
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CRYOLVM: SELF-SUPERVISED LEARNING FROM
CRYO-EM DENSITY MAPS WITH LARGE VISION
MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by en-
abling near-atomic-level visualization of biomolecular assemblies. However, the
exponential growth in cryo-EM data throughput and complexity, coupled with di-
verse downstream analytical tasks, necessitates unified computational frameworks
that transcend current task-specific deep learning approaches with limited scalabil-
ity and generalizability. We present CryoLVM, a foundation model that learns rich
structural representations from experimental density maps with resolved structures
by leveraging the Joint-Embedding Predictive Architecture (JEPA) integrated with
SCUNet-based backbone, which can be rapidly adapted to various downstream
tasks. We further introduce a novel histogram-based distribution alignment loss
that accelerates convergence and enhances fine-tuning performance. We demon-
strate CryoLVM’s effectiveness across three critical cryo-EM tasks: density map
sharpening, density map super-resolution, and missing wedge restoration. Our
method consistently outperforms state-of-the-art baselines across multiple density
map quality metrics, confirming its potential as a versatile model for a wide spec-
trum of cryo-EM applications.

1 INTRODUCTION

All biological functions are governed by events orchestrated at the molecular level by macro-
molecular assemblies (Liao et al., 2013; Gestaut et al., 2022). Therefore, elucidating their intri-
cate structures not only deepens our understanding of underlying molecular mechanisms, but also
lays the groundwork for advancements in fields like drug discovery (Congreve et al., 2020). Cryo-
electron microscopy has emerged as a pivotal technique for resolving biomacromolecular structures
(Kühlbrandt, 2014; Nogales & Mahamid, 2024), with the number of deposited density maps in
the Electron Microscopy Data Bank (EMDB) (wwPDB Consortium, 2023) growing exponentially
(Lawson et al., 2016). However, cryo-EM faces several intrinsic pitfalls that complicate accurate
structure determination. Single particle analysis (SPA) cryo-EM suffer from poor signal-to-noise
ratio, attenuated high-frequency information, and anisotropic resolution due to low-dose imaging
requirements and sample heterogeneity (Rosenthal & Henderson, 2003; Liu et al., 2025). Cryo-
electron tomography (cryo-ET) encounters additional limitations from radiation damage, missing
wedge artifacts and substantial noise that obscures fine structural details (Liu et al., 2022a; Tao
et al., 2018). These challenges hinder direct structural interpretation from raw cryo-EM maps, par-
ticularly at resolutions lower than 4 Å, necessitating extensive processing pipelines with substantial
manual intervention and domain expertise (Terwilliger et al., 2018a; Terashi & Kihara, 2018).

Building on these observations, the cryo-EM community has increasingly embraced machine learn-
ing approaches across the entire structural determination pipeline. For map reconstruction, cryo-
DRGN (Zhong et al., 2021) employs variational autoencoders to learn continuous latent represen-
tations of conformational heterogeneity, while 3DFlex (Punjani & Fleet, 2023) models non-rigid
motions through coordinate-based neural networks. For postprocessing, DeepEMhancer (Sanchez-
Garcia et al., 2021) adopts a 3D U-Net architecture trained on pairs of experimental maps and
LocScale-sharpened targets for automated masking and local sharpening, while EMReady (He et al.,
2023) implements a Swin-Conv-UNet framework combining residual convolution for local model-
ing with Swin transformer for non-local feature extraction. For atomic model building, early deep
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learning approaches include A2-Net (Xu et al., 2019), DeepTracer (Pfab et al., 2021), and Mod-
elAngelo (Jamali et al., 2024). These methods employ deep neural networks to perform de novo
recognition and tracing of amino acids from densities, thereby enabling automated model building
at expert-level quality. Despite these advances, current deep learning methods in cryo-EM remain
predominantly task-specific and rely on supervised training paradigms requiring labeled input data,
constraining dataset scales and yielding models with limited generalizability.

Foundation models harness self-supervised pretraining on large-scale data to develop transferable
representations with emergent capabilities, facilitating efficient adaptation to diverse downstream
applications (Wei et al., 2022; Achiam et al., 2023; Kaplan et al., 2020). Notably, protein language
models trained on extensive sequence corpora have become transformative tools for structure pre-
diction (Lin et al., 2023), protein design (Verkuil et al., 2022), and function annotation (Hayes et al.,
2025). However, foundation models remain largely unexplored in the cryo-EM density map do-
main. Zhou et al. (2024) introduced CryoFM, a flow-based foundation model for cryo-EM density
maps that demonstrates versatility as a generative prior across multiple tasks. Nevertheless, CryoFM
was trained and evaluated exclusively on curated high-quality density maps, with assessments con-
ducted primarily on synthetic noise-corrupted maps. Consequently, its robustness and performance
on genuinely noisy, low-resolution experimental maps from real-world cryo-EM workflows remain
unvalidated.

Input density map 
Random
sampling

Context voxels 

Target voxels 

Context Encoder

EMA 

Target voxel embeddings 

Target Predicdor
zi 

Predicted voxel embeddings 

Prediction 
Loss 

Downstream applications

Map sharpening

Super-resolution

Missing wedge restoration

Pretrain Finetune

Target Encoder

Task-specific
Model

Figure 1: CryoLVM framework. During pretraining, CryoLVM leverages JEPA to learn rich struc-
tural representations from cryo-EM density maps. Input density maps are split into non-overlapping
3D patches and random sets of 3D patches are masked to produce context and target patches. The
Target Predictor receives context embeddings from the Context Encoder along with positional in-
formation of masked target patches, and predicts the corresponding Target Encoder outputs. A
regression loss is applied to masked tokens, encouraging alignment between predicted and target
voxel embeddings. The weights of Target Encoder are updated via an exponential moving average
(EMA) of the Context Encoder weights. Following pretraining, we evaluate the model through fine-
tuning on three downstream cryo-EM tasks.

We present CryoLVM, a foundation model that pioneers the application of Joint-Embedding Predic-
tive Architecture (JEPA) (Assran et al., 2023) in the cryo-EM density map domain, learning self-
supervised structural representations that facilitate efficient adaptation across multiple downstream
tasks. JEPA bridges the gap between generative and invariance-based methods by predicting in the
abstract representation space rather than pixel space, eliminating dependencies on hand-crafted data
augmentations while preserving high-level semantic information. It also achieves computational ef-
ficiency, converging significantly faster than reconstruction-based methods while maintaining trans-
ferability across diverse downstream tasks. During pretraining, we employ SCUNet-based encoder
(Zhang et al., 2023) within the JEPA framework, training on experimental cryo-EM density maps
with resolved structures collected from the EMDB. Through fine-tuning with task-specific models
and comprehensive evaluation on three downstream tasks, CryoLVM attains state-of-the-art results
across most metrics, showcasing robust performance and efficacy in processing noisy experimental
maps and its promise as a foundation model for broader cryo-EM applications.
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The main contributions of this work are summarized as follows:

• We propose CryoLVM, the first foundation model for cryo-EM that employs JEPA with SCUNet
as backbone instead of standard vision transformer to learn semantically rich representations of
cryo-EM density maps;

• We develop a novel histogram-based distribution alignment loss LHistKL that enhances conver-
gence speed and improves fine-tuning performance;

• We conduct comprehensive experiments across three downstream tasks, demonstrating that Cry-
oLVM outperforms existing methods including DeepEMhancer, EMReady, EM-GAN (Subra-
maniya et al., 2021), and IsoNet (Liu et al., 2022a) on most evaluation metrics.

