 15 and 21 × 21,157
and the values reported are averaged over 10 randomly generated mazes per setting. Several trends can be detected.158
As the branching and winding factors increase, the mean absolute Ricci curvature and its standard deviation also159
tend to rise, suggesting greater variability in local geometry and a wider spread in how trajectories change in states.160
The range of Ricci curvature widens as well, indicating more pronounced differences in local connectivity structure.161
Notably, entropy difference, measuring deviation from uniform visitation, also grows with complexity, reflecting162
more biased exploration patterns under the random walk policy. This aligns with the increase in α, number of steps163
needed to cover 90% of the state space divided by the total number of states. Higher values of α imply less efficient164
coverage, especially in mazes with higher (B,W ), where more structured or looping paths restrict free movements.165

In summary, higher branching and winding introduce richer but less uniform geometries. This is captured both by166
Ricci curvature and by behavioral indicators such as entropy difference and the coverage ratio α. These findings167
support the idea that Ricci curvature can serve as a sensitive metric for quantifying exploration difficulty and transition168
bias in structured environments.169

4.2.2 Tabular Atari170

Ricci Statistic EH ROP MSAO
Min -0.71 0.52 0.62
Max 0.54 -0.66 -0.65
Mean -0.46 0.31 0.59

Mean(| · |) 0.55 -0.62 -0.63
STD 0.63 -0.41 -0.58

Range 0.68 -0.53 -0.62

Table 2: Spearman correlation coefficients between various statistics of Ricci curvature (row entries) and complexity
measures (column entries) in tabular Atari, based on metrics introduced by Laidlaw et al. (2023). EH: Effective
Horizon, ROP: Reward Optimality Probability, MSAO: Minimum State-Action Occupancy.

Table 2 reports Spearman correlation coefficients between several statistical summaries of Ricci curvature and three171
established complexity measures in tabular Atari environments as introduced by Laidlaw et al. (2023). We observe172
that the minimum Ricci curvature is negatively correlated with EH and positively correlated with ROP and MSAO,173
suggesting that highly negative curvature—typically associated with points of local expansion or divergence—appears174
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in environments where trajectories branch out and short-term randomness dominates, increasing planning depth but175
decreasing immediate exploratory coverage. Conversely, maximum Ricci curvature, often linked to convergence and176
local contractiveness, shows a positive correlation with EH and negative correlation with ROP and MSAO, implying177
more complex long-term planning and narrower exploratory diversity.178

Furthermore, statistics capturing variability in Ricci curvature (mean absolute value, standard deviation, and range)179
show strong positive correlations with EH and negative correlations with ROP and MSAO. This suggests that environ-180
ments with greater curvature heterogeneity require deeper planning but tend to have fewer high-probability optimal181
actions and more localized occupancy. These trends are consistent with theoretical expectations. Negative curvature182
typically signals unpredictability and diverging paths, while positive curvature indicates structural regularity and con-183
nectivity. Thus, the observed correlations align well with the intuition that Ricci curvature reflects the geometric and184
informational complexity of an environment.185

4.3 RQ3: Are ORC values useful as an intrinsic reward?186

As shown earlier, under a random policy, regions with negative ORC (e.g., bridges and branching points) promote187
exploration (should be visited more), while regions with high positive ORC hinder it due to excessive local connec-188
tivity (should be visited less). This motivates using−κπu(s)—the ORC under a uniform random policy πu—as an189
intrinsic reward: states with highly negative ORC yield large positive rewards (encouraging the agent to visit them190
more), and those with highly positive ORC yield large negative rewards (discouraging the agent to visit them more).191
In this subsection, we evaluate an agent trained with −κπu(s) as its intrinsic reward, analyze its exploration behav-192
ior, and compare the Ricci curvature of its induced policy to that of the random policy. We also compare this with a193
count-based reward, 1

State Count , which encourages visiting rarely explored states. To compare these policies, we have194
used the following evaluation metrics:195

