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Abstract

Many practical reinforcement learning environments have a
discrete factored action space that induces a large combina-
torial set of actions, thereby posing significant challenges.
Existing approaches leverage the regular structure of the ac-
tion space and resort to a linear decomposition of Q-functions,
which avoids enumerating all combinations of factored actions.
In this paper, we consider Q-functions defined over a lower
dimensional projected subspace of the original action space,
and study the condition for the unbiasedness of decomposed
Q-functions using causal effect estimation from the observed
confounder setting in causal statistics. This leads to a general
scheme that uses the projected Q-functions to approximate
the Q-function in standard model-free reinforcement learn-
ing algorithms. The proposed approach is shown to improve
sample complexity in a model-based reinforcement learning
setting. We demonstrate improvements in sample efficiency
compared to state-of-the-art baselines in online continuous
control environments and a real-world offline sepsis treatment
environment.

Introduction
Reinforcement learning (RL) combined with deep learning
has advanced to achieve superhuman levels of performance
in many application domains (Mnih et al. 2015; Silver et al.
2017), but there is still significant room for improving sam-
ple complexity and computational tractability for wider ac-
ceptance and deployment in real-world applications (Pearl
2019; Schölkopf 2022). In many practical applications such
as healthcare domains, collecting a batch of interaction data
in an off-policy manner or even in an offline setting is prefer-
able, although it limits collecting diverse and large amount of
samples due to the costly or infeasible nature of interactions
(Komorowski et al. 2018; Tang et al. 2022). Even in online
environments, a structured combinatorial action space is well
known to deteriorate sample efficiency significantly (Dulac-
Arnold et al. 2015; Tavakoli, Pardo, and Kormushev 2018;
Tavakoli, Fatemi, and Kormushev 2020).

The goal of this paper is to improve the sample efficiency
of value-based RL algorithms for solving problems having a
large factored action space. The challenges for handling large
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action spaces are well recognized and typical solutions in-
volve either decomposing the action space (Tang et al. 2022;
Rebello et al. 2023) or augmenting data (Pitis, Creager, and
Garg 2020; Pitis et al. 2022; Tang and Wiens 2023). In multi-
agent RL (Sunehag et al. 2018; Son et al. 2019; Wang et al.
2020; Rashid et al. 2020), there exists a clear decomposable
structure that allows representing the global value function as
a combination of local value function per each agent. How-
ever, in single-agent RL, existing approaches are motivated
by the assumption that the given MDP can be separated into
independent MDPs leading to a linear Q-function decompo-
sition (Russell and Zimdars 2003; Tang et al. 2022; Seyde
et al. 2022).

In factored action spaces, each action a is defined over
multiple action variables A = [A1, . . . , AK ], where it is of-
ten the case that the effects of action subspaces defined over
the disjoint action variables such as {A1, A2} and {A3, A4}
may not interact with one another. For example, in control
problems over a 2-dimensional plane with state variables of
position and velocity for each dimension, the effect of an im-
pulse impacting an object is separated per dimension due to
the modularity of underlying causal mechanisms. Motivated
by such a modular structure in factored action spaces, we
investigate Q-function decomposition with the intervention
semantics, leading to a general decomposition scheme that
leverages the projected action spaces. In Section 3, we study
theoretical properties around the soundness and sample com-
plexity of Q-function decomposition in factored action spaces
under the tabular model-based RL setting. In Section 4, we
present a practical scheme called action decomposed RL that
augments model-free algorithms (Mnih et al. 2015; Fujimoto,
Meger, and Precup 2019) with an improved critic learning
procedure based on Q-function decomposition. In Section
5, we implement this scheme with Deep Q-networks (DQN)
(Mnih et al. 2015; Van Hasselt, Guez, and Silver 2016) and
batch constrained Q-learning (BCQ) (Fujimoto, Meger, and
Precup 2019) for experiments involving online 2D control
environments and sepsis treatment offline environments de-
rived from the real world MIMIC-III dataset, demonstrating
improved sample efficiency with our proposed approach.

Preliminaries
We consider reinforcement learning (RL) environments as
factored Markov decision processes (MDPs) described by



(a) Fully Separable MDPs (b) Separable Effects (c) Non-separable MDP

Figure 1: Decomposable Structures in Factored MDPs. The diagrams shows factored MDPs, where the circles, squares, and
diamonds represent state, action, and reward variables. Fully Separable Structure: Fig 1a shows a factored MDP that can be
fully separable into two independent MDPs, considered in the previous work (Tang et al. 2022; Seyde et al. 2022). Separable
Effects: Fig 1b shows a factored MDP that has non-separable dynamics and rewards. However, the effects of factored actions are
non-interacting, and we study this structure with intervention semantics. Non-separable Structure: Fig 1c shows a non-separable
factored MDP.

a tupleM := ⟨S,A, P 0, P,R, γ⟩, where the state space S
and the action space A are factored into a set of variables
S := {S1, . . . , SM} and A := {A1, . . . , AN}, and we de-
note states and actions by vectors s = [s1, · · · , sM ] and
a = [a1, · · · , aN ], respectively. P 0 := S → [0, 1] is the
initial state distribution, P := S × A × S → [0, 1] is the
state transition function, R := S ×A×S → R is the reward
function, and γ ∈ (0, 1] is a discounting factor.

RL agents find an optimal policy π∗ ∈ {π :
S → A} that maximizes the value function, Vπ(s) =
Eπ[

∑∞
t=0 γ

tR(st,at, st+1) | s0= s]. Off-policy Q-learning
algorithms sample state transition tuples (s,a, r, s′) using
a behavior policy πb : S × A → [0, 1], and learns the
Q-function Qπ(s,a) = Eπ[

∑∞
t=0 γ

tR(st,at, st+1) | s0 =
s,a0 = a] to find the optimal deterministic policy π∗(s)
by a∗ = argmaxa∈A Qπ∗(s,a).

In this paper, we study Q-functions with intervention se-
mantics in the ‘no unobserved confounder setting’ (Pearl
2009; Schulte and Poupart 2024). Given states s and s′ at the
current and the next time steps, a causal model prescribes the
dynamics by structural equations S′ ← FS′

(
pa(S′), US′

)
de-

fined over all variables S′ ∈ S′, where US′ is an exogenous
noise variable and pa(S′) ⊂ S. In the absence of intervention,
the structural equations factorize the state transition function
as, P (S′|S) =

∏M
m=1 P

(
S′
m|pa(S′

m)
)
, which we call no-op

dynamics, governing the transition of the state variables free
from the direct effect of do(a)1.

Action do(A) fixes the value of the next state variables
Eff(A) ⊂ S′ subject to the current state variables Pre(A) ⊂
S 2. Namely, for all S′ ∈ Eff(A), the structural equation
FS′ is replaced by a conditional intervention policy such
that Eff(A)← σA

(
Pre(A)

)
. Then, the state transition func-

tion P
(
S′|S, do(A)

)
under intervention follows a truncated

1We use do operator to emphasize the intervention semantics of
an action a.

