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Abstract

We study generalizable policy learning from
demonstrations for complex low-level control
(e.g., contact-rich object manipulations). We
propose a novel hierarchical imitation learning
method that utilizes sub-optimal demos. Firstly,
we propose an observation space-agnostic ap-
proach that efficiently discovers the multi-step
subskill decomposition of the demos in an unsu-
pervised manner. By grouping temporarily close
and functionally similar actions into subskill-level
demo segments, the observations at the segment
boundaries constitute a chain of planning steps for
the task, which we refer to as the chain-of-thought
(CoT). Next, we propose a Transformer-based de-
sign that effectively learns to predict the CoT as
the subskill-level guidance. We couple action
and subskill predictions via learnable prompt to-
kens and a hybrid masking strategy, which enable
dynamically updated guidance at test time and
improve feature representation of the trajectory
for generalizable policy learning. Our method,
Chain-of-Thought Predictive Control (CoTPC),
consistently surpasses existing strong baselines
on various challenging low-level manipulation
tasks with sub-optimal demos. See project page.

1. Introduction
Hierarchical RL (HRL) (Hutsebaut-Buysse et al., 2022) has
attracted much attention in the AI community as a promis-
ing direction for sample-efficient and generalizable policy
learning. HRL tackles complex sequential decision-making
problems by decomposing them into simpler and smaller
sub-problems via temporal abstractions (the so-called Chain-
of-Thought (Wei et al., 2022)). In addition, many adopt a
two-stage policy and possess the planning capabilities for
high-level actions (i.e., subgoals or options) to achieve gen-
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eralizability. On the other hand, imitation learning (IL)
remains one of the most powerful approaches to training
autonomous agents. Without densely labeled rewards or
on-policy/online interactions, IL usually casts policy learn-
ing as (self-)supervised learning with the potential to lever-
age large-scale pre-collected demonstrations, usually with
Transformer, as inspired by the recent success of large lan-
guage models (LLMs). An obstacle in building foundational
decision-making models (Yang et al., 2023) remains the bet-
ter use of sub-optimal demonstrations. In this paper, we
study hierarchical IL from sub-optimal demonstrations for
low-level control tasks.

Despite the recent progress (Chen et al., 2021; Florence
et al., 2022; Shafiullah et al., 2022; Liu et al., 2022; Ajay
et al., 2022; Chi et al., 2023), it remains extremely chal-
lenging to solve low-level control tasks such as contact-rich
object manipulations by IL in a scalable manner. Usually,
the demonstrations are inherently sub-optimal because of
the underlying contact dynamics (Pfrommer et al., 2021) and
the way they are produced. The undesirable properties, such
as being non-Markovian, noisy, discontinuous, and random,
pose great challenges in both the optimization and the gener-
alization of the imitators (see more in Appendix A). We find
that, by adopting the hierarchical principles (i.e., temporal
abstraction and high-level planning) into our Transformer-
based design, we can better leverage sub-optimal demos
to solve challenging tasks. To achieve this, we first pro-
pose an unsupervised subskill discovery strategy to generate
subskill-level supervision from the demonstrations. We then
train our model to dynamically generate subskill guidance
for better low-level action predictions.

Specifically, we consider the multi-step subskill decompo-
sition of a task into a chain of planning steps as its chain-
of-thought, CoT, inspired by (Wei et al., 2022; Yang et al.,
2022). As part one of our contribution, we propose an obser-
vation space-agnostic approach that efficiently discovers the
subskills, defined as a sequence of key observations of the
demos, in an unsupervised manner. We propose to group
temporarily close and functionally similar actions into a
segment. Then the change points (the segment boundaries)
naturally constitute the subskill sequence, i.e., the CoT, that
represents the high-level task completion process. For part
two, we propose a novel Transformer-based design that ef-
fectively learns to predict the CoT jointly with the low-level
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actions. This coupled prediction mechanism is achieved
by adding additional prompt tokens at the beginning of the
context history and by adopting a hybrid masking strategy.
As a result, the subskill guidance is dynamically updated at
each step and better feature representation of the trajectories
is learned, eventually improving the generalizability of the
low-level action prediction process.

Our method, Chain-of-Thought Predictive Control (CoTPC),
learns faster from sub-optimal demos, from an optimiza-
tion perspective, by utilizing the subskills that are usually
more robust and admit less variance. From a generaliza-
tion perspective, it uses Transformers (Brown et al., 2020)
to improve generalization with subskill planning, which is
learned with the unsupervisedly discovered CoTs as supervi-
sion. We evaluate CoTPC on several challenging low-level
control tasks (Moving Maze, Franka-Kitch and ManiSkill2)
and verify its design with ablation studies. We find that
CoTPC consistently outperforms several strong baselines.

2. Related Work
We include additional related work in Appendix D.

Learning from Demonstrations (LfD) Learning interac-
tive agents from pre-collected demos has been popular due
to its effectiveness and scalability. Roughly speaking, there
are three categories: offline RL, online RL with auxiliary
demos, and behavior cloning (BC). While offline RL ap-
proaches (Kumar et al., 2019; Fu et al., 2020; Levine et al.,
2020; Kumar et al., 2020; Kostrikov et al., 2021; Chen et al.,
2021; Wang et al., 2022) usually require demonstration with
densely labeled rewards and the methods that augment on-
line RL with demos (Hester et al., 2018; Kang et al., 2018;
Ross et al., 2011; Nair et al., 2020; Rajeswaran et al., 2017;
Ho & Ermon, 2016; Pertsch et al., 2021; Singh et al., 2020)
rely on on-policy interactions, BC (Pomerleau, 1988) formu-
lates fully supervised or self-supervised learning problems
with better practicality and is adopted widely, especially in
robotics (Zeng et al., 2021; Florence et al., 2022; Qin et al.,
2022; Zhang et al., 2018; Brohan et al., 2022; Rahmatizadeh
et al., 2018; Florence et al., 2019; Zeng et al., 2020). How-
ever, a well-known shortcoming of BC is the compounding
error (Ross et al., 2011), usually caused by the distribu-
tion shift between the demo and the test-time trajectories.
Various methods were proposed to tackle it (Ross & Bag-
nell, 2010; Ross et al., 2011; Sun et al., 2017; Laskey et al.,
2017; Tennenholtz et al., 2021; Brantley et al., 2019; Chang
et al., 2021). Other issues include non-Markovity (Man-
dlekar et al., 2021), discontinuity (Florence et al., 2022),
randomness and noisiness (Sasaki & Yamashina, 2020; Wu
et al., 2019) of the demos that results in great compounding
errors of neural policies during inference (see Appendix A
for detailed discussions).

LfD as Sequence Modeling A recent trend in offline pol-
icy learning is to relax the Markovian assumption of poli-
cies, inspired by the success of sequence models (Graves
& Graves, 2012; Chung et al., 2014; Vaswani et al., 2017)
where model expressiveness and capacity are preferred over
algorithmic sophistication. Among these, (Dasari & Gupta,
2021; Mandi et al., 2021) study one-shot imitation learning,
(Lynch et al., 2020; Singh et al., 2020) explore behavior pri-
ors from demos, (Chen et al., 2021; Liu et al., 2022; Janner
et al., 2021; Shafiullah et al., 2022; Ajay et al., 2022; Janner
et al., 2022) examine different modeling strategies for pol-
icy learning. In particular, methods based on Transformers
(Vaswani et al., 2017; Brown et al., 2020) are extremely
popular due to their simplicity and effectiveness.

Hierarchical Approaches in Sequence Modeling and RL
Chain-of-Thought (Wei et al., 2022) refers to the general
strategy of solving multi-step problems by decomposing
them into a sequence of intermediate steps. It has recently
been applied extensively in a variety of problems such as
mathematical reasoning (Ling et al., 2017; Cobbe et al.,
2021), program execution (Reed & De Freitas, 2015; Nye
et al., 2021), commonsense or general reasoning (Rajani
et al., 2019; Clark et al., 2020; Liang et al., 2021; Wei et al.,
2022), and robotics (Xu et al., 2018; Zhang & Chai, 2021;
Jia et al., 2022b; Gu et al., 2022; Yang et al., 2022; Shridhar
et al., 2023; James & Davison, 2022). Similar ideas in
the context of HRL can date back to Feudal RL (Dayan
& Hinton, 1992) and the option framework (Sutton et al.,
1999). Inspired by these approaches, ours focuses on the
imitation learning setup for low-level control tasks. Note
that while Procedure cloning (Yang et al., 2022) shares a
similar name to our paper, it suffers from certain limitations
that make it much less applicable (see Appendix D).