2 RELATED WORK

In this section, we review the background and most related work on computational methods for
cryo-EM density map processing, with particular emphasis on the three downstream applications
addressed in this study.

Density map sharpening Cryo-EM density maps suffer from resolution-dependent ampli-
tude falloff that attenuates high-frequency contrast, necessitating post-processing methods to
restore interpretability. Traditional map sharpening approaches include global methods like
phenix.auto sharpen (Terwilliger et al., 2018b) and RELION (Scheres, 2015) that apply uniform
B-factor correction, and local methods such as LocScale (Jakobi et al., 2017) that use spiral phase
transformation for spatially adaptive enhancement. Recent deep learning approaches have advanced
this field significantly: DeepEMhancer employs a 3D U-Net architecture to mimic LocScale’s local
sharpening effects (Sanchez-Garcia et al., 2021), while EMReady utilizes a 3D Swin-Conv-UNet
framework with combined smooth L1 and structural similarity losses to optimize both local and
non-local features of experimental cryo-EM density maps (He et al., 2023).

Density map super-resolution Model building from low-resolution cryo-EM maps remains a major
impediment, as current methods like ModelAngelo exhibit marked performance degradation beyond
4 Å resolution (Jamali et al., 2024). For protein identification methods like CryoDomain (Dai et al.,
2025), their accuracy also deteriorates as resolution exceeds 6-8 Å. This limitation motivates the
development of super-resolution techniques, which aim to estimate high-resolution maps from their
low-resolution counterparts and thereby facilitate structural determination. EM-GAN represents
an early deep learning approach in this domain, employing 3D generative adversarial networks to
enhance experimental cryo-EM maps in the 3-6 Å resolution range (Subramaniya et al., 2021).

Missing wedge restoration in cryo-ET The missing wedge problem in cryo-ET stems from phys-
ical limitations during tilt-series acquisition, where specimen geometry and mechanical constraints
restrict image collection to an angular range of typically ±60◦ (Lučić et al., 2005). Incomplete
angular sampling creates characteristic wedge-shaped gaps in Fourier space, leading to anisotropic
resolution with severe artifacts along the beam direction, manifesting as structural elongation and
distortion that compromise reconstruction fidelity (Wiedemann & Heckel, 2024). While classical
approaches have implemented iterative reconstruction algorithms including SIRT (Gilbert, 1972)
and ART (Gordon et al., 1970; Yan et al., 2019), alongside constrained optimization techniques
like ICON (Deng et al., 2016) that impose binary assumptions such as density positivity, these
methods offer limited recovery of missing information. Deep learning has revolutionized miss-
ing wedge restoration through learning complex priors directly from tomographic data. IsoNet,
built upon a 3D U-Net architecture, iteratively recovers missing information by training on paired
datasets—generated by rotating subtomograms to 20 orientations and imposing additional missing
wedge artifacts—to map degraded inputs to less-degraded targets (Liu et al., 2022a).

3 METHODOLOGY

In this section, we describe the implementation of CryoLVM for pretraining on unlabeled cryo-EM
density maps and its application to downstream tasks. First, we elaborate on the CryoLVM model ar-
chitecture, encompassing the pretraining stage, the fine-tuning and inference phases for downstream
tasks. Then, we present our proposed loss function tailored for the three targeted downstream tasks.
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3.1 MODEL ARCHITECTURE

CryoLVM combines Joint-Embedding Predictive Architecture (JEPA) with SCUNet backbone for
efficient self-supervised learning on cryo-EM density maps. Our design addresses the unique
challenges of volumetric biological data through strategic architectural modifications and domain-
specific optimizations.

Context Encoder

Target Encoder

Target Predictor

...

Pretrained Encoder Decoder Output density map
Input density map

+

+

Mask

Mask

Conv3D ConvTransBlock Bottleneck Linear Positional
Encoding

ViT-3D
Block

Conv
Transpose3D

EMA

Pretraining
D

ow
nstream

Figure 2: CryoLVM architecture. The Context Encoder and Target Encoder use hierarchical swin-
conv (SC) blocks for multi-scale feature extraction, with outputs converted to patch embeddings
and combined with 3D sinusoidal positional encodings. The Target Predictor employs transformer
blocks to predict target representations. For downstream tasks, task-specific decoder with upsam-
pling SC blocks are jointly fine-tuned with the pretrained encoder.

We adopt JEPA over traditional masked autoencoders for its representation-space prediction
paradigm. Unlike voxel-level reconstruction that amplifies noise in low-SNR cryo-EM densities,
JEPA learns semantic features by predicting masked region representation from visible context.
This approach naturally filters noise while preserving structural information critical for downstream
tasks. Our pretraining architecture comprises three components: Context Encoder fθc , Target En-
coder fθt

(stop-gradient), and Target Predictor gϕ. The training objective minimizes prediction loss:

Lp = Ex,M [Σi∈MSmoothL1β(gϕ(fθc(xcontext), zi)− fθt
(xi))], (1)

where M denotes masked patches, zi denotes spatial position information, and SmoothL1β provides
robust optimization with reduced sensitivity to outliers compared to L2 loss.

Different from previous studies, we select SCUNet over conventional 3D Vision Transformer as the
backbone for its hybrid architecture that adeptly combines local and global modeling. SCUNet’s
swin-conv (SC) blocks partition features into dual paths: Swin Transformers capture long-range
dependencies while residual convolutions preserve local details. This architectural choice is particu-
larly well-suited for cryo-EM applications, where local convolutions extract atomic-level structural
features and global attention mechanisms model cross-regional spatial relationships across multiple
scales. Our Context Encoder and Target Encoder consist of three downsampling SC blocks, three
3D convolution blocks and a bottleneck SC block. Within each SC block, input features are bi-
furcated into parallel pathways: the convolution branch employs residual 3 × 3 × 3 convolutions
with Filter Response Normalization, while the transformer branch utilizes 3D windowed multi-head
self-attention with window size 4 × 4 × 4. Feature fusion is achieved through 1 × 1 × 1 convo-
lutions, enabling simultaneous local feature preservation and global context aggregation. During
pretraining, encoder outputs are converted to patch embeddings via linear transformation and incor-
porated with 3D sinusoidal positional encodings to preserve spatial relationships within the feature
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grid. Masks are then applied to these patch embeddings to generate context and target embeddings.
The Target Predictor follows the JEPA framework, comprising standard transformer blocks. Final
predictions are mapped back to encoder embedding dimension through a linear projection, ensuring
compatibility with target outputs for loss computation. For downstream applications, task-specific
decoders utilize upsampling SC blocks and 3D transposed convolution blocks, jointly fine-tuned
with the pretrained encoder on labeled datasets for each target task.

3.2 LOSS FOR DOWNSTREAM TASKS

Across all three downstream tasks, we employ a unified composite loss function that combines
standard reconstruction error LMSE with distributional alignment loss LHistKL.

To enforce statistical consistency between predicted and target densities, we design a novel
histogram-based distribution alignment loss, denoted as LHistKL. The idea is to align the predicted
density distribution with the ground-truth density distribution via a differentiable histogram and a
divergence measure. Given predicted density X and target density X⋆, we first construct their soft
histograms using Gaussian kernel weighting:

h(x)j =
1

N

N∑
i

exp

(
−1

2

(
xi − cj

σ

)2
)
, (2)

where cj denotes the center of the j-th bin, σ controls the smoothness, and N is the number of total
voxels.

Then, we quantify the distributional divergence between the two histograms p = h(X) and q =
h(X⋆) using Jensen–Shannon (JS) divergence, which is based on Kullback-Leibler (KL) divergence:

DJS(p ∥ q) = 1
2

∑
k

pk log
pk
mk

+ 1
2

∑
k

qk log
qk
mk

, (3)

with m = 1
2 (p+ q).