2We use terminology from planning where Eff(A) and Pre(A)
refer to the action’s effect and precondition. Eff(A) are the state
variables that are controllable by action, whereas S′ \ Eff(A) are
non-controllable state variables. The intervention policy can be
depend on the state variables Pre(A).

factorization as,

P
(
S′|S, do(A)

)
=P (S′ \Eff(A)|S) · I

[
Eff(A)=σA

(
Pre(A)

)]
,

(1)
where I is the indicator function.

The deterministic reward can be modeled as a structural
equation R← FR

(
pa(R)

)
, where pa(R) ⊂ S ∪ S′ and the

domain of R, dom(R) is the range of the reward function 3 .
The potential outcome (Rubin 1974) of R subject to action
do(A) is prescribed by R ← FR

(
pa(R), do(A)

)
and the

conditional expected reward E[R(s,a, s′)|s,a] can be written
as a causal effect,∑

S′

P
(
S′|S, do(A)

) ∑
r∈dom(R)

r · I[r = FR

(
pa(R), do(A)

)
]. (2)

In terms of the Neyman-Rubin potential outcomes frame-
works (Rubin 2005), the state S is the observed confounder
since it influences both treatment on S′ and the outcome R.
The primary interest in causal statistics is to estimate causal
effects in the presence of confounding bias, which stems from
the fundamental problem of causal inference. If RL agents
could revisit the same states and collect alternative action
choices, then we have no issue with the confounding bias
in principle. However, we will see that formulating RL as
causal effect estimation with intervention semantics offers
an opportunity to improve the sample efficiency. There are
active research efforts to improve sample efficiency in ban-
dits (Johansson, Shalit, and Sontag 2016; Saito, Ren, and
Joachims 2023) and machine learning applications such as
recommender systems (Gao et al. 2024).

The decomposition structures in factored MDPs can be
categorized by considering what components are separable,
as shown in Figure 1. (Tang et al. 2022) studied the case
shown in Figure 1a, where the state space and the reward
function are all separable per projected action spaces. In
such a case, the Q-function can be exactly decomposed as
Qπ(S,A) =

∑N
n=1 Q

n(S, An), where each Qn(S, An) is

3We abused the notation. R denotes the random variable that
defines the reward function with a structural equation FR as well as
the reward function.



defined over the whole state space, yet restricted to apply
actions in the subspaceAn. (Rebello et al. 2023) proposed an
importance sampling estimator that leverages the fully separa-
ble MDP structure. (Seyde et al. 2022) demonstrated state-of-
the-art performance for solving continuous control problems
through a simple modification that replaces Q-functions with
a linear decomposition in deep Q-learning (DQN) algorithms
(Mnih et al. 2015).

Methods
Projected Action Space MDPs
Let’s consider the decomposition case shown in Figure 1b,
where we assume that the effect of factored actions are non-
interacting.
Assumption 1. Given a partition of action variables A =
[A1, . . . ,AK ], there exists a partition over state variables
S′ = [S′

1, . . . ,S
′
K ,S′

K+1] such that S′
k = Eff(Ak) and

S′
K+1 ∩ Eff(A) = ∅, where Eff(A) = ∪Kk=1Eff(Ak).
Then, we can factorize the interventional state transition

function P
(
S′|S, do(A)

)
as

P
(
S′|S, do(A)

)
=P (S′

K+1|S,Eff(A))

K∏
k=1

P
(
S′
k|S, do(Ak)

)
.

(3)
In terms of the interventional state transition function,

Qπ(s,a) can be written as

Qπ(s,a)=
∑
s′

P
(
s′|s, do(a)

)
[R(s,a, s′)+γQπ

(
s′, π(s′)

)
]. (4)

For each of the projected action spaceAk subject to action
variables Ak, we define a projected action space MDP as
follows.
Definition 1 (Projected Action Space MDP). Given a fac-
tored MDPM := ⟨S,A, P 0, P,R, γ⟩, and a projected ac-
tion spaceAk :=×Ai∈Ak

Ai, a projected action space MDP
Mk := ⟨S,Ak, P

0, P,R, γ⟩ is defined by the state tran-
sition function in terms of the interventional distribution
P
(
S′|S, do(Ak)

)
as,

P
(
S′
k|S, do(Ak)

)
P
(
S′
K+1|S,Eff(A)

) ∏
i∈[1..K],i ̸=k

P (S′
i|S), (5)

where P
(
S′
k|S, do(Ak)

)
is the interventional distribution

over S′
k under the effect of do(Ak).

Under Assumption 1, we can rewrite the state transition
function P

(
S′|S, do(A)

)
with P

(
S′|S, do(Ak)

)
as,

P
(
S′|S, do(A)

)
=P

(
S′|S, do(Ak)

)K∏
i=1,i ̸=k

P
(
S′
i|S, do(Ai)

)
P (S′

i|S)
(6)

= P
(
S′|S, do(Ak)

) K∏
i=1,i ̸=k

I
[
S′
i = σAi

(
Pre(Ai)

)]
P (S′

i|S)
(7)

= P
(
S′|S, do(Ak)

) K∏
i=1,i ̸=k

1
/
P
(
S′
i = σAi

(
Pre(Ai)

)
|S
)
, (8)

where σAi

(
Pre(Ai)

)
is the conditional intervention policy

that fixes the value of Eff(Ai).
Proposition 1 shows that the Q-function Qπk

(s,ak) inMk

can be written in terms of P
(
S′|S, do(Ak)

)
.

Proposition 1 (Projected Q-function). Given a projected
MDP Mk over action variables Ak, the Q-function
Qπk

(s,ak) can be recursively written as,

Qπk (s,ak)=
∑
s′

P
(
s′|s, do(ak)

)[
R(s,ak, s

′)+γQπk (s
′, πk(s

′))
]
,

where πk : S → Ak is a factored policy for Ak.

Proof. The actions in Ak only intervene on S′
k and

the rest of the state variables S′ \ Eff(Ak) follow
the no-op dynamics. Namely, the state transition fol-
lows Eq. (5). By definition, Qπk

(s,ak) is the value
of applying action do(A0 = ak) in state S0 = s at
time step t= 0, and applying actions do

(
At= πk(S

t)
)

for the remaining time steps t = 1..∞. It is easy to
rewrite Qπk

(s,ak) =
∑

S1 P (S1|s, do(ak))R(s,ak,S
1)+∑∞

t=1

∑
S1..St

∏t
j=0 γ

tP (Sj+1|Sj , do(πk(S
j)))R(St,

πk(S
t),St+1) as desired.