Demonstrations for Robotics Tasks In practice, the op-
timality assumption of the demos is usually violated for
robotics tasks. Demos involving low-level actions primarily
come in three forms: human demo captured via teleopera-
tion (Kumar & Todorov, 2015; Vuong et al., 2021), expert
demo generated by RL agents (Mu et al., 2020; 2021; Chen
et al., 2022; Jia et al., 2022a), or those found by planners
(e.g., heuristics, sampling, search) (Gu et al., 2023; Qureshi
et al., 2019; Fishman et al., 2022). These demos are in
general sub-optimal due to either human bias, imperfect RL
agents, or the nature of the planners. In this paper, we largely
work with demos generated by planners in ManiSkill2 (Gu
et al., 2023), a benchmark not currently saturated for IL
while being adequately challenging (see details in Sec. 5.3).

3. Preliminaries
MDP Formulation One of the most common ways to
formulate a sequential decision-making problem is via a
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Markov Decision Process, or MDP (Howard, 1960), de-
fined as a 6-tuple ⟨S,A, T ,R, ρ0, γ⟩, with a state space
S, an action space A, a Markovian transition probability
T : S × A → ∆(S), a reward function R : S × A →
R, an initial state distribution ρ0, and a discount factor
γ ∈ [0, 1]. An agent interacts with the environment char-
acterized by T and R according to a policy π : S →
∆(A). We denote a trajectory as τπ as a sequence of
(s(0), a(0), s(1), a(1), ..., s(t), a(t)) by taking actions ac-
cording to a policy π. At each time step, the agent receives
a reward signal rt ∼ R(s(t), a(t)). The goal is to find
the optimal policy π∗ that maximizes the expected return
Eτ∼π[

∑
t γ

trt]. Remarkably, in robotics tasks and many
real-world applications, the reward is at best only sparsely
given (e.g., a binary success signal) or given only after the
trajectory ends (non-Markovian).

Behavior Cloning The most straightforward approach in
Imitation Learning (IL) is Behavior Cloning (BC), which as-
sumes access to pre-collected demos D = {(s(t), a(t))}Nt=1

generated by expert policies and learns the optimal pol-
icy with direct supervision by minimizing the BC loss
E(s,a)∼D[− log π(a|s)]. It requires the learned policy to
generalize to states unseen in the demos since at test time
τπ goes beyond the distribution from the demos, a chal-
lenge known as distribution shift (Ross & Bagnell, 2010).
Recently, several methods, particularly those based on
Transformers, relax the Markovian assumption, i.e., the
policy is represented as π(a(t)|s(t), ..., s(t − T + 1)) or
π(a(t)|s(t), a(t), ..., s(t−T+1), a(t−T+1)) by consider-
ing a context history of size T . This change was empirically
shown to be advantageous.

Behavior Transformer Behavior Transformer (BeT)
(Shafiullah et al., 2022) was proposed to tackle noisy (multi-
modal) demonstrations for BC. While relying on an architec-
ture similar to the Decision Transformer (DT)(Chen et al.,
2021), it leverages a center plus offset representation of
action signals, inspired by the object detection community.
Specifically, a (k-mean) clustering process is applied up-
front to all actions in the demos to partition the action space
into K regions. The model adopts one classifier and K sep-
arate regressors (each for one region) to predict its actions.
This approach drastically improves optimization efficiency
for BC. During inference, BeT samples from the predicted
region and its associated offset regression. For simplicity,
we always select the region with the largest predicted score
(comparable performance). DT conditions action predic-
tions based on a history of intertwined actions and states
while BeT solely on states. We adopted the DT’s approach
in our BeT variant (both as the BeT baseline and in CoTPC)
which we found to perform better because conditioning
futher on actions better distinguishes between noisy demos.

4. Subskill Sequence as Chain-of-Thought
We propose two things. (1) an observation space-agnostic
strategy that efficiently discovers the subskill sequences
from the demonstrations as CoT supervision in an unsuper-
vised manner and (2) a novel Transformer-based design that
effectively adopts the hierarchical principles, i.e., the sub-
skill planning, in imitation learning. We name our approach
Chain-of-Thought Predictive Control (CoTPC).

4.1. Unsupervised Discovery of Subskills from Demos

We observe that many low-level control tasks naturally con-
sist of sequences of subskills. In a successful trajectory,
there exist key observations, each of which marks the com-
pletion of a subskill. For instance, in Moving Maze illus-
trated in Fig. 3, the two bridges naturally divide the task
into three subskills. We denote this multi-step subskill de-
composition of a task into a chain of planning steps as
its chain-of-thought (CoT), since the chain is considered
a “thought process” for the task. The CoT provides co-
herent and succinct behavior guidance - typical benefits of
hierarchical policy learning. Formally, for each trajectory
τ ∈ D, we define its CoT as a subsequence of its obser-
vations Fcot(τ) ≜ {scot(i)}mi=1, each of which marks the
boundary of two adjacent subskill segments in the trajectory.
Here we have i as the index of the m subskills.

How do we define subskill segments and how do we find
them? Our base assumption is that actions within the same
subskill are temporally close and functionally similar. We,
therefore, propose to group contiguous actions into seg-
ments using a training-free procedure that finds the change
points of the action sequences, which are modeled as time
series. Specifically, for each trajectory τ , we consider its
p-dimensional action at time t as a vector a(t) ∈ Rp. The
subskill discovery process is formulated as an optimization
problem to first find the change point indices {τi}mi=1 of the
action sequence in τ with

τ1,τ2, ..., τm = argmin
c1...cm

J (τ, {ci})

J (τ, {ci}) =
m∑
i=1

[C(a(ci−1 + 1), . . . , a(ci)) + β]

C(v1, . . . ,vn) =
1

n

n∑
i=1

dcos(vi, v̄), v̄ =
1

n

n∑
i=1

vi

where dcos is the cosine distance (see discussion of this
choice in Appendix I) and β is a hyperparameter penalizing
a large number of subskills m. For instance, with β = 0,
every timestep becomes a change point, resulting in an over-
segmentation of the demo trajectory. For convenience, we
define c0 = −1 as τ starts at t = 0, and the last change point
is defined at the last time index |τ | − 1 when the trajectory
(and the last subskill) ends. This optimization problem is
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Hybridly Masked Multi-head Attention
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Figure 1. During training, CoTPC learns to jointly predict (1) the next & the last subskill from each CoT token and (2) the low-level
actions from each CoT token (for action offset) and state token (for action center). See details in Sec. 4.2.2. During inference, when the
CoT decoder is not used, the low-level actions are predicted under the guidance of the dynamically updated CoT features. The CoT tokens
are all-to-all (can see any tokens). The state and action tokens are causal (can only see previous and CoT tokens). Only 2 attention layers
and 3 timesteps are shown for better display.

typically solved by dynamic programming in a per-trajectory
manner. Here we adopt PELT (Killick et al., 2012), an im-
proved method with additional techniques such as pruning.
We provide visualization of similarity maps across actions
in the same trajectory in Fig. 2 to illustrate that our action
grouping strategy for subskill discovery is intuitive. Finally,
we use the observations {scot(i) ≜ s(τi)}mi=1 instead of the
actions as the discovered CoT.

The number of subskills in a task is not known a priori,
since demonstrations of the same task can still have vari-
ability in terms of the starting configurations and execution
difficulty. For instance, in Push Chair, there is an absence of
some subskills in the demos due to the varied initial condi-
tions and the nature of the task. To achieve such flexibility,
our approach only enforces m as the maximum number of
subskills to be predicted during inference and we assume
that all demo trajectories in a task share the same subskill
“supersequence”. In our experiments, we find β relatively
robust (see Appendix J for details).

We find our approach discovers meaningful subskills for a
diverse set of tasks with different action spaces, based on a
qualitative evaluation of the key observations at the discov-
ered change points. For instance, the execution of Peg In-
sertion consists of reaching, grasping, aligning the peg with
the hole, micro-adjusting, and steady insertion of the peg.
We illustrate some subskill discovery results in Appendix G.
Besides being unsupervised, another major benefit of our
approach is that it is observation space-agnostic with the
discovery invariant of the specific sensor setup (e.g., camera
angles, which are usually tuned ad-hoc for the specific task).

