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Abstract001

Humans acquire syntactic constructions like002
filler–gap dependencies from limited and often003
noisy input. Can neural language models do004
the same? We investigate this question by eval-005
uating GPT-2 models trained on child-directed006
input from the BabyLM Challenge. Our experi-007
ments focus on whether these “baby” language008
models acquire filler–gap dependencies, gen-009
eralize across constructions, and respect struc-010
tural constraints such as island effects. We ap-011
ply a suite of syntactic constructions to four012
models trained on child language, including013
two base models (trained on 10M and 100M to-014
kens) and two well-performing models from the015
BabyLM Challenge (ConcreteGPT and Bab-016
bleGPT). We evaluate model behavior using017
wh-licensing scores, flip tests, and grammati-018
cality contrasts across four constructions. Re-019
sults show that BabyLM-scale models partially020
acquire filler–gap dependencies but often fail021
to generalize or fully capture island constraints.022

1 Introduction023

Babies are remarkable learners, but how they do so024

remains a central question in language acquisition025

research (Yang, 2016). A long-standing debate con-026

cerns whether the linguistic input children receive027

is sufficient to explain the grammatical knowledge028

they develop. According to the Poverty of the Stim-029

ulus (POS) argument, children’s input is too sparse030

and underspecified to support acquisition of cer-031

tain abstract structures, thus innate learning biases032

are required (Chomsky, 1968, 1973, 1980; Pearl,033

2022). However, this remains an open debate, with034

some arguing that domain-general, input-driven035

learning suffices (Lewis and Elman, 2001), while036

others argue that domain-specific innate knowledge037

is necessary (Yang, 2004).038

A particularly relevant test case for this debate039

involves structural dependencies like filler-gap con-040

structions. These involve a filler (e.g., a wh-phrase041

such as who and what) that licenses a gap – an 042

empty syntactic position often spanning interven- 043

ing structure (e.g., Who did the intern say _ left 044

the meeting early?). Such dependencies are con- 045

strained by certain syntactic structures – for exam- 046

ple, they can be blocked by certain syntactic is- 047

lands (e.g., *What did he leave [before she finished 048

_]island?) (Ross, 1967; Huang, 1982). Substantial 049

research shows that human learners acquire these 050

patterns during early childhood with limited input 051

exposure (Omaki et al., 2015; Gagliardi et al., 2016; 052

Atkinson et al., 2018; Perkins and Lidz, 2021). 053

Prior work has shown that RNN-based language 054

models trained on vast amounts of data can demon- 055

strate sensitivity to these dependencies and even 056

some island effects across multiple languages, 057

though their generalizations often remain shal- 058

low and construction-specific (Wilcox et al., 2018; 059

Bhattacharya and van Schijndel, 2020; Chaves, 060

2020; Ozaki et al., 2022; Kobzeva et al., 2023; 061

Howitt et al., 2024). Meanwhile, recent studies 062

have begun comparing neural language models 063

(LMs) to human language acquisition on basic 064

syntactic patterns that require hierarchical repre- 065

sentation of the sentence structures, such as sub- 066

ject–verb agreement and yes/no question formation 067

(Yedetore et al., 2023; Evanson et al., 2023). What 068

remains less understood is whether LMs can ac- 069

quire more complex, non-local generalizations like 070

filler–gap dependencies from small datasets that are 071

developmentally plausible, especially in contexts 072

that involve structural constraints such as islands. 073

Lan et al. (2024) supports the POS argument by 074

showing that models trained on limited data fail to 075

learn complex long-distance dependencies like par- 076

asitic gaps, likely due to insufficient input richness, 077

suggesting a role for innate biases in human learn- 078

ing. However, their focus on rare constructions 079

leaves open whether such models can generalize to 080

core filler–gap dependencies and show human-like 081
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sensitivity to structural constraints such as island082