From Eq. (6), we see that the interventional state transition
functions P

(
S′|S, do(A)

)
and P

(
S′|S, do(Ak)

)
are differ-

ent only in P (S′
i|·) for i ̸= k such that we can weight the

projected Q-functions Qπk
(s,ak) to represent Qπ(s,a).

Definition 2 (Weighted Projected Q-functions). Given a pol-
icy π and its projected policy πk, a weighted projected Q-
function Q̃π(s,ak) can be defined as,

Q̃πk (s,ak) =
∑
s′

P
(
s′|s, do(ak)

)
ρ−k(s, s′)

[
R(s,ak, s

′)+

γQ̃πk

(
s′, πk(s

′)
)]
I
[
Eff(A) = σA

(
Pre(A)

)]
, (9)

where ρ−k(s, s
′)=

∏K
i=1,i̸=k P

(
s′i = σai

(Pre(ai))|s
)

from
Eq. (8), and the values of the next state variables Eff(A) are
consistent to action do

(
π(a′)

)
.

Note that there are two main differences between
Q̃πk

(s′,a′k) and Qπk
(s′,a′k). First, the weighted projected

Q-functions are defined relative to the action trajectories that
follow the policy π in the action spaceA. Second, the weights
ρ−k(s, s

′) represent the propensity score (Rubin 2005) of the
no-op dynamics.

Model-based Factored Policy Iteration
Next, we present a concrete model-based RL algorithm,
called model-based factored policy iteration (MB-FPI) for
studying the soundness of the Q-function decomposition,
and the improvement in the sample complexity, under the
following assumptions.

Assumption 2. The no-op dynamics P (S′|S) =∏K
k=1P (S′

k|S)P
(
S′
K+1|S,Eff(A)

)
is positive.

Assumption 3. Given a behavior policy πb(a|s),
and its factored policy πb

k(ak|s), the supports of
P (s′|s) induced by πb and πb

k are the same in every
states s, namely,

{
s′|

∑
a P (s′|a, s)πb(a|s) > 0

}
={

s′|
∑

ak
P (s′|ak, s)πb

k(ak|s) > 0
}

.



Algorithm 1 Model-based Factored Policy Iteration
1: Learn intervention policies σAk for all k = 1toK, the factored

no-op dynamics P
(
S′
K+1|S,Eff(A)

)
, and the reward function

R(S,A,S′).
2: Initialize an arbitrary factored policy π = [π1, . . . , πK ]
3: repeat

//POLICY EVALUATION
4: for k = 1 to K do
5: P (S′|S,Ak) ← I[S′

k = σAk (S)]
∏K

i=1,i ̸=k I[S
′
i =

σπi(S)(S)]P
(
S′
K+1|S,Eff(A)

)
6: for each (s,ak) ∈ (S,Ak) do
7: Q̃πk (s,ak) ←

∑
S′ P (S′|s,ak)[R(s,ak,S

′) +

γQ̃πk (s,ak)]

//POLICY IMPROVEMENT
8: Select an arbitrary k for policy improvement
9: for each state s ∈ S do

10: πk(s)← argmaxak Q̃πk (s,ak)

11: until No change in π(s)

In words, the above assumptions ensure that the explo-
ration with projected actions in Ak covers the same state
space visited by the action space A.

Algorithm 1 is a model-based algorithm that learns mod-
els of projected MDPs Mk (line 1), and performs policy
iteration (Sutton and Barto 2018) to find a locally optimal
policy π∗(s) = [π∗

1(s), . . . , π
∗
K(s)]. The policy evaluation

procedure computes state transition function P (S′|S,Ak)

(line 5) and updates Q-tables Q̃πk
(s,ak) (line 7). The policy

improvement procedure selects an arbitrary πk to improve
(line 11). The algorithm terminates and returns the locally
optimal policy π∗ when there is no change during updating
π.

Under the intervention semantics, σAk
fixes the value of

S′
k, and we see that P (S′|S,Ak) constrains the state tra-

jectory to follow not only a single factored policy πk, but
also all other policies following the factorization shown in
Eq. (3). As a result, Q̃πk

(s,ak) maintains the values of ak
in s while fixing all the rest of the actions ai to follow the
current policy πi for all i ∈ [1..K] except i = k. This im-
plies the consistency between two value functions that are
evaluated on a deterministic policy π and its projection πk,
namely, Ṽπ(s) = Ṽπk

(s), where Ṽπ(s) = Q̃π

(
s, π(s)

)
and

Ṽπk
(s) = Q̃πk

(
s, πk(s)

)
. However, it does not guarantee to

find the globally optimal policy. The following Theorem 1
shows that MB-FPI converges to the globally optimal policy
under the additional assumption that the underlying Qπ(s,a)
is monotonic.
Theorem 1 (Convergence of MB-FPI). MB-FPI converges to
a locally optimal policy in a finite number of iterations. If the
underlying Qπ(s,a) is monotonic, then MB-FPI converges
to the optimal policy π∗. =

Theorem 2 (Sample Complexity of MB-FPI). Given δ ∈
(0, 1) and ϵ > 0, the sample complexity for learning the
no-op dynamics P (S′

K+1|S,Eff(A)) and the intervention
policy σAk

(Pre(Ak) within error bound ϵ with at least prob-
ability 1 − δ are NP ≥ |SK+1||S||S\SK+1|

ϵ2 log 2|S||S\SK+1|
δ

and Nσ ≥ |Eff(Ak)||Pre(Ak)|
ϵ2 log 2|Pre(Ak)|

δ , respectively.

Np and Nσ highlight the improved sample complexity due
to the factored MDP structure as well as the non-interacting
effects between projected action spaces, compared with the
sample complexity of the full dynamics model of the non-
separable MDPs, N ≥ |S|2|A|/ϵ2 · log(2|S||A|/δ).

Action Decomposed RL Framework
In the previous section, we investigated theoretical prop-
erties around Q-function decomposition in factored action
spaces and its advantage in a tabular model-based RL setting,
which implicitly assumes that the intervention policies can
be learned in a well-structured discrete state space such that
we know how the state variables change under the influence
of actions. In practical environments, such assumptions don’t
hold if the state space is continuous, unstructured, or high-
dimensional. Therefore, we take the essential ideas developed
in the previous section, and present a practical and general
scheme that augments two components that leverages the Q-
function decomposition for the critic learning in model-free
algorithms.

First, we use the projected Q-functions Qπk
(s,ak) as a

basis for approximating the Q-function Qπ(s,a). Let’s con-
sider a function class F be comprised of the projected Q-
functions Qπk

(s,ak), F := {Qπk
(s,ak) | k ∈ [1..K]}.