Figure 2. Pairwise similarities of actions at different timesteps in
two trajectories for Push Chair (left) and Peg Insertion (right).
Action spaces are delta joint velocity and delta joint pose. Visually
identifiable blocks along the diagonal are grouped, where actions
are temporarily close and functionally similar. This corresponds
very well with human intuition of subskills (see Appendix G).

4.2. Subskill Guided Action Modeling

In this section, we introduce our Transformer-based design
that learns to model the CoTs and the actions with the su-
pervision acquired by the subskill discovery process.

4.2.1. LEARNABLE PROMPT TOKENS FOR COT WITH
HYBRID MASKING

We base our architecture on a modified version of the re-
cently proposed Behavior Transformer (BeT) (Shafiullah
et al., 2022), which empowers GPT (Brown et al., 2020)
with a discrete center plus continuous offsets prediction
strategy for modeling diverse and noisy action sequences.
Please refer to Sec. 3 for a brief introduction to the BeT
architecture. To predict CoTs, we propose to add a set of
learnable prompt tokens (Zhou et al., 2022), denoted CoT to-
kens, at the beginning of the state and action context history.
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We train these tokens to extract features from the sequence
to predict CoTs together with a CoT decoder (similar to the
object query tokens in Detection Transformer (Carion et al.,
2020)). We design a hybrid masking regime, where during
inference, the CoT tokens are all-to-all and can observe
all action and state tokens in the context history, and the
state or action tokens attend to those in the past (standard
causal mask) including the CoT tokens. In this way, the
action decoding is guided by the extracted CoT features
corresponding to the CoT tokens.

Formally, given a context size T , we choose to use T CoT
tokens Scot(i), each of which is a different learnable prompt
token ∈ R128, where 128 is the embedding dim of the
Transformer. Accordingly, the demo segment up to time t
consists of T CoT tokens, T state and T − 1 action tokens:

τT (t) = Scot(0), ..., Scot(T − 1), s(t− (T − 1)),

a(t− (T − 1)), ..., s(t− 1), a(t− 1), s(t) (1)

By applying hybridly masked multi-head attention M[·]. the
features from a total of J attention layers are represented as

hj(τT (t)) = M[Fenc(τT (t))], j = 1

hj(τT (t)) = M[hj−1(τT (t))], j > 1

where Fenc encodes each action token and state token by
encoder fa(·) and fs(·), respectively (no encoder for the
CoT tokens). Here we omit the position embeddings and
the additional operations between the attention layers as in
standard Transformers. As a result, features from the last
attention layer can be written as

hJ(τT (t)) = Scot
J (0), ..., Scot

J (T − 1), sJ(t− (T − 1)),

aJ(t− (T − 1)), ..., sJ(t− 1), aJ(t− 1), sJ(t)

The CoT features from CoT tokens are then fed into the
CoT decoder gcot to predict {gcot(Scot

J (t))}T−1
t=0 (see why T

CoT tokens and T outputs shortly). In our experiment, we
use a 2-layer MLP with ReLU activation for gcot.

While the learnable prompt tokens in Transformers are
widely used in tasks regarding language, vision & language,
etc., it is under-explored when applied to low-level con-
tinuous control problems, which is highly non-trivial as
demonstrated by our ablation studies.

4.2.2. COUPLED ACTION AND SUBSKILL PREDICTIONS
WITH SHARED COT TOKENS

Inspired by BeT, we adopt a pair of center and offset de-
coders for predicting actions, denoted as gctr

a (·) and goff
a (·).

For an action a(t′), we use gctr
a (·) to predict its center as

gctr
a (sJ(t

′)), t′ ∈ {t− (T − 1), ..., t− 1, t}

where t follow the previous notation in hJ(τT (t)). Contrary
to the original BeT, we predict its offset with

goff
a (Scot

J (t′′)), t′′ = t′ − t+ (T − 1)

i.e., we use features from the ith CoT token instead of the
state token to predict the ith action’s offset component. Ac-
cordingly, we need T CoT tokens so that each CoT token’s
features are used to predict the action offset at one of the
T different timesteps. See Fig. 1 for the overall architec-
ture. As the CoT decoder gcot(·) uses the same inputs as
the action offset decoder, this essentially couples action and
CoT predictions for stronger subskill guidance. An alterna-
tive design is to use only one CoT token to produce CoT
predictions as gcot(Scot). The actions offset prediction is
based on the state tokens instead. However, we find this de-
coupled strategy produces policies much less generalizable.
An even more coupled prediction approach is to force the
center decoder gctr

a (·) to also share the inputs with gcot(·),
which leads to optimization instabilities since CoT tokens
hold direct responsibilities for all predictions. Please see
our ablation studies for empirical evidence.

As for subskill prediction, we formulate an autoregressive
prediction strategy by training gcot(·) to decode both the
next subskill and the very last one from features of every
CoT token. At time t for a trajectory τ , the next subskill,
denoted scot

next(t) = s(τi), is one with the first τi such that
τi > t. The last subskill is always the end of the demo
trajectory where the task is completed, denoted scot

last(t) =
s(|τ | − 1). Formally, assuming the q-dimensional state or
observation space Rq , for each CoT token Scot(t) with t =
{0, 1, ..., T − 1}, the CoT decoder produces gcot(Scot

J (t)) ∈
R2q. The T CoT predictions make each CoT token extract
useful features for subskill planning which benefit action
offset predictions at all timesteps. We empirically verified
that this strategy of performing both immediate and long-
term planning outperforms the two alternatives.

Due to the autoregressive nature of CoT predictions, our ap-
proach admits a flexible number of subskills across different
demo trajectories of the same task. Moreover, as the CoT
features are updated dynamically at each timestep, CoTPC
can handle tasks involving dynamic controls (e.g., Moving
Maze and Push Chair). Subskill predictions resonate with
CoTs in LLMs, where the text outputs are generated jointly
with the reasoning chain. Note that, during inference, the
CoT decoder is not used and only the CoT features are (for
predicting action offsets). Also see Sec. 6 for a further
discussion on the topic. Also see Fig. 5 in the Appendix for
a comparison of data flows of different versions regarding
the action decoders (both offset and center) and the CoT
tokens.

4.2.3. MODEL TRAINING

The overall pipeline is illustrated in Fig. 1. The model is
trained with behavior cloning loss as well as the auxiliary
CoT prediction loss Lcot based on MSE (weighted by a
coefficient λ = 0.1), yielding the overall objective as
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Ltotal = E
(st,at)∈D

Lbc(at, ât) +

E
τT (t)∼D

E
t′

Lcot([s
cot
next(t

′), scot
last(t

′)], gcot(Scot
J (t′′)))

where ât is the predicted action via gctr
a (·) and goff

a (·). Fol-
lowing the notation from Eq. 1 and the previous section,
τT (t) is a randomly sampled segment of context length T
from the demonstration set D, and t′′ = t′ − t+ (T − 1) is
the shifted index for the CoT tokens. There are T loss terms
for CoT since there are T CoT tokens.

During training, we apply random attention masks to the
action and state tokens so that the CoT tokens attend to
a context of varied lengths. For each data point in the
mini-batch, we uniformly sample l ∈ {0, 1, ..., T − 1} and
manually set the attention mask from all the CoT tokens to
the state and action tokens corresponding to s(t′) and a(t′)
to zero (i.e., disabled) if t′ > t − l. The intuition of this
regularization technique is that we should predict similar
future subskills given segments of different lengths of the
same history. Moreover, since CoT tokens are all-to-all,
without such a technique, they might attend to future tokens
during training to make subskill predictions trivial to some
extent. See relevant ablation studies in Sec. 5.4.

5. Experiments
In this section, we present our main experimental results
as well as ablation studies. While existing benchmarks are
mostly saturated for IL (DMControl (Tassa et al., 2018),
D4RL (Fu et al., 2020), etc.) or lack demo data (e.g., Mine-
Dojo (Fan et al., 2022)), we choose a diverse range of tasks
that lie in between. We first examine our approach using a
2D continuous-space Moving Maze and a variant of Franka-
Kitchen (Gupta et al., 2019). We then perform extensive
comparisons with 5 object manipulation tasks (ranging from
relatively easy to very challenging) from ManiSkill2 (Gu
et al., 2023). These tasks are of several categories (navi-
gation, static/mobile manipulation, and soft-body manipu-
lation, etc.), various action spaces (delta joint pose, delta
velocity, etc.), with different sources of the demos (human,
heuristics, etc.), and pose distinctive challenges (see Sec.
5.3 & Appendix B).

