

000 001 CRYOLVM: SELF-SUPERVISED LEARNING FROM 002 CRYO-EM DENSITY MAPS WITH LARGE VISION 003 MODELS 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011

ABSTRACT

013 Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by en-
014 abling near-atomic-level visualization of biomolecular assemblies. However, the
015 exponential growth in cryo-EM data throughput and complexity, coupled with di-
016 verse downstream analytical tasks, necessitates unified computational frameworks
017 that transcend current task-specific deep learning approaches with limited scalabil-
018 ity and generalizability. We present CryoLVM, a foundation model that learns rich
019 structural representations from experimental density maps with resolved structures
020 by leveraging the Joint-Embedding Predictive Architecture (JEPA) integrated with
021 SCUNet-based backbone, which can be rapidly adapted to various downstream
022 tasks. We further introduce a novel histogram-based distribution alignment loss
023 that accelerates convergence and enhances fine-tuning performance. We demon-
024 strate CryoLVM’s effectiveness across three critical cryo-EM tasks: density map
025 sharpening, density map super-resolution, and missing wedge restoration. Our
026 method consistently outperforms state-of-the-art baselines across multiple density
027 map quality metrics, confirming its potential as a versatile model for a wide spec-
028 trum of cryo-EM applications.
029

1 INTRODUCTION

031 All biological functions are governed by events orchestrated at the molecular level by macro-
032 molecular assemblies (Liao et al., 2013; Gestaut et al., 2022). Therefore, elucidating their intricate
033 structures not only deepens our understanding of underlying molecular mechanisms, but also
034 lays the groundwork for advancements in fields like drug discovery (Congreve et al., 2020). Cryo-
035 electron microscopy has emerged as a pivotal technique for resolving biomacromolecular structures
036 (Kühlbrandt, 2014; Nogales & Mahamid, 2024), with the number of deposited density maps in
037 the Electron Microscopy Data Bank (EMDB) (wwPDB Consortium, 2023) growing exponentially
038 (Lawson et al., 2016). However, cryo-EM faces several intrinsic pitfalls that complicate accurate
039 structure determination. Single particle analysis (SPA) cryo-EM suffer from poor signal-to-noise
040 ratio, attenuated high-frequency information, and anisotropic resolution due to low-dose imaging
041 requirements and sample heterogeneity (Rosenthal & Henderson, 2003; Liu et al., 2025). Cryo-
042 electron tomography (cryo-ET) encounters additional limitations from radiation damage, missing
043 wedge artifacts and substantial noise that obscures fine structural details (Liu et al., 2022a; Tao
044 et al., 2018). These challenges hinder direct structural interpretation from raw cryo-EM maps, partic-
045 ularly at resolutions lower than 4 Å, necessitating extensive processing pipelines with substantial
046 manual intervention and domain expertise (Terwilliger et al., 2018a; Terashi & Kihara, 2018).

047 Building on these observations, the cryo-EM community has increasingly embraced machine learning
048 approaches across the entire structural determination pipeline. For map reconstruction, cryo-
049 DRGN (Zhong et al., 2021) employs variational autoencoders to learn continuous latent represen-
050 tations of conformational heterogeneity, while 3DFlex (Punjani & Fleet, 2023) models non-rigid
051 motions through coordinate-based neural networks. For postprocessing, DeepEMhancer (Sanchez-
052 Garcia et al., 2021) adopts a 3D U-Net architecture trained on pairs of experimental maps and
053 LocScale-sharpened targets for automated masking and local sharpening, while EMReady (He et al.,
2023) implements a Swin-Conv-UNet framework combining residual convolution for local model-
ing with Swin transformer for non-local feature extraction. For atomic model building, early deep

learning approaches include A2-Net (Xu et al., 2019), DeepTracer (Pfab et al., 2021), and ModelAngelo (Jamali et al., 2024). These methods employ deep neural networks to perform de novo recognition and tracing of amino acids from densities, thereby enabling automated model building at expert-level quality. Despite these advances, current deep learning methods in cryo-EM remain predominantly task-specific and rely on supervised training paradigms requiring labeled input data, constraining dataset scales and yielding models with limited generalizability.

Foundation models harness self-supervised pretraining on large-scale data to develop transferable representations with emergent capabilities, facilitating efficient adaptation to diverse downstream applications (Wei et al., 2022; Achiam et al., 2023; Kaplan et al., 2020). Notably, protein language models trained on extensive sequence corpora have become transformative tools for structure prediction (Lin et al., 2023), protein design (Verkuil et al., 2022), and function annotation (Hayes et al., 2025). However, foundation models remain largely unexplored in the cryo-EM density map domain. Zhou et al. (2024) introduced CryoFM, a flow-based foundation model for cryo-EM density maps that demonstrates versatility as a generative prior across multiple tasks. Nevertheless, CryoFM was trained and evaluated exclusively on curated high-quality density maps, with assessments conducted primarily on synthetic noise-corrupted maps. Consequently, its robustness and performance on genuinely noisy, low-resolution experimental maps from real-world cryo-EM workflows remain unvalidated.

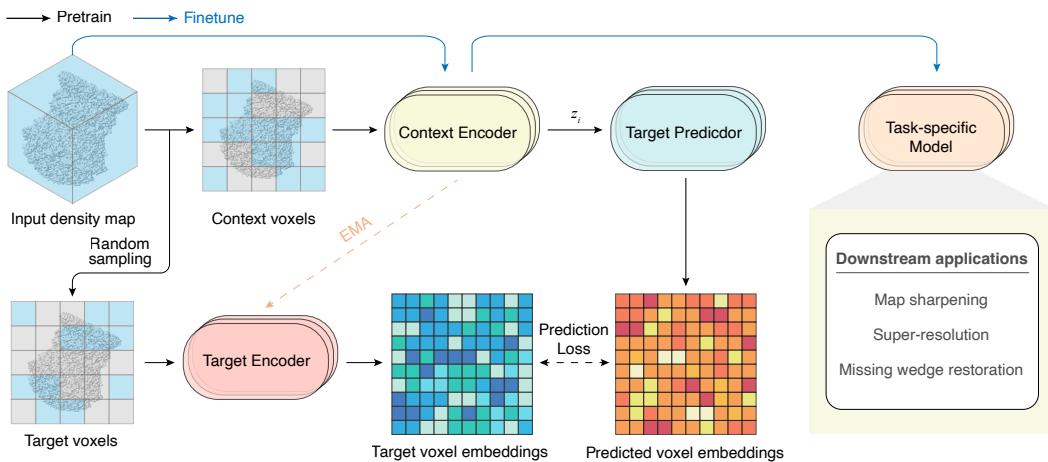


Figure 1: CryoLVM framework. During pretraining, CryoLVM leverages JEPA to learn rich structural representations from cryo-EM density maps. Input density maps are split into non-overlapping 3D patches and random sets of 3D patches are masked to produce context and target patches. The Target Predictor receives context embeddings from the Context Encoder along with positional information of masked target patches, and predicts the corresponding Target Encoder outputs. A regression loss is applied to masked tokens, encouraging alignment between predicted and target voxel embeddings. The weights of Target Encoder are updated via an exponential moving average (EMA) of the Context Encoder weights. Following pretraining, we evaluate the model through finetuning on three downstream cryo-EM tasks.

We present CryoLVM, a foundation model that pioneers the application of Joint-Embedding Predictive Architecture (JEPA) (Assran et al., 2023) in the cryo-EM density map domain, learning self-supervised structural representations that facilitate efficient adaptation across multiple downstream tasks. JEPA bridges the gap between generative and invariance-based methods by predicting in the abstract representation space rather than pixel space, eliminating dependencies on hand-crafted data augmentations while preserving high-level semantic information. It also achieves computational efficiency, converging significantly faster than reconstruction-based methods while maintaining transferability across diverse downstream tasks. During pretraining, we employ SCUNet-based encoder (Zhang et al., 2023) within the JEPA framework, training on experimental cryo-EM density maps with resolved structures collected from the EMDB. Through fine-tuning with task-specific models and comprehensive evaluation on three downstream tasks, CryoLVM attains state-of-the-art results across most metrics, showcasing robust performance and efficacy in processing noisy experimental maps and its promise as a foundation model for broader cryo-EM applications.

108 The main contributions of this work are summarized as follows:
 109

110 • We propose CryoLVM, the first foundation model for cryo-EM that employs JEPA with SCUNet
 111 as backbone instead of standard vision transformer to learn semantically rich representations of
 112 cryo-EM density maps;
 113 • We develop a novel histogram-based distribution alignment loss $\mathcal{L}_{\text{HistKL}}$ that enhances conver-
 114 gence speed and improves fine-tuning performance;
 115 • We conduct comprehensive experiments across three downstream tasks, demonstrating that Cry-
 116 oLVM outperforms existing methods including DeepEMhancer, EMReady, EM-GAN (Subra-
 117 maniya et al., 2021), and IsoNet (Liu et al., 2022a) on most evaluation metrics.
 118

119 **2 RELATED WORK**
 120

121 In this section, we review the background and most related work on computational methods for
 122 cryo-EM density map processing, with particular emphasis on the three downstream applications
 123 addressed in this study.
 124

125 **Density map sharpening** Cryo-EM density maps suffer from resolution-dependent ampli-
 126 tude falloff that attenuates high-frequency contrast, necessitating post-processing methods to
 127 restore interpretability. Traditional map sharpening approaches include global methods like
 128 phenix.auto_sharpen (Terwilliger et al., 2018b) and RELION (Scheres, 2015) that apply uniform
 129 B-factor correction, and local methods such as LocScale (Jakobi et al., 2017) that use spiral phase
 130 transformation for spatially adaptive enhancement. Recent deep learning approaches have advanced
 131 this field significantly: DeepEMhancer employs a 3D U-Net architecture to mimic LocScale’s local
 132 sharpening effects (Sanchez-Garcia et al., 2021), while EMReady utilizes a 3D Swin-Conv-UNet
 133 framework with combined smooth L1 and structural similarity losses to optimize both local and
 134 non-local features of experimental cryo-EM density maps (He et al., 2023).
 135

136 **Density map super-resolution** Model building from low-resolution cryo-EM maps remains a major
 137 impediment, as current methods like ModelAngelo exhibit marked performance degradation beyond
 138 4 Å resolution (Jamali et al., 2024). For protein identification methods like CryoDomain (Dai et al.,
 139 2025), their accuracy also deteriorates as resolution exceeds 6-8 Å. This limitation motivates the
 140 development of super-resolution techniques, which aim to estimate high-resolution maps from their
 141 low-resolution counterparts and thereby facilitate structural determination. EM-GAN represents
 142 an early deep learning approach in this domain, employing 3D generative adversarial networks to
 143 enhance experimental cryo-EM maps in the 3-6 Å resolution range (Subramaniya et al., 2021).
 144