The proposed histogram KL loss is thus defined as:
LHistKL(X,X⋆) = DJS

(
H(X)

∥∥H(X⋆)
)
. (4)

The final objective combines both loss components:
Ltotal = αLMSE + (1− α)LHistKL, (5)

where hyperparameter α ∈ [0, 1] balances reconstruction accuracy and distributional alignment.

4 EXPERIMENTS

In this section, we introduce the pretraining dataset of CryoLVM and evaluate the effectiveness
of CryoLVM across three critical downstream applications. We conducted comprehensive experi-
ments to assess model performance on density map sharpening, super-resolution, and missing wedge
restoration tasks, demonstrating CryoLVM’s versatility as a foundation model for diverse cryo-EM
computational challenges.

4.1 PRETRAINING DATASET

To enable effective learning of structural semantics embedded within cryo-EM density maps, we
assembled our pretraining dataset by leveraging the training subset of Cryo2StructData (Giri et al.,
2024), currently the most comprehensive publicly accessible repository in this domain. This curated
collection comprises 7,392 high-resolution experimental density maps representing proteins and
macromolecular complexes with resolutions spanning 1-4 Å. All density maps underwent standard-
ized preprocessing procedures: 1) voxel sizes were uniformly resampled to 1 Å spacing, 2) density
values were clipped to the 0.01-0.99 percentile range to mitigate outlier effects and subsequently
normalized to [0, 1]. To ensure rigorous evaluation and prevent data leakage, we systematically
excluded density maps present in the test sets of baseline methods used for downstream task com-
parisons, yielding a final pretraining corpus of 7,302 density maps. For CryoLVM input generation,
we applied random spatial cropping to extract volumes of size 483.
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4.2 DENSITY MAP SHARPENING

Cryo-EM density maps suffer from resolution-dependent amplitude falloff that attenuates high-
frequency contrast, making direct structural interpretation challenging. Density map sharpening
aims to computationally recover high-frequency information while preserving structural integrity,
effectively reversing the B-factor decay that obscures fine molecular details.

Table 1: Evalutation metrics of different methods on the density map sharpening test set.

phenix.map model cc Chimera.MapQ

CCbox ↑ CCmask ↑ CCpeaks ↑ Q-score ↑
Deposited 0.744 0.788 0.659 0.338

DeepEMhancer 0.695 0.679 0.659 0.323
EMReady 0.878 0.802 0.791 0.424
CryoLVM 0.894 0.821 0.806 0.444

EMD-10092
PDB: 6S3K
Resolution: 3.7 Å

Deposited DeepEMhancer EMReady CryoLVM

Figure 3: Comparative evaluation of density map sharpening performance across baseline and
proposed methods. Cross-correlation metrics (CCbox, CCmask, CCpeaks) were calculated via
phenix.map model cc (Afonine et al., 2018), which quantify the agreement between density maps
and their associated atomic models over different spatial regions. Q-score was computed using
Chimera.MapQ (Pintilie et al., 2020; 2025), providing an independent assessment of map quality
based on local atom-to-density correlation and atomic resolvability.

Following the established training paradigm of EMReady, we adopted a supervised learning ap-
proach for density map sharpening using paired experimental and target maps. Target density maps
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were simulated from their corresponding structures using Chimera.molmap (Pettersen et al., 2004),
with the resolution parameter matched to that of the paired experimental maps.

We evaluated CryoLVM on density map sharpening using a comprehensive set of quality metrics
computed through established cryo-EM analysis tools. As shown in Tab. 1, CryoLVM demonstrates
superior performance across all metrics, achieving the highest scores in CCbox (0.894), CCmask

(0.821), CCpeaks (0.806), and Q-score (0.444). These improvements indicate enhanced overall
quality between sharpened maps, suggesting better preservation of structural features and more ac-
curate high frequency signal recovery. The violin plots in Fig. 3 also illustrate that CryoLVM
consistently achieves tighter distributions with higher median values, indicating robust performance
across diverse map types and resolution ranges. Visualization for EMD-10092 in Fig. 3 show-
cases CryoLVM’s ability to enhance fine structural details such as improved definition of secondary
structure elements while maintaining overall molecular topology.

4.3 DENSITY MAP SUPER-RESOLUTION

Cryo-electron microscopy (cryo-EM) frequently produces density maps at intermediate resolutions
that preclude direct atomic model building. Even modest resolution improvements can greatly ben-
efit downstream structural analysis. Fine-grained density features are indispensible for accurately
determining backbone geometry and side-chain conformations.

Table 2: Evalutation metrics of different methods on the density map super-resolution test set

phenix.mtriage CryoRes

dmodel(Å) ↓ FSC-0.143(Å) ↓ FSC-0.5(Å) ↓ Resolution(Å) ↓
Deposited 3.66 3.39 4.64 3.81

DeepEMhancer 3.27 2.72 4.86 3.47
EMGAN 2.49 2.70 5.46 4.18
CryoLVM 2.33 2.58 4.58 3.39

EMD-20668
PDB: 6U7H
Resolution: 3.1 Å

Deposited DeepEMhancer EMGAN CryoLVM

Figure 4: Comparison of map super-resolution performance between different methods. FSC-based
metrics computed using phenix.mtriage (Afonine et al., 2018). Local resolution estimates obtained
via CryoRes (Dai et al., 2023); global resolution represents the average of voxel-wise predictions.

We developed a supervised training protocol for CryoLVM based on paired density maps. Training
data consists of experimental maps at 4-6 Å paired with target maps simulated from their corre-
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sponding PDB structures. Target maps were generated using Chimera.molmap with the resolution
parameter set to 1.8 Å. This paired supervision constrains the model to learn a robust mapping
from medium-resolution experimental densities to near-atomic structural detail, enabling effective
super-resolution of cryo-EM maps.

We benchmarked CryoLVM for density map super-resolution against DeepEMhancer and EMGAN.
Under the phenix.mtriage (Afonine et al., 2018) metrics (Fig. 4), CryoLVM achieves the best FSC-
based resolutions (dmodel=2.33Å, FSC-0.143 = 2.58, FSC-0.5 = 4.58), significantly outperforming
both DeepEMhancer and EMGAN. Similarly, when assessed with CryoRes (Dai et al., 2023), Cry-
oLVM attains 3.39Å versus 3.47Å and 4.18Å for the baselines. Visualizations for EMD-20668
(PDB: 6U7H, 3.1 A) are shown in Fig. 4 . In the two magnified insets, CryoLVM improves back-
bone connectivity, and aligns much more closely with ground truth. CryoLVM not only enhances
better visual interpretability but also improves quantitative resolution metrics, facilitating more ac-
curate downstream structure determination from intermediate-resolution cryo-EM maps.

4.4 MISSING WEDGE RESTORATION

Cryo-electron tomography (cryo-ET) faces critical technical constraints: radiation sensitivity lim-
its total electron dose, resulting in low signal-to-noise ratios, while specimen geometry restricts tilt
angles to approximately ±60◦ rather than the ideal ±90◦. As shown in Fig. 5, this limited angu-
lar sampling creates characteristic wedge-shaped gaps in Fourier space. Missing wedge produces
anisotropic resolution with degraded Z-axis information and structural distortions. We simulated
missing wedge artifacts by applying a Fourier transform to the map and then masking the frequency
domain with a wedge-shaped filter.

Electron
Beam 
Source

Figure 5: Visualization and schematic analysis of the missing wedge problem and its restoration.
Left: schematic illustration of the missing wedge problem in cryo-electron tomography. Right: case
result for missing wedge task. The original density map is EMD-5331 from EMDB and is added
wedge-shaped mask for model processing.