5.1. Moving Maze

We present a 2D maze with a continuous action space of
displacement (δx, δy). As shown in Fig. 3 (left), in this
s-shaped maze, the agent starts from a location randomly
initialized inside the top right square region (in green). The
goal is to reach the bottom left one (also in green). Upon
each environment reset, the two regions and the two rect-
angular bridges (in green) have their positions randomized.

Each of them except for the top square moves (indepen-
dently) back and forth with a randomized constant speed.
Once the agent lands on a moving block, the block becomes
static. The agent cannot cross the borders of the maze (but
will not die from doing so). For simplicity, we adopt a
10-dim state observation consisting of the current location
of the agent and the four green regions. This task requires
dynamic control/planning.

Demonstrations To enable policy learning from demon-
strations, we curate demo trajectories (each with a different
randomized environment configuration) by adopting a mix-
ture of heuristics and an RRT-style planner with hindsight
knowledge not available at test time (following recent work
(Gu et al., 2023) for leveraging machine-generated demos).

Training and Evaluation For this task, we compare
CoTPC with vanilla BC, Behavior Transformer (BeT) (Shafi-
ullah et al., 2022), Decision Transformer (DT) (Chen et al.,
2021). DT was originally proposed for offline RL with
demonstrations of dense rewards. We adapt it for the BC
setup by ignoring the reward tokens. We add action tokens
to BeT (like in DT) and build CoTPC on top of BeT. We im-
plement CoTPC, DT, and BeT with the shared Transformer
configuration for a fair comparison. We train all methods on
400 demo trajectories of different env. configs and evaluate
on 100 unseen ones (results in Tab. 1).

5.2. Franka Kitchen

Different variants and task setups of the Franka Kitchen
environment have been studied previously (Gupta et al.,
2019; Sasaki & Yamashina, 2020; Fu et al., 2020). We
propose a setting where the agent is asked to complete 4
object manipulations (out of 7 different options) in an order
specified by the goal. We use a strict criterion, i.e., the task
succeeds when all 4 sub-tasks are completed. The sub-tasks
need to be done in the requested order to succeed. The
environment will terminate when a sub-task other than the
specified 4 is performed. The action space is based on the
joint velocity (8-dim) of the robot. We use the original state
observation appended with the modified goal embedding.

Demonstrations We replay a subset of the human demon-
strations originally proposed in (Gupta et al., 2019). Specif-
ically, we use 50 demo trajectories of length ranging from
150 to 300 and relabel them with what sub-tasks are per-
formed and in what order, for each of the trajectories. As a
result, many ordered sub-task combinations admit at most
one demo trajectory. See more details in the Appendix.

Training and Evaluation We use the same set of base-
lines as in Moving Maze. We evaluate using 90 unseen
env. configs, which vary in initial scene configs (all ordered
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Figure 3. Illustration of the Moving Maze (left), Franka-Kitchen (middle) and some sampled tasks from ManiSkill2 (right), namely Turn
Faucet, Peg Insertion, and Push Chair. See detailed descriptions in Sec. 5.1, 5.2 and 5.3, respectively.

Figure 4. Sampled geometric variations for Push Chair, Turn
Faucet, and Peg Insertion. The sizes of peg & box and the relative
locations of the hole vary across different env. configs.

Table 1. Test performance on Moving Maze and (a variant of)
Franka Kitchen. SR (%) is the task success rate (for Franka Kitchen
it means completion of all 4 sub-tasks). # s-tasks means the avg.
number of completed sub-tasks per trajectory rollout. The best
results are bolded.

Vanilla BC DT BeT CoTPC (ours)

Maze (SR) 9.0 23.0 33.0 44.0
Kitchen (#s-tasks/SR) 1.7/6.7 1.6/6.7 1.8/14.4 2.1/25.6

sub-task combinations have been observed in the demo,
though). This task requires generalizable IL due to the lim-
ited amount of human demos and the diverse set of ordered
sub-task sequences. Also see results in Tab. 1.

5.3. ManiSkill2

ManiSkill2 features a variety of low-level object manipula-
tion tasks in environments with realistic physical simulation
(e.g., fully dynamic grasping motions). We choose 5 tasks
(see Fig. 3). Namely, Stack Cube for picking up a cube,
placing it on top of another, and the gripper leaving the
stack; Turn Faucet for turning on different faucets; Peg In-
sertion for inserting a cuboid-shaped peg sideways into a
hole in a box of different geometries and sizes; Push Chair
for pushing different chair models into a specified goal loca-
tion (via a mobile robot); and Pour for pouring liquid from
a bottle into the target beaker with a specified liquid level.
Push Chair adopts a delta joint velocity control (19-dim,
dual arms with mobile base); Pour adopts delta end effector
pose control (8-dim); the rest uses delta joint pose control
(8-dim). We perform experiments with both state and point
cloud observations.

Task Complexity The challenges of these tasks come
from several aspects. Firstly, all tasks have all object poses
fully randomized (displacement around 0.3m and 360◦ ro-
tation) upon environment reset (this is in contrast to envi-
ronments such as Franka Kitchen). Secondly, Turn Faucet,
Peg Insertion, and Push Chair all have large variations in the
geometries and sizes of the target objects (see illustrations in
Fig. 4). Moreover, the faucets are mostly pushed rather than
grasped during manipulation (under-actuated control), the
holes have 3mm clearance (requiring high-precision control)
and it needs at least half of the peg to be pushed sideway into
the holes (harder than similar tasks in other benchmarks (Xu
et al., 2019)), the chair models are fully articulated with lots
of joints, and the pouring task requires smooth manipulation
without spilling the liquid. Moreover, ManiSkill2 adopts
impedance controllers that admit smoother paths (important
for tasks like Pour) than the position-based ones while at
the cost of harder low-level action modeling (e.g., actuators
can be quite laggy).

Demonstrations The complexity of the tasks also lies in
the sub-optimality of the demos (e.g., vanilla BC struggles
on all 5 tasks). The demos are generated by multi-stage
motion-planing and heuristics-based policies (with the help
of privileged information in simulators). We use 500 demo
trajectories for Stack Cube and Turn Faucet (distributed over
10 faucets), 1000 demos for Peg Insertion and Push Chair
(distributed over 5 chairs), and 150 demos for Pour.

Training and Evaluation Besides vanilla BC, DT, and
BeT, we add Decision Diffuser (DD) (Ajay et al., 2022)
and Diffusion Policy (DP) (Chi et al., 2023) as two base-
lines, which explore the diffusion model (Ho et al., 2020)
for policy learning by either first generating a state-only tra-
jectory and then predicting actions with an acquired inverse
dynamics model or directly performing diffusion steps to
predict actions. Remarkably, diffusion-based policies rely
on repeated denoising steps and are generally much slower
than the likes of BeT or CoTPC, making dynamic control
challenging. The tasks in ManiSkill2 feature diverse object-
level variations and provide good insights into both how
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Table 2. Test performance (unseen and 0-shot success rate) for ManiSkill2 tasks with state observations. The best results are bolded.
Diffusion-based methods are generally slower and might be less data-efficient (see a discussion here), making dynamic control challenging.
See additional mean & std. of the results among 3 runs in Appendix L.

STACK PEG TURN PUSH
CUBE INSERTION FAUCET CHAIR

UNSEEN 0-SHOT UNSEEN 0-SHOT UNSEEN 0-SHOT

VANILLA BC 1.0 0.0 0.0 0.0 0.0 0.0
DECISION TRANSFORMER 19.0 17.5 40.0 27.0 25.6 17.0
DECISION DIFFUSER 26.0 12.6 17.0 5.0 56.0 20.0
DIFFUSION POLICY 84.5 57.6 52.0 35.0 54.0 38.0
BEHAVIOR TRANSFORMER 73.0 42.5 49.6 32.5 44.0 33.4
COTPC (OURS) 86.0 59.3 50.0 39.3 51.2 41.0

Table 3. Test performance (success rate) on the unseen and the 0-shot setup for ManiSkill2 tasks for point cloud observations. Pour only
supports visual observations. The best results are bolded. We only show the closely related BeT baseline here.