A linear combination of the projected Q-functions can be
written as Q̃π(s,a) =

∑K
k=1 wkQπk

(s,ak) for some coef-
ficients {wk | k ∈ [1..K]}, and more general combinations
using neural networks could be written as

Q̃π(s,a) = F (Qπ1

(
s,a1), . . . , QπK (s,aK)

)
. (10)

The second component is a data augmentation procedure that
generates samples of the projected MDPs by using the learned
dynamics models and the reward model for training individ-
ual projected Q-functions Qπk

(s,ak). Next, we present two
concrete algorithms that modify the critic learning steps in
DQN and BCQ.

Action Decomposed DQN
One of the main challenges in DQN-style algorithms is han-
dling large discrete action spaces, especially when the size of
the action space grows in a combinatorial manner. In general,
value decomposition approaches introduce local value func-
tions and perform action selection in a local manner to avoid
enumerating all possible combinations of actions. Here, we
leverage the projected Q-functions in factored action spaces
to improve the sample efficiency of DQN.

Algorithm 2 presents our proposed modification to DQN,
which we call action decomposed DQN (AD-DQN). Given a
factored action space A = A1 × · · · × AK , the Q-network
Q̃π(s,a) in AD-DQN combines K sub Q-networks, each
corresponding to Qπk

(s,ak) with a mixer network F (Rashid
et al. 2020) that implements Eq. (10). The mixer network
could be a linear layer, or a non-linear MLP for combining the
values of Qπk

(s,ak) to yield the final outcome of Q̃π(s,a).
During training (line 11-15), we first sample a mini-batch

B from a replay buffer D. For training sub Q-networks



Algorithm 2 Action-Decomposed DQN
1: for episode = 1 to num-episodes do
2: s← initial state from environment
3: for step = 1 to episode-length do

//COLLECT SAMPLES
4: if random < ϵ then
5: draw a random action a

with probability p, draw a projected action
6: else
7: select actions [a1, . . . ,aK ] from Qπk (s,ak)

8: Sample a transition (s,a, s′, r) from environment
9: Store the sample to replay buffer D

if action was ak, store the sample to buffer Dk

10: s← s′

//TRAIN Q-NETWORKS
11: Sample a batch B from buffer D
12: for k= 1 to K do
13: Modify B to Bk to follow P (S′|S, do(Ak))

using learned dynamics and reward model
14: Train Qπk (s,ak) with Bk

15: Train Q̃π(s,a) with B

16: Update target network
//TRAIN DYNAMICS AND REWARD MODELS

17: Sample a batch B from D, train reward model
18: for k = 1 to K do
19: Sample a batch Bk from Dk, train dynamics

Qπk
(s,ak), we modify the samples in B to follow the transi-

tion dynamics P
(
S′|S, do(Ak)

)
of the projected MDPMk

with learned dynamics models (line 13). Namely, for a transi-
tion (s,a, s′, r) ∈ B, we generate (s,ak, s̃

′, r̃) by projecting
a to ak, sampling s̃′ ∼ P

(
S′|s, do(ak)

)
, and evaluating the

learned reward model, r̃ = R(s,ak, s̃
′). Next, we train the

full network Q̃π(s,a) including the mixer F that combines
the values from Qπk

(s,ak) (line 15). While collecting sam-
ples or training the networks, we select actions a by concate-
nating the projected actions [a1, . . . ,aK ] using the global
Q-network, ak ← argmaxAk

Q̃π(s,Ak).
The steps for training dynamics and reward models make

AD-DQN a model-based RL algorithm (line 17-19). When
we have access to the intervention policies, the dynamics
model can be further simplified to the single no-op dynam-
ics model P

(
S′|S,Eff(A)

)
, which is sufficient to generate

s̃′. However, it may be difficult to learn such intervention
policies in practical RL environments. Therefore, AD-DQN
learns the dynamics model for the projected MDPs using
the samples generated by projected actions (line 5), and it
generates the synthetic data (s,ak, s̃

′, r̃) from the samples
(s,a, s, r) obtained from the environment to train Qπk

(s,ak).

Action Decomposed BCQ
In off-policy RL approaches (Lange, Gabel, and Riedmiller
2012; Levine et al. 2020; Uehara, Shi, and Kallus 2022), a
behavior policy generates a batch of samples that are un-
correlated from the distributions under the evaluation policy.
Fujimoto, Meger, and Precup (2019) showed that such a dis-
crepancy induces extrapolation error that severely degrades
performance in offline as well as online environments. The

Algorithm 3 Action-Decomposed BCQ
//TRAIN DYNAMICS AND REWARD MODELS

1: Train a reward model with offline data D
2: for k = 1 to K do
3: Collect Dk with projected actions ak from D
4: Train dynamics model with Dk

5: for t = 1 to max-training do
//TRAIN Q-NETWORKS AND GENERATIVE MODELS

6: Sample a batch B from D
7: for k=1 to K do
8: Modify B to Bk to follow P (S′|S, do(Ak))
9: Train Qπk (s,ak) and Gk(ak|s) for BCQ

10: Train Qπ(s,a) and G(a|s) for BCQ
11: Update target network

mismatch between the data distribution and the target distri-
bution introduces a selection bias since the empirical mean is
taken over the batch, and it also induces a large variance if
the importance sampling method is employed in the region
where the inverse propensity score is large. Therefore, critic
learning in offline RL algorithms has an additional challenge
that stems from limitations around sample collection, which
calls for methods that improve sample efficiency. Algorithm
3 is another variation to critic learning in BCQ, which we
call action decomposed BCQ (AD-BCQ). AD-BCQ also in-
troduces small changes to the base algorithm BCQ, similar
in the way AD-DQN modifies DQN. We augment the steps
for learning the dynamics models for the projected MDPs,
and train the deep Q-networks Q̃π(s,a) that combines sub
Q-networks Qπk

(s,ak). Since BCQ is an offline RL algo-
rithm, there is no step for collecting samples. Therefore we
preprocess the whole collected data D and train the dynamics
and reward models before training the Q-networks (line 1-4).
For training the Q-networks, we sample a mini-batch B from
the dataset D, and modify it as Bk to follow the transitions
in the projected MDPs for training the projected Q-networks
Qπk

(s,ak) and the generative models Gk(aK |s) (line 7-9).
After training projected Q-networks Qπk

(s,ak), we train the
global deep Q-network including the mixer (line 10).

Experiments
We conduct experiments in 2D-point mass control environ-
ment from deep mind control suite (Tassa et al. 2018) and
MIMIC-III sepsis treatment environment (Komorowski et al.
2018; Goldberger et al. 2000; Johnson et al. 2016; Killian
et al. 2020) for evaluating AD-DQN and AD-BCQ, respec-
tively. Both RL environments are close to the real-world
problems and they also have well-defined factored action
spaces. In addition, there are the state-of-the-art algorithms
that utilizes the linear Q-function decomposition.

2D Point-Mass Control
We evaluate AD-DQN and the decoupled Q-networks
(DECQN) (Seyde et al. 2022) 4. For both algorithms, we

4We also evaluated variations of DQN that flattening the factored
action space, and they all failed to learn Q-functions due to the large
number of action labels.



