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Abstract
Invisible watermarks safeguard images’ copy-
rights by embedding hidden messages detectable
by owners. It also prevents people from misusing
images, especially those generated by AI mod-
els. Malicious adversaries can violate these rights
by removing the watermarks. In order to remove
watermarks without damaging the visual quality,
the adversary needs to erase them while retain-
ing the essential information in the image. This
is analogous to the encoding and decoding pro-
cess of generative autoencoders, especially varia-
tional autoencoders (VAEs) and diffusion models.
We propose a framework using generative autoen-
coders to remove invisible watermarks and test
it using VAEs and diffusions. Our results reveal
that, even without specific training, off-the-shelf
Stable Diffusion effectively removes most wa-
termarks, surpassing all current attackers. The
result underscores the vulnerabilities in existing
watermarking schemes and calls for more robust
methods for copyright protection.

1. Introduction
Posting images online can be risky because malicious users
may misuse them and violate the owners’ copyright and pri-
vacy. Besides, advances in generative AI, such as DALLE-2,
Imagen, and Stable Diffusion (Ramesh et al., 2022; Saharia
et al., 2022; Rombach et al., 2022), can generate extremely
photorealistic images which can mislead people into false
beliefs (see examples in Figure 1). To protect images from
misuse and achieve AI responsibility, major tech companies
like Google are developing tools to trace the origin of images
or identify synthetically generated content (Google, 2023;
Wiggers, 2023). Invisible watermarks are one such tool that
has been applied to embed secret messages detectable by
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Figure 1. AI-generated fake images from Twitter depicting the
arrest of Donald Trump.
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Figure 2. Remove invisible watermarks: Attackers first encode the
watermarked image into a latent representation retaining essential
information. They then decode to reconstruct the image and re-
move the watermark.

the owner (Rombach et al., 2022). Typical watermarking
schemes include bit manipulation (Wolfgang & Delp, 1996),
signal processing (Ghazanfari et al., 2011; Holub & Fridrich,
2012) and learning-based methods (Zhang et al., 2019b;a;
Fernandez et al., 2021).

Adversaries can utilize various methods to remove the water-
marks such as image transformations and image denoising
(Dabov et al., 2007; Zhang et al., 2017; 2021; Hosam, 2019).
While they can successfully erase weak watermarks, most
of them cannot work well for more stronger watermarks,
and they can severely hurt the image quality.

Recent studies on generative models have changed the sit-
uation. The process of watermark removal is equivalent
to generating a new watermark-free image from the most
essential information in the old. This is analogous to the
encoding and decoding of generative autoencoders such as
VAEs (Kingma & Welling, 2013) and diffusions (Ho et al.,
2020). Motivated by the analogy, we propose to utilize gen-
erative autoencoders as watermark attackers. As shown in
Figure 2, attackers can erase the watermark by first encoding
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the watermarked image to a latent code and then decoding
it to a reconstructed image.

We evaluate our pipeline along with several baseline wa-
termark removers. The results indicate that generative au-
toencoders, especially diffusions, can remove more invisible
watermarks than most existing attackers while keeping the
image quality intact. These results underscore the vulner-
abilities of the existing watermark schemes and how gen-
erative models can pose threats to copyrights and privacy.
Better methods for image misuse prevention are needed in
the future.

Our contributions can be summarized as follows:

• We propose a framework that utilizes generative autoen-
coders as watermark attackers.

• We show how two instances of generative models, VAEs
and diffusions can fit into our framework.

• We evaluate our framework extensively and demonstrate
the vulnerabilities of existing watermarks.