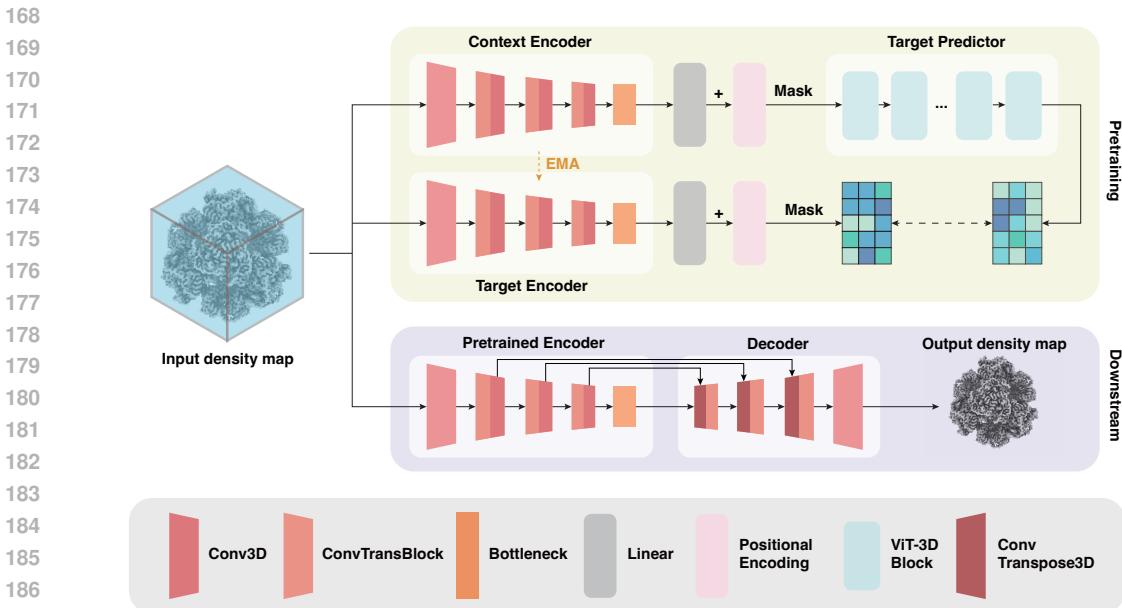
145 **Missing wedge restoration in cryo-ET** The missing wedge problem in cryo-ET stems from phys-
 146 ical limitations during tilt-series acquisition, where specimen geometry and mechanical constraints
 147 restrict image collection to an angular range of typically $\pm 60^\circ$ (Lučić et al., 2005). Incomplete
 148 angular sampling creates characteristic wedge-shaped gaps in Fourier space, leading to anisotropic
 149 resolution with severe artifacts along the beam direction, manifesting as structural elongation and
 150 distortion that compromise reconstruction fidelity (Wiedemann & Heckel, 2024). While classical
 151 approaches have implemented iterative reconstruction algorithms including SIRT (Gilbert, 1972)
 152 and ART (Gordon et al., 1970; Yan et al., 2019), alongside constrained optimization techniques
 153 like ICON (Deng et al., 2016) that impose binary assumptions such as density positivity, these
 154 methods offer limited recovery of missing information. Deep learning has revolutionized miss-
 155 ing wedge restoration through learning complex priors directly from tomographic data. IsoNet,
 156 built upon a 3D U-Net architecture, iteratively recovers missing information by training on paired
 157 datasets—generated by rotating subtomograms to 20 orientations and imposing additional missing
 158 wedge artifacts—to map degraded inputs to less-degraded targets (Liu et al., 2022a).
 159

160 **3 METHODOLOGY**
 161

162 In this section, we describe the implementation of CryoLVM for pretraining on unlabeled cryo-EM
 163 density maps and its application to downstream tasks. First, we elaborate on the CryoLVM model ar-
 164 chitecture, encompassing the pretraining stage, the fine-tuning and inference phases for downstream
 165 tasks. Then, we present our proposed loss function tailored for the three targeted downstream tasks.
 166

162 3.1 MODEL ARCHITECTURE
163

164 CryoLVM combines Joint-Embedding Predictive Architecture (JEPA) with SCUNet backbone for
165 efficient self-supervised learning on cryo-EM density maps. Our design addresses the unique
166 challenges of volumetric biological data through strategic architectural modifications and domain-
167 specific optimizations.



188 Figure 2: CryoLVM architecture. The Context Encoder and Target Encoder use hierarchical
189 swin-conv (SC) blocks for multi-scale feature extraction, with outputs converted to patch
190 embeddings and combined with 3D sinusoidal positional encodings. The Target Predictor employs
191 transformer blocks to predict target representations. For downstream tasks, task-specific decoder with
192 upsampling SC blocks are jointly fine-tuned with the pretrained encoder.

193 We adopt JEPA over traditional masked autoencoders for its representation-space prediction
194 paradigm. Unlike voxel-level reconstruction that amplifies noise in low-SNR cryo-EM densities,
195 JEPA learns semantic features by predicting masked region representation from visible context.
196 This approach naturally filters noise while preserving structural information critical for downstream
197 tasks. Our pretraining architecture comprises three components: Context Encoder f_{θ_c} , Target En-
198 coder $f_{\bar{\theta}_t}$ (stop-gradient), and Target Predictor g_{ϕ} . The training objective minimizes prediction loss:
199

$$200 \quad \mathcal{L}_p = \mathbb{E}_{x, M} [\sum_{i \in M} \text{SmoothL1}_{\beta}(g_{\phi}(f_{\theta_c}(x_{\text{context}}), z_i) - f_{\bar{\theta}_t}(x_i))], \quad (1)$$

201 where M denotes masked patches, z_i denotes spatial position information, and SmoothL1_{β} provides
202 robust optimization with reduced sensitivity to outliers compared to L2 loss.

204 Different from previous studies, we select SCUNet over conventional 3D Vision Transformer as the
205 backbone for its hybrid architecture that adeptly combines local and global modeling. SCUNet's
206 swin-conv (SC) blocks partition features into dual paths: Swin Transformers capture long-range
207 dependencies while residual convolutions preserve local details. This architectural choice is partic-
208 ularly well-suited for cryo-EM applications, where local convolutions extract atomic-level structural
209 features and global attention mechanisms model cross-regional spatial relationships across multiple
210 scales. Our Context Encoder and Target Encoder consist of three downsampling SC blocks, three
211 3D convolution blocks and a bottleneck SC block. Within each SC block, input features are bi-
212 furcated into parallel pathways: the convolution branch employs residual $3 \times 3 \times 3$ convolutions
213 with Filter Response Normalization, while the transformer branch utilizes 3D windowed multi-head
214 self-attention with window size $4 \times 4 \times 4$. Feature fusion is achieved through $1 \times 1 \times 1$ convolu-
215 tions, enabling simultaneous local feature preservation and global context aggregation. During
216 pretraining, encoder outputs are converted to patch embeddings via linear transformation and incor-
217 porated with 3D sinusoidal positional encodings to preserve spatial relationships within the feature

grid. Masks are then applied to these patch embeddings to generate context and target embeddings. The Target Predictor follows the JEPAN framework, comprising standard transformer blocks. Final predictions are mapped back to encoder embedding dimension through a linear projection, ensuring compatibility with target outputs for loss computation. For downstream applications, task-specific decoders utilize upsampling SC blocks and 3D transposed convolution blocks, jointly fine-tuned with the pretrained encoder on labeled datasets for each target task.

3.2 LOSS FOR DOWNSTREAM TASKS

Across all three downstream tasks, we employ a unified composite loss function that combines standard reconstruction error \mathcal{L}_{MSE} with distributional alignment loss $\mathcal{L}_{\text{HistKL}}$.

To enforce statistical consistency between predicted and target densities, we design a novel histogram-based distribution alignment loss, denoted as $\mathcal{L}_{\text{HistKL}}$. The idea is to align the predicted density distribution with the ground-truth density distribution via a differentiable histogram and a divergence measure. Given predicted density X and target density X^* , we first construct their soft histograms using Gaussian kernel weighting:

$$h(x)_j = \frac{1}{N} \sum_i^N \exp \left(-\frac{1}{2} \left(\frac{x_i - c_j}{\sigma} \right)^2 \right), \quad (2)$$

where c_j denotes the center of the j -th bin, σ controls the smoothness, and N is the number of total voxels.

Then, we quantify the distributional divergence between the two histograms $p = h(X)$ and $q = h(X^*)$ using Jensen–Shannon (JS) divergence, which is based on Kullback–Leibler (KL) divergence:

$$D_{\text{JS}}(p \parallel q) = \frac{1}{2} \sum_k p_k \log \frac{p_k}{m_k} + \frac{1}{2} \sum_k q_k \log \frac{q_k}{m_k}, \quad (3)$$

with $m = \frac{1}{2}(p + q)$.

The proposed histogram KL loss is thus defined as:

$$\mathcal{L}_{\text{HistKL}}(X, X^*) = D_{\text{JS}}(H(X) \parallel H(X^*)). \quad (4)$$

The final objective combines both loss components:

$$\mathcal{L}_{\text{total}} = \alpha \mathcal{L}_{\text{MSE}} + (1 - \alpha) \mathcal{L}_{\text{HistKL}}, \quad (5)$$

where hyperparameter $\alpha \in [0, 1]$ balances reconstruction accuracy and distributional alignment.

4 EXPERIMENTS

In this section, we introduce the pretraining dataset of CryoLVM and evaluate the effectiveness of CryoLVM across three critical downstream applications. We conducted comprehensive experiments to assess model performance on density map sharpening, super-resolution, and missing wedge restoration tasks, demonstrating CryoLVM’s versatility as a foundation model for diverse cryo-EM computational challenges.

4.1 PRETRAINING DATASET

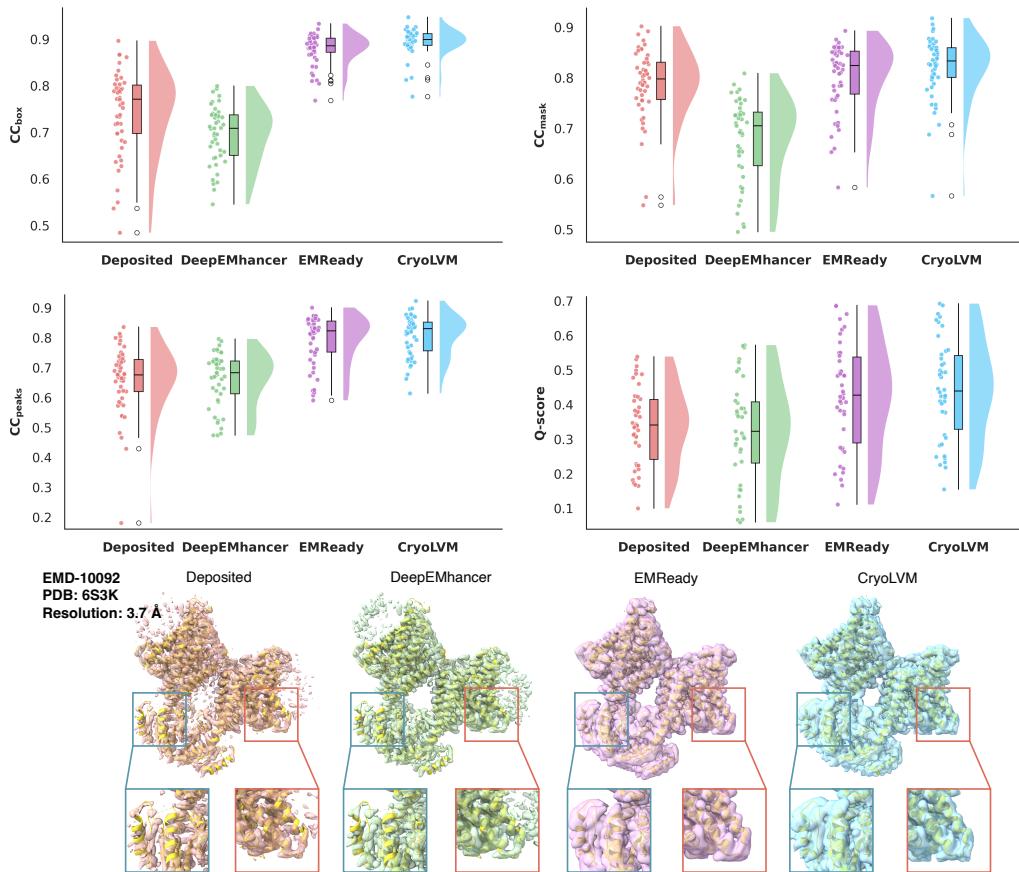
To enable effective learning of structural semantics embedded within cryo-EM density maps, we assembled our pretraining dataset by leveraging the training subset of Cryo2StructData (Giri et al., 2024), currently the most comprehensive publicly accessible repository in this domain. This curated collection comprises 7,392 high-resolution experimental density maps representing proteins and macromolecular complexes with resolutions spanning 1–4 Å. All density maps underwent standardized preprocessing procedures: 1) voxel sizes were uniformly resampled to 1 Å spacing, 2) density values were clipped to the 0.01–0.99 percentile range to mitigate outlier effects and subsequently normalized to [0, 1]. To ensure rigorous evaluation and prevent data leakage, we systematically excluded density maps present in the test sets of baseline methods used for downstream task comparisons, yielding a final pretraining corpus of 7,302 density maps. For CryoLVM input generation, we applied random spatial cropping to extract volumes of size 48³.