Fourier-domain wedge masking. Given a 3D volume V , let its Fourier transform be V̂ (k) at
frequency k ∈ R3. To simulate the missing wedge, we introduce an indicator mask M(k) that
preserves only frequencies within the permitted tilt cone:

M(k) =

1, | arctan(kz/
√
k2x + k2y)| ≤ θmax,

0, otherwise.

The corrupted spectrum is then
Ṽ (k) = M(k) V̂ (k),

and the simulated tomogram with missing wedge effect is obtained by inverse Fourier transform,

Vmw(x) = F−1{Ṽ (k)}.

Here, θmax denotes the experimental tilt limit (commonly around 60◦).

8
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We evaluated restoration performance via phenix.mtriage (Afonine et al., 2018) and report the
map-model FSC-based resolution metrics dmin (Å) at two cutoff thresholds, FSC = 0.143 and
FSC = 0.5. Lower dmin values indicate higher resolution and thus better restoration quality. Our
results demonstrate that CryoLVM consistently outperforms IsoNet baseline across all evaluation
metrics(Tab. 3): at FSC = 0.143, CryoLVM reduces dmin from 10.448 Å to 10.094 Å (∼ 3.39%);
at FSC = 0.5, CryoLVM improves from 12.361 Å to 11.447 Å (∼ 7.39%). These quantitative
improvements in dmin reflect CryoLVM’s greater ability to recover high-frequency structural infor-
mation that is typically lost due to missing wedge artifacts.

Fig. 5 depicts a missing-wedge case, where CryoLVM is able to reconstruct fine-scale, high-
frequency features that IsoNet fails to maintain. The magnified insets highlight a critical difference:
while CryoLVM correctly reconstructs continuous pore-like channels, IsoNet produces fragmented
or occluded segments that result in topologically incorrect representations of these hollow structures.
The FSC curves comparing reconstructed maps to reference models show that CryoLVM maintains
a higher correlation across mid-to-high spatial frequencies and reaches established cutoff thresholds
at higher spatial frequencies than IsoNet (Fig. 6), indicating better resolution restoration.

Table 3: Performance of different methods in
missing wedge restoration task. The score is
computed between two half maps (predicted map
and ground truth map). Additional results are in
Appendix G.6.

phenix.mtriage

Method FSC-0.143 ↓ FSC-0.5 ↓
IsoNet 10.448 12.361
CryoLVM 10.094 11.447

0.02
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(1/25)
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Figure 6: FSC score versus spatial frequency for
predicted maps of IsoNet and CryoLVM (EMD-
5331).

4.5 ABLATION & DISCUSSION

To validate our design choices and understand the contribution of individual components, we con-
ducted ablation studies examining key architectural decisions and hyperparameter configurations.
In this section, we briefly present the key findings.

SCUNet-based models achieve better performance than their ViT counterparts across all eval-
uated downstream tasks. To demonstrate that adopting SCUNet as the backbone over ViT yields
consistently better performance across all downstream tasks, we compared models with different
backbones trained using identical hyperparameters; detailed results are presented in Appendix G.1.

Composite loss of MSE and HistKL leads to accelerated convergence and enhanced down-
stream performance. To validate the contribution of the proposed histogram KL loss, we compared
fine-tuning CryoLVM on the density map super-resolution task with the composite loss against with
MSE alone; extended results are provided in Appendix G.2.

5 CONCLUSION

In this paper, we present CryoLVM, the first foundation model for cryo-EM density maps that em-
ploys Joint-Embedding Predictive Architecture with SCUNet-based backbone to learn rich structural
representations. We introduce a novel histogram-based distribution alignment loss that accelerates
convergence and enhances fine-tuning performance. CryoLVM consistently outperforms established
baselines across three critical downstream tasks, showing robust performance on genuinely noisy,
low-resolution experimental maps encountered in real-world cryo-EM workflows. We envision that
this foundation model approach will facilitate broader adoption of AI-driven methods in cryo-EM
and contribute to structural biology discoveries.
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Vladan Lučić, Friedrich Förster, and Wolfgang Baumeister. Structural studies by electron tomogra-
phy: from cells to molecules. Annu. Rev. Biochem., 74(1):833–865, 2005.

Eva Nogales and Julia Mahamid. Bridging structural and cell biology with cryo-electron mi-
croscopy. Nature, 628(8006):47–56, 2024.

Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch, Daniel M Greenblatt,
Elaine C Meng, and Thomas E Ferrin. Ucsf chimera—a visualization system for exploratory
research and analysis. Journal of computational chemistry, 25(13):1605–1612, 2004.

Jonas Pfab, Nhut Minh Phan, and Dong Si. Deeptracer for fast de novo cryo-em protein structure
modeling and special studies on cov-related complexes. Proceedings of the National Academy of
Sciences, 118(2):e2017525118, 2021.

Grigore Pintilie, Jingcheng Zhang, Thomas D Goddard, Wah Chiu, and David C Gossard. Mea-
surement of atom resolvability in cryo-em maps with q-scores. Nature Methods, 17(3):328–334,
2020.

Grigore Pintilie, Chenghua Shao, Zhe Wang, Brian P Hudson, Justin W Flatt, Michael F Schmid,
Kyle Morris, Stephen K Burley, and Wah Chiu. Q-score as a reliability measure for protein,
nucleic acid, and small molecule atomic coordinate models derived from 3dem density maps.
bioRxiv, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ali Punjani and David J Fleet. 3dflex: determining structure and motion of flexible proteins from
cryo-em. Nature Methods, 20(6):860–870, 2023.

Peter B Rosenthal and Richard Henderson. Optimal determination of particle orientation, absolute
hand, and contrast loss in single-particle electron cryomicroscopy. Journal of molecular biology,
333(4):721–745, 2003.

Ruben Sanchez-Garcia, Josue Gomez-Blanco, Ana Cuervo, Jose Maria Carazo, Carlos Oscar S
Sorzano, and Javier Vargas. Deepemhancer: a deep learning solution for cryo-em volume post-
processing. Communications biology, 4(1):874, 2021.

Sjors HW Scheres. Semi-automated selection of cryo-em particles in relion-1.3. Journal of struc-
tural biology, 189(2):114–122, 2015.

Yingjun Shen, Haizhao Dai, Qihe Chen, Yan Zeng, Jiakai Zhang, Yuan Pei, and Jingyi Yu. Draco:
A denoising-reconstruction autoencoder for cryo-em. arXiv preprint arXiv:2410.11373, 2024.

Sai Raghavendra Maddhuri Venkata Subramaniya, Genki Terashi, and Daisuke Kihara. Super reso-
lution cryo-em maps with 3d deep generative networks. Biophysical Journal, 120(3):283a, 2021.

Chang-Lu Tao, Yun-Tao Liu, Rong Sun, Bin Zhang, Lei Qi, Sakar Shivakoti, Chong-Li Tian, Peijun
Zhang, Pak-Ming Lau, Z Hong Zhou, et al. Differentiation and characterization of excitatory
and inhibitory synapses by cryo-electron tomography and correlative microscopy. Journal of
Neuroscience, 38(6):1493–1510, 2018.

Genki Terashi and Daisuke Kihara. De novo main-chain modeling for em maps using mainmast.
Nature communications, 9(1):1618, 2018.

Thomas C Terwilliger, Paul D Adams, Pavel V Afonine, and Oleg V Sobolev. A fully automatic
method yielding initial models from high-resolution cryo-electron microscopy maps. Nature
methods, 15(11):905–908, 2018a.