Coverage Uniformity: (i) Entropy of normalized state visitations — Measures how evenly the agent explores the state196
space (higher is better). (ii) ∆Entropy — Difference between uniform entropy and observed entropy (lower is better).197

Coverage Speed: (iii) α (Normalized time to 90% coverage) — Steps to reach 90% of states, normalized by total state198
count (lower is better). (iv) Steps to 90% coverage — Raw number of steps to reach 90% of states (lower is better).199

To perform a thorough comparison considering all geometrical structures, we use mazes with high complexity (branch-200
ing factor B = 0.9, winding factor W = 0.9) in three different sizes. An extended version of the experiment,201
including mazes with small loops, is provided in Appendix F. We also evaluate all methods on games from the Tabular202
Atari dataset (Laidlaw et al., 2023). Details of the experimental setup can be found in Appendix C. For the results203
presented in this section, we use the full state space in the maze environments, consisting of both the agent’s location204
and its facing direction. This differs from Sections 4.1 and 4.2, where we merged all four directions at each location205
into a single state to simplify visualization. The non-merged Ricci curvature values are shown in Figures 16–18 in206
Appendix F.207

Table 3 shows that, in a specific environment, the policy trained with−Ricci as an intrinsic reward significantly reduces208
the average ORC values compared to the policy trained with count-based intrinsic reward and random policy. This is209
expected, as the agent is discouraged from visiting highly connected regions (those with large positive curvature). As210
a result, after training, when ORC is recalculated based on the learned policy, these regions become less connected.211
Interestingly, we observe an increase in the range of ORC values, while the standard deviation decreases or remains212
unchanged. The lower or same standard deviation indicates that ORC values are more concentrated around zero.213
Although the minimum and maximum values become more extreme, the average absolute value decreases, suggesting214
that both highly positive and highly negative curvature regions are becoming less complex and curved. In other words,215
the environment becomes flatter under the learned policy. This is desirable as exploration in flat regions is more216
efficient and uniform, and increasing the number of such regions will improve the overall efficiency of exploration.217
Visualizations of how ORC values become more uniform after training for each intrinsic reward setting can be found218
in Appendix F, Figures 16–18.219
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Room Size Policy Mean (−→ 0) Mean(|ORC|) ↓ STD ↓ Range ↓
0.09 ± 0.01 0.16 ± 0.00 0.19 ± 0.01 0.93 ± 0.10

15x15 0.23 ± 0.03 0.26 ± 0.02 0.26 ± 0.01 1.39 ± 0.07
0.04 ± 0.01 0.14 ± 0.00 0.17 ± 0.01 1.20 ± 0.05
0.14 ± 0.01 0.20 ± 0.01 0.20 ± 0.00 0.95 ± 0.05

21x21 0.36 ± 0.04 0.37 ± 0.03 0.26 ± 0.01 1.41 ± 0.12
0.06 ± 0.01 0.16 ± 0.01 0.19 ± 0.00 1.36 ± 0.16
0.22 ± 0.00 0.26 ± 0.00 0.20 ± 0.00 0.99 ± 0.02

31x31 0.61 ± 0.01 0.61 ± 0.00 0.13 ± 0.01 1.14 ± 0.09
0.05 ± 0.01 0.16 ± 0.00 0.20 ± 0.00 1.69 ± 0.06

Random Policy IR = −Ricci IR = 1
State Count

↓: Lower better,−→ 0: Closer to zero is better
Mean(|ORC|): Average of the absolute values of ORC across all states. This ensures that the reduction in

Mean is not simply due to an increase in large negative ORC values.

Table 3: Statistics of ORC calculated by random walks performed under different policies.