CUBE PEG POUR FAUCET CHAIR

UNSEEN 0-SHOT UNSEEN UNSEEN 0-SHOT UNSEEN 0-SHOT

BEHAVIOR TRANSFORMER 70.0 35.0 24.0 50.0 20.0 26.0 13.4
COTPC (OURS) 81.0 44.0 32.0 58.0 27.5 32.0 16.7

effective an imitator can learn the underlying behavior and
how generalizable it is. We evaluate using the 5 tasks in both
unseen (seen objects but unseen scene configs) and 0-shot
(unseen object geometries) setup. Specifically, we have all
but Peg Insertion with the unseen setup and Turn Faucet,
Push Chair & Peg Insertion with the 0-shot setup. We use
task success rate (SR) as the metric. Results are reported
in Tab. 2 for state observation and Tab. 3 for point cloud
observations, where we demonstrate the clear advantages
of CoTPC. To avoid tuning point cloud encoders (we use a
lightweight PointNet (Qi et al., 2017) trained from scratch)
for each baseline, we only use the BeT baseline for point
cloud observations. For the main results of all methods
on ManiSkill2, we report the best performance among 3
training runs over the last 20 checkpoints, an eval protocol
adopted by (Chi et al., 2023). See additional mean & std.
results among 3 runs in Appendix L.

5.4. Ablation Studies

We present ablation studies on two tasks (Peg Insertion and
Push Chair) from ManiSkill2 with state observations. We
summarize the results in Tab. 4 and introduce the details in
the rest of this section.

Decoupled prediction of subskills and actions In this
variant denoted decoupled, we train another Transformer
(denoted CoT Transformer) with the same state and action
sequence as inputs to predict the CoT (the next and the last

subskill) instead of relying on one Transformer to predict
both actions and subskills. During inference, the subskills
predicted by the CoT Transformer are fed into the original
Transformer for predicting the actions. This decoupled sub-
skill and action prediction strategy is inferior to the coupled
one since the latter not only learns to leverage predicted
subskills as guidance but also encourages better feature rep-
resentation of the trajectory by sharing the features for these
prediction tasks. In our early study, we found the coupled
strategy worked better among different action spaces, model
sizes, and context lengths.

What subskills to predict from the CoT tokens? In the
variant named only last, we ask the CoT decoder gcot(·)
to only predict the last subskill. In the variant named only
next, we ask it to only predict the next subskill. We find
that predicting both works the best as it provides the model
with both immediate and long-term planning. In the variant
named random, we ask it to predict a single randomly
selected observation from the future as a random subskill
(not the ones from our subskill discovery process). This
leads to the worst results as the action guidance does not
help much and can even be misleading.

Shared CoT tokens for subskill and action predictions
A vanilla design of jointly predicting subskills and actions
is to only use one CoT token with the center and offset de-
coders on top of the state tokens and the CoT decoder on top
of the CoT token, denoted as vanilla. We further force
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Table 4. Results from the ablation studies (unseen SR for Push Chair and 0-shot SR for Peg Insertion).
DECOUPLED ONLY LAST ONLY NEXT RANDOM VANILLA O-SHARED SWAPPED BET+PROMPT -RAND. MASK COTPC

PEG 47.0 52.0 49.0 41.0 45.0 39.0 46.0 43.0 48.5 59.3
CHAIR 36.0 36.0 37.0 31.0 35.0 29.0 32.0 32.7 34.2 41.0

both the center and the offset decoders to take CoT tokens as
inputs, denoted o-shared. This variant overly shares the
CoT tokens for all decoders and suffers from optimization
instabilities. In the last variant, denoted swapped, we let
the offset decoder take the action tokens as inputs and the
center decoder take the CoT tokens. We find this alternative
setup performs worse. We illustrate the data flow of these
variants in Appendix C.

Does the gain come from extra network capacity? In
the variant denoted ‘BeT+prompt‘, we add additional
prompt tokens to the BeT baseline (no auxiliary loss and no
CoT decoder). This variant has the same capacity as CoTPC
yet performs very similarly to the BeT baseline, indicating
that the performance gain achieved by our approach does
not solely come from the extra network capacity.

How helpful is random attention masking? We propose
to randomly mask the attention between CoT tokens and
action/state tokens during training. This technique is very
helpful as the performance drops significantly without it (see
variant “-rand. mask”). This technique cannot be applied
to the BeT baseline (which has no CoT token, and all other
tokens in BeT already have attention masks manually set
to 0 regarding any future tokens). Note that the variant
“BeT+prompt” applies this technique but trains without the
auxiliary CoT loss. Its inferior results indicate that this
regularization technique alone cannot provide a meaningful
performance boost for BeT either.

5.5. Additional Experiments

We perform two experiments to explore the possibilities for
sim-to-real transfer of state observation-based CoTPC. We
present some promising preliminary results in the Appendix.

6. Discussion and Limitation
Observation space-agnostic subskill discovery Our pro-
posed subskill discovery only depends on actions (and works
well for different action spaces) which provide good func-
tional abstraction. Utilizing additional observation, on the
contrary, has major disadvantages. Firstly, visual obser-
vations are more high-dimensional than actions and more
challenging. Secondly, using visual information depends on
the specific sensor setup (camera angles, etc.), leading to
less robust results. Alternatively, one can use visual features
extracted from some pre-trained encoders, an approach that

remains an open question (Hansen et al., 2022). On the
other hand, the human-designed state observation are not
generally accessible even for tasks in simulators (e.g., Pour
only supports visual observations with soft-body).

Limitations One limitation of CoTPC lies in the assump-
tion that similar and nearby actions should be grouped into
the same subskill. This can be violated with complex ma-
nipulations with many micro-adjustments (e.g., standing
and balancing on a rope). In this case, extra force feedback
might be required to distinguish subskills that are only sub-
tly different. Another limitation is that our method is purely
offline and not invincible to sub-optimal demos. We believe
additional online fine-tuning makes it more robust.

Low-level vs. high-level tasks Many existing work deal-
ing with “long-horizon” robotic tasks (SayCan (Ahn et al.,
2022), ALFRED (Shridhar et al., 2020), etc.) assumes that
low-level control is solved or that the task hierarchy is given.
On the contrary, in this paper, we study better ways to
learn to solve low-level control tasks with unsupervisedly
discovered hierarchical information as supervisions. We
believe that CoTPC can be extended in a multi-task learning
setup and given enough demonstration, used as a foundation
model for low-level control.

Is CoTPC truly hierarchical? While CoTPC is not
strictly a model-based planning method and not “100%”
hierarchical since the CoT decoder is not used during infer-
ence, it implicitly uses the hierarchical information (CoT
features) that is dynamically updated. The CoT decoder is
a lightweight network and the CoT features are not signifi-
cantly different from the predicted subskills. We found that
using a more expressive CoT decoder makes CoT features
less predictive of subskills and thus harms action decoding.

7. Conclusion
In this work, we propose CoTPC, a hierarchical imitation
learning algorithm for learning generalizable policies from
scalable but sub-optimal demos. We formulate the hierarchi-
cal principles in the form of chain-of-thought (i.e., subskill)
guidance in offline policy learning with a novel Transformer-
based design and provide an effective way to obtain subskill
supervision from demonstrations in an unsupervised manner.
We demonstrate that CoTPC can solve a wide range of chal-
lenging low-level control tasks, consistently outperforming
many existing methods.
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Impact Statement
This paper presents work whose goal is to advance the field
of learning-based control policies. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.
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A. General Challenges of Imitation Learning from Sub-optimal Demonstrations for Low-level
Control Tasks

Non-Markovity While each trajectory in the demos can be represented by a Markovian policy, the Markovian policy
linearly combined from them by perfectly imitating the combined demos can suffer from a negative synergic effect if there
are conflicts across demos. This is because the demos might be generated by different agents or different runs of the same
algorithm. It becomes even worse when the demonstrations themselves are generated by non-Markovian agents (e.g., human
or planning-based algorithms). Instead, a non-Markovian policy is more universal and can resolve conflicts by including
history as an additional context to distinguish between different demos.