Thomas C Terwilliger, Oleg V Sobolev, Pavel V Afonine, and Paul D Adams. Automated map
sharpening by maximization of detail and connectivity. Biological Crystallography, 74(6):545–
559, 2018b.

Robert Verkuil, Ori Kabeli, Yilun Du, Basile IM Wicky, Lukas F Milles, Justas Dauparas, David
Baker, Sergey Ovchinnikov, Tom Sercu, and Alexander Rives. Language models generalize be-
yond natural proteins. BioRxiv, pp. 2022–12, 2022.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022.

Simon Wiedemann and Reinhard Heckel. A deep learning method for simultaneous denoising and
missing wedge reconstruction in cryogenic electron tomography. Nature Communications, 15(1):
8255, 2024.

The wwPDB Consortium. EMDB—the Electron Microscopy Data Bank. Nucleic Acids Research,
52(D1):D456–D465, 11 2023. ISSN 0305-1048. doi: 10.1093/nar/gkad1019. URL https:
//doi.org/10.1093/nar/gkad1019.

Kui Xu, Zhe Wang, Jianping Shi, Hongsheng Li, and Qiangfeng Cliff Zhang. A2-net: Molecular
structure estimation from cryo-em density volumes. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pp. 1230–1237, 2019.

Rui Yan, Singanallur V Venkatakrishnan, Jun Liu, Charles A Bouman, and Wen Jiang. Mbir: A
cryo-et 3d reconstruction method that effectively minimizes missing wedge artifacts and restores
missing information. Journal of structural biology, 206(2):183–192, 2019.

Yang Yan, Shiqi Fan, Fajie Yuan, and Huaizong Shen. A comprehensive foundation model for
cryo-em image processing. bioRxiv, pp. 2024–11, 2024.

12

https://doi.org/10.1093/nar/gkad1019
https://doi.org/10.1093/nar/gkad1019


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jiakai Zhang, Shouchen Zhou, Haizhao Dai, Xinhang Liu, Peihao Wang, Zhiwen Fan, Yuan Pei,
and Jingyi Yu. Cryofastar: Fast cryo-em ab initio reconstruction made easy. arXiv preprint
arXiv:2506.05864, 2025.

Kai Zhang, Yawei Li, Jingyun Liang, Jiezhang Cao, Yulun Zhang, Hao Tang, Deng-Ping Fan, Radu
Timofte, and Luc Van Gool. Practical blind image denoising via swin-conv-unet and data synthe-
sis. Machine Intelligence Research, 20(6):822–836, 2023.

Ellen D Zhong, Tristan Bepler, Bonnie Berger, and Joseph H Davis. Cryodrgn: reconstruction of
heterogeneous cryo-em structures using neural networks. Nature methods, 18(2):176–185, 2021.

Yi Zhou, Yilai Li, Jing Yuan, and Quanquan Gu. Cryofm: A flow-based foundation model for
cryo-em densities. arXiv preprint arXiv:2410.08631, 2024.

A STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

Large language models were used solely to polish the academic writing of this paper. They were not
involved in research ideation, experimental design, data analysis, or any other substantive aspects of
the work. The authors take full responsibility for the content of the manucript.

B ADDITIONAL RELATED WORK

B.1 FOUNDATION MODELS FOR CRYO-EM

The emergence of foundation models has begun transforming the cryo-EM data processing land-
scape, with recent works addressing distinct stages of the cryo-EM structural determination pipeline.
DRACO (Shen et al., 2024) introduced a denoising-reconstruction autoencoder pretrained over
270,000 cryo-EM movies or micrographs, demonstrating strong generalization capabilities across
micrograph-level tasks including denoising, micrograph curation, and particle picking. CryoFastAR
(Zhang et al., 2025) pioneered geometric foundation modeling for cryo-EM by directly predicting
particle poses for unordered, noisy 2D projection images, facilitating acceleration in ab initio recon-
struction compared to traditional iterative optimization approaches. Cryo-IEF (Yan et al., 2024) pre-
sented a comprehensive foundation model pretrained on approximately 65 million particle images
and showed excellent performance in tasks such as classifying particles from different structures,
clustering particles by pose, and assessing image quality. These works operate on 2D cryo-EM
images from the data acquisition and reconstruction stages and complement CryoLVM to address
complete cryo-EM workflow from particle image processing through density map post-processing
and analysis.

B.2 JEPA APPLICATIONS IN BIOLOGICAL CONTEXT

Joint-Embedding Predictive Architecture (JEPA), first introduced by Assran et al. (2023). with I-
JEPA, has gained significant traction in computational biology due to its ability to learn semantic
representations through prediction in abstract embedding space rather than raw pixel-level recon-
struction. Brain-JEPA (Dong et al., 2024) provides the most direct precedent for CryoLVM by suc-
cessfully applying JEPA to 3D spatiotemporal biological data using functional Magnetic Resonance
Imaging (fMRI). This pioneering brain dynamics foundation model incorporates two innovative
techniques tailored to volumetric biological data: Brain Gradient Positioning (BGP), which estab-
lishes functional coordinate system for brain functional parcellation and enhances the positional
encoding of different Regions of Interest (ROI), and Spatiotemporal Masking, which is designed
for the unique characteristics of fMRI data to tackle with heterogeneous time-series patches. Brain-
JEPA achieves state-of-the-art performance in dempgraphic prediction, disease diagnosis, and trait
prediction, demonstrating JEPA’s effectiveness for complex 3D biological volumes with temporal
dependencies.

B.3 SCUNET APPLICATIONS IN IMAGE DENOISING

The SCUNet framework represents a breakthrough in hybrid architecture for image denoising, ef-
fectively combining global modeling capabilities of Swin Transformers (Liu et al., 2021) with local
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feature extraction advantages of convolutional neural networks. Zhang et al. (2023) introduced
SCUNet in their seminal work, proposing Swin-Conv (blocks) as the core building components
of a UNet backbone architecture, where each SC block processes input through a 1 × 1 convolu-
tion followed by evenly splitting feature maps into two groups that are respectively fed into Swin
Transformer blocks and residual convolutional layers. Subsequent developments further validated
SCUNet’s effectiveness across diverse denoising applications: SUNet (Fan et al., 2022) applies Swin
Transformer layers as basic building blocks within UNet architecture for image denoising, achieving
significant performance improvements on fixed-size input denoising tasks, while SCNet (Lin et al.,
2025) proposes a dual-branch fusion network that combines Swin Transformer branches with Con-
vNext (Liu et al., 2022b) branches, employing Feature Fusion Blocks with joint spatial and channel
attention for adaptive output merging, demonstrating robustness under severe noise conditions and
proving effective in real-world applications like mural image denoising.

C ADDITIONAL DETAILS OF CRYOLVM

C.1 IMPLEMENTATION DETAILS

Fig. 7 illustrates the detailed architecture of CryoLVM’s Context Encoder and Target Encoder. Both
encoders share an identical hierarchical design, with Target Encoder parameters updated via expo-
nential moving average (EMA) of Context Encoder during pretraining. The encoder architecture
begins with an initial 3× 3× 3 convolution applied to the input density, followed by three consecu-
tive down-sampling stages. Each stage consists of a Swin-Conv Block and a 2× 2× 2 convolution.
Within each Swin-Conv Block, feature map is first passed through a 1× 1× 1 convolution, and then
split evenly into two feature map groups, each of which is then fed into a swin transformer (SwinT)
block and a residual 3 × 3 × 3 convolution (RConv) block separately; after that, feature maps are
concatenated and passed through a final 1×1×1 convolution to integrate local and global modeling.
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Figure 7: Detailed architecture of CryoLVM’s Context Encoder and Target Encoder.