Room Size Policy Entropy of Normalized State Visitations ↑ ∆Entropy ↓ α ↓ Steps for 90% Coverage ↓
8.25 ± 0.04 0.35 ± 0.04 60.14 ± 27.17 23,334 ± 10,542

15x15 8.25 ± 0.12 0.35 ± 0.11 79.29 ± 26.10 30,764 ± 10,107
8.35 ± 0.04 0.25 ± 0.03 47.25 ± 30.10 18,333 ± 11,569
9.19 ± 0.01 0.45 ± 0.01 68.72 ± 7.95 54,701 ± 6,318

21x21 9.27 ± 0.05 0.37 ± 0.05 51.83 ± 11.34 41,256 ± 9,123
9.35 ± 0.02 0.29 ± 0.02 48.23 ± 5.79 38,391 ± 4,607
9.98 ± 0.17 0.78 ± 0.20 NA NA

31x31 9.95 ± 0.25 0.83 ± 0.25 NA NA
10.05 ± 0.22 0.73 ± 0.22 49.77 ± 10.20 87,755 ± 18,109
6.16 ± 1.10 2.90 ± 1.31 102.35 ± 46.73 452,989 ± 254,366

Tabular Atari 6.17 ± 1.02 2.75 ± 1.26 110.72 ± 49.89 484,578 ± 270,583
(Laidlaw et al., 2023) 6.12 ± 1.11 2.80 ± 1.33 94.76 ± 44.54 425,925 ± 255,187

Random Policy IR = −Ricci IR = 1
State Count

↑: Higher better, ↓: Lower better, NA: 90% coverage not reached (for all or some of the seed values)
∆ Entropy = log2(NStates)−H(Normalized State Visitations)

Table 4: Entropy and coverage statistics across environments and intrinsic reward strategies. See legend above for IR
type.

Table 4 shows that the agent trained with −Ricci as an intrinsic reward consistently outperforms both the random220
policy and the agent trained with count-based intrinsic reward across nearly all metrics and environments. Notably, in221
the 31×31 maze, neither the random nor the count-based agent was able to cover 90% of the states within 100k steps.222
This highlights the strength of our method in large, complex environments where efficient exploration is critical. While223
our method also performs better on average in the Tabular Atari environments, the margin is smaller—particularly for224
the entropy metric, where the count-based method slightly outperforms ours. This can be attributed to the frequent225
environment restarts in the Tabular Atari dataset (due to state enumeration constraints), which limit the length of226
Markov chains and reduce the potential benefit of curvature-guided exploration. In contrast, mazes involve no restarts,227
so agents that get trapped in highly connected regions (as with a random policy) remain there for longer, amplifying228
the advantage of our method. An extended performance comparison is provided in Appendix F.229

5 Related Work230

Existing methods for estimating the complexity of RL environments exhibit several limitations: 1) They often provide231
only global estimates, e.g., the Effective Horizon of Laidlaw et al. (2023) assigns a single scalar score per environment,232
2) Some rely on the performance of specific algorithms (Aitchison et al., 2023), making complexity entangled with233
reward structure and the benchmark performance of RL algorithms, and 3) Many require additional pipelines such as234
duplication pruning or state enumeration (Laidlaw et al., 2023), or can only be computed post-training (Aitchison et al.,235
2023). In contrast, our method: 1) introduces a local, geometry-aware complexity measure based on Ricci curvature,236
2) avoids reliance on external rewards, and 3) connects Ollivier-Ricci curvature (ORC) to the successor representation237
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(SR), enabling compatibility with any RL algorithm that computes or approximates SR. Moreover, even without access238
to the SR matrix, ORC can be estimated from the graph showing how states are connected which can be constructed239
using the agent’s experience during training.240

The use of Ricci curvature in RL is still limited. Existing work is either theoretical (Nedergaard & Morales, 2025) or241
tailored to specific domains such as navigation (Song & Lee, 2024). Our work introduces a general, practical approach242
for estimating and applying ORC in reward-free environments, demonstrating its utility for exploration.243

This work is also related to the literature on intrinsic reward, originally introduced by Schmidhuber (1991), and later244
extended by methods that promote exploration via entropy maximization (Burda et al., 2018; Liu & Abbeel, 2021;245
Bellemare et al., 2016; Hazan et al., 2019). These methods focus on uniform state visitation by leveraging state-246
counting mechanisms. We show that such approaches, while effective in some settings, overlook the fine-grained247
geometric structure of the environment. In contrast, our curvature-based reward captures long-range and structural248
information, offering a richer signal for guiding exploration. Moreover, our method is orthogonal to existing intrinsic249
reward formulations and can be seamlessly combined with them.250