Noisiness Sometimes the demo trajectories are intrinsically noisy with divergent actions produced given the same states.
For instance, a search-based planner returns more than one possible action given the same action and state history to solve
the task. At times, the demo actions are even distributed uniformly (e.g., with motion planning algorithms as demonstrators).
This leads to increased uncertainty and variance of the cloned policies and so higher compounding errors. Note that
multi-modality is a related but orthogonal issue (Shafiullah et al., 2022), i.e., when an unimodal estimate of the (continuous)
action distribution leads to a significantly worse return.

Discontinuity For low-level control tasks, demo policies often consist of sharp value changes or topology changes (e.g.,
due to contact changes). Such discontinuity in the underlying state-to-action mapping leads to difficulties in learning a
robust and accurate model, thus harming generalizability. A recent method (Florence et al., 2022) deals with this by an
energy-based implicit model in place of an explicit one. While theoretically sound, it is shown (Shafiullah et al., 2022) to be
less practical for non-Markovian implicit models, and several later non-Markovian explicit models outperform it.

Randomness The actual or apparent unpredictability usually exists in sub-optimal demonstrations either because the
intermediate computations of the demonstrators are not revealed in the demos (e.g., the shortest paths generated by BFS do
not reveal the intermediate search process), or the demonstrators are inherently non-deterministic (e.g., relying on rejection
sampling). Such a trait makes IL less robust as the decision-making patterns from demos might be unclear, hard to learn,
and not generalizable (Paster et al., 2022). For instance, in a continuous action space maze, a solution found by random
search is more-or-less a winning lottery ticket, whose pattern might not be very generalizable.

B. Specific Challenges of Tasks In our Evaluation for Behavior Cloning
There are multiple challenges presented in the tasks used in our evaluation. Firstly, it involves large geometric variations
of articulated objects, which is very non-trivial and is under-explored in the literature (see https://maniskill2.
github.io/ for more details). Secondly, the dynamics are challenging regarding (1) high-precision manipulations (some
ManiSkill2 tasks such as Peg Insertion entail a precision level of millimeters), (2) under-actuated control (e.g., Push Chair
and Turn Faucet), and (3) harder low-level action modeling due to the underlying impedance controller. Thirdly, the
demonstrations are inherently sub-optimal due to either the underlying contact dynamics or how they are produced (noisy,
discontinuous, etc.). Finally, the demonstrations can be limited in quantity (e.g., in our setup of Franka Kitchen).

C. Illustration of the Ablation Study on Network Data Flow
To better explain the difference among the variants in our third ablation study in Sec. 5.4 (i.e., regarding “shared CoT tokens
for subskill and action predictions”), we illustrate the network data flow of the three variants as well as the original design in
Fig. 5.

D. Additional Discussions of Related Work
Procedure Cloning (PC) PC (Yang et al., 2022) was recently proposed to use intermediate computation outputs of
demonstrators as additional supervision for improving the generalization of BC policies. However, it assumes full knowledge
of the demonstrators, including the usually hidden computations that consist of potentially large amounts of intermediate
results. For instance, in the graph search example used in the original paper, PC requires knowing the traversed paths of
the BFS algorithm, such as the status of each node, either the included ones or the rejected (and so omitted) ones in the
final returned result. Whereas, CoTPC does not require such knowledge, as the CoTs are included as part of the results, not
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hidden intermediate computations, and the CoT supervision itself can be obtained via the unsupervised discovery method.
Moreover, machine-generated demonstrations can be crowd-sourced and the demonstrators are usually viewed as black
boxes, making this a limitation of PC.

Policy Learning with Motion Planning Some existing work (Shridhar et al., 2023; James & Davison, 2022) adopt
a strategy similar to CoTPC in terms of predicting key states (the waypoints) as high-level policies. However, they use
motion planners as low-level policies, while CoTPC directly learns to predict low-level controls. The major advantage
of our approach is to handle environments requiring dynamic (or reactive) controls (like Moving Maze and Push Chair),
where the key states/observations must be updated at every step and so motion planner-based strategies will struggle. Also,
PerAct (Shridhar et al., 2023) is relatively limited due to its discretized actions, especially for tasks requiring high-precision
manipulation (e.g., Peg Insertion). Moreover, some existing work (Qureshi et al., 2019; Fishman et al., 2023) uses motion
planners as the only demonstrators to acquire neural policies, which are to some extent constrained to tasks involving
quasi-static control.

Robotic Transformer-1 (RT-1) RT-1 (Brohan et al., 2022) is a concurrent work that also directly models low-level control
actions with a Transformer. It benefits from the sheer scale of real-world robot demonstration data pre-collected over 17
months and the tokenization of both visual inputs (RGB images) and low-level actions. While RT-1 shows great promise
in developing decision foundation models for robotics, it adopts the conventional auto-regressive Transformer without
explicitly leveraging the structural knowledge presented in low-level control tasks. Moreover, it is so computationally
intensive that it usually only admits less than 5 control signals per second. Our work, CoTPC, is an early exploration in
this direction and we believe it will inspire the future designs of generally applicable models for robotics tasks. Another
difference is that since RT-1 discretizes the action space, it might suffer from degraded performance for tasks that require
high precision (such as Peg Insertion).

Subskill Discovery from Offline Data Skill or sub-skill discovery purely from offline demonstration sets is very
challenging since there is barely any useful supervision. In the related literature, the option-based approach is a popular
strategy. For instance, MO2 (Salter et al., 2022), an offline option learning framework using the bottleneck state principle,
is shown to work well on continuous control problems for learning the options. However, this line of work has the
shortcoming of relying on good state space representation. It is unclear if MO2 can work well for high-dimensional
visual observations (e.g., the Pour task only supports visual observation due to soft-body manipulation). Our action-based
approach is observation-agnostic and thus avoids this issue. Moreover, the option approach requires learning good initial
and termination conditions for the options, which is a hard problem itself (Gu et al., 2022). Usually, it requires further
online learning for skill chaining to compensate for the suboptimal options (MO2 still requires online learning after the
options learned from offline datasets are fixed). The alternative, as we propose, is to utilize methods from the change point
detection community for time series modeling to perform action segmentation. Change point detection methods can roughly
be divided into predictive model-based approaches (e.g., (Saatçi et al., 2010)) and optimization-based ones (e.g., (Killick
et al., 2012)). The former requires an underlying predictive model (UPM) where (Saatçi et al., 2010) chooses Gaussian
Processes. However, it is unclear if it can model high-dimensional and complex control signals as the action sequences can
be hard to model in the first place ((Saatçi et al., 2010) suggests it might require a large set of sensitive hyper-parameters).
The latter does not model the time series directly but finds change points by optimizing a cost function instead. In this case,
a good choice of a metric can be critical.

Hierarchical RL + Demonstration regarding Subskill Decomposition While the high-level idea of utilizing the
hierarchical principles for policy learning is shared with the approaches in the hierarchical RL + demonstration literature
(e.g., (Jiang et al., 2022; Eysenbach et al., 2018; Konidaris et al., 2012; Pickett & Barto, 2002)), all of these work relies on
online interaction with the environments either by using online RL to learn to utilize the learned (sub)skills in a transfer
learning setup (e.g, (Jiang et al., 2022)) or by using online exploration to acquire the (sub)skills in the first place (e.g.,
(Eysenbach et al., 2018)). On the contrary, ours is a completely offline imitation learning method. Purely offline subskill
discovery that can be used for downstream imitation learning is very challenging, and recent work mostly relies on RL to
provide extra supervision (Kujanpää et al., 2023). Work that is similar to ours in this setup includes CompILE (Kipf et al.,
2019) and PC (Yang et al., 2022). CompILE adopts a VAE to perform soft-segmentation of the demo trajectories. However,
its evaluation was carried out only on a limited set of relatively simple control tasks. On the other hand, PC performs
hierarchical policy learning with extra procedure-level supervision that limits its applicability and is hard to be directly
compared with. Notice that due to the relatively small previous work in this direction (subskill discovery + hierarchical
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offline policy learning), both CompILE and PC only use non-hierarchical imitation learning methods as baselines. Similarly
in our comparison, we include several non-hierarchical strong baselines.