Fig. 8 illustrates the complete architecture of CryoLVM including a pretrained encoder and a task-
specific decoder for downstream applications. The modular design enables effective transfer learn-
ing, where the encoder captures generalizable density map representations in the pretraining stage,
while the decoder specializes these features for particular cryo-EM tasks. The task-specific decoder
employs a symmetric up-sampling strategy to progressively reconstruct high-quality density maps
from the encoded density embeddings. It starts with three consecutive up-sampling stages, each
comprising a 2 × 2 × 2 transposed convolution followed by a Swin-Conv Block. The transposed
convolution performs spatial up-sampling while reducing feature dimensionality, and the Swin-Conv
Block refines the upsampled features. A critical component is the skip connections between corre-
sponding encoder and decoder layers. Specifically, skip connections link the convolution layers of
encoder with the transposed convolution layers of decoder. These connections preserve multi-scale
structural information that might otherwise be lost. After that, feature map is passed through a final
3× 3× 3 convolution to produce output density.
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Figure 8: Detailed implementation of pretrained encoder and task-specific decoder for downstream
application.

D DATA CURATION AND PROCESSING

D.1 PREPROCESSING FOR TRAINING ACCELERATION AND MEMORY REDUCTION

Pretraining To construct a high-quality pretraining dataset of cryo-EM density maps with high-
quality structural information for CryoLVM, we focused on relatively high-resolution experimen-
tal density maps with corresponding resolved PDB(Berman et al., 2000) structures deposited in
EMDB (wwPDB Consortium, 2023). We utilized Cryo2StructData, currently the most compre-
hensive publicly available depository in this domain, containing 7,600 cryo-EM density maps with
associated structural annotations. We assembled our pretraining dataset from the training subset of
Cryo2StructData, which comprises 7,392 density maps representing proteins and macromolecular
complexes with resolutions spanning 1-4 Å. We first excluded density maps present in the test sets
of baseline methods used for downstream task comparisons to guarantee meticulous evaluation and
prevent data leakage, resulting in a final pretraining corpus of 7,302 density maps. Next, we pre-
processed the pretraining density maps as follows: 1) voxel sizes were uniformly resampled to 1 Å
spacing, 2) density values were clipped to the 0.01-0.99 percentile range to mitigate outlier effects
and subsequently normalized to [0,1], 3) density maps are converted to Pytorch tensor format with
bFloat16 precision, providing computational speedup and memory reduction.

Density map sharpening We first constructed our test set by selecting 50 cryo-EM density maps
from the established EMReady’s benchmark, ensuring direct comparison with prior methods. To
build our training and validation sets, we collected additional single-particle cryo-EM maps at 3-6
Å resolutions and their corresponding atomic structures from EMDB (wwPDB Consortium, 2023)
and PDB (Berman et al., 2000). We applied stringent quality control criteria to filter map-model
pairs: 1) do not contain backbone atoms only, 2) do not include unknown residues, 3) do not include
missing chain, 4) have orthogonal map axis, 5) resolution is given by the FSC-0.143 threshold, 6)
any chain in the model does not share >30% sequence identity with any chain in the test set models.
This yielded a total of 400 pairs of map and model as the training set, and 70 pairs of map and
model as the validation set. Target density maps were simulated from their corresponding PDB
structures using Chimera.molmap (Pettersen et al., 2004) with the resolution parameter matched
to that of the paired experimental maps. We preprocessed the paired maps as follows: 1) voxel
sizes were uniformly resampled to 1 Å spacing, 2) density values were clipped to the 0.01-0.99
percentile range to mitigate outlier effects and subsequently normalized to [0,1], 3) density maps are
converted to Pytorch tensor format with bFloat16 precision, providing computational speedup and
memory reduction. During training, we employed a sliding window sampling strategy with stride
24 to generate 483 input volumes and augmented training data through random flips and random
rotations.

Density map super-resolution We constructed a test set consisting of 40 single-particle cryo-
EM density maps, a training set with 400 maps and a validation set with 50 maps. All density
maps exhibit resolutions ranging from 2.3-6 Å and satisfy the quality control criteria described
above for our density map sharpening experiment. Target density maps were simulated from their
corresponding PDB structures using Chimera.molmap with the resolution parameter uniformly set
to 1.8 Å. We preprocessed the paired maps following the same procedure from the density map
sharpening experiment.
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Missing wedge restoration In the procedure for restoring a missing wedge, input density maps
come from Cryo-ET, which typically exhibit resolutions worse than 8 Å, even after subtomogram
averaging. Thus, we chose maps with resolutions lower than 8 Å and applied angular masks to mimic
the missing wedge effect. Given constraints from the Nyquist sampling theorem and computational
efficiency, a voxel size of 4 Å was used instead of 1 Å, which was used for the density map super-
resolution and sharpening tasks. In total, we obtained 400 training samples, 50 validation samples,
and 40 test samples. The resolution distributions of the training and test sets are shown in Fig. 9.

Figure 9: Resolution Distribution of Missing Wedge Restoration Task. (Left) Training Set. (Right)
Test Set.

Algorithm 1: Gaussian-weighted fusion of patch predictions into a full density map

Input: Overlapping patch predictions {ŷk}Kk=1, their voxel coordinates {pk}Kk=1, box size B,
stride s, small ε > 0

Output: Reconstructed volume M

Require: 3D Gaussian weight kernel Wker ∈ RB×B×B with entries
wi,j,ℓ = exp

(
− ∥(i,j,ℓ)−c∥2

2

2σ2

)
, normalized to [1, 3] (center larger, border smaller);

zero-initialized accumulators V, S sized to the (padded) volume. (Implementation mirrors the
sliding-window accumulation with per-voxel weights and final normalization.)

for k = 1, 2, . . . ,K do
Extract the region-to-updateRk ⊂ V starting at pk with size B ×B ×B
// Weighted accumulation of prediction and weights
V[Rk]← V[Rk] + ŷk ⊙Wker
S[Rk]← S[Rk] + Wker

end
// Element-wise normalization to resolve overlaps

M̃← V ⊙max(S, ε)−1

Crop M̃ to the original (unpadded) spatial extent to obtain M
return M

D.2 POSTPROCESSING AFTER PREDICTION

We performed post-processing on the predicted density maps to ensure consistency, reduce artifacts,
and improve interpretability of reconstructed volumes. Given patch-based predictions, overlapping
regions were fused utilizing a Gaussian-weighted scheme (See in Algo. 1), which balances contri-
butions between central and boundary voxels to promote continuity. This blending step reduces dis-
continuities at patch boundaries while maintaining local structural details. After weighted fusion, we
applied normalization to maintain consistent voxel intensity distributions across the reconstructed
volume. This step corrects for potential intensity variations arising from the overlapping patch-based
prediction strategy, where edge regions of patches may exhibit different contrast characteristics than
central regions due to reduced spatial context during inference. The final step involved cropping out
padded regions introduced during the patch-wise sliding-window prediction step. Together, these
steps generate a clean, continuous and interpretable density map suitable for model building, reso-
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lution evaluation, and quantitative validation. The Tab. 12 shows the post processing ablation study
for missing wedge restoration task.