6 Conclusion and Future Work251

In this paper, we proposed Ollivier-Ricci Curvature (ORC) as a metric to capture local complexity in reinforcement252
learning environments, and demonstrated that its statistics can also reflect global structural properties. We further253
employed ORC as an intrinsic reward in a reward-free setting, showing that it significantly improves exploration254
compared to random walk and count-based methods, especially in complex environments with trapping state (highly255
connected regions). The strength of ORC lies in its fusion of successor representation (SR) and local connectivity256
graphs, providing both global and local perspectives on the environment.257

As future work, we plan to extend this approach to continuous environments by replacing SR with successor features258
and computing ORC in an online manner. Another promising direction is to analyze the interaction between ORC259
and various intrinsic and extrinsic rewards identifying which combinations are complementary, and which may be in260
conflict, to develop more effective intrinsic reward schemes.261
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Appendix296

A Abbreviations297

Abbreviation Expanded
ORC Ollivier-Ricci Curvature
SR Successor Representation
IR Intrinsic Reward
EH Effective Horizon

ROP Reward Optimality Probability
MSAO Minimum State-Action Occupancy

Table 5: Table of abbreviations used in this paper.

B Online Estimation of SR and ORC298

In this section, we describe how to estimate the successor representation (SR) and Ollivier-Ricci Curvature (ORC)299
online, during the agent’s interaction with the environment. Unlike the offline method, which requires iterating over300
all states and resetting the environment multiple times, the online approach updates SR and ORC incrementally as the301
agent explores.302

B.1 Online SR Calculation303

Instead of starting random walks from every state beforehand, we update the SR matrix progressively during the304
agent’s trajectory. At each time step t, the agent observes the current state st and updates the SR row corresponding305
to the states visited in the recent past st−k for k = 0, . . . , LSR − 1, discounting by γk.306

Algorithm 3 Online Estimation of Successor Representation SRπ

Require: Discount factor γ ∈ (0, 1], max trace length LSR, environment E , policy π
Ensure: Successor representation matrix SRπ ∈ R|S|×|S|

1: Initialize SRπ ← 0|S|×|S|

2: Initialize an empty FIFO queue Q to store recent states (max length LSR)
3: for each episode do
4: Reset environment, observe initial state s0
5: Clear queue Q, enqueue s0
6: for each time step t do
7: Sample action at ∼ π(· | st)
8: Execute at, observe next state st+1

9: Enqueue st+1 into Q (drop oldest if full)
10: for k = 0 to min(t, LSR − 1) do
11: sstart ← Q[index |Q| − 1− k] ▷ state visited k steps ago
12: SRπ[sstart, st+1]← SRπ[sstart, st+1] + γk

13: end for
14: st ← st+1

15: end for
16: end for
17: return SRπ
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B.2 Online ORC Calculation307

After estimating the successor representation (SR) online, we incrementally build a connectivity graph over the state308
space to estimate Ollivier-Ricci Curvature (ORC) during agent interaction. This graph approximates geodesic dis-309
tances needed for computing Wasserstein distances in Equation 1 using shortest-path lengths.310

At each time step, we update the adjacency matrix based on observed transitions. Specifically, when the agent transi-311
tions from state s to s′ at step t in the current episode, we record the shortest known path length between these states.312
If the current recorded distance is greater than t, it is updated to t.313

Once enough transitions have been observed, ORC κπ(s, s′) is computed between connected states using the current314
adjacency matrix and Equation 1. The local curvature κπ(s) at each state is the average curvature over all neighbors.315