2. Related work
Image watermarking and steganography. Steganogra-
phy and invisible watermarking are key techniques in in-
formation hiding, serving diverse purposes such as copy-
right protection, privacy-preserved communication, and con-
tent provenance. Early works in this area employ hand-
crafted methods, such as Least Significant Bit (LSB) em-
bedding (Wolfgang & Delp, 1996), which subtly hides data
in the lowest order bits of each pixel in an image. Over
time, numerous techniques have been developed to imper-
ceptibly embed secrets in the spatial (Ghazanfari et al.,
2011) and frequency (Holub & Fridrich, 2012; Pevnỳ et al.,
2010) domains of an image. Additionally, the emergence
of deep learning has contributed significantly to this field.
Deep learning methods offer improved robustness against
noise while maintaining the quality of the generated image.
SteganoGAN (Zhang et al., 2019a) uses generative adver-
sarial networks (GAN) for steganography and perceptual
image optimization. RivaGAN (Zhang et al., 2019b), further
improves GAN-based watermarking by leveraging attention
mechanisms. SSL watermarking (Fernandez et al., 2021),
trained with self-supervision, enhances watermark features
through data augmentation.

Image denoising. Image denoising is a fundamental yet
continuously evolving field in low-level vision, as it plays
a crucial role in numerous practical applications. Over
the past few decades, several models have been developed
to capture image priors for denoising, including nonlocal
self-similarity approaches like BM3D (Dabov et al., 2007),
which utilizes a two-stage non-locally collaborative filter-
ing method. In recent years, deep neural networks have

been applied to address the denoising problem. Zhang et al.
(2017) introduced residual learning and batch standardiza-
tion into image denoising through feed-forward denoising
CNNs (DnCNN). Another highly flexible and effective CNN
denoiser is DPIR (Zhang et al., 2021), which employs a plug-
and-play framework. Image denoising methods can also be
applied to remove hidden messages in invisible watermarks
(Hosam, 2019).

Deep generative models. The high-dimensional nature
of images poses unique challenges to generative model-
ing. In response to these challenges, several types of deep
generative models have been developed, including Varia-
tional Auto-Encoders (VAEs) (Vincent et al., 2008; Van
Den Oord et al., 2017), Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020), Flow-based generative
models (Rezende & Mohamed, 2015), and Diffusion mod-
els (Ho et al., 2020; Rombach et al., 2022). These models
leverage deep latent representations to generate high-quality
synthetic images and approximate the true data distribu-
tion. In this paper, we aim to demonstrate the capability of
these models in removing invisible watermarks from images
by utilizing the latent representations obtained through the
encoding and decoding processes.

3. Preliminaries
3.1. Problem setup

In this work, we focus on addressing invisible watermarks,
as visible watermarks can be handled using existing tools
like image inpainting.

We approach watermarking as a post-processing methodol-
ogy comprised of two algorithms: Watermark and Detect.
(1) The Watermark algorithm embeds an invisible water-
mark mk into an original image x to produce a watermarked
image x̂, such that x̂ looks virtually identical to x. Formally,
x̂←Watermark(x). (2) The Detect algorithm extracts the
embedded watermark mk from a suspect image. If no wa-
termark is found or the extracted watermark does not match
mk, detection fails. Otherwise, it succeeds.

We consider the following threat model for image water-
marking:

Adversary’s capabilities. We assume that the adversary has
black-box input-output access to the watermarking model or
only has access to the watermarked images. This adversary
is capable of modifying the images using arbitrary side
information and computational resources.

Adversary’s objective. The primary objective of the adver-
sary is to render the watermark detection algorithm ineffec-
tive. Specifically, the adversary aims to produce an image x̃
for which the Detect algorithm fails. Simultaneously, the
output image x̃ should also maintain comparable quality to
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the original, non-watermarked image.

3.2. Watermarking methods

This paper reviews and evaluates several well-established
digital watermarking techniques, which can serve as post-
processing methods for embedding watermarks. The assess-
ment covers a range of approaches, from traditional signal
processing techniques to state-of-the-art deep learning meth-
ods.

DWT-DCT-SVD based watermarking. The DWT-DCT-
SVD watermarking method (He & Hu, 2018) combines
Discrete Wavelet Transform (DWT), Discrete Cosine Trans-
form (DCT), and Singular Value Decomposition (SVD) to
embed watermarks in color images. First, the RGB color
space of the cover image is converted to YUV. DWT is then
applied to the Y channel, and DCT divides it into blocks.
SVD is performed on each block. Finally, the watermark is
embedded into the blocks.