E EXPERIMENTAL SETTINGS

For downstream training, we used the AdamW optimizer with an initial learning rate of 3 × 10−5,
weight decay of 1 × 10−3, and a ReduceLROnPlateau (factor 0.9, patience 5). All experiments
were run for 500 epochs using a batch size of 32, mixed precision (bfloat16), and DDP (Distributed
Data Parallel). Input density maps were cropped into 483-voxel volumes, with a stride 24 during
training and 48 during validation. To boost model robustness, we applied random flips along all
three axes and random rotations as data augmentation. The backbone architecture was based on
SCUNet, which takes a single input channel, uses a base dimension of 32 with head dimension 16,
and consists of seven stages configured as [2,2,2,2,2,2,2]. Swin-Conv Blocks with a local attention
window of 33 and zero drop-path rate were used; the output was one-channel density map. This
design strikes a balance between local convolutional features and global attention, enabling efficient
training on large multi-GPU clusters while preserving structural detail. The specific hyperparameters
for downstream task training are listed in Tab. 4 and further architectural details are availble in Tab.
5.

Table 4: Hyperparameters for downstream task training

Parameter Value Description
optimizer AdamW Optimizer type
learning rate 3× 10−5 Initial LR for AdamW
weight decay 1× 10−3 Weight decay coefficient
epochs 500 Number of training epochs
batch size 35 Batch size per process
loss αLMSE + (1− α)LHistKL, α ∈ [0, 1] Reconstruction loss (ℓ2)
lr scheduler ReduceLROnPlateau Factor 0.9, patience 5 (min mode)
mixed precision bfloat16 autocast enabled
distributed DDP (NCCL) Multi-GPU data parallel training
input size 483 Input/output volume size
train stride 24 Sliding-window stride (training)
val stride 48 Sliding-window stride (validation)
augmentation RandomFlip/RandomRotate 3D flips and 90◦ rotations
num workers 10 DataLoader workers per process
pin memory True Page-locked host memory

Table 5: Model architecture of SCUNet

Component Setting Description
backbone SCUNet Swin-Conv U-Net for volumetric data
input channels 1 in nc = 1
stages / blocks [2, 2, 2, 2, 2, 2, 2] Blocks per stage (config)
base dim 32 Channel width at first stage (dim)
head dim 16 Attention head dimension
window size 3 Local attention window (3×3×3)
input size 48 Input size for model
drop path rate 0 Stochastic depth disabled
activation (inherited by SCUNet) Follows SCUNet default
output 1 channel Reconstructed high-frequency density

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F EVALUATION METRICS

Fourier Shell Correlation (FSC). The Fourier Shell Correlation (FSC) is a standard metric for
measuring the resolution of reconstructed density maps in cryo-EM. It is computed between two
independently reconstructed half-maps F1(k) and F2(k), as the normalized cross-correlation of
their Fourier coefficients within a frequency shell S:

FSC(S) =

∑
k∈S

F1(k)F
∗
2 (k)√∑

k∈S

|F1(k)|2
∑
k∈S

|F2(k)|2
, (6)

where Fi(k) denotes the Fourier transform of the i-th half-map, ∗ indicates complex conjugation,
and the summation is performed over all Fourier coefficients k within the shell S. The FSC curve
typically decays with increasing frequency, and the resolution is conventionally defined at the spatial
frequency where FSC drops below a certain threshold (e.g., 0.143 or 0.5).

dmodel . The dmodel metric serves as an effective resolution indicator that quantifies the level of
structural detail present in cryo-EM maps. It measures the effective resolution at which the atomic
model agrees with the experimental density, providing a practical evaluation of density map’s inter-
pretability.

Map–Model Correlation Coefficients (Phenix). The Phenix validation suite provides several
correlation coefficients (CCs) to quantify the agreement between an atomic model and a cryo-EM
density map (Afonine et al., 2018):

• CCbox: correlation computed over the entire map volume;

• CCmask: correlation restricted to voxels inside a molecular mask;

• CCpeaks: correlation evaluated at the strongest density peaks;

• CCvolume: correlation calculated for a user-specified molecular volume, typically repre-
senting the region occupied by the model.

These metrics probe complementary aspects of map-model agreement: global consistency, localized
fit within the molecular envelope, and correspondence at prominent density features, and agreement
within the molecular volume of interest respectively.

Q-score The Q-score quantifies atomic resolvability in cryo-EM maps (Pintilie et al., 2020). For
each atom, the local density profile is extracted from the map and compared against a reference
Gaussian profile, with the correlation the two serving as the Q-score. A higher Q-score indicates
that the atomic density is well resolved and closely resembles the expected Gaussian profile, while
lower values reflect poorer local resolvability. We report the average Q-score over all atoms in the
model, as implemented in Chimera’s MapQ plugin, to evaluate overall map quality.

CryoRes CryoRes (Dai et al., 2023) is a deep learning-based method for estimating local reso-
lution from a single cryo-EM density map. Unlike traditional approaches, it does not require half-
maps or multiple reconstructions, making it broadly applicable in scenarios where only a final map is
available. CryoRes predicts voxel-wise resolution estimates that highlight spatial variability in map
quality. These local resolution annotations provide complementary information to global metrics,
offering a more fine-grained assessment of map reliability.

G ADDITIONAL EXPERIMENT RESULTS

G.1 ABLATION STUDY OF SCUNET-BASED BACKBONE VS VIT-BASED BACKBONE

The ablation results validate the effectiveness of SCUNet-based backbones relative to ViT back-
bones across density map sharpening, super-resolution, and missing wedge restoration. As shown
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in Tab. 6, 7, and 8, as well as in the radar plots, SCUNet consistently outperforms ViT on both
correlation- and resolution-based metrics. For comparability, metrics where lower values indicate
better performance (e.g., FSC-based metrics) were negated so that all scores follow a higher-is-better
convention, consistent with CCbox and related measures. The unified radar plot (Fig.10) summarizes
these results, providing a holistic view of backbone performance across evaluation metrics.

Table 6: Evalutation metrics of SCUNet-based and ViT-based backbone models on density map
sharpening task.

phenix.map model cc Chimera.MapQ

CCbox ↑ CCmask ↑ CCpeaks ↑ Q-score ↑
CryoLVM (ViT) 0.826 0.733 0.739 0.387

CryoLVM (SCUNet) 0.894 0.821 0.806 0.444

Table 7: Evalutation metrics of SCUNet-based and ViT-based backbone models on density map
super-resolution task.

phenix.mtriage CryoRes

dmodel(Å) ↓ FSC-0.143(Å) ↓ FSC-0.5(Å) ↓ Resolution(Å) ↓
CryoLVM (ViT) 2.35 2.65 4.73 3.41

CryoLVM (SCUNet) 2.33 2.58 4.58 3.39

Table 8: Evalutation metrics of SCUNet-based and ViT-based backbone models on missing wedge
restoration task.

phenix.mtriage phenix.map model cc

FSC-0.143(Å) ↓ FSC-0.5(Å) ↓ CCbox ↑ CCmask ↑ CCvolume ↑
CryoLVM (ViT) 16.51 22.15 0.355 0.277 0.241

CryoLVM (SCUNet) 10.09 11.45 0.391 0.391 0.348

(a) Density map sharpening (b) Density map super-resolution (c) Missing wedge restoration

Figure 10: Radar plots comparing CryoLVM performance with SCUNet versus ViT backbones
across three tasks.

G.2 ABLATION STUDY OF COMPOSITE LOSS OF MSE AND HISTKL

The experimental results summarized in Tab. 9 demonstrate that the proposed HistKL loss, when
used in conjunction with the standard MSE loss, consistently outperforms the baseline MSE-only
approach across all evaluation metrics in the density map super-resolution task. Beyond the im-
provement of density map quality, the incorporation of HistKL loss also accelerates the training
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convergence. Our analysis reveals that the composite loss configuration reaches optimal validation
loss at epoch 107, whereas the MSE-only baseline requires 279 epochs to achieve its best validation
loss—representing a 2.6× reduction in training time. These results highlight the effectiveness and
efficiency of the HistKL term in guiding model optimization.