270 4.2 DENSITY MAP SHARPENING
271

272 Cryo-EM density maps suffer from resolution-dependent amplitude falloff that attenuates high-
273 frequency contrast, making direct structural interpretation challenging. Density map sharpening
274 aims to computationally recover high-frequency information while preserving structural integrity,
275 effectively reversing the B-factor decay that obscures fine molecular details.

276
277 Table 1: Evaluation metrics of different methods on the density map sharpening test set.

	phenix.map_model_cc			Chimera.MapQ
	CC _{box} ↑	CC _{mask} ↑	CC _{peaks} ↑	Q-score ↑
Deposited	0.744	0.788	0.659	0.338
DeepEMhancer	0.695	0.679	0.659	0.323
EMReady	0.878	0.802	0.791	0.424
CryoLVM	0.894	0.821	0.806	0.444



316 Figure 3: Comparative evaluation of density map sharpening performance across baseline and
317 proposed methods. Cross-correlation metrics (CC_{box}, CC_{mask}, CC_{peaks}) were calculated via
318 phenix.map_model_cc (Afonine et al., 2018), which quantify the agreement between density maps
319 and their associated atomic models over different spatial regions. Q-score was computed using
320 Chimera.MapQ (Pintilie et al., 2020; 2025), providing an independent assessment of map quality
321 based on local atom-to-density correlation and atomic resolvability.

322 Following the established training paradigm of EMReady, we adopted a supervised learning ap-
323 proach for density map sharpening using paired experimental and target maps. Target density maps

were simulated from their corresponding structures using Chimera.molmap (Pettersen et al., 2004), with the resolution parameter matched to that of the paired experimental maps.

We evaluated CryoLVM on density map sharpening using a comprehensive set of quality metrics computed through established cryo-EM analysis tools. As shown in Tab. 1, CryoLVM demonstrates superior performance across all metrics, achieving the highest scores in CC_{box} (0.894), CC_{mask} (0.821), CC_{peaks} (0.806), and Q-score (0.444). These improvements indicate enhanced overall quality between sharpened maps, suggesting better preservation of structural features and more accurate high frequency signal recovery. The violin plots in Fig. 3 also illustrate that CryoLVM consistently achieves tighter distributions with higher median values, indicating robust performance across diverse map types and resolution ranges. Visualization for EMD-10092 in Fig. 3 showcases CryoLVM’s ability to enhance fine structural details such as improved definition of secondary structure elements while maintaining overall molecular topology.

4.3 DENSITY MAP SUPER-RESOLUTION

Cryo-electron microscopy (cryo-EM) frequently produces density maps at intermediate resolutions that preclude direct atomic model building. Even modest resolution improvements can greatly benefit downstream structural analysis. Fine-grained density features are indispensable for accurately determining backbone geometry and side-chain conformations.

Table 2: Evaluation metrics of different methods on the density map super-resolution test set

	phenix.mtriage			CryoRes
	$d_{model}(\text{\AA}) \downarrow$	FSC-0.143(\text{\AA}) \downarrow	FSC-0.5(\text{\AA}) \downarrow	Resolution(\text{\AA}) \downarrow
Deposited	3.66	3.39	4.64	3.81
DeepEMhancer	3.27	2.72	4.86	3.47
EMGAN	2.49	2.70	5.46	4.18
CryoLVM	2.33	2.58	4.58	3.39

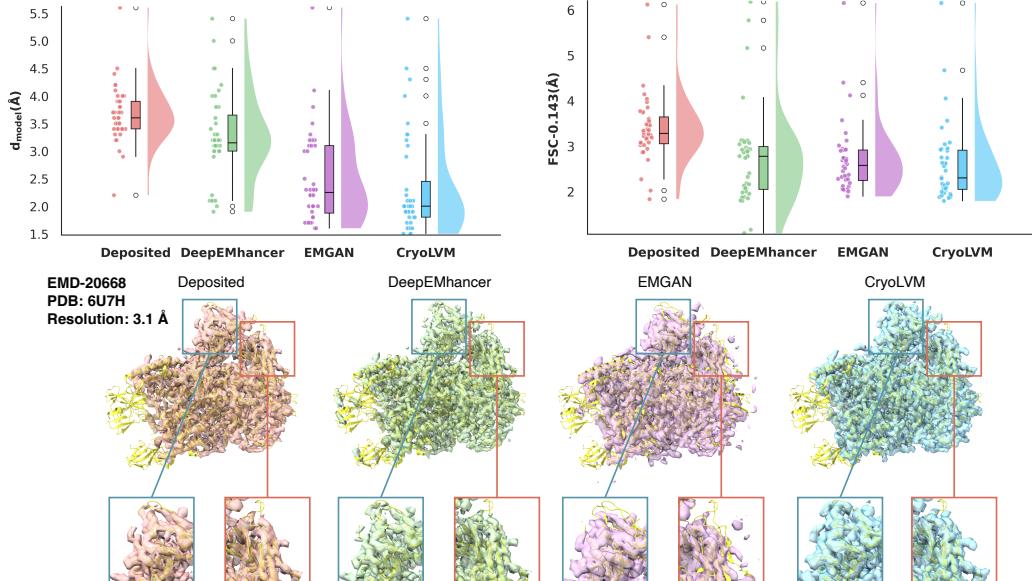


Figure 4: Comparison of map super-resolution performance between different methods. FSC-based metrics computed using phenix.mtriage (Afonine et al., 2018). Local resolution estimates obtained via CryoRes (Dai et al., 2023); global resolution represents the average of voxel-wise predictions.

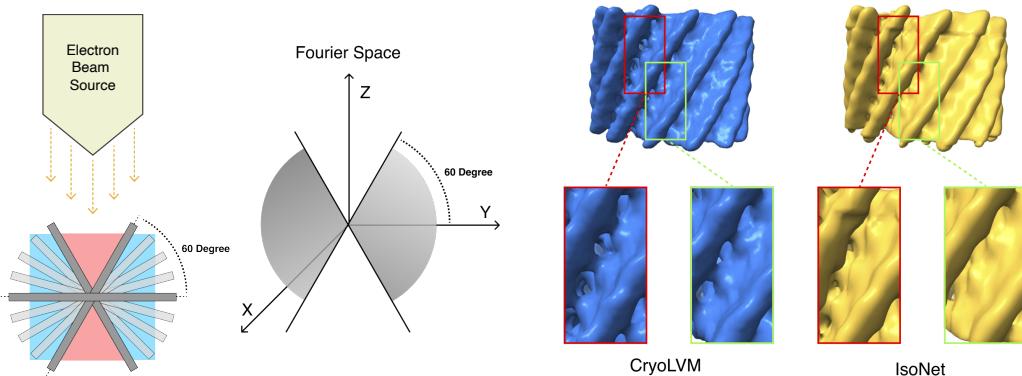
We developed a supervised training protocol for CryoLVM based on paired density maps. Training data consists of experimental maps at 4-6 Å paired with target maps simulated from their corre-

378 sponding PDB structures. Target maps were generated using Chimera.molmap with the resolution
 379 parameter set to 1.8 Å. This paired supervision constrains the model to learn a robust mapping
 380 from medium-resolution experimental densities to near-atomic structural detail, enabling effective
 381 super-resolution of cryo-EM maps.

382 We benchmarked CryoLVM for density map super-resolution against DeepEMhancer and EMGAN.
 383 Under the phenix.mtriage (Afonine et al., 2018) metrics (Fig. 4), CryoLVM achieves the best FSC-
 384 based resolutions ($d_{\text{model}}=2.33\text{\AA}$, FSC-0.143 = 2.58, FSC-0.5 = 4.58), significantly outperforming
 385 both DeepEMhancer and EMGAN. Similarly, when assessed with CryoRes (Dai et al., 2023), Cry-
 386 oLVM attains 3.39 Å versus 3.47 Å and 4.18 Å for the baselines. Visualizations for EMD-20668
 387 (PDB: 6U7H, 3.1 Å) are shown in Fig. 4. In the two magnified insets, CryoLVM improves back-
 388 bone connectivity, and aligns much more closely with ground truth. CryoLVM not only enhances
 389 better visual interpretability but also improves quantitative resolution metrics, facilitating more ac-
 390 curate downstream structure determination from intermediate-resolution cryo-EM maps.

391 4.4 MISSING WEDGE RESTORATION

392 Cryo-electron tomography (cryo-ET) faces critical technical constraints: radiation sensitivity lim-
 393 its total electron dose, resulting in low signal-to-noise ratios, while specimen geometry restricts tilt
 394 angles to approximately $\pm 60^\circ$ rather than the ideal $\pm 90^\circ$. As shown in Fig. 5, this limited angular
 395 sampling creates characteristic wedge-shaped gaps in Fourier space. Missing wedge produces
 396 anisotropic resolution with degraded Z-axis information and structural distortions. We simulated
 397 missing wedge artifacts by applying a Fourier transform to the map and then masking the frequency
 398 domain with a wedge-shaped filter.



414 Figure 5: Visualization and schematic analysis of the missing wedge problem and its restoration.
 415 Left: schematic illustration of the missing wedge problem in cryo-electron tomography. Right:
 416 case result for missing wedge task. The original density map is EMD-5331 from EMDB and is added
 417 wedge-shaped mask for model processing.

418 **Fourier-domain wedge masking.** Given a 3D volume V , let its Fourier transform be $\hat{V}(\mathbf{k})$ at
 419 frequency $\mathbf{k} \in \mathbb{R}^3$. To simulate the missing wedge, we introduce an indicator mask $M(\mathbf{k})$ that
 420 preserves only frequencies within the permitted tilt cone:
 421

$$422 M(\mathbf{k}) = \begin{cases} 1, & |\arctan(k_z / \sqrt{k_x^2 + k_y^2})| \leq \theta_{\max}, \\ 423 0, & \text{otherwise.} \end{cases}$$

425 The corrupted spectrum is then

$$427 \tilde{V}(\mathbf{k}) = M(\mathbf{k}) \hat{V}(\mathbf{k}),$$

428 and the simulated tomogram with missing wedge effect is obtained by inverse Fourier transform,
 429

$$430 V_{\text{mw}}(\mathbf{x}) = \mathcal{F}^{-1}\{\tilde{V}(\mathbf{k})\}.$$

431 Here, θ_{\max} denotes the experimental tilt limit (commonly around 60°).

We evaluated restoration performance via phenix.mtriage (Afonine et al., 2018) and report the map-model FSC-based resolution metrics d_{\min} (Å) at two cutoff thresholds, FSC = 0.143 and FSC = 0.5. Lower d_{\min} values indicate higher resolution and thus better restoration quality. Our results demonstrate that CryoLVM consistently outperforms IsoNet baseline across all evaluation metrics (Tab. 3): at FSC = 0.143, CryoLVM reduces d_{\min} from 10.448 Å to 10.094 Å ($\sim 3.39\%$); at FSC = 0.5, CryoLVM improves from 12.361 Å to 11.447 Å ($\sim 7.39\%$). These quantitative improvements in d_{\min} reflect CryoLVM’s greater ability to recover high-frequency structural information that is typically lost due to missing wedge artifacts.