Algorithm 4 Online Estimation of Ollivier-Ricci Curvature κπ

Require: Set of states S, policy π(a | s), max episode length LORC

Ensure: Curvature values κπ(s) for all s ∈ S
1: Initialize adjacency matrix A←∞|S|×|S| ▷ No edges initially
2: for each episode do
3: Reset environment, observe initial state s0
4: scurr ← s0
5: for each time step t = 1, . . . , LORC do
6: Sample action at ∼ π(· | scurr)
7: Execute at, observe next state snext
8: if A[scurr, snext] > t then
9: A[scurr, snext]← t

10: end if
11: scurr ← snext
12: end for
13: end for

▷ Compute Ollivier-Ricci curvature using Equation 1
14: for each s ∈ S do
15: LetN (s)← {s′ | A[s, s′] <∞}
16: for each s′ ∈ N (s) do
17: Compute κπ(s, s′) using Equation 1
18: end for
19: κπ(s)← 1

|N (s)|
∑

s′∈N (s) κ
π(s, s′)

20: end for
21: return κπ(s) for all s

C Hyperparameters316

Table 6 shows the parameters used in different parts of the paper.317
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Table 6: Hyperparameters for Maze Environment and Q-Learning Experiments

Parameter Value Description

Maze Environment

Size [15, 21, 31] Room Size
W [0.1, 0.4, 0.9] Winding Factor
B [0.1, 0.4, 0.9] Branching Factor
Seed [42, 13, 4242, 1313] Seed for reproducibility in maze generation

SR Calculation

NSR 1000 Number of experiments (episodes)
γSR 0.99 Discount factor for SR calculation
LSR 30 Horizon for SR calculation

ORC Calculation

NORC 1000 Number of experiments (episodes)
LORC 5 Horizon for connectivity graph construction
αORC 0.0 Idleness Parameter
τ [0.1 (Atari), 10.0(Mazes)] Temperature to obtain stochastic policy from Q-values.

Q-Learning Parameters

α 0.1 Learning rate
γ 0.99 Discount factor
ϵ 0.1 Exploration rate
N 5000 Number of Q-Learning Episodes
M 100 Number of steps per episode

Exploration Evaluation

Nexp [1000(Atari), 10(Mazes)] Number of episodes
Mexp [1000(Atari), 10000(Mazes)] Number of steps in each episode

D Bigger Mazes318

The plots corresponding to larger mazes are presented in Figure 5. As evident from the figure, increasing the maze319
size leads to a higher number of branching points and dead-ends. This added complexity makes it harder for the agent320
to navigate, which can affect how it explores and learns in the environment.321
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Figure 5: Ricci curvature values across different locations in mazes (21x21) with varying Branching and Winding
factors. As observed, dead-ends (end of branches) and winding segments tend to exhibit large positive Ricci values,
branching points correspond to large negative values, and straight corridors typically have Ricci values close to zero.