(a) 9x9 Action Space (b) 17x17 Action Space (c) 33x33 Action Space

Figure 2: Comparing the values in the test environment on three action spaces. The X-axis shows 2 million steps of training
(2000 episodes) and the Y-axis is the value evaluated from a test environment. The plot aggregates 10 trials with the random
seeds from 1 to 10 for training and 1001 to 1010 for testing.

discretized the action space of the continuous actions to ap-
ply DQN-style algorithms. In 2D point-mass control task, the
state space is 4 dimensional continuous space comprised of
the position and velocity in the x and y axis on a plane , and
the action space is 2 dimensional factored action space that
defines Qπx

and Qπy
. For measuring the performance, we

evaluated average episodic returns in a separate evaluation
environment for 10 trials.

Algorithm Configurations In the experiment, we eval-
uated various algorithm configurations by varying the hy-
perparameters. Table 1 summarizes all configurations. All
configurations except for the AD-DQN-3n shares the weights
of Qπx

and Qπy
. The mixer combines the two decomposed

value functions by a simple average, passing a 3 layer MLP
with ReLu, or 2 linear layers. Data augmentation learns the
dynamics for each projected MDP and synthesize the sam-
ples for training Qπx and Qπy . All algorithm configurations
select the actions from each head of Qπx

and Qπy
and if a

mixer is used, a greedy action is selected by evaluating the
outcome of the mixer. AD-DQN-4 follows AD-DQN but it
switches to the pure model-free setting when the evaluated
value of the current greedy policy is greater than 500.

Table 1: Algorithm configurations in 2D-Point mass control
experiment.

Algorithms Weights Mixer Data aug

DECQN shared average no
DEQCN-y shared average yes
AD-DQN-1y shared ReLu yes
AD-DQN-1n shared ReLu no
AD-DQN-2y shared 2 linear layers yes
AD-DQN-2n shared 2 linear layers no
AD-DQN-3n not shared 2 linear layers no
AD-DQN-4 shared 2 linear layers yes

Results Figure 2 shows the episodic returns in 3 action
spaces by increasing the number of discrete bins from 9 to
33. First of all, DECQN can be seen as one of the algorithm
configuration of AD-DQN with a mixer network that aggre-
gates the value with a simple average without performing

the data augmentation step. Overall, we see that the weight
sharing between two projected Q-networks performs better,
and the mixer network without the non-linear ReLu activa-
tion performs the best. The best algorithm configuration is
AD-DQN-4, but other configurations also improve the speed
of convergence compared with the baseline DECQN (blue).

MIMIC-III Sepsis Treatment
We evaluate AD-BCQ and factored BCQ (Tang et al. 2022)
in the sepsis treatment environment derived from MIMIC-
III database version 1.4 (Goldberger et al. 2000; Johnson
et al. 2016; Komorowski et al. 2018). Processing the MIMIC-
III dataset, we obtained a cohort of 177,877 patients and
applied 70/15/15 split for training, validation and testing.
Each patient has 5 non-time varying demographic features
and 33 time varying features collected at 4-hour intervals over
72 hours that make up a discrete time-series. The reward is
assigned 100 for the discharged state, -100 for the mortality,
and 0 for otherwise. Among possible choices for the state
representation learning (Killian et al. 2020), we used the
approximate information state encoder (Subramanian et al.
2022) and obtained 64 dimensional state space. The action
space is comprised of two continuous variables for the total
volume of intravenous fluid and the amount of vassopressors
treated. We experimented in the action spaces by varying
the number of bins for the discretization from 5x5 to 14x14.
of those two continuous variables by dividing the quantiles
evenly, as shown in Figure 3a and 3b.

Performance Measure Let π be a policy under the evalua-
tion and πb be a observed behavioral policy in the offline data.
Given an episode (s1, a1, r1, . . . , sL, aL, rL) of length L, the
per-step importance ratio is ρt = π(at|st)/πb(at|st) and the
cumulative importance ratio is ρ1:t =

∏t
t′=1 ρt′ . Given m

episodes, the off-policy evaluation value from the weighted
importance sampling (WIS) can be computed as follows.
V̂WIS(π) = 1/m

∑m
j=1 ρ

(j)

1:L(j)/wL(j)

(∑L(j)

t=1 γt−1r
(j)
t

)
,

where wt = 1/m
∑m

j=1 ρ
(j)
1:t is the average cumulative im-

portance ratio at time step t. The superscript (j) indicates
that the length L(j), rewards r(j)t , and the accumulated impor-



(a) 5x5 Action Space (b) 14x14 Action Space (c) Model selection score 14x14

(d) Performance score 5x5 (e) Performance score 11x11 (f) Performance score 14x14

Figure 3: Figure 3a and 3b visualize the number of samples for two discrete action spaces in the training set. The offline RL
dataset is split into 70% training, 15% for validation, and 15% test sets. Figure 3c shows the test effective sample size (ESS)
score of the policy functions selected by the validation ESS score. Figure 3d–3f show the performance score evaluated from the
test set. The AD-BCQ clearly improves upon two baselines, BCQ and factored-BCQ.

tance ratio ρ
(j)
1:t are computed relative to the j-th episode. The

effective sample size (ESS) of the importance sampling can
be computed as ESS = (

∑N
t=1 wt)

2/
∑N

t=1 w
2
t , where the

weights are not normalized (Martino, Elvira, and Louzada
2016). While computing the weights, we clip the values by
1, 000 and softened π by mixing a random policy, namely
π̂(a|s) = Ia=π(s)(1−ϵ)+Ia ̸=π(s)(ϵ/|A| − 1) with ϵ = 0.01
following (Tang and Wiens 2021).

Evaluation We follow the evaluation protocol using the
open source environment offered by (Tang and Wiens 2021;
Tang et al. 2022). For all hyperparameters swept and 20
random trials, we select the best model with the highest
WIS in the validation set given a minimum ESS cutoff value
as shown in the black line in Figure 3c. Using the selected
model, we evaluate its WIS and ESS in the test set for the final
comparison. In terms of the model selection score, we see that
AD-BCQ (blue) shows the higher ESS scores compared with
the baselines. Figure 3d–3f show the test WIS scores on the
Y-axis, and the ESS score on the X-axis. The observed value
of the clinician’s policy employed to the patients is 87.75 in
the test set, shown in the black dotted lines. Since this data
set has only a single reward at the end of each episode and
the discounting factor is 1.0 for the evaluation, this value
is the average of the rewards of episodes. Each algorithm
was trained on 20 different random seeds, and we see that
AD-BCQ forms a Pareto frontier compared to the other two
algorithms, confirming that AD-BCQ learns policy functions
that dominates the performance of the baselines.