Fig. 5 depicts a missing-wedge case, where CryoLVM is able to reconstruct fine-scale, high-frequency features that IsoNet fails to maintain. The magnified insets highlight a critical difference: while CryoLVM correctly reconstructs continuous pore-like channels, IsoNet produces fragmented or occluded segments that result in topologically incorrect representations of these hollow structures. The FSC curves comparing reconstructed maps to reference models show that CryoLVM maintains a higher correlation across mid-to-high spatial frequencies and reaches established cutoff thresholds at higher spatial frequencies than IsoNet (Fig. 6), indicating better resolution restoration.

Table 3: Performance of different methods in missing wedge restoration task. The score is computed between two half maps (predicted map and ground truth map). Additional results are in Appendix G.6.

Method	phenix.mtriage	
	FSC-0.143 ↓	FSC-0.5 ↓
IsoNet	10.448	12.361
CryoLVM	10.094	11.447

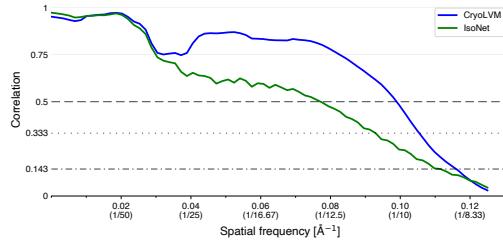


Figure 6: FSC score versus spatial frequency for predicted maps of IsoNet and CryoLVM (EMD-5331).

4.5 ABLATION & DISCUSSION

To validate our design choices and understand the contribution of individual components, we conducted ablation studies examining key architectural decisions and hyperparameter configurations. In this section, we briefly present the key findings.

SCUNet-based models achieve better performance than their ViT counterparts across all evaluated downstream tasks. To demonstrate that adopting SCUNet as the backbone over ViT yields consistently better performance across all downstream tasks, we compared models with different backbones trained using identical hyperparameters; detailed results are presented in Appendix G.1.

Composite loss of MSE and HistKL leads to accelerated convergence and enhanced downstream performance. To validate the contribution of the proposed histogram KL loss, we compared fine-tuning CryoLVM on the density map super-resolution task with the composite loss against with MSE alone; extended results are provided in Appendix G.2.

5 CONCLUSION

In this paper, we present CryoLVM, the first foundation model for cryo-EM density maps that employs Joint-Embedding Predictive Architecture with SCUNet-based backbone to learn rich structural representations. We introduce a novel histogram-based distribution alignment loss that accelerates convergence and enhances fine-tuning performance. CryoLVM consistently outperforms established baselines across three critical downstream tasks, showing robust performance on genuinely noisy, low-resolution experimental maps encountered in real-world cryo-EM workflows. We envision that this foundation model approach will facilitate broader adoption of AI-driven methods in cryo-EM and contribute to structural biology discoveries.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Pavel V Afonine, Bruno P Klaholz, Nigel W Moriarty, Billy K Poon, Oleg V Sobolev, Thomas C
492 Terwilliger, Paul D Adams, and Alexandre Urzhumtsev. New tools for the analysis and validation
493 of cryo-em maps and atomic models. *Biological Crystallography*, 74(9):814–840, 2018.

494

495 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
496 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
497 predictive architecture. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
498 *Pattern Recognition*, pp. 15619–15629, 2023.

499

500 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
501 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic acids research*, 28(1):
502 235–242, 2000.

503

504 Miles Congreve, Chris De Graaf, Nigel A Swain, and Christopher G Tate. Impact of gpcr structures
505 on drug discovery. *Cell*, 181(1):81–91, 2020.

506

507 Muzhi Dai, Zhuoer Dong, Kui Xu, and Qiangfeng Cliff Zhang. Cryores: local resolution estimation
508 of cryo-em density maps by deep learning. *Journal of Molecular Biology*, 435(9):168059, 2023.

509

510 Muzhi Dai, Zhuoer Dong, Weining Fu, Kui Xu, and Qiangfeng Cliff Zhang. Cryodomain: Sequence-
511 free protein domain identification from low-resolution cryo-em density maps. In *Proceedings of*
512 *the AAAI Conference on Artificial Intelligence*, volume 39, pp. 119–127, 2025.

513

514 Yuchen Deng, Yu Chen, Yan Zhang, Shengliu Wang, Fa Zhang, and Fei Sun. Icon: 3d reconstruction
515 with ‘missing-information’restoration in biological electron tomography. *Journal of structural*
516 *biology*, 195(1):100–112, 2016.

517

518 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Chong, Fang Ji, Nathanael Tong,
519 Christopher Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics foundation model with
520 gradient positioning and spatiotemporal masking. *Advances in Neural Information Processing*
521 *Systems*, 37:86048–86073, 2024.

522

523 Chi-Mao Fan, Tsung-Jung Liu, and Kuan-Hsien Liu. Sunet: Swin transformer unet for image
524 denoising. In *2022 IEEE International Symposium on Circuits and Systems (ISCAS)*, pp. 2333–
525 2337. IEEE, 2022.

526

527 Daniel Gestaut, Yanyan Zhao, Junsun Park, Boxue Ma, Alexander Leitner, Miranda Collier, Grigore
528 Pintilie, Sounghun Roh, Wah Chiu, and Judith Frydman. Structural visualization of the tubulin
529 folding pathway directed by human chaperonin tric/cct. *Cell*, 185(25):4770–4787, 2022.

530

531 Peter Gilbert. Iterative methods for the three-dimensional reconstruction of an object from projec-
532 tions. *Journal of theoretical biology*, 36(1):105–117, 1972.

533

534 Nabin Giri, Liguo Wang, and Jianlin Cheng. Cryo2structdata: A large labeled cryo-em density map
535 dataset for ai-based modeling of protein structures. *Scientific Data*, 11(1):458, 2024.

536

537 Richard Gordon, Robert Bender, and Gabor T Herman. Algebraic reconstruction techniques (art)
538 for three-dimensional electron microscopy and x-ray photography. *Journal of theoretical Biology*,
539 29(3):471–481, 1970.

540

541 Thomas Hayes, Roshan Rao, Halil Akin, Nicholas J Sofroniew, Deniz Oktay, Zeming Lin, Robert
542 Verkuil, Vincent Q Tran, Jonathan Deaton, Marius Wiggert, et al. Simulating 500 million years
543 of evolution with a language model. *Science*, 387(6736):850–858, 2025.

544

545 Jiahua He, Tao Li, and Sheng-You Huang. Improvement of cryo-em maps by simultaneous local
546 and non-local deep learning. *Nature communications*, 14(1):3217, 2023.

540 Arjen J Jakobi, Matthias Wilmanns, and Carsten Sachse. Model-based local density sharpening of
 541 cryo-em maps. *Elife*, 6:e27131, 2017.

542 Kiarash Jamali, Lukas Käll, Rui Zhang, Alan Brown, Dari Kimanis, and Sjors HW Scheres. Au-
 543 tomated model building and protein identification in cryo-em maps. *Nature*, 628(8007):450–457,
 544 2024.

545 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
 546 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 547 models. *arXiv preprint arXiv:2001.08361*, 2020.

548 Werner Kühlbrandt. The resolution revolution. *Science*, 343(6178):1443–1444, 2014.

549 Catherine L Lawson, Ardan Patwardhan, Matthew L Baker, Corey Hryc, Eduardo Sanz Garcia,
 550 Brian P Hudson, Ingvar Lagerstedt, Steven J Luttko, Grigore Pintilie, Raul Sala, et al. Emdatabank
 551 unified data resource for 3dem. *Nucleic acids research*, 44(D1):D396–D403, 2016.

552 Maofu Liao, Erhu Cao, David Julius, and Yifan Cheng. Structure of the trpv1 ion channel determined
 553 by electron cryo-microscopy. *Nature*, 504(7478):107–112, 2013.

554 Chuchao Lin, Changjun Zou, and Hangbin Xu. Scnet: A dual-branch network for strong noisy image
 555 denoising based on swin transformer and convnext. *Computer Animation and Virtual Worlds*, 36
 556 (3):e70030, 2025.

557 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 558 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 559 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

560 Yun-Tao Liu, Heng Zhang, Hui Wang, Chang-Lu Tao, Guo-Qiang Bi, and Z Hong Zhou. Isotropic
 561 reconstruction for electron tomography with deep learning. *Nature communications*, 13(1):6482,
 562 2022a.

563 Yun-Tao Liu, Hongcheng Fan, Jason J Hu, and Z Hong Zhou. Overcoming the preferred-orientation
 564 problem in cryo-em with self-supervised deep learning. *Nature methods*, 22(1):113–123, 2025.

565 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 566 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 567 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

568 Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
 569 A convnet for the 2020s. In *Proceedings of the IEEE/CVF conference on computer vision and
 570 pattern recognition*, pp. 11976–11986, 2022b.

571 Vladan Lučić, Friedrich Förster, and Wolfgang Baumeister. Structural studies by electron tomogra-
 572 phy: from cells to molecules. *Annu. Rev. Biochem.*, 74(1):833–865, 2005.

573 Eva Nogales and Julia Mahamid. Bridging structural and cell biology with cryo-electron mi-
 574 croscopy. *Nature*, 628(8006):47–56, 2024.

575 Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch, Daniel M Greenblatt,
 576 Elaine C Meng, and Thomas E Ferrin. Ucsf chimera—a visualization system for exploratory
 577 research and analysis. *Journal of computational chemistry*, 25(13):1605–1612, 2004.

578 Jonas Pfab, Nhut Minh Phan, and Dong Si. Deeptracer for fast de novo cryo-em protein structure
 579 modeling and special studies on cov-related complexes. *Proceedings of the National Academy of
 580 Sciences*, 118(2):e2017525118, 2021.

581 Grigore Pintilie, Jingcheng Zhang, Thomas D Goddard, Wah Chiu, and David C Gossard. Mea-
 582 surement of atom resolvability in cryo-em maps with q-scores. *Nature Methods*, 17(3):328–334,
 583 2020.

584 Grigore Pintilie, Chenghua Shao, Zhe Wang, Brian P Hudson, Justin W Flatt, Michael F Schmid,
 585 Kyle Morris, Stephen K Burley, and Wah Chiu. Q-score as a reliability measure for protein,
 586 nucleic acid, and small molecule atomic coordinate models derived from 3dem density maps.
 587 *bioRxiv*, 2025.

594 Ali Punjani and David J Fleet. 3dflex: determining structure and motion of flexible proteins from
 595 cryo-em. *Nature Methods*, 20(6):860–870, 2023.
 596

597 Peter B Rosenthal and Richard Henderson. Optimal determination of particle orientation, absolute
 598 hand, and contrast loss in single-particle electron cryomicroscopy. *Journal of molecular biology*,
 599 333(4):721–745, 2003.

600 Ruben Sanchez-Garcia, Josue Gomez-Blanco, Ana Cuervo, Jose Maria Carazo, Carlos Oscar S
 601 Sorzano, and Javier Vargas. Deepemhancer: a deep learning solution for cryo-em volume post-
 602 processing. *Communications biology*, 4(1):874, 2021.
 603

604 Sjors HW Scheres. Semi-automated selection of cryo-em particles in relion-1.3. *Journal of struc-
 605 tural biology*, 189(2):114–122, 2015.