RivaGAN watermarking. RivaGAN (Zhang et al., 2019b)
presents a robust image watermarking method using GANs.
It employs two adversarial networks to assess watermarked
image quality and remove watermarks. An encoder embeds
the watermark, while a decoder extracts it. By combining
these, RivaGAN offers superior performance and robust-
ness.

StegaStamp watermarking. StegaStamp (Tancik et al.,
2020) is a CNN method that exhibits exceptional robustness.
It uses differentiable image perturbations in training and
a spatial transformer network to resist small perspective
changes.

SSL watermarking. SSL watermarking (Fernandez et al.,
2021) utilizes pre-trained neural networks’ latent spaces
to encode watermarks. Networks pretrained with self-
supervised learning (SSL) extract effective features for wa-
termarking. The method embeds watermarks through back-
propagation and data augmentation, then detects and de-
codes them from the watermarked image or its features.

3.3. Classical attacking methods

In this section, we review attacking methods for invisible
watermarks.

Image transformation attack. For image transformations,
we modify brightness and contrast. We also test JPEG com-
pression, which compresses images by quantizing rounded
discrete cosine transform coefficients of 8x8 blocks.

Image denoising attack. We use BM3D (Dabov et al.,
2007) and DPIR (Zhang et al., 2021) as two image denois-
ing methods. BM3D utilizes a two-stage non-locally col-
laborative filtering method. DPIR is a deep learning-based
denoising method.

Original Image Watermarked Image Diffusion AttackVAE Attack

Figure 3. Examples of watermarking attack. The watermark (Riva-
GAN watermarking) is undetectable in the attacked images. VAE
attack tends to make the image blurry. More examples can be
found in Figure 4.

4. Watermark removal with generative
autoencoders

In this section, we first describe generative autoencoders and
our motivation for using them to erase watermarks. We then
introduce variational autoencoders and diffusion models as
instances we implement.

4.1. Generative autoencoders as watermark erasers

Autoencoders (Kramer, 1991; 1992) learn efficient data en-
codings by training an encoder Eϕ that maps data x to a
latent space Z and a decoder Dθ that reconstructs x from
Z . Usually, Z has lower dimension than x, indicating infor-
mation loss.

We define generative autoencoders to be generative mod-
els that can be learned to sample from a true distribu-
tion p(x). They are usually learned by minimizing some
kind of reconstruction loss that compares the reconstructed
x̂ = Dθ(Eϕ(x)) with the original data x for a set X of
samples from p(x). To use the learned model to sample
from p(x), a usual approach is to first take a random sample
z from Z and then decode it, i.e., computing Dθ(z).

To erase watermarks from a watermarked data point x̂, we
encode it with Eϕ(x̂) and then decode the encoding, i.e.,
computing x̃ = Dθ(Eϕ(x̂)) = Dθ(Eϕ(Watermark(x))).

4.2. Motivation and assumptions

The motivation for using generative autoencoders (VAEs)
as invisible watermark erasers is based on two assumptions.

First, we assume that Eϕ(x) and Eϕ(Watermark(x)) are
indistinguishable, i.e. the encoder Eϕ can remove enough
information from data such that the encoding of the original
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data x cannot be distinguished from that of the watermarked
x̂. If this assumption holds, the reconstruction watermarked
data Dθ(Eϕ(x)) should resemble the reconstruction from
original data Dθ(Eϕ(x̂)), i.e., watermark-free.

Second, we assume that the original distribution p(x), from
which the model learns to sample, is watermark-free, i.e.,
we have access to generative autoencoders that are trained
on data that do not contain learnable patterns of invisible
watermarks. If this assumption holds, when we sample
from these models, it’s likely that we get watermark-free
generations. While we cannot say for sure how many images
in the dataset contain invisible watermarks, it’s safe to say
that even if they do, their invisible watermarks are created
with different methods and different messages.