Conclusion

In this paper, we study the decomposable action structure
in factored MDPs by considering the intervention seman-
tics. The primary advantage of the Q-function decomposi-
tion approach is known to improve the sample efficiency
in the presence of large discrete action spaces, one of the
major challenges in reinforcement learning. The theoreti-
cal investigation shows that we can extend the Q-function
decomposition scheme from the fully separable MDPs to non-
separable MDPs if the effects of the projected action spaces
are non-interacting. In addition, if the underlying Q-function
is monotonic, a series of local improvements along with
the projected action spaces still returns the optimal policy.
Transferring such findings in ideal settings to a more prac-
tical DQN-style algorithms, we present action decomposed
reinforcement learning framework that improves the critic
learning procedures and demonstrated the improved sample
efficiency in realistic online and offline environments. In fu-
ture work, there are several interesting research directions.
First, we could jointly learn the causal state representations
and the causal mechanisms to further improve the sample effi-
ciency, as promised in the theoretical results. Second, a more
thorough analysis would enhance the theoretical understand-
ing of the Q-function decomposition. Last, the extension of
problem settings to the ‘unobserved confounder setting’ will
present considerable research challenges, while also enabling
wider real world applications where the full knowledge of
state spaces is lacking.
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A Missing Proofs
Proposition 1 (Projected Q-function). Given a projected MDPMk over action variables Ak, the Q-function Qπk

(s,ak) can be
recursively written as,

Qπk (s,ak)=
∑
s′

P
(
s′|s, do(ak)

)[
R(s,ak, s

′)+γQπk (s
′, πk(s

′))
]
,

where πk : S → Ak is a factored policy for Ak.

Proof. The actions in Ak only intervene on S′
k and the rest of the state variables S′ \ Eff(Ak) follow the no-op dynamics.

Namely, the state transition follows

P
(
S′
k|S, do(Ak)

)
P
(
S′
K+1|S,Eff(A)

) ∏
i∈[1..K],i̸=k

P (S′
i|S).

By definition, Qπk
(s,ak) is the value of applying action do(A0=ak) in state S0=s at time step t=0, and applying actions

do
(
At=πk(S

t)
)

for the remaining time steps t=1..∞. It is easy to rewrite

Qπk
(s,ak) =

∑
S1

P (S1|s, do(ak))R(s,ak,S
1) +

∞∑
t=1

∑
S1..St

t∏
j=0

γtP (Sj+1|Sj , do(πk(S
j)))R(St, πk(S

t),St+1) (11)

=
∑
S1

P (S1|s, do(ak))
[
R(s,ak,S

1) + γ

∞∑
t=0

γt
∑

S1..St+1

t∏
j=0

P (Sj+1|Sj , do(πk(S
j)))R(St, πk(S

t),St+1)
]

(12)

=
∑
S1

P (S1|s, do(ak))
[
R(s,ak,S

1) +

∞∑
t=1

γt
∑

S2..St+1

t∏
j=1

P (Sj+1|Sj , do(πk(S
j)))R(St, πk(S

t),St+1)
]

(13)

=
∑
S1

P (S1|s, do(ak))
[
R(s,ak,S

1) + γQπk
(S1, πk(S

1))
]

(14)

=
∑
s′

P (s′|s, do(ak))
[
R(s,ak, s

′) + γQπk
(s′, πk(s

′))
]
, (15)

as desired.

Theorem 1 (Convergence of MB-FPI). MB-FPI converges to a locally optimal policy in a finite number of iterations. If the
underlying Qπ(s,a) is monotonic, then MB-FPI converges to the optimal policy π∗. =

Proof. The proof follows the convergence of the policy iteration algorithm.

convergence of policy evaluation We show that the policy evaluation steps in line 4-7 converges to Qπ(s,ak). Note that
Qπ(s,ak) is the value of applying action [π1s), . . . , πk−1(s),ak, πk+1(s), . . . , πK(s)] in s followed by the actions following π
in the subsequent states. Let π be the policy under the evaluation. We can see that P (S′|S,Ak) in line 5 is P

(
S′|S, do(A)

)
since

P (S′|S,Ak) = I[S′
k = σAk

(S)]

K∏
i=1,i̸=k

I[S′
i = σπi(S)(S)]P

(
S′
K+1|S,Eff(A)

)
= I[Eff(A) = σA

(
Pre(A)

)
]P

(
S′
K+1|S,Eff(A)

)
= P

(
S′|S, do(A)

)
.

Then, we can rewrite Q̃πk
(s,ak) in Definition 2 as

Q̃πk
(s,ak) =

∑
s′

P
(
s′|s, do(a)

)
[R(s,a, s′) + γQ̃πk

(s,a)]

=
∑
s′

P
(
s′|s, do(a)

)
[R(s,a, s′) + γQπ(s,a)]

= Qπ(s,a),

where ak is the projected action inMk and a = [π1(s), . . . , πk−1(s),ak, πk+1(s), . . . , πs)] is the action inM that follows π,
yet it replaces πk(s) with ak. The policy evaluation in the factored policy iteration algorithm is equivalent to the policy evaluation
in the synchronous policy iteration algorithm. The only difference is that we restrict the Q-function to vary only at the projected
action variables Ak instead of all action variables A. Therefore, we can conclude that the policy evaluation in the factored policy
iteration algorithm converges.



local convergence of policy improvement The convergence of the policy improvement step (line 8-10) follows from the fact
that the policy improvement step changes the factored policy π = [π1, . . . , πk] per block-wise update of the action variables in a
finite space MDP (line 8).

global convergence of policy improvement If the underlying Qπ(s,a) is monotonic (Rashid et al. 2020), then the block-wise
improvement is equivalent to the joint improvement, Qπk

(
s, πk(ak)

)
> Qπk

(s,ak) ⇐⇒ Qπ

(
s, πk(a)

)
> Qπ(s,a). For any

iteration of the policy improvement in the factored policy iteration algorithm, there exists an equivalent update in the policy
iteration algorithm due to the monotonicity of the Q-function. Therefore, the policy improvement step reaches the same fixed
point that would have reached by the non-factored policy iteration.

Theorem 2 (Sample Complexity of MB-FPI). Given δ ∈ (0, 1) and ϵ > 0, the sample complexity for learning the no-op
dynamics P (S′

K+1|S,Eff(A)) and the intervention policy σAk
(Pre(Ak) within error bound ϵ with at least probability 1− δ are

NP ≥ |SK+1||S||S\SK+1|
ϵ2 log 2|S||S\SK+1|

δ and Nσ ≥ |Eff(Ak)||Pre(Ak)|
ϵ2 log 2|Pre(Ak)|

δ , respectively.