E Tabular Atari Ricci Values322

In this section, we see examples from various Atari games (Figure 6-15). These frames are sorted based on the Ricci323
curvature of the middle frame. On the figures, the ricci value of the middle frame is written with red font on top of the324
middle frame. These figures show how at states with negative ORC trajectories start diverging and how at states with325
positive ORC trajectories start converging.326
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Figure 6: Examples of frame sequences from different trials of game "Pong" where the middle frame has a large
negative Ricci curvature. While the middle frames appear visually similar, the subsequent frames diverge significantly,
resembling diverging random walks.
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Figure 7: Examples of frame sequences from different trials of game "Pong" where the middle frame has a large posi-
tive Ricci curvature. Both the middle and subsequent frames exhibit high similarity across trials, reflecting converging
behavior.
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Figure 8: Examples of frame sequences from different trials of game "Hero" where the middle frame has a large
negative Ricci curvature. While the middle frames appear visually similar, the subsequent frames diverge significantly,
resembling diverging random walks.
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Figure 9: Examples of frame sequences from different trials of game "Hero" where the middle frame has a large posi-
tive Ricci curvature. Both the middle and subsequent frames exhibit high similarity across trials, reflecting converging
behavior.
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Figure 10: Examples of frame sequences from different trials of game "Atlantis" where the middle frame has a large
negative Ricci curvature. While the middle frames appear visually similar, the subsequent frames diverge significantly,
resembling diverging random walks.
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Figure 11: Examples of frame sequences from different trials of game "Atlantis" where the middle frame has a large
positive Ricci curvature. Both the middle and subsequent frames exhibit high similarity across trials, reflecting con-
verging behavior.
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Figure 12: Examples of frame sequences from different trials of game "Breakout" where the middle frame has a large
negative Ricci curvature. While the middle frames appear visually similar, the subsequent frames diverge significantly,
resembling diverging random walks.
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Figure 13: Examples of frame sequences from different trials of game "Breakout" where the middle frame has a
large positive Ricci curvature. Both the middle and subsequent frames exhibit high similarity across trials, reflecting
converging behavior.
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Figure 14: Examples of frame sequences from different trials of game "Freeway" where the middle frame has a large
negative Ricci curvature. While the middle frames appear visually similar, the subsequent frames diverge significantly,
resembling diverging random walks.
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Figure 15: Examples of frame sequences from different trials of game "Freeway" where the middle frame has a
large positive Ricci curvature. Both the middle and subsequent frames exhibit high similarity across trials, reflecting
converging behavior.
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F Extended Performance Comparison327

In this appendix, we present extended experimental results related to Section 4.3, as shown in Tables 7 and 8. We328
also include visualizations illustrating how Ollivier-Ricci Curvature (ORC) values change under policies trained with329
the two intrinsic reward methods discussed compared to random policy. Additionally, we show how state coverage330
evolves over time under different policies.331

Table 7 presents additional statistics on the Ollivier-Ricci Curvature (ORC) values computed under different policies.332
As discussed in Section 4.3, using the negative of ORC as an intrinsic reward leads to a significant reduction in the333
average of Ricci values, indicating that the resulting policy induces a flatter environment. This reduction is not merely334
due to the inclusion of more negative values, as the average absolute Ricci value also decreases. Furthermore, the stan-335
dard deviation is reduced or unchanged, suggesting that the values are more concentrated around zero. While the range336
and maximum values increase and the minimum becomes more negative—likely due to a few outlier states—our focus337
is on the average and standard deviation of Ricci values, which better reflect the overall flattening of the environment338
under the trained policy.339

Room Size Policy Min (−→ 0) Max (−→ 0) Mean (−→ 0) Mean(|ORC|) ↓ STD ↓ Range ↓
-0.34 ± 0.06 0.58 ± 0.06 0.09 ± 0.01 0.16 ± 0.00 0.19 ± 0.01 0.93 ± 0.10

15x15 -0.49 ± 0.07 0.90 ± 0.01 0.23 ± 0.03 0.26 ± 0.02 0.26 ± 0.01 1.39 ± 0.07
-0.65 ± 0.06 0.55 ± 0.06 0.04 ± 0.01 0.14 ± 0.00 0.17 ± 0.01 1.20 ± 0.05
-0.32 ± 0.02 0.61 ± 0.03 0.14 ± 0.01 0.20 ± 0.01 0.20 ± 0.00 0.95 ± 0.05

21x21 -0.50 ± 0.12 0.91 ± 0.00 0.36 ± 0.04 0.37 ± 0.03 0.26 ± 0.01 1.41 ± 0.12
-0.68 ± 0.08 0.67 ± 0.08 0.06 ± 0.01 0.16 ± 0.01 0.19 ± 0.00 1.36 ± 0.16
-0.32 ± 0.01 0.68 ± 0.01 0.22 ± 0.00 0.26 ± 0.00 0.20 ± 0.00 0.99 ± 0.02

31x31 -0.23 ± 0.09 0.91 ± 0.00 0.61 ± 0.01 0.61 ± 0.00 0.13 ± 0.01 1.14 ± 0.09
-0.78 ± 0.05 0.91 ± 0.00 0.05 ± 0.01 0.16 ± 0.00 0.20 ± 0.00 1.69 ± 0.06

Random Policy IR = −Ricci IR = 1
State Count

↓: Lower better,−→ 0: Closer to zero is better
Mean(|ORC|): Average of the absolute values of ORC across all states. This ensures that the reduction in

Mean is not simply due to an increase in large negative ORC values.