606 Yingjun Shen, Haizhao Dai, Qihe Chen, Yan Zeng, Jiakai Zhang, Yuan Pei, and Jingyi Yu. Draco:
 607 A denoising-reconstruction autoencoder for cryo-em. *arXiv preprint arXiv:2410.11373*, 2024.
 608

609 Sai Raghavendra Maddhuri Venkata Subramaniya, Genki Terashi, and Daisuke Kihara. Super reso-
 610 lution cryo-em maps with 3d deep generative networks. *Biophysical Journal*, 120(3):283a, 2021.
 611

612 Chang-Lu Tao, Yun-Tao Liu, Rong Sun, Bin Zhang, Lei Qi, Sakar Shivakoti, Chong-Li Tian, Peijun
 613 Zhang, Pak-Ming Lau, Z Hong Zhou, et al. Differentiation and characterization of excitatory
 614 and inhibitory synapses by cryo-electron tomography and correlative microscopy. *Journal of
 615 Neuroscience*, 38(6):1493–1510, 2018.

616 Genki Terashi and Daisuke Kihara. De novo main-chain modeling for em maps using mainmast.
 617 *Nature communications*, 9(1):1618, 2018.
 618

619 Thomas C Terwilliger, Paul D Adams, Pavel V Afonine, and Oleg V Sobolev. A fully automatic
 620 method yielding initial models from high-resolution cryo-electron microscopy maps. *Nature
 621 methods*, 15(11):905–908, 2018a.

622 Thomas C Terwilliger, Oleg V Sobolev, Pavel V Afonine, and Paul D Adams. Automated map
 623 sharpening by maximization of detail and connectivity. *Biological Crystallography*, 74(6):545–
 624 559, 2018b.
 625

626 Robert Verkuil, Ori Kabeli, Yilun Du, Basile IM Wicky, Lukas F Milles, Justas Dauparas, David
 627 Baker, Sergey Ovchinnikov, Tom Sercu, and Alexander Rives. Language models generalize be-
 628 yond natural proteins. *BioRxiv*, pp. 2022–12, 2022.
 629

630 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
 631 gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
 632 models. *arXiv preprint arXiv:2206.07682*, 2022.
 633

634 Simon Wiedemann and Reinhard Heckel. A deep learning method for simultaneous denoising and
 635 missing wedge reconstruction in cryogenic electron tomography. *Nature Communications*, 15(1):
 8255, 2024.
 636

637 The wwPDB Consortium. EMDB—the Electron Microscopy Data Bank. *Nucleic Acids Research*,
 52(D1):D456–D465, 11 2023. ISSN 0305-1048. doi: 10.1093/nar/gkad1019. URL <https://doi.org/10.1093/nar/gkad1019>.
 638

639 Kui Xu, Zhe Wang, Jianping Shi, Hongsheng Li, and Qiangfeng Cliff Zhang. A2-net: Molecular
 640 structure estimation from cryo-em density volumes. In *Proceedings of the AAAI Conference on
 641 Artificial Intelligence*, volume 33, pp. 1230–1237, 2019.
 642

643 Rui Yan, Singanallur V Venkatakrishnan, Jun Liu, Charles A Bouman, and Wen Jiang. Mbir: A
 644 cryo-et 3d reconstruction method that effectively minimizes missing wedge artifacts and restores
 645 missing information. *Journal of structural biology*, 206(2):183–192, 2019.
 646

647 Yang Yan, Shiqi Fan, Fajie Yuan, and Huaizong Shen. A comprehensive foundation model for
 648 cryo-em image processing. *BioRxiv*, pp. 2024–11, 2024.

648 Jiakai Zhang, Shouchen Zhou, Haizhao Dai, Xinhang Liu, Peihao Wang, Zhiwen Fan, Yuan Pei,
 649 and Jingyi Yu. Cryofastar: Fast cryo-em ab initio reconstruction made easy. *arXiv preprint*
 650 *arXiv:2506.05864*, 2025.

651 Kai Zhang, Yawei Li, Jingyun Liang, Jiezheng Cao, Yulun Zhang, Hao Tang, Deng-Ping Fan, Radu
 652 Timofte, and Luc Van Gool. Practical blind image denoising via swin-conv-unet and data synthe-
 653 sis. *Machine Intelligence Research*, 20(6):822–836, 2023.

654 Ellen D Zhong, Tristan Bepler, Bonnie Berger, and Joseph H Davis. Cryodrgn: reconstruction of
 655 heterogeneous cryo-em structures using neural networks. *Nature methods*, 18(2):176–185, 2021.

656 Yi Zhou, Yilai Li, Jing Yuan, and Quanquan Gu. Cryofm: A flow-based foundation model for
 657 cryo-em densities. *arXiv preprint arXiv:2410.08631*, 2024.

660 A STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

661 Large language models were used solely to polish the academic writing of this paper. They were not
 662 involved in research ideation, experimental design, data analysis, or any other substantive aspects of
 663 the work. The authors take full responsibility for the content of the manuscript.

664 B ADDITIONAL RELATED WORK

665 B.1 FOUNDATION MODELS FOR CRYO-EM

666 The emergence of foundation models has begun transforming the cryo-EM data processing land-
 667 scape, with recent works addressing distinct stages of the cryo-EM structural determination pipeline.
 668 DRACO (Shen et al., 2024) introduced a denoising-reconstruction autoencoder pretrained over
 669 270,000 cryo-EM movies or micrographs, demonstrating strong generalization capabilities across
 670 micrograph-level tasks including denoising, micrograph curation, and particle picking. CryoFastAR
 671 (Zhang et al., 2025) pioneered geometric foundation modeling for cryo-EM by directly predicting
 672 particle poses for unordered, noisy 2D projection images, facilitating acceleration in ab initio recon-
 673 struction compared to traditional iterative optimization approaches. Cryo-IEF (Yan et al., 2024) pre-
 674 sented a comprehensive foundation model pretrained on approximately 65 million particle images
 675 and showed excellent performance in tasks such as classifying particles from different structures,
 676 clustering particles by pose, and assessing image quality. These works operate on 2D cryo-EM
 677 images from the data acquisition and reconstruction stages and complement CryoLVM to address
 678 complete cryo-EM workflow from particle image processing through density map post-processing
 679 and analysis.

680 B.2 JEPA APPLICATIONS IN BIOLOGICAL CONTEXT

681 Joint-Embedding Predictive Architecture (JEPA), first introduced by Assran et al. (2023). with I-
 682 JEPA, has gained significant traction in computational biology due to its ability to learn semantic
 683 representations through prediction in abstract embedding space rather than raw pixel-level recon-
 684 struction. Brain-JEPA (Dong et al., 2024) provides the most direct precedent for CryoLVM by suc-
 685 cessfully applying JEPA to 3D spatiotemporal biological data using functional Magnetic Resonance
 686 Imaging (fMRI). This pioneering brain dynamics foundation model incorporates two innovative
 687 techniques tailored to volumetric biological data: Brain Gradient Positioning (BGP), which estab-
 688 lishes functional coordinate system for brain functional parcellation and enhances the positional
 689 encoding of different Regions of Interest (ROI), and Spatiotemporal Masking, which is designed
 690 for the unique characteristics of fMRI data to tackle with heterogeneous time-series patches. Brain-
 691 JEPA achieves state-of-the-art performance in demographic prediction, disease diagnosis, and trait
 692 prediction, demonstrating JEPA’s effectiveness for complex 3D biological volumes with temporal
 693 dependencies.

694 B.3 SCUNET APPLICATIONS IN IMAGE DENOISING

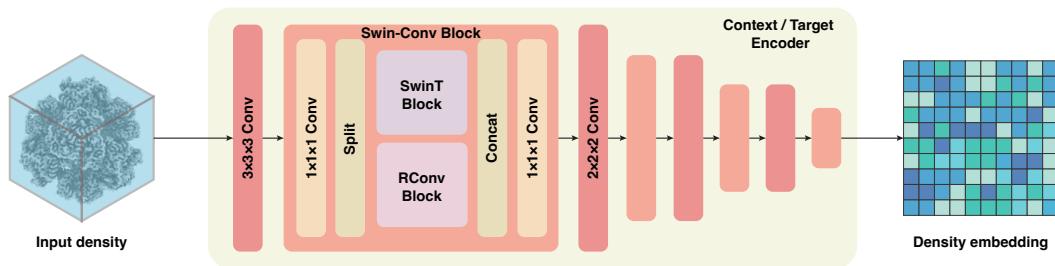
695 The SCUNet framework represents a breakthrough in hybrid architecture for image denoising, ef-
 696 fectively combining global modeling capabilities of Swin Transformers (Liu et al., 2021) with local

702 feature extraction advantages of convolutional neural networks. Zhang et al. (2023) introduced
 703 SCUNet in their seminal work, proposing Swin-Conv (blocks) as the core building components
 704 of a UNet backbone architecture, where each SC block processes input through a 1×1 convolution
 705 followed by evenly splitting feature maps into two groups that are respectively fed into Swin
 706 Transformer blocks and residual convolutional layers. Subsequent developments further validated
 707 SCUNet’s effectiveness across diverse denoising applications: SUNet (Fan et al., 2022) applies Swin
 708 Transformer layers as basic building blocks within UNet architecture for image denoising, achieving
 709 significant performance improvements on fixed-size input denoising tasks, while SCNet (Lin et al.,
 710 2025) proposes a dual-branch fusion network that combines Swin Transformer branches with Con-
 711 vNext (Liu et al., 2022b) branches, employing Feature Fusion Blocks with joint spatial and channel
 712 attention for adaptive output merging, demonstrating robustness under severe noise conditions and
 713 proving effective in real-world applications like mural image denoising.

716 C ADDITIONAL DETAILS OF CRYOLVM

719 C.1 IMPLEMENTATION DETAILS

720 Fig. 7 illustrates the detailed architecture of CryoLVM’s Context Encoder and Target Encoder. Both
 721 encoders share an identical hierarchical design, with Target Encoder parameters updated via ex-
 722 ponential moving average (EMA) of Context Encoder during pretraining. The encoder architecture
 723 begins with an initial $3 \times 3 \times 3$ convolution applied to the input density, followed by three consecu-
 724 tive down-sampling stages. Each stage consists of a Swin-Conv Block and a $2 \times 2 \times 2$ convolution.
 725 Within each Swin-Conv Block, feature map is first passed through a $1 \times 1 \times 1$ convolution, and then
 726 split evenly into two feature map groups, each of which is then fed into a swin transformer (SwinT)
 727 block and a residual $3 \times 3 \times 3$ convolution (RConv) block separately; after that, feature maps are
 728 concatenated and passed through a final $1 \times 1 \times 1$ convolution to integrate local and global modeling.
 729



741 Figure 7: Detailed architecture of CryoLVM’s Context Encoder and Target Encoder.
 742
 743

744 Fig. 8 illustrates the complete architecture of CryoLVM including a pretrained encoder and a task-
 745 specific decoder for downstream applications. The modular design enables effective transfer learn-
 746 ing, where the encoder captures generalizable density map representations in the pretraining stage,
 747 while the decoder specializes these features for particular cryo-EM tasks. The task-specific decoder
 748 employs a symmetric up-sampling strategy to progressively reconstruct high-quality density maps
 749 from the encoded density embeddings. It starts with three consecutive up-sampling stages, each
 750 comprising a $2 \times 2 \times 2$ transposed convolution followed by a Swin-Conv Block. The transposed
 751 convolution performs spatial up-sampling while reducing feature dimensionality, and the Swin-Conv
 752 Block refines the upsampled features. A critical component is the skip connections between corre-
 753 sponding encoder and decoder layers. Specifically, skip connections link the convolution layers of
 754 encoder with the transposed convolution layers of decoder. These connections preserve multi-scale
 755 structural information that might otherwise be lost. After that, feature map is passed through a final
 $3 \times 3 \times 3$ convolution to produce output density.