Table 9: Impact of different training losses on model performance.

phenix.mtriage CryoRes

Resolution(Å) ↓ FSC-0.143(Å) ↓ FSC-0.5(Å) ↓ Resolution(Å) ↓
CryoLVM (MSE) 2.36 2.63 4.61 3.45

CryoLVM (Composite) 2.33 2.58 4.58 3.39

G.3 ABLATION STUDY OF PRETRAINING

To validate the effectiveness of our JEPA-based pretraining approach, we conducted two comple-
mentary ablation studies on the density map sharpening task. First, we compared our pretrained-
then-finetuned model against a model trained from scratch using identical architectures and hy-
perparameters (Table 10). The pretrained model demonstrates consistent improvements across all
metrics. These results confirm that self-supervised pretraining on high-quality cryo-EM density
maps enables the model to learn transferable structural representations that enhance downstream
task performance. Second, we evaluated JEPA against the widely-used Masked-Autoencoder (MAE)
pretraining approach (Table 11). While both methods benefit from pretraining, JEPA consistently
outperforms MAE across all metrics.

Table 10: Evalutation metrics of pretrained-then-finetuned and trained-from-scratch models on den-
sity map sharpening task.

phenix.map model cc Chimera.MapQ

CCbox ↑ CCmask ↑ CCpeaks ↑ Q-score ↑
CryoLVM (Scratch) 0.878 0.808 0.786 0.437
CryoLVM (Pretrain) 0.894 0.821 0.806 0.444

Table 11: Evalutation metrics of JEPA-pretrained and MAE-pretrained models on density map
sharpening task.

phenix.map model cc Chimera.MapQ

CCbox ↑ CCmask ↑ CCpeaks ↑ Q-score ↑
CryoLVM (MAE) 0.881 0.813 0.791 0.441
CryoLVM (JEPA) 0.894 0.821 0.806 0.444

G.4 ABLATION STUDY OF POSTPROCESSING METHOD

During inference, CryoLVM processes density maps using a sliding window approach with over-
lapping patches, necessitating an effective fusion strategy to merge predictions from overlapping
regions into a coherent output volume. We conducted an ablation study comparing two postprocess-
ing methods: mean-weighted fusion, which assigns equal weight to all overlapping predictions, and
Gaussian-weighted fusion, which assigns higher weights to central regions of each patch and lower
weights to boundary regions (as detailed in Alg. 1). To better differentiate between these two ap-
proaches and amplify their differences, we adopted a larger stride of 24 compared to the previously
used value of 12.

As shown in Tab. 12, Gaussian-weighted fusion consistently outperforms mean-weighted fusion
across all evaluation metrics for the missing wedge restoration task.
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Table 12: Comparison of two postprocessing strategies

phenix.mtriage phenix.map model cc

FSC-0.143(Å) ↓ FSC-0.5(Å) ↓ CCbox ↑ CCmask ↑ CCvolume ↑
CryoLVM (Mean) 10.66 13.07 0.390 0.388 0.345

CryoLVM (Gaussian) 9.92 11.47 0.391 0.391 0.348

G.5 ADDITIONAL RESULTS OF SUPER RESOLUTION TASKS

This subsection presents extra results regarding the density map super-resolution task. As shown
in Fig. 11, CryoLVM achieves state-of-the-art performance overall, outperforming all baselines in
both the FSC-0.5 and the CryoRes metrics. Fig. 12 visualizes improvement in local resolution for
the EMD-0023 example: the deposited map spans a local resolution range of 3.39 Å to 4.12 Å,
whereas CryoLVM’s predicted map compresses that range to a 2.31 Å to 3.45 Å. This illustrates that
CryoLVM not only enhances global resolution measures but also recovers finer structural detail in
regions where the original map is weaker.

Figure 11: Comparison of CryoRes estimates and FSC-0.5 for density map super-resolution task.

EMD-0023  PDB: 6GKH  Resolution: 4.06 Å

Deposited EMGAN DeepEMhancer CryoLVM

Figure 12: Comparison of local resolution maps between different methods on case EMD-0023.
Local resolution maps are calculated via CryoRes and visualized through Chimera.

G.6 ADDITIONAL RESULTS OF MISSING WEDGE RESTORATION

To provide thorough evaluation of missing wedge restoration performance, we present additional
quantitative metrics and visualizations beyond the main results reported in Section 4.4. As shown
in Tab. 13, CryoLVM achieves higher correlation coefficients in three complementary assesment
criteria: 1) CCbox, which measures global structural coherence by evaluating correlation across the
entire reconstruction volume; 2) CCmask, which quantifies reconstruction accuracy within a maksed
region; and 3) CCvolume, which assesses volumetric fidelity through voxel-wise correlation analysis
of the complete density distribution. These improvements indicate that CryoLVM not only recovers
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missing angular information more accurately but also maintains superior structural consistency. Fig.
14 presents the FSC-based resolution metrics (FSC-0.143 and FSC-0.5), where CryoLVM exhibits
significantly better resolution distributions, indicating more effective recovery of high-frequency
structural information lost due to missing wedge effects. Fig. 15 provides an additional visualization
case for EMD-5106.

Table 13: Addition CC results for missing wedge restoration task. Metrics computed using
phenix.map model cc.

phenix.map model cc

CCbox ↑ CCmask ↑ CCvolume ↑
IsoNet 0.364 0.371 0.328

CryoLVM 0.391 0.391 0.348

Figure 13: CC-based performance evaluation for missing wedge restoration task.

Figure 14: FSC-based performance evaluation for missing wedge restoration task.

G.7 VALIDATION OF IMPACT ON AUTOMATED MODEL BUILDING

To demonstrate the practical impact of CryoLVM processing on downstream structural biology
workflows, we conducted a case study using ModelAngelo, a state-of-the-art automated model build-
ing tool, on EMD-6656 (PDB: 5H30, resolution: 3.5 Å). As shown in Fig. 16, we compared atomic
structures built from the deposited experimental map versus the CryoLVM-sharpened map. The
CryoLVM-processed map yielded quantifiable improvements in model quality: RMSD to the refer-
ence structure decreased from 0.68 Å to 0.58 Å, and sequence match increased from 92% to 94.3%.
These gains show that enhanced map quality directly translates to more accurate and complete auto-
mated model building, reducing manual intervention requirements in structural determination work-
flows.

G.8 PROTEIN SECONDARY STRUCTURE CLASSIFICATION
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EMD-5106  PDB: 3IY1  Resolution: 18 Å

Input (with missing wedge) IsoNet CryoLVM Ground Truth

Figure 15: Additional visualization case for missing wedge task. The original density map is EMD-
5106 from EMDB and is added wedge-shaped mask for model processing.

EMD-6656  PDB: 5H3O  Resolution: 3.5 Å

Deposited map + ModelAngelo CryoLVM processed map + ModelAngelo 

RMSD: 0.68 Å
Sequence Match: 92%

RMSD: 0.58 Å
Sequence Match: 94.3%

Figure 16: Comparative model building quality assessment using ModelAngelo. Atomic structures
were built automatically from (Left) the deposited experimental map EMD-6656 (resolution: 3.5 Å)
and (Right) the same map after CryoLVM sharpening.

0-Mainly Alpha
2-Alpha Beta

1-Mainly Beta
3-Few Secondary Structure tSNE-1

tS
N

E-
2

Mainly Alpha
Mainly Beta
Alpha Beta

Figure 17: Protein secondary structure classification and representation visualization results.
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