Table 7: Statistics of ORC calculated by random walks based on different policies.

Table 8 provides an extended version of Table 4, including experiments conducted on a 21 × 21 maze with loops340
that introduce small room-like structures. As observed, exploration in this environment is easier compared to the341
corresponding maze of the same size without loops. This improvement is reflected in higher entropy, a smaller gap342
between the achieved entropy and that of a uniform distribution, and a faster time to reach 90% state coverage.343
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Room Size Policy Entropy of Normalized State Visitations ↑ ∆Entropy ↓ α ↓ Steps for 90% Coverage ↓
8.25 ± 0.04 0.35 ± 0.04 60.14 ± 27.17 23,334 ± 10,542

15x15 8.25 ± 0.12 0.35 ± 0.11 79.29 ± 26.10 30,764 ± 10,107
8.35 ± 0.04 0.25 ± 0.03 47.25 ± 30.10 18,333 ± 11,569
9.19 ± 0.01 0.45 ± 0.01 68.72 ± 7.95 54,701 ± 6,318

21x21 9.27 ± 0.05 0.37 ± 0.05 51.83 ± 11.34 41,256 ± 9,123
9.35 ± 0.02 0.29 ± 0.02 48.23 ± 5.79 38,391 ± 4,607
9.36 ± 0.08 0.35 ± 0.07 48.80 ± 19.40 40,796 ± 16,218

21x21 + Loops 9.42 ± 0.14 0.29 ± 0.13 37.24 ± 16.39 31,132 ± 13,702
9.49 ± 0.12 0.22 ± 0.12 23.33 ± 5.09 19,503 ± 4,255
9.98 ± 0.17 0.78 ± 0.20 NA NA

31x31 9.95 ± 0.25 0.83 ± 0.25 NA NA
10.05 ± 0.22 0.73 ± 0.22 49.77 ± 10.20 87,755 ± 18,109
6.16 ± 1.10 2.90 ± 1.31 102.35 ± 46.73 452,989 ± 254,366

Tabular Atari 6.17 ± 1.02 2.75 ± 1.26 110.72 ± 49.89 484,578 ± 270,583
(Laidlaw et al., 2023) 6.12 ± 1.11 2.80 ± 1.33 94.76 ± 44.54 425,925 ± 255,187

Random Policy IR = −Ricci IR = 1
State Count

↑: Higher better, ↓: Lower better, NA: 90% coverage not reached (for all or some of the seed values)
∆ Entropy = log2(NStates)−H(Normalized State Visitations)

Table 8: Entropy and coverage statistics across environments and intrinsic reward strategies. See legend above for IR
type.

Figures 16, 17, and 18 present visualizations of Ollivier-Ricci Curvature (ORC) values and state coverage under344
different policies. In the left column of each figure, we show the ORC values across locations and directions (each345
state is defined by both position and orientation). White arrows indicate states with negative curvature, while red346
arrows show positive curvature. Dark blue corresponds to large negative values and yellow to large positive values.347
Similar to what we observed in Section 4.1, dead ends tend to have large positive Ricci values, while branching points348
exhibit large negative values.349

The middle column displays ORC values induced by policies trained with −Ricci (top) and 1
State Count (bottom) as350

intrinsic rewards. The negative ORC-based policy results in a more uniform and on average close to zero distribution351
of ORC values, whereas the 1

State Count policy produces areas of high visitation and unexplored regions (white squares).352

The right column compares the progression of unique state coverage over time: the blue line represents the trained353
policy, and the orange line corresponds to a random policy. Faster coverage indicates more efficient exploration.354
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Figure 16: 15x15
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Figure 17: 21x21
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Figure 18: 21x21 with loops
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