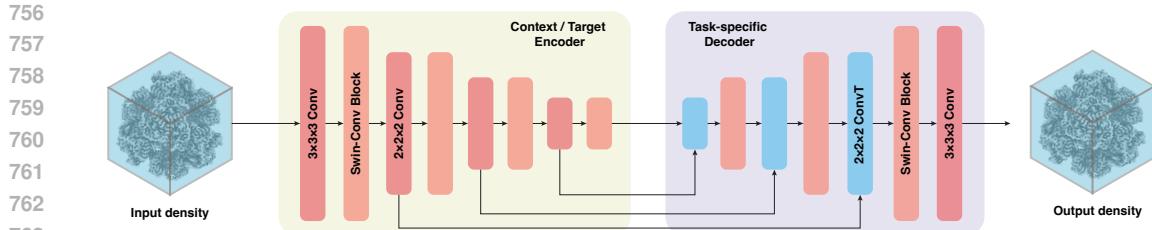


Figure 8: Detailed implementation of pretrained encoder and task-specific decoder for downstream application.

D DATA CURATION AND PROCESSING

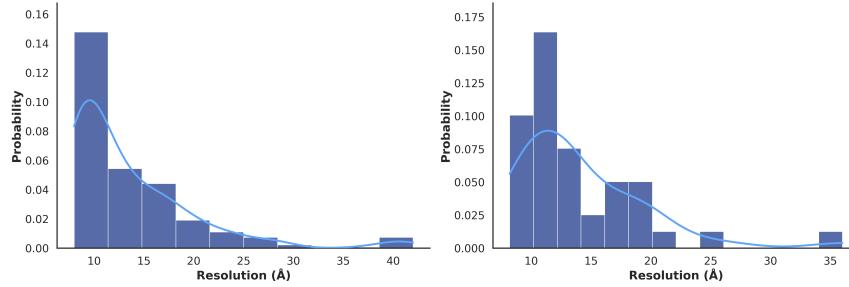
D.1 PREPROCESSING FOR TRAINING ACCELERATION AND MEMORY REDUCTION

Pretraining To construct a high-quality pretraining dataset of cryo-EM density maps with high-quality structural information for CryoLVM, we focused on relatively high-resolution experimental density maps with corresponding resolved PDB(Berman et al., 2000) structures deposited in EMDB (wwPDB Consortium, 2023). We utilized Cryo2StructData, currently the most comprehensive publicly available depository in this domain, containing 7,600 cryo-EM density maps with associated structural annotations. We assembled our pretraining dataset from the training subset of Cryo2StructData, which comprises 7,392 density maps representing proteins and macromolecular complexes with resolutions spanning 1-4 Å. We first excluded density maps present in the test sets of baseline methods used for downstream task comparisons to guarantee meticulous evaluation and prevent data leakage, resulting in a final pretraining corpus of 7,302 density maps. Next, we preprocessed the pretraining density maps as follows: 1) voxel sizes were uniformly resampled to 1 Å spacing, 2) density values were clipped to the 0.01-0.99 percentile range to mitigate outlier effects and subsequently normalized to [0,1], 3) density maps are converted to Pytorch tensor format with bFloat16 precision, providing computational speedup and memory reduction.

Density map sharpening We first constructed our test set by selecting 50 cryo-EM density maps from the established EMReady’s benchmark, ensuring direct comparison with prior methods. To build our training and validation sets, we collected additional single-particle cryo-EM maps at 3-6 Å resolutions and their corresponding atomic structures from EMDB (wwPDB Consortium, 2023) and PDB (Berman et al., 2000). We applied stringent quality control criteria to filter map-model pairs: 1) do not contain backbone atoms only, 2) do not include unknown residues, 3) do not include missing chain, 4) have orthogonal map axis, 5) resolution is given by the FSC-0.143 threshold, 6) any chain in the model does not share >30% sequence identity with any chain in the test set models. This yielded a total of 400 pairs of map and model as the training set, and 70 pairs of map and model as the validation set. Target density maps were simulated from their corresponding PDB structures using Chimera.molmap (Pettersen et al., 2004) with the resolution parameter matched to that of the paired experimental maps. We preprocessed the paired maps as follows: 1) voxel sizes were uniformly resampled to 1 Å spacing, 2) density values were clipped to the 0.01-0.99 percentile range to mitigate outlier effects and subsequently normalized to [0,1], 3) density maps are converted to Pytorch tensor format with bFloat16 precision, providing computational speedup and memory reduction. During training, we employed a sliding window sampling strategy with stride 24 to generate 48^3 input volumes and augmented training data through random flips and random rotations.

Density map super-resolution We constructed a test set consisting of 40 single-particle cryo-EM density maps, a training set with 400 maps and a validation set with 50 maps. All density maps exhibit resolutions ranging from 2.3-6 Å and satisfy the quality control criteria described above for our density map sharpening experiment. Target density maps were simulated from their corresponding PDB structures using Chimera.molmap with the resolution parameter uniformly set to 1.8 Å. We preprocessed the paired maps following the same procedure from the density map sharpening experiment.

810
 811 **Missing wedge restoration** In the procedure for restoring a missing wedge, input density maps
 812 come from Cryo-ET, which typically exhibit resolutions worse than 8 Å, even after subtomogram
 813 averaging. Thus, we chose maps with resolutions lower than 8 Å and applied angular masks to mimic
 814 the missing wedge effect. Given constraints from the Nyquist sampling theorem and computational
 815 efficiency, a voxel size of 4 Å was used instead of 1 Å, which was used for the density map super-
 816 resolution and sharpening tasks. In total, we obtained 400 training samples, 50 validation samples,
 817 and 40 test samples. The resolution distributions of the training and test sets are shown in Fig. 9.



818
 819 Figure 9: Resolution Distribution of Missing Wedge Restoration Task. (Left) Training Set. (Right)
 820
 821 Test Set.
 822
 823

831 **Algorithm 1:** Gaussian-weighted fusion of patch predictions into a full density map

833 **Input:** Overlapping patch predictions $\{\hat{y}_k\}_{k=1}^K$, their voxel coordinates $\{\mathbf{p}_k\}_{k=1}^K$, box size B ,
 834 stride s , small $\varepsilon > 0$

835 **Output:** Reconstructed volume \mathbf{M}

836 **Require:** 3D Gaussian weight kernel $\mathbf{W}_{\text{ker}} \in \mathbb{R}^{B \times B \times B}$ with entries

837 $w_{i,j,\ell} = \exp\left(-\frac{\|(i,j,\ell) - \mathbf{c}\|_2^2}{2\sigma^2}\right)$, normalized to [1, 3] (center larger, border smaller);
 838 zero-initialized accumulators \mathbf{V} , \mathbf{S} sized to the (padded) volume. (Implementation mirrors the
 839 sliding-window accumulation with per-voxel weights and final normalization.)

840 **for** $k = 1, 2, \dots, K$ **do**

841 Extract the region-to-update $\mathcal{R}_k \subset \mathbf{V}$ starting at \mathbf{p}_k with size $B \times B \times B$
 842 // Weighted accumulation of prediction and weights
 843 $\mathbf{V}[\mathcal{R}_k] \leftarrow \mathbf{V}[\mathcal{R}_k] + \hat{y}_k \odot \mathbf{W}_{\text{ker}}$
 844 $\mathbf{S}[\mathcal{R}_k] \leftarrow \mathbf{S}[\mathcal{R}_k] + \mathbf{W}_{\text{ker}}$

845 **end**

846 // Element-wise normalization to resolve overlaps

847 $\tilde{\mathbf{M}} \leftarrow \mathbf{V} \odot \max(\mathbf{S}, \varepsilon)^{-1}$

848 Crop $\tilde{\mathbf{M}}$ to the original (unpadded) spatial extent to obtain \mathbf{M}

849 **return** \mathbf{M}

851
 852 **D.2 POSTPROCESSING AFTER PREDICTION**

853 We performed post-processing on the predicted density maps to ensure consistency, reduce artifacts,
 854 and improve interpretability of reconstructed volumes. Given patch-based predictions, overlapping
 855 regions were fused utilizing a Gaussian-weighted scheme (See in Algo. 1), which balances contribu-
 856 tions between central and boundary voxels to promote continuity. This blending step reduces dis-
 857 continuities at patch boundaries while maintaining local structural details. After weighted fusion, we
 858 applied normalization to maintain consistent voxel intensity distributions across the reconstructed
 859 volume. This step corrects for potential intensity variations arising from the overlapping patch-based
 860 prediction strategy, where edge regions of patches may exhibit different contrast characteristics than
 861 central regions due to reduced spatial context during inference. The final step involved cropping out
 862 padded regions introduced during the patch-wise sliding-window prediction step. Together, these
 863 steps generate a clean, continuous and interpretable density map suitable for model building, reso-

864 lution evaluation, and quantitative validation. The Tab. 12 shows the post processing ablation study
 865 for missing wedge restoration task.
 866

868 E EXPERIMENTAL SETTINGS 869

870 For downstream training, we used the AdamW optimizer with an initial learning rate of 3×10^{-5} ,
 871 weight decay of 1×10^{-3} , and a ReduceLROnPlateau (factor 0.9, patience 5). All experiments
 872 were run for 500 epochs using a batch size of 32, mixed precision (bf16), and DDP (Distributed
 873 Data Parallel). Input density maps were cropped into 48^3 -voxel volumes, with a stride 24 during
 874 training and 48 during validation. To boost model robustness, we applied random flips along all
 875 three axes and random rotations as data augmentation. The backbone architecture was based on
 876 SCUNet, which takes a single input channel, uses a base dimension of 32 with head dimension 16,
 877 and consists of seven stages configured as [2,2,2,2,2,2]. Swin-Conv Blocks with a local attention
 878 window of 3^3 and zero drop-path rate were used; the output was one-channel density map. This
 879 design strikes a balance between local convolutional features and global attention, enabling efficient
 880 training on large multi-GPU clusters while preserving structural detail. The specific hyperparameters
 881 for downstream task training are listed in Tab. 4 and further architectural details are available in Tab.
 882 5.
 883

884 Table 4: Hyperparameters for downstream task training
 885

886 Parameter	887 Value	888 Description
887 optimizer	888 AdamW	889 Optimizer type
888 learning rate	889 3×10^{-5}	890 Initial LR for AdamW
889 weight_decay	890 1×10^{-3}	891 Weight decay coefficient
890 epochs	891 500	892 Number of training epochs
891 batch_size	892 35	893 Batch size per process
892 loss	893 $\alpha \mathcal{L}_{\text{MSE}} + (1 - \alpha) \mathcal{L}_{\text{HistKL}}$, $\alpha \in [0, 1]$	894 Reconstruction loss (ℓ_2)
893 lr_scheduler	894 ReduceLROnPlateau	895 Factor 0.9, patience 5 (min mode)
894 mixed_precision	895 bf16	896 autocast enabled
895 distributed	896 DDP (NCCL)	897 Multi-GPU data parallel training
896 input_size	897 48^3	898 Input/output volume size
897 train_stride	898 24	899 Sliding-window stride (training)
898 val_stride	900 48	901 Sliding-window stride (validation)
899 augmentation	902 RandomFlip/RandomRotate	903 3D flips and 90° rotations
900 num_workers	904 10	905 DataLoader workers per process
901 pin_memory	906 True	907 Page-locked host memory

902 Table 5: Model architecture of SCUNet
 903

904 Component	905 Setting	906 Description
905 backbone	906 SCUNet	907 Swin-Conv U-Net for volumetric data
906 input_channels	907 1	908 <code>in_nc = 1</code>
907 stages / blocks	909 [2, 2, 2, 2, 2, 2, 2]	910 Blocks per stage (<code>config</code>)
908 base_dim	910 32	911 Channel width at first stage (<code>dim</code>)
909 head_dim	912 16	913 Attention head dimension
910 window_size	914 3	915 Local attention window ($3 \times 3 \times 3$)
911 input_size	916 48	917 Input size for model
912 drop_path_rate	918 0	919 Stochastic depth disabled
913 activation	920 (inherited by SCUNet)	921 Follows SCUNet default
914 output	922 1 channel	923 Reconstructed high-frequency density

918 F EVALUATION METRICS
919

920 **Fourier Shell Correlation (FSC).** The Fourier Shell Correlation (FSC) is a standard metric for
921 measuring the resolution of reconstructed density maps in cryo-EM. It is computed between two
922 independently reconstructed half-maps $F_1(\mathbf{k})$ and $F_2(\mathbf{k})$, as the normalized cross-correlation of
923 their Fourier coefficients within a frequency shell S :

$$925 \quad 926 \quad 927 \quad 928 \quad 929 \quad \text{FSC}(S) = \frac{\sum_{\mathbf{k} \in S} F_1(\mathbf{k}) F_2^*(\mathbf{k})}{\sqrt{\sum_{\mathbf{k} \in S} |F_1(\mathbf{k})|^2 \sum_{\mathbf{k} \in S} |F_2(\mathbf{k})|^2}}, \quad (6)$$

930 where $F_i(\mathbf{k})$ denotes the Fourier transform of the i -th half-map, $*$ indicates complex conjugation,
931 and the summation is performed over all Fourier coefficients \mathbf{k} within the shell S . The FSC curve
932 typically decays with increasing frequency, and the resolution is conventionally defined at the spatial
933 frequency where FSC drops below a certain threshold (e.g., 0.143 or 0.5).