Proof. Given K random variables X1, . . . , XK with the domain Xj ∈ [0, 1], and N independent samples Xj
1 , X

j
2 , . . . , X

j
N , let

Sj
N =

∑N
i=1 X

j
i and ϵ > 0. Then,

P (|Sj
N − E[Sj

N ]/N | ≥ ϵ) ≤ 2 exp (−2Nϵ2),

by Hoeffding’s inequality, and

P (∪Kj=1|S
j
N/N − E[Sj

N ]/N | ≥ ϵ) ≤
K∑
j=1

P (|Sj
N/N − E[Sj

N ]/N | ≥ ϵ) ≤ 2K exp (−2Nϵ2),

by union bound.
We can restate the above inequality as, with probability 1 − δ, |Sj

N/N − E[Sj
N ]/N | ≤ ϵ for all j = 1..K if ϵ =√

1/(2N) log (2K/δ) given N and δ or N ≥ 1/(2ϵ2) log (2K/δ) given ϵ > 0 and δ.
Given a discrete probability distribution P (X|Y), we can show the sample complexity of learning P in the tabular model-

based RL setting (Agarwal et al. 2019), N ≥ |X||Y|/ϵ2 · log(2|Y|/δ). For all vectors Y, we bound the error of the probability
parameters by

P (∪y|P̂ (Xi|y)− P (Xi|y)| ≥ ϵ) ≤ |Y|P (|P̂ (Xi|y)− P (Xi|y)| ≥ ϵ) ≤ 2|Y| exp(−2Nϵ2).

For each Xi, the number of samples is at least 1/(2ϵ2) log(2|Y|/δ), and we need XN samples for estimating all parameters is
N ≥ |X||Y|/ϵ2 log(2|Y)/δ). The desired results can be obtained by adjusting the sets X and Y appropriately, i.e., X = S′

K+1

and Y = S ∪ Eff(A).

B Experiment Details
B.1 Computing Resources
We used a cluster environment with 2 to 4 CPUs per each run.

B.2 2D Point-Mass Control
Algorithm Hyperparameters

Hyperparameters The following hyperparamters are chosen by grid search.

• Adam optimizer learning rate: 1e−4

• discount: 0.99
• target update frequency: 100 steps
• target network update rate (τ): 1.0
• no-op fraction probability: 0.1
• start ϵ: 1.0
• end ϵ: 0.1
• batch size: 128
• learning starts: 20 episodes
• model train data size: 200 episodes



Q-networks
• AD-DQN:

class ADDQN(nn.Module):
def __init__(self, state_size, action_size, num_bins):

super().__init__()
self.action_size = action_size
self.num_bins = num_bins
self.q = nn.Sequential(

nn.Linear(state_size, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, num_bins + num_bins),

)
self.mixer = nn.Sequential(

nn.Linear(self.action_size, 64),
nn.ReLU(),
nn.Linear(64, 1)

)
self.apply(self._init_weights)

def forward(self, x, actions):
actions = actions.reshape(-1, 2).to(torch.int64)
x_mask = torch.nn.functional.one_hot(actions[:, 0], num_classes=self.num_bins)
y_mask = torch.nn.functional.one_hot(actions[:, 1], num_classes=self.num_bins)
action_mask = torch.cat([x_mask, y_mask], dim=1)
z = self.q(x)
z = z * action_mask
z = self.mixer(z)
return z

• DECQN:

class DecQNetwork(nn.Module):
def __init__(self, state_size, action_size, num_bins):

super().__init__()
self.network = nn.Sequential(

nn.Linear(state_size, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, action_size),
Reshape(-1, action_size//num_bins, num_bins)

)

def forward(self, x):
return self.network(x)

Models
• Dynamics:

class DynamicsModelDelta2l(nn.Module):
def __init__(self, state_size=2, output_size=1):

super().__init__()
self.network = nn.Sequential(

nn.Linear(state_size, 64),
nn.Linear(64, 64),
nn.Linear(64, output_size)

)
self.output_size = output_size



def forward(self, x):
return self.network(x)

def evaluate(self, x, prev, noise_variance=0.0001):
with torch.no_grad():

output = self(x)
noise = np.random.normal(0, np.sqrt(noise_variance))
noise = torch.tensor([noise], dtype=torch.float32).to(output.device)
return prev + output*(1 + noise)

• Rewards:

class RewardModel(nn.Module):
def __init__(self, state_size):

super().__init__()
self.network = nn.Sequential(

nn.Linear(state_size*2 + 2, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 64),
nn.ReLU(),
nn.Linear(64, 1)

)

def forward(self, x):
return self.network(x)

B.3 MIMIC-III Sepsis Treatment
Formulation of RL Environment
• The sepsis treatment environment (Komorowski et al. 2018) was derived from MIMIC-III database version 1.4 (Goldberger

et al. 2000; Johnson et al. 2016).
• The sepsis treatment reinforcement learning environment from MIMIC-III database was first formulated by Komorowski

et al. (2018). Killian et al. (2020) enhanced the formulation by improving the representation learning. Tang and Wiens (2021)
studied an approach for offline RL evaluation for healthcare settings. Tang et al. (2022) showed overall evaluation protocol
that we follow using the open source environment offered by Tang et al. (2022) 5.

RL Environment
• We used the code offered by Killian et al. (2020) with the open sourced projects to process the MIMIC-III database 6.
• The original code was applied to MIMIC-III version 1.3 and we see that applying the same code to the version 1.4 results in

slightly different statistics.
• Tang et al. (2022) modified action space of (Komorowski et al. 2018) and also modified the reward that the mortality gets 0

reward. We are reverting this change such that the reward is 100 for discharged patients, -100 for the mortality and 0 for all
other patients.

• We obtained a cohort of 177,877 patients and applied 70/15/15 split for training, validation, and testing. This split is exactly
the same as (Tang et al. 2022) since our baseline algorithms are BCQ algorithms in (Tang et al. 2022)

• Each patient has 5 non-time varying demographic features and 33 time varying features collected at 4-hour intervals over 72
hours that make up a discrete time-series of the maximum length 20. Some episodes are of length much less than 20 if the
episode was terminated either by recovery or mortality. The index 0 of the episode is the starting state and the index 19 is the
largest step number for the final state.

• The state encoding is done by the approximate information state encoder (AIS) (Subramanian et al. 2022), which gives 64
continuous state variables.

• The action space is comprised of two continuous variables for the total volume of intravenous fluid and the amount of
vassopressors treated.

• We experimented on action spaces having different discretizations, ranging from 5x5, 10x10, 11x11, 13x13, and 14x14.
5https://github.com/MLD3/OfflineRL_FactoredActions
6https://github.com/MLforHealth/rl_representations/, https://github.com/microsoft/mimic_sepsis



Action Spaces Tang et al. (2022) modified the action space from the original space by Komorowski et al. (2018). We follow
the discretization by Komorowski et al. (2018), by dividing the histogram below with the equally spaced quantiles.