4.3. Variational autoencoders

To learn to sample from p(x), variational autoencoders
(Kingma & Welling, 2013) consider the joint distribution
p(x, z) of both the data and the latent variable. log p(x) is
optimized using the evidence lower bound (ELBO), i.e.

log p(x) ≥ Eqϕ(z|x)

[
log

p(x, z)

qϕ(z|x)

]
, (1)

which can further be dissected into two terms, a reconstruc-
tion term and a prior matching term

Eqϕ(z|x) [log pθ(x|z)]−DKL(qϕ(z|x)∥p(z)). (2)

Here qϕ(z|x) is the encoder distribution and pθ(x|z) is the
decoder distribution. p(z) is the prior distribution of the
latent space z. The encoder is often chosen to be a multi-
variate Gaussian, while the prior is a standard Gaussian:

qϕ(z|x) = N (z;µϕ(x), σ
2
ϕ(x)I)

p(z) = N (z; 0, I).
(3)

4.4. Diffusion models

Diffusion models (Ho et al., 2020) define a generative pro-
cess that learns to sample from an unknown true distribution
p(x). To learn this process, Gaussian noise is added to
some original sample x0 ∼ p(x) iteratively from time step
0 through time step T . The distribution of the noise data xt

at time step t is

q(xt|x0) = N (α(t)x0, σ
2(t)I), (4)

where α(t), σ(t) are functions describing the noise sched-
ule.

The denoising process predicts original data x0 with xt

using a predictor function xθ.

A diffusion model can be understood as a hierarchical VAE
(Luo, 2022; Kingma et al., 2021). To use a diffusion model

Original Image Watermarked Image Diffusion AttackVAE Attack

Figure 4. We show more experimental results here including the
failure cases. Specifically, we observe that the diffusion attack
exhibits limitations when applied to images containing human
faces and text. VAE attack tends to over-smooth the image and
make it blurry.

as a watermark attacker, we pick a small time step t0 < T ,
and add noise to the data until that time step. This noising
process from time step 0 to t0 is considered the encoder Eϕ.
Denoising from xt is considered the decoder Dθ.

5. Experiment
5.1. Experiment setup

Model and datasets. For variational autoencoders, we
test two pre-trained image compression models: Bmshj2018
(Ballé et al., 2018) and Cheng2020 (Cheng et al., 2020) from
the CompressAI library zoo (Bégaint et al., 2020). For dif-
fusion models, we choose stable-diffusion-v1-5
from Stable Diffusion (Rombach et al., 2022). The experi-
ments are conducted on a sample of 100 randomly selected
images from the MS-COCO dataset (Lin et al., 2014).

Watermark settings. We set the number of bits for wa-
termarking methods as k = 32. The tested attacks include
brightness change (0.5), contrast change (0.5), and JPEG
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Attacker PSNR↑ SSIM↑ FID↓ Bit Acc↓ Word Acc↓

DCT-DWT-SVD based watermarking:
Brightness 12.07 0.707 21.16 0.443 0.03
Contrast 18.34 0.801 16.99 0.443 0.02
JPEG 31.93 0.906 35.00 0.688 0.00
BM3D 33.37 0.896 90.41 0.576 0.00
DPIR 34.84 0.945 18.47 0.918 0.21
Bmshj2018 31.02 0.873 77.11 0.526 0.00
Cheng2020 31.96 0.887 69.03 0.525 0.00
Diffusion 24.88 0.712 41.37 0.643 0.00

RivaGAN watermarking:
Brightness 12.05 0.705 30.87 0.992 0.87
Contrast 18.34 0.802 25.43 0.995 0.89
JPEG 32.05 0.906 35.92 0.959 0.41
BM3D 33.43 0.896 91.59 0.950 0.34
DPIR 34.96 0.945 18.77 0.996 0.87
Bmshj2018 31.07 0.873 78.45 0.648 0.00
Cheng2020 32.03 0.888 67.82 0.636 0.00
Diffusion 24.82 0.706 45.25 0.629 0.00