934 **$\mathbf{d}_{\text{model}}$.** The $\mathbf{d}_{\text{model}}$ metric serves as an effective resolution indicator that quantifies the level of
935 structural detail present in cryo-EM maps. It measures the effective resolution at which the atomic
936 model agrees with the experimental density, providing a practical evaluation of density map's inter-
937 pretability.

938 **Map–Model Correlation Coefficients (Phenix).** The Phenix validation suite provides several
939 correlation coefficients (CCs) to quantify the agreement between an atomic model and a cryo-EM
940 density map (Afonine et al., 2018):

- 943 • CC_{box} : correlation computed over the entire map volume;
- 944 • CC_{mask} : correlation restricted to voxels inside a molecular mask;
- 945 • CC_{peaks} : correlation evaluated at the strongest density peaks;
- 946 • $\text{CC}_{\text{volume}}$: correlation calculated for a user-specified molecular volume, typically repre-
947 senting the region occupied by the model.

949 These metrics probe complementary aspects of map–model agreement: global consistency, localized
950 fit within the molecular envelope, and correspondence at prominent density features, and agreement
951 within the molecular volume of interest respectively.

953 **Q-score** The Q-score quantifies atomic resolvability in cryo-EM maps (Pintilie et al., 2020). For
954 each atom, the local density profile is extracted from the map and compared against a reference
955 Gaussian profile, with the correlation the two serving as the Q-score. A higher Q-score indicates
956 that the atomic density is well resolved and closely resembles the expected Gaussian profile, while
957 lower values reflect poorer local resolvability. We report the average Q-score over all atoms in the
958 model, as implemented in Chimera's MapQ plugin, to evaluate overall map quality.

960 **CryoRes** CryoRes (Dai et al., 2023) is a deep learning-based method for estimating local res-
961 olution from a single cryo-EM density map. Unlike traditional approaches, it does not require half-
962 maps or multiple reconstructions, making it broadly applicable in scenarios where only a final map is
963 available. CryoRes predicts voxel-wise resolution estimates that highlight spatial variability in map
964 quality. These local resolution annotations provide complementary information to global metrics,
965 offering a more fine-grained assessment of map reliability.

966 G ADDITIONAL EXPERIMENT RESULTS
967

968 G.1 ABLATION STUDY OF SCUNET-BASED BACKBONE VS ViT-BASED BACKBONE

969 The ablation results validate the effectiveness of SCUNet-based backbones relative to ViT back-
970 bones across density map sharpening, super-resolution, and missing wedge restoration. As shown

in Tab. 6, 7, and 8, as well as in the radar plots, SCUNet consistently outperforms ViT on both correlation- and resolution-based metrics. For comparability, metrics where lower values indicate better performance (e.g., FSC-based metrics) were negated so that all scores follow a higher-is-better convention, consistent with CC_{box} and related measures. The unified radar plot (Fig.10) summarizes these results, providing a holistic view of backbone performance across evaluation metrics.

Table 6: Evaluation metrics of SCUNet-based and ViT-based backbone models on density map sharpening task.

	phenix.map_model_cc			Chimera.MapQ
	$CC_{box} \uparrow$	$CC_{mask} \uparrow$	$CC_{peaks} \uparrow$	Q-score \uparrow
CryoLVM (ViT)	0.826	0.733	0.739	0.387
CryoLVM (SCUNet)	0.894	0.821	0.806	0.444

Table 7: Evaluation metrics of SCUNet-based and ViT-based backbone models on density map super-resolution task.

	phenix.mtriage			CryoRes
	$d_{model}(\text{\AA}) \downarrow$	$FSC-0.143(\text{\AA}) \downarrow$	$FSC-0.5(\text{\AA}) \downarrow$	Resolution(\AA) \downarrow
CryoLVM (ViT)	2.35	2.65	4.73	3.41
CryoLVM (SCUNet)	2.33	2.58	4.58	3.39

Table 8: Evaluation metrics of SCUNet-based and ViT-based backbone models on missing wedge restoration task.

	phenix.mtriage		phenix.map_model_cc		
	$FSC-0.143(\text{\AA}) \downarrow$	$FSC-0.5(\text{\AA}) \downarrow$	$CC_{box} \uparrow$	$CC_{mask} \uparrow$	$CC_{volume} \uparrow$
CryoLVM (ViT)	16.51	22.15	0.355	0.277	0.241
CryoLVM (SCUNet)	10.09	11.45	0.391	0.391	0.348

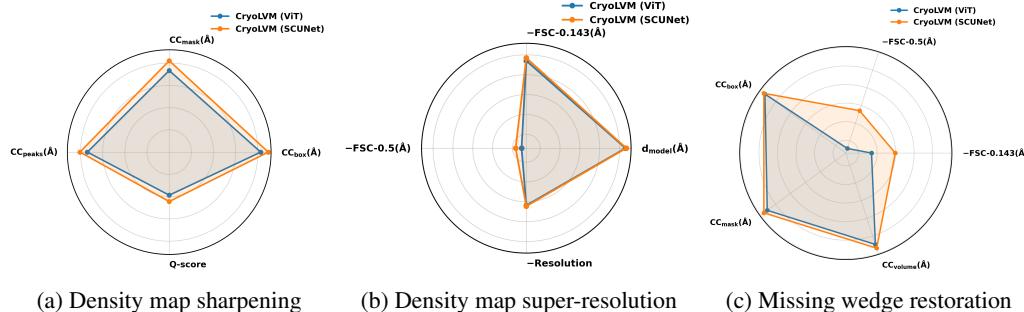


Figure 10: Radar plots comparing CryoLVM performance with SCUNet versus ViT backbones across three tasks.

G.2 ABLATION STUDY OF COMPOSITE LOSS OF MSE AND HISTKL

The experimental results summarized in Tab. 9 demonstrate that the proposed HistKL loss, when used in conjunction with the standard MSE loss, consistently outperforms the baseline MSE-only approach across all evaluation metrics in the density map super-resolution task. Beyond the improvement of density map quality, the incorporation of HistKL loss also accelerates the training

1026 convergence. Our analysis reveals that the composite loss configuration reaches optimal validation
 1027 loss at epoch 107, whereas the MSE-only baseline requires 279 epochs to achieve its best validation
 1028 loss—representing a $2.6\times$ reduction in training time. These results highlight the effectiveness and
 1029 efficiency of the HistKL term in guiding model optimization.

1030

1031 Table 9: Impact of different training losses on model performance.
 1032

	phenix.mtriage			CryoRes
	Resolution(Å) ↓	FSC-0.143(Å) ↓	FSC-0.5(Å) ↓	Resolution(Å) ↓
CryoLVM (MSE)	2.36	2.63	4.61	3.45
CryoLVM (Composite)	2.33	2.58	4.58	3.39

1038

1039

G.3 ABLATION STUDY OF PRETRAINING

1040

1041 To validate the effectiveness of our JEPA-based pretraining approach, we conducted two comple-
 1042 mentary ablation studies on the density map sharpening task. First, we compared our pretrained-
 1043 then-finetuned model against a model trained from scratch using identical architectures and hy-
 1044 perparameters (Table 10). The pretrained model demonstrates consistent improvements across all
 1045 metrics. These results confirm that self-supervised pretraining on high-quality cryo-EM density
 1046 maps enables the model to learn transferable structural representations that enhance downstream
 1047 task performance. Second, we evaluated JEPA against the widely-used Masked-Autoencoder (MAE)
 1048 pretraining approach (Table 11). While both methods benefit from pretraining, JEPA consistently
 1049 outperforms MAE across all metrics.

1050

1051 Table 10: Evaluation metrics of pretrained-then-finetuned and trained-from-scratch models on den-
 1052 sity map sharpening task.

	phenix.map_model_cc			Chimera.MapQ
	CC _{box} ↑	CC _{mask} ↑	CC _{peaks} ↑	Q-score ↑
CryoLVM (Scratch)	0.878	0.808	0.786	0.437
CryoLVM (Pretrain)	0.894	0.821	0.806	0.444

1058

1059

1060 Table 11: Evaluation metrics of JEPA-pretrained and MAE-pretrained models on density map
 1061 sharpening task.

1062

	phenix.map_model_cc			Chimera.MapQ
	CC _{box} ↑	CC _{mask} ↑	CC _{peaks} ↑	Q-score ↑
CryoLVM (MAE)	0.881	0.813	0.791	0.441
CryoLVM (JEPA)	0.894	0.821	0.806	0.444

1068

1069

1070

G.4 ABLATION STUDY OF POSTPROCESSING METHOD

1071

1072

1073 During inference, CryoLVM processes density maps using a sliding window approach with over-
 1074 lapsing patches, necessitating an effective fusion strategy to merge predictions from overlapping
 1075 regions into a coherent output volume. We conducted an ablation study comparing two postprocess-
 1076 ing methods: mean-weighted fusion, which assigns equal weight to all overlapping predictions, and
 1077 Gaussian-weighted fusion, which assigns higher weights to central regions of each patch and lower
 1078 weights to boundary regions (as detailed in Alg. 1). To better differentiate between these two ap-
 1079 proaches and amplify their differences, we adopted a larger stride of 24 compared to the previously
 used value of 12.

1079

As shown in Tab. 12, Gaussian-weighted fusion consistently outperforms mean-weighted fusion
 across all evaluation metrics for the missing wedge restoration task.

Table 12: Comparison of two postprocessing strategies

	phenix.mtriage		phenix.map_model_cc		
	FSC-0.143(Å) ↓	FSC-0.5(Å) ↓	CC _{box} ↑	CC _{mask} ↑	CC _{volume} ↑
CryoLVM (Mean)	10.66	13.07	0.390	0.388	0.345
CryoLVM (Gaussian)	9.92	11.47	0.391	0.391	0.348

G.5 ADDITIONAL RESULTS OF SUPER RESOLUTION TASKS

This subsection presents extra results regarding the density map super-resolution task. As shown in Fig. 11, CryoLVM achieves state-of-the-art performance overall, outperforming all baselines in both the FSC-0.5 and the CryoRes metrics. Fig. 12 visualizes improvement in local resolution for the EMD-0023 example: the deposited map spans a local resolution range of 3.39 Å to 4.12 Å, whereas CryoLVM’s predicted map compresses that range to a 2.31 Å to 3.45 Å. This illustrates that CryoLVM not only enhances global resolution measures but also recovers finer structural detail in regions where the original map is weaker.