E. Details of the Environments
Moving Maze Moving Maze is a 2D maze with a continuous action space of displacement (δx, δy), where both compo-
nents ∈ [1.5, 4]. This an s-shaped maze whose height is 80 and width is 60 with the agent starting from a location randomly
initialized inside the top right square region (in green) and the goal is to reach the bottom left one (also in green). Upon
each environment reset, the two regions (the starting square and the target square) as well as the two rectangular bridges (in
green) have their positions randomized. Specifically, The two square regions are randomized to the right of the top and to
the left of the bottom blue islands, respectively. Their initial locations vary with a range of 20 vertically. The two bridges’
initial locations vary also with a range of 20 horizontally. During the game, each of them except for the top square moves
(independently) back and forth with a randomized constant speed ∈ [1, 2]. Once the agent lands on a moving block, the
block becomes static. The agent cannot cross the borders of the maze (but it will not die from doing so). For simplicity, we
adopt a 10-dim state observation consisting of the current location of the agent and the four green regions. This task requires
dynamic controls/planning.

Franka Kitchen We propose a setting (and thus a variant of the original Franka Kitchen task) where the agent is asked to
complete 4 object manipulations (out of 7 different options) in an order specified by the goal. The 7 tasks are: turn on/off
the bottom burner, turn on/off the top burner, turn on/off the light, open/close the sliding cabinet, open/close the hinged
cabinet, open/close the microwave oven, and push/move the kettle to the target location. Compared to the other variants, we
use a strict criterion, i.e., the task succeeds when all 4 sub-tasks are completed, where each of them needs to be done in the
requested order to be counted as completed. The environment will terminate when a sub-task other than the specified 4 is
performed. The action space is based on the joint velocity (8-dim) of the robot. We use the original 30-dim state observation
consisting of poses of all the relevant objects and the proprioception signals as well as an additional 14-dim goal embedding.
This embedding assigns a 2-d vector to each of the 7 potential sub-tasks. Each vector is one of [0, 0], [0, 1], [1, 0], [1, 1]
(indicating the order to be completed for the corresponding sub-task) and [−1,−1] (meaning the sub-task should not be
completed). We do not include the target pose of the objects in the state observation (i.e., we ask the agent to learn it from
the demonstrations).

ManiSkill2 ManiSkill2 (Gu et al., 2023) is a recently proposed comprehensive benchmark for low-level object manipula-
tion tasks. We choose 5 tasks as the testbed. (1) Stack Cube for picking up a cube, placing it on top of another, and the
gripper leaving the stack. (2) Turn Faucet for turning on different faucets. (3) Peg Insertion for inserting a cuboid-shaped
peg sideways into a hole in a box of different geometries and sizes. (4) Push Chair for pushing different highly articulated
chair models into a specified goal location (via a mobile robot). (5) Pour for pouring liquid from a bottle into the target
beaker with a specified liquid level. All tasks have all object poses fully randomized (displacement around 0.3m and 360◦

rotation) upon environment reset (this is in contrast to environments such as Franka Kitchen). Note that the holes in Peg
Insertion have only 3mm of clearance, requiring highly precise manipulation, and it needs at least half of the peg to be
pushed sideway into the holes (in contrast to the similar yet easier tasks (Xu et al., 2019)). The tasks we select involve both
static and mobile manipulation and cover 3 action spaces (delta joint velocity control for Push Chair, delta end-effector
pose control for Pour, and delta joint pose control for the rest). For state observations, we use states of varied dimensions
across these tasks (see details in the ManiSkill2 paper) For Turn Faucet, we slightly modify the default state observation by
appending an extra 3-dim vector (the pose of the faucet link) so that it is easier for the agent to distinguish between different
faucet models. The corresponding demonstrations are modified as well. For point cloud observations, we use the default
pre-processing strategy provided by ManiSkill2 to obtain a fixed length of 1200 points (RGB & XYZ) per timestep.

F. Details of the Demonstrations and the Evaluation Protocol
Moving Maze We curate demonstrations by adopting a mixture of heuristics and an RRT-style planner with hindsight
knowledge not available at test time. For each randomized environment configuration, we randomly choose one of the found
paths from the starting square to the target one as the demonstration trajectory. We chunk the maze into 6 regions: the
three islands (each bridge belongs to the island below it; the starting square and the target square belong to the top right
and the bottom left regions, respectively), each of which is further divided into two regions (cut vertically in the middle).
An RRT-style sampler is used to find paths connecting adjacent regions sequentially (starting from the initial position to
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the second region). We restrict the number of steps in each of the paths across two adjacent regions to be ≤ 13 so that
the maximum total length of a demo trajectory is ≤ 13 × 5 = 65 steps. To enable this type of planning with dynamic
environments, we actually first generate demonstrations with a static version of the maze and then animate the moving
elements later coherently. This is not possible during inference time as it requires hindsight knowledge. We use 400 demo
trajectories for training and evaluate all agents on both these 400 configs and a held-out set of 100 unseen environment
configs. We report the task success rate as the major metric. During inference, we set the maximum number of steps as 60.

Franka Kitchen We replay a subset of the human demonstrations originally proposed in (Gupta et al., 2019) in the
simulator. Specifically, we randomly select 50 demo trajectories of length ranging from 150 to 300 that succeed in achieving
4 different sub-tasks out of the 7 options. We relabel them with the privileged information to construct the goal embedding
described previously. Note that this embedding vector is fixed across different time steps for each trajectory. There are
20 total different ordered sub-task combinations presented in the 50 demonstrations, where the majority of combinations
only have ≤ 3 trajectories. Combinatorial generalization regarding sub-tasks is too challenging in this case (there are
35 × 4! = 840 total combinations); so we focus on evaluating generalization w.r.t. initial robot/object poses. We use
90 unseen environment configurations (each requiring the completion of 4 sub-tasks) presented in the original human
demonstrations for evaluation (we only include seen sub-task combinations). We report the task success rate (requiring the
completion of all 4 sub-tasks in a trajectory) and the average number of successful sub-tasks per trajectory as the metrics.
During inference, we set the maximum number of steps as 280.

ManiSkill2 For all tasks except for Push Chair, we use the original demonstrations provided by ManiSkill2, which are
generated by a mixture of TAMP solvers and heuristics. Please see the original paper for details (the actual code used to
generate these demonstrations is not released, though). For Stack Cube and Turn Faucet, we randomly sampled 500 demo
trajectories for the training data. For Turn Faucet, we use trajectories from 10 different faucet models for the demos and
perform the evaluation of 0-shot generalization on 4 unseen faucets (each with 100 different scene configurations). Not
that the demonstrations of Turn Faucets have most of the faucets pushed rather than grasped, i.e., under-actuated control.
For Peg Insertion, each different environment config comes with a different shape and size of the box (with the hole) and
the peg. We randomly sampled 1000 trajectories from the original ManiSkill2 demonstrations as the training data and
sampled 400 unseen environment configs for the 0-shot generalization evaluation. For Push Chair, we use a complicated
heuristic-based approach from (Pan et al., 2022), adapted to ManiSkill2 (where it uses additional privileged information and
achieves around 50% task success rate), as the demonstrator. We collected 1000 successful trajectories as the training data
across 6 chair models and we evaluated the 0-shot generalization performance on 300 environment configs distributed over
3 unseen chair models. For Pour, we use 150 successfully replayed demonstration trajectories provided by ManiSkill2 to
generate the point cloud observation sequences (this task does not support state observation as it involves soft-body). We
use the success conditions from the original ManiSkill2 paper to report the task success rate. During inference, we set the
maximum number of steps allowed as 200, 200, 200, 250, and 300 for Stack Cube, Push Chair, Peg Insertion, Turn Faucet,
and Pour, respectively.

G. Illustration of the Discovered Subskill Sequences
In Fig. 6, we visualize the sub-stages (and thus the subskills) extracted from two trajectories using the automatic subskill
discovery process described in Sec. 4.1.

H. Implementation Details of Network Architecture and Training
Vanilla BC : We use a Markovian policy implemented as a three-layer MLP with a hidden size of 256 and ReLU
non-linearity. We train it with a constant learning rate of 1e − 3 with Adam optimizer with a batch size of 32 for 150K
iterations (Moving Maze), 300K iterations (Franka Kitchen) and 500K iterations (ManiSkill2). We find training longer leads
to over-fitting even with L2 regularization.