SSL watermarking:
Brightness 12.08 0.705 32.38 0.999 0.99
Contrast 18.37 0.803 29.80 1.000 1.00
JPEG 32.05 0.904 43.19 0.805 0.01
BM3D 33.67 0.897 93.13 0.671 0.00
DPIR 35.10 0.945 26.94 0.937 0.26
Bmshj2018 31.14 0.874 80.63 0.640 0.00
Cheng2020 32.10 0.887 71.08 0.634 0.00
Diffusion 24.83 0.707 47.42 0.719 0.00

StegaStamp watermarking:
Brightness 12.03 0.727 51.72 1.000 1.00
Contrast 17.97 0.805 51.29 1.000 1.00
JPEG 26.89 0.840 72.04 1.000 1.00
BM3D 28.57 0.874 118.14 1.000 1.00
DPIR 27.67 0.876 58.17 1.000 1.00
Bmshj2018 27.75 0.847 93.36 1.000 1.00
Cheng2020 28.33 0.868 85.72 1.000 1.00
Diffusion 22.63 0.622 69.65 0.648 0.50

Table 1. Performance of attacks on different watermarking meth-
ods. For every watermarking method, we bold the bit accuracies
and word accuracies for the top-3 most successful attacks. For
the top-3 most successful attacks, we underline the best image
quality metric. Generative autoencoders (with gray background)
are usually the most effective in erasing watermarks.

Watermark PSNR↑ SSIM↑ FID↓ Bit Acc↑ Word Acc↑
DWT-DCT-SVD 39.47 0.983 6.66 1.00 1.00
RivaGAN 40.55 0.979 14.36 1.00 1.00
SSL 41.78 0.985 25.27 1.00 1.00
StegaStamp 28.36 0.909 49.10 1.00 1.00

Table 2. Performance of different watermarking methods. All
methods successfully detect the embedded watermark.

compression (quality 50). The denoising methods used are
BM3D with a standard deviation of 0.1 and DPIR with a
noise level of 5. The compression factors are set to 3 for
Bmshj2018 and Cheng2020, and the number of noise steps
is set to 20 for diffusion models.

Evaluation metrics. We evaluate the quality of attacked
and watermarked images compared to the original cover
image using Peak Signal-to-Noise Ratio (PSNR), Structural
Similarity Index Measure (SSIM), and Frechet Inception
Distance (FID) (Heusel et al., 2017). To assess the robust-
ness of the watermark, we measure bit accuracy (the per-
centage of correctly decoded bits) and word accuracy (the
accuracy at the word level).

5.2. Experiment results and analysis

We report the watermark removal results in Table 1 and the
quality and detection rate for watermarked images in Ta-
ble 2. All four watermark methods can successfully embed
messages in the image and recover them.

Watermark removal. Generative autoencoders success-
fully erased all watermarks from the first three methods
(DCD-DWT-SVD, RivaGAN, and SSL) at the word accu-
racy level and consistently performed as the top attacker at
the bit accuracy level. StegaStamp watermarking proved to
be the most challenging to erase empirically. Only the dif-
fusion model managed to eliminate a significant number of
watermarks (50% on average), while other models failed to
remove any. However, as shown in Table 2, StegaStamp also
exhibited the lowest watermarked image quality, indicating
a trade-off between the quality of watermarked images and
the robustness of watermark detection.

Image quality reservation. Among the top 3 successful
watermark removers, we underline the best quality metric.
VAE tends to be better in terms of PSNR and SSIM, while
diffusion is better in terms of FID. We manually checked
a small batch of images to check their visual quality. As
shown in the examples in Figure 3 and Figure 4, VAE-
generated images tend to be blurry, which corresponds well
to the fact that SSIM and PSNR are known to be unable to
measure the blurring of images (Ndajah et al., 2010; Wang
et al., 2004). Therefore, we conclude that diffusion models
are better in terms of visual quality.

6. Discussion and conclusion
In this paper, we investigate the vulnerabilities and threats
to invisible watermarks. Through extensive experiments,
we show that malicious adversaries can remove watermarks
without damaging the visual quality by leveraging advanced
generative autoencoders. We hope that our results can en-
courage the community to rethink how to protect the copy-
right of the images in the future.
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