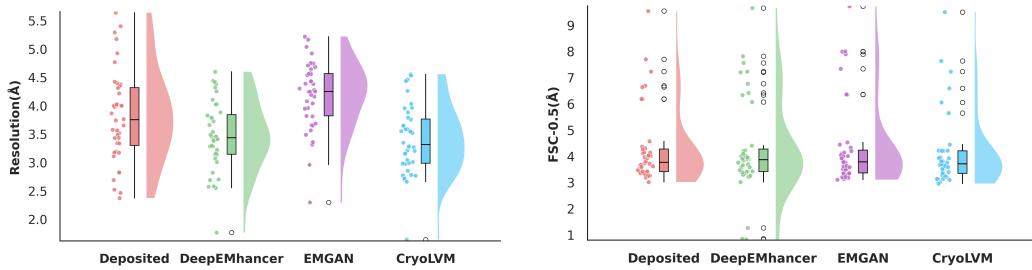


Figure 11: Comparison of CryoRes estimates and FSC-0.5 for density map super-resolution task.

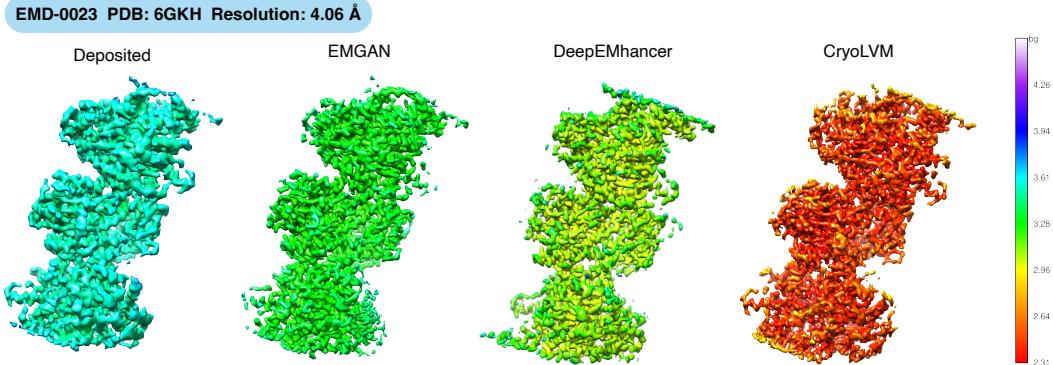


Figure 12: Comparison of local resolution maps between different methods on case EMD-0023. Local resolution maps are calculated via CryoRes and visualized through Chimera.

G.6 ADDITIONAL RESULTS OF MISSING WEDGE RESTORATION

To provide thorough evaluation of missing wedge restoration performance, we present additional quantitative metrics and visualizations beyond the main results reported in Section 4.4. As shown in Tab. 13, CryoLVM achieves higher correlation coefficients in three complementary assessment criteria: 1) CC_{box}, which measures global structural coherence by evaluating correlation across the entire reconstruction volume; 2) CC_{mask}, which quantifies reconstruction accuracy within a masked region; and 3) CC_{volume}, which assesses volumetric fidelity through voxel-wise correlation analysis of the complete density distribution. These improvements indicate that CryoLVM not only recovers

missing angular information more accurately but also maintains superior structural consistency. Fig. 14 presents the FSC-based resolution metrics (FSC-0.143 and FSC-0.5), where CryoLVM exhibits significantly better resolution distributions, indicating more effective recovery of high-frequency structural information lost due to missing wedge effects. Fig. 15 provides an additional visualization case for EMD-5106.

1139

1140 Table 13: Addition CC results for missing wedge restoration task. Metrics computed using
1141 `phenix.map_model_cc`.

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

G.7 VALIDATION OF IMPACT ON AUTOMATED MODEL BUILDING

1173

To demonstrate the practical impact of CryoLVM processing on downstream structural biology workflows, we conducted a case study using ModelAngelo, a state-of-the-art automated model building tool, on EMD-6656 (PDB: 5H30, resolution: 3.5 Å). As shown in Fig. 16, we compared atomic structures built from the deposited experimental map versus the CryoLVM-sharpened map. The CryoLVM-processed map yielded quantifiable improvements in model quality: RMSD to the reference structure decreased from 0.68 Å to 0.58 Å, and sequence match increased from 92% to 94.3%. These gains show that enhanced map quality directly translates to more accurate and complete automated model building, reducing manual intervention requirements in structural determination workflows.

1182

1183

1184

1185

1186

1187

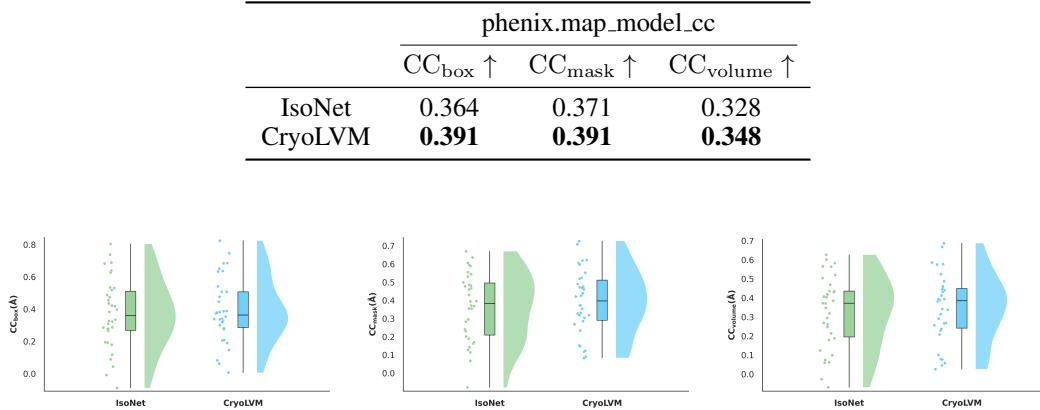


Figure 13: CC-based performance evaluation for missing wedge restoration task.

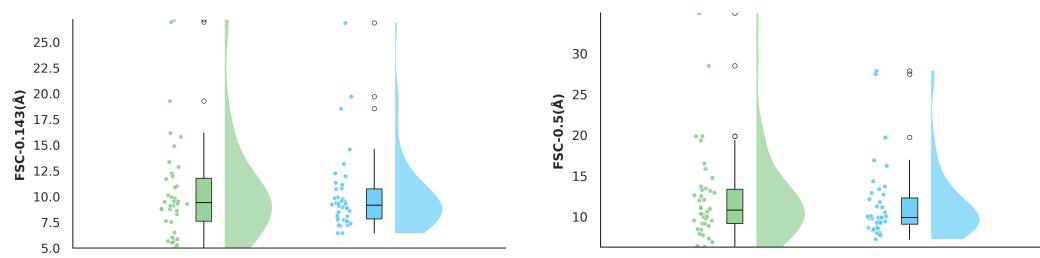
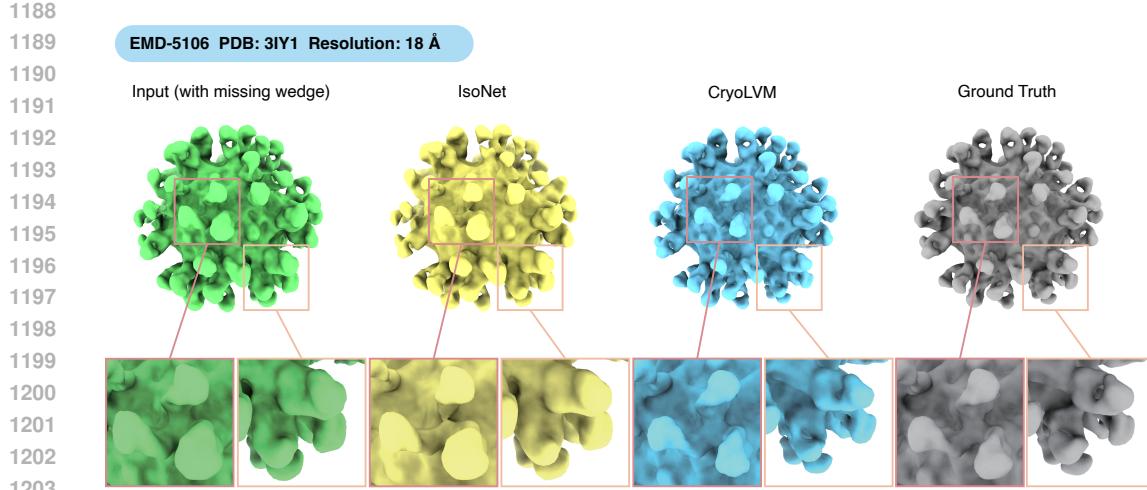


Figure 14: FSC-based performance evaluation for missing wedge restoration task.

G.8 PROTEIN SECONDARY STRUCTURE CLASSIFICATION



1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222

Figure 15: Additional visualization case for missing wedge task. The original density map is EMD-5106 from EMDB and is added wedge-shaped mask for model processing.

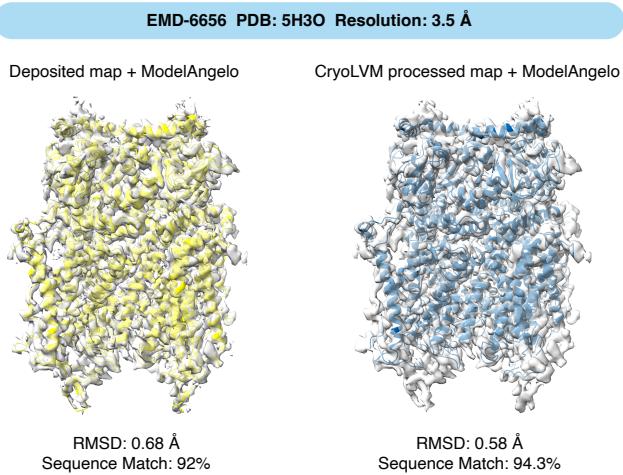


Figure 16: Comparative model building quality assessment using ModelAngelo. Atomic structures were built automatically from (Left) the deposited experimental map EMD-6656 (resolution: 3.5 Å) and (Right) the same map after CryoLVM sharpening.

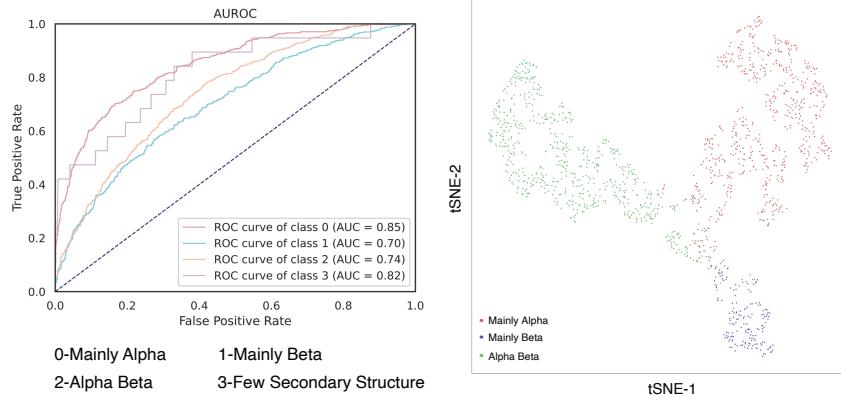


Figure 17: Protein secondary structure classification and representation visualization results.