Decision Diffuser We use the reference implementation provided by the authors of DD and make the following changes
in the diffusion model: 100 diffusion steps, 20 context size, and 4 horizon length (in our experiments we found that longer
performs worse). The diffusion and inverse-dynamics models have ∼1.6M parameters in total. Since DD works on fixed
sequence lengths, we pad the start and end states during training and only the start states during inference.
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Figure 6. Illustration of actions corresponding to different stages and the associated observations for two tasks: Push Chair (top) and Peg
Insertion (bottom). The stages are discovered by grouping the actions into subskills by our unsupervised subskill discovery method.
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Diffusion Policy We use the reference implementation provided by the authors of DP while adjusting the model size to be
∼1.2M parameters (comparable to other baselines and our CoTPC).

Decision Transformer We adopt the minGPT implementation and use the same set of hyperparameters for all tasks (a
feature embedding size of 128 and 4 masked multi-head attention layers, each with 8 attention heads), totaling slightly
greater than 1M learnable parameters. The action decoder is a 3-layer MLP of two hidden layers of size 256 with ReLU
non-linearity (except that for Franka Kitchen we use a 2-layer MLP of hidden size 1024). We train DT with a learning rate
of 5e− 4 with a short warm-up period and cosine decay schedule to 5e− 5 for all tasks (except for Franka Kitchen, whose
terminal lr is 5e− 6 ) with the Adam optimizer with a batch size of 256. We train for 200K iterations for Moving Maze and
Franka Kitchen and train for 500K iterations for all tasks in ManiSkill2. We use a weight decay of 0.0001 for all tasks but
Franka Kitchen (for which we use 0.1) and Push Chair (for which we use 0.001). We use a context size of 10 for ManiSkill2
tasks, 20 for Moving Maze, and 10 for Franka Kitchen. We use learnable positional embedding for the state and action
tokens following the DT paper.

Behavior Transformer In this paper, we use the modified version of BeT where a context of both past actions and past
states is used to predict the actions. We started with the configuration used for the Franka Kitchen task in the original
paper. We changed the number of bins in K-Means to 1024 (we find that for our tasks, a smaller number of bins works
worse) and changed the context size to 10 (in line with the other transformer-based models). The Transformer backbone has
approximately the same number of parameters (∼1M) as CoTPC and DT. We train the model for around 50k iterations
(we find that training longer leads to over-fitting easily for BeT, potentially because of its discretization strategy and the
limited demos used for BC). For ManiSkill2 tasks, we use the same architecture as that for DT, except that we use the center
plus offset decoders to decode the actions. We use a k-means of 128 clusters to partition the action space. We train 100K
iterations for Turn Faucet, Push Chair, and Pour. We train 200K iterations for Peg Insertion and Stack Cube. We use a
coefficient of 100 for training the action offset regressor (i.e., the action offset regressor loss is scaled up 100 times compared
to the action center classification loss). Unless otherwise specified, we follow all the other hyperparameters described for
DT.

CoTPC Unless specified here, we keep other configurations (both model training and network architecture) the same as
those in BeT. We use no positional embeddings for CoT tokens as they themselves are learnable prompts. The CoT decoder
is a 2-layer MLP with ReLU non-linearity of hidden size 256. We use a coefficient λ = 0.1 for the auxiliary MSE loss for
all tasks. During training, we apply random masking to the action and state tokens so that the CoT tokens attend to a history
of varied length (from the first step to a randomized t-th step). Also, see the main paper for more details. For all tasks, we
use the same number of clusters to partition the action space as for the BeT baseline. Another implementation detail: we
find that using CoT features from other than the last attention layer Scot

j (·), j ≤ J as inputs for the CoT decoder can further
improve the final performance. We consider this as a per-task hyper-parameter. In general, we find that using Scot

J (·) is a
good starting point. Unless otherwise specified, we follow all the other hyperparameters described for BeT.

I. Choice of Metric for Unsupervised Subskill Discovery
Our subskill discovery approach by decomposing the action sequences is motivated by the intuition that functionally similar
actions that are temporally close should be grouped into the same subskill. The choice of the metric to measure such
functional similarity is an open problem. We tried cosine similarity, L2 distance, and a more complicated Hausdorff distance.
Among these, we find that the cosine similarity exhibits both simplicity and generalizability. In our experiments, we find it
works across different action spaces (e.g., delta position in Moving Maze, delta joint pose in Peg Insertion, and delta joint
velocity in Push Chair) with different action statistics based on how they are generated (sampling-based methods such as
RRT, heuristics, etc.) and scale well to higher action dimensions (e.g., Moving Maze uses 2-d actions, Push Chair uses 19-d
actions with a dual-arm mobile robot). In practice, action spaces of much higher dimensions are relatively uncommon in
robotic tasks.

J. Hyper-parameter Tuning for Granularity of the Subskill Discovery
We tune β in the subskill discovery process, which controls how granular we want for the discovered subskill sequences. For
different action spaces (e.g., dual-arm vs. single-arm), we visualize a small set of 5-10 demo trajectories as the validation set
to tune β. We find β relatively insensitive with 0.05 for all single-arm control tasks and 0.02 for all dual-arm control tasks.
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Figure 7. Two sampled succeeded trajectories for Stack Cube and Peg Insertion, respectively, in a real robot setup, from state-based
CoTPC policies trained purely from demos in simulators. As an early examination, we increase the clearance for peg insertion from 3mm
(sim) to 10mm (real) and only use peg and box-with-hole models of fixed geometry.

Table 5. Additional test performance (success rate) on the unseen and the 0-shot setup for ManiSkill2 tasks with state observations.

STACK CUBE PEG INSERTION TURN FAUCET PUSH CHAIR

UNSEEN 0-SHOT 0-SHOT 0-SHOT

BEHAVIOR TRANSFORMER 73.0 (68.7±4.0) 42.5 (39.5±2.7) 32.5 (31.7±0.8) 33.4 (32.3±1.0)
COTPC (OURS) 86.0 (84.0±2.6) 59.3 (51.5±7.4) 39.3 (35.4±3.6) 41.0 (36.4±4.0)

Moreover, our proposed model is relatively robust regarding β. In an ablation study, we manually tuned it so that the average
length of the discovered subskills varies. We found that on the Peg Insertion task (with state observation policy setup), 1̃
shorter length (on average) leads to slightly decreased performance (59.3 vs. 54.0 in terms of 0-shot SR), and similarly for 1̃
longer length (59.3 vs. 55.3 in terms of 0-shot SR). With a significantly longer length ( 7), however, the performance drops
significantly, since in this case, the overly segmented subskills do not provide much valuable structural information in policy
learning.

K. Preliminary Results of Sim-to-Real Transfer
We examine the plausibilities of sim-to-real transfer of our state-based CoTPC in a zero-shot setup on two tasks, namely,
Stack Cube and Peg Insertion. Our real-world experiment setup and two sampled succeeded trajectories are illustrated in
Fig. 7. With an off-the-shelf pose estimation framework such as PVNet (Peng et al., 2019), we can achieve reasonable
performance using the state-based CoTPC policy learned purely from simulated data. See .gif animations on our project
page. As a preliminary examination, we only perform qualitative evaluations.

L. Additional Results on ManiSkill2 (Mean & Standard Deviation Among 3 Runs)
In addition to the main paper’s results where we report the best among the three training runs in the original paper (similar
to the eval protocol in (Chi et al., 2023)), we also report the mean and std in Tab. 5. The format is best (mean ± std).

M. Details of Point Cloud-based CoTPC
To process point cloud observations, we adopt a lightweight PointNet (Qi et al., 2017) (∼27k parameters) that is trained
from scratch along with the transformer in an end-to-end manner. We concatenate additional proprioception signals with the
point cloud features to the input state tokens. In CoTPC where the CoT decoder is trained to predict the point cloud CoT, we
ask the decoder to predict PointNet features of the CoT instead. We find that the auxiliary point cloud CoT loss causes the
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Figure 8. Illustration of the point cloud-based CoTPC. Compared to state-based CoTPC, we add a PointNet to process the point cloud
observations as well as the point cloud CoTs. We omit the data path for the input proprioception signals to the model. We also omit the
detailed data flow for the action decoders.

PointNet encoded representations to collapse. Inspired by (Chen & He, 2021), we use a stop-gradient operation in the point
cloud CoT encoding path to prevent this. We illustrate the network architecture in Fig. 8. The training strategies (we use the
same set of hyperparameters) and evaluation protocols are similar to those of the state-based experiments.

N. Additonal Videos
We provide videos (.gif animations) of inference results for ManiSkill2 tasks from our state-based CoTPC on the project
page.
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