For example, the bins for the action space of size 5 is [0, 0.07, 0.2, 0.38, 50] for the vassopressor dose, and [0.02, 48.0, 150.0,
492.5, 9992.67] for the IV fluid dose. The binds for the action space of size 14 is [0.00, 0.03, 0.04, 0.06, 0.09, 0.12, 0.17, 0.20,
0.23, 0.30, 0.45, 0.56, 0.90, 50] for the vassopressor dose and 0.02, 20, 40, 40, 55.92, 80.08, 120, 186.25, 270, 380, 512.50,
728.98, 1110, 9992.67 for the IV fluids dose.

Applying finer grained discretization leads to larger action spaces as follows. The 0-th actions are the no-op action.

(a) Action space of 5x5 discretization (b) Action space of 10x10 discretization (c) Action space of 11x11 discretization

(d) Action space of 13x13 discretization (e) Action space of 14x14 discretization

Figure 4: Discretized action spaces ranging from 5x5 to 14x14

Evaluation Methods

WIS and ESS Let π be a policy under evaluation and πb be a observed behavioral policy in the offline data. Given an episode
(s1, a1, r1, . . . , sL, aL, rL) of length L, the per-step importance ratio is ρt =

π(at|st)
πb(at|st and the cumulative importance ratio is



ρ1:t =
∏t

t′=1 ρt′ . Given m episodes, the off-policy evaluation value from the weighted importance sampling can be computed as
follows.

V̂WIS(π) =
1

m

m∑
j=1

ρ
(j)

1:L(j)

wL(j)

( L(j)∑
t=1

γt−1r
(j)
t

)
, (16)

where wt =
1
m

∑m
j=1 ρ

(j)
1:t is the average cumulative importance ratio at time step t. The superscript (j) indicates that the length

L(j), rewards r(j)t , and the accumulated importance ratio ρ
(j)
1:t are computed relative to the j-th episode. The effective sample

size of the importance sampling can be computed as follows (Martino, Elvira, and Louzada 2016).

ESS =
(
∑N

t=1 wt)
2∑N

t=1 w
2
t

, (17)

where the weights are not normalized. While computing the weights, we clip the values by 1, 000 and softened π by mixing a
random policy, namely π̂(a|s) = Ia=π(s)(1− ϵ) + Ia̸=π(s)(

ϵ
|A|−1 ) with ϵ = 0.01 following (Tang and Wiens 2021).

• The offline dataset was split into the train, validation, and test sets with 70, 15, and 15 proportions (12989, 2779, and 2791
patients).

• Given the dataset, we extract the observed policy (behavior policy) using the k nearest neighbor classifier implemented in
(Pedregosa et al. 2011), and we used the default parameter except for K = 100. The stochastic observed policy can be found
by predicting the probability of selecting each action in each state encoded by AIS.

• The observed values (the average discounted accumulated rewards) are 87.74, 87.98, and 87,75 for the train, validation,
and test set. Since this data set has only a single reward at the end of each episode and the discounting factor is 1.0 for the
evaluation, the value is the average of the rewards of episodes.

• For all hyperparameters swept and random trials, we select the best model with the highest validation WIS given ESS cutoff
value. Using the selected model, we evaluate its test WIS and test ESS for the final comparison.

Algorithm Hyperparameters

BCQ hyperparameters
• Adam optimizer learning rate: 3e−4

• weight decay: 1e−3

• discount: 0.99
• target update frequency: 1
• Q-learning learning rate (τ): 0.005
• Q-learning target update: Polyak update
• BCQ thresholds: [0.0, 0.01, 0.05, 0.1, 0.3, 0.5, 0.75, 0.9999]

Q-networks
• BCQ: state-dim=64, hidden-dim=128, action-dim=[52, 102, 112, 132, 142]

class BCQ_Net(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):

super().__init__()
self.q = nn.Sequential(

nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim),

)
self.pi_b = nn.Sequential(

nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim),

)



def forward(self, x):
q_values = self.q(x)
p_logits = self.pi_b(x)
return q_values, F.log_softmax(p_logits, dim=1), p_logits

• BCQ factored: state-dim=64, hidden-dim=128, action-dim=[5 · 2, 10 · 2, 11 · 2, 13 · 2, 14 · 2]

class BCQf_Net(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):

super().__init__()
self.q = nn.Sequential(

nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim), # vaso + iv

)
self.pi_b = nn.Sequential(

nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim), # vaso + iv

)

def forward(self, x):
q_values = self.q(x)
p_logits = self.pi_b(x)
return q_values, F.log_softmax(p_logits, dim=-1), p_logits

• Action Decomposed BCQ: state-dim=64, hidden-dim=128, action-dim=[5, 10, 11, 13, 14]

class BCQad_Net(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim=64):

super().__init__()

self.q_embedding = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
# nn.ReLU(),
# nn.Linear(hidden_dim, hidden_dim),

)
self.Q1 = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)

)
self.Q2 = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)

)
self.Q = nn.Sequential(

nn.Linear(action_dim + action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),



nn.ReLU(),
nn.Linear(hidden_dim, action_dim+action_dim)

)
self.pi_embedding = nn.Sequential(

nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
# nn.ReLU(),
# nn.Linear(hidden_dim, hidden_dim),

)
self.pi1 = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)

)
self.pi2 = nn.Sequential(

nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)

)
self.pi = nn.Sequential(

nn.Linear(action_dim + action_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim+action_dim)

)

def forward(self, x, mode):
if mode == "vaso":

q = self.q_embedding(x)
q_values = self.Q1(q)
p = self.pi_embedding(x)
p_logits = self.pi1(p)
return q_values, F.log_softmax(p_logits, dim=-1), p_logits

if mode == "iv":
q = self.q_embedding(x)
q_values = self.Q2(q)
p = self.pi_embedding(x)
p_logits = self.pi2(p)
return q_values, F.log_softmax(p_logits, dim=-1), p_logits

if mode == "mix":
with torch.no_grad():

q = self.q_embedding(x)
q_values_1 = self.Q1(q)
q_values_2 = self.Q2(q)

q_values = self.Q(torch.cat([q_values_1, q_values_2], dim=1))

with torch.no_grad():
p = self.pi_embedding(x)
p_logits1 = self.pi1(p)
p_logits2 = self.pi2(p)

p_logits = self.pi(torch.cat([p_logits1, p_logits2], dim=1))



return q_values, F.log_softmax(p_logits, dim=-1), p_logits

if mode == "eval":
with torch.no_grad():

q = self.q_embedding(x)
q_values_1 = self.Q1(q)
q_values_2 = self.Q2(q)
q_values = self.Q(torch.cat([q_values_1, q_values_2], dim=1))

p = self.pi_embedding(x)
p_logits1 = self.pi1(p)
p_logits2 = self.pi2(p)
p_logits = self.pi(torch.cat([p_logits1, p_logits2], dim=1))

return q_values, F.log_softmax(p_logits, dim=-1), p_logits