effects. This motivates the following research ques-083

tions addressed in our study:084

1. Can LMs trained on child-directed input ac-085

quire filler-gap dependencies?086

2. Do they exhibit human-like sensitivity to struc-087

tural constraints, such as island effects?088

3. What do their successes and failures tell us089

about the nature of linguistic generalization?090

To answer these questions, we build a suite091

of syntactic evaluations inspired by prior work092

(Wilcox et al., 2018; Ozaki et al., 2022; Howitt093

et al., 2024), covering four constructions that test094

key aspects of filler-gap knowledge: gap distance,095

multiple gaps, and two types of islands. We ap-096

ply these to four GPT-2 models trained on datasets097

from the BabyLM challenge (Warstadt et al., 2023,098

https://babylm.github.io/index.html): two099

base models (trained on 10M and 100M tokens),100

and two competitive models from the BabyLM101

Challenge (henceforth BabyLM models), Con-102

creteGPT (Capone et al., 2024) and BabbleGPT103

(Goriely et al., 2024).1 A vanilla pre-trained GPT-104

2 serves as a high-resource benchmark. Our key105

findings are as follows:106

• No model, including the vanilla pre-trained GPT-107

2, captures the full structural generalizations con-108

sistently across constructions.109

• All BabyLM models (10M or 100M words)110

show partial acquisition of filler-gap dependen-111

cies. Models trained on 100M tokens outperform112

10M-token models.113

• GPT-2-100M and BabbleGPT learn gap-distance114

dependencies and some island effects (especially115

for wh-islands), but fail to generalize consis-116

tently across constructions.117

• ConcreteGPT, despite its smaller scale, shows118

evidence of partially capturing the bijectivity of119

filler-gap dependencies for several constructions.120

2 Methodology121

This project investigates the acquisition of filler-122

gap dependencies by GPT models trained on child-123

1We focus on standard decoder-only architectures to main-
tain consistency in our comparisons, and abstract away from
hybrid models such as GPT-BERT (Charpentier et al., 2025).

language data. Our methodology builds upon es- 124

tablished work assessing syntactic generalization 125

in LMs (Wilcox et al., 2018; Ozaki et al., 2022; 126

Howitt et al., 2024). 127

2.1 “Baby” Language Models 128

To approximate the limited and sparse linguistic 129

input of early human language acquisition, we 130

trained GPT-2-small models (Radford et al., 2019) 131

on datasets from the BabyLM challenge (Warstadt 132

et al., 2023), which consist of 10M and 100M En- 133

glish words, with a large proportion of child and 134

child-directed language (Charpentier et al., 2025, 135

https://babylm.github.io/). These models 136

serve as base models to assess the performance 137

of a standard GPT-2 architecture trained on devel- 138

opmentally plausible amounts of data. Notably, 139

these models were trained using standard training 140

procedures without specialized techniques, reflect- 141

ing the limited and unstructured input characteristic 142

of early language acquisition in children. 143

In addition to these base models, we include 144

two well-performing GPT-2 models from the 2024 145

BabyLM challenge (Hu et al., 2024): ConcreteGPT 146

(Capone et al., 2024) and BabbleGPT (Goriely 147

et al., 2024). ConcreteGPT, trained on the 10M- 148

word dataset, incorporates a curriculum learning 149

approach. By utilizing concreteness ratings from 150

Brysbaert et al. (2014), training data was ordered to 151

introduce simpler, more concrete language patterns 152

before progressing to more abstract structures, to 153

mirror the developmental trajectory of human lan- 154

guage acquisition. BabbleGPT represents one of 155

the most advanced models trained on the BabyLM 156

100M-word dataset. An innovative input trans- 157

formation approach of converting text data into 158

phoneme streams was applied, simulating the early 159

stages of human language acquisition where chil- 160

dren process spoken language before written text. 161

The inclusion of both the base GPT-2 models 162

and the competitive BabyLM models of similar ar- 163

chitecture provides a valuable comparison of how 164

training data size and learning strategies influence 165

model performance on syntactic tasks. While the 166

base models offer insight into the general behav- 167

ior of LMs trained on child-language data, the 168

BabyLM models bring in specialized optimiza- 169

tion approaches. These models represent some of 170

the best results achievable with constrained child- 171

language data and offer a clear benchmark for un- 172

derstanding the potential and limitations of typ- 173
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ical LMs – GPT-2 specifically – in this context.174

Finally, we also include an unconstrained GPT-2175

model, pre-trained on a 40GB corpus, as the high-176

performance upper bound.2177

All models and tokenizers were trained from178

scratch using Hugging Face’s GPT-2 implementa-179

tion (Wolf et al., 2020), adhering to established180

model specifications (Sennrich et al., 2015; Rad-181

ford et al., 2019; Brown et al., 2020). See Ap-182

pendix A for details on training configurations.183

2.2 Experimental Design184

We adopt a 2×2 factorial design following Wilcox185

et al. (2018) and Wilcox et al. (2023) to test whether186

GPT-style language models, when trained with187

child-directed speech data, are capable of acquiring188

filler-gap dependencies. In particular, we manipu-189

late the presence of a wh-licensor (i.e., a filler) and190

the presence of a syntactic gap in each sentence.191

The following shows the basic filler-gap licens-192

ing conditions (Wilcox et al., 2018):193

1. [−FILLER, −GAP]: I know that the lion de-194

voured a gazelle at sunrise.195

2. [+FILLER, −GAP]: *I know what the lion196

devoured a gazelle at sunrise.197

3. [−FILLER, +GAP]: *I know that the lion de-198

voured [___] at sunrise.199

4. [+FILLER, +GAP]: I know what the lion de-200

voured [___] at sunrise.201

Based on the basic filler-gap licensing condi-202

tions, we designed a suite of syntactic evaluation203

items to probe whether language models gener-204

alize filler-gap dependencies across distinct con-205

structions. Following Wilcox et al. (2018, 2023),206

we investigate four of the most-studied syntactic207

constructions known to influence how filler-gap de-208

pendencies are processed by humans (Ross, 1967;209

Huang, 1982; Wilcox et al., 2018, 2023): gap dis-210

tance, double gaps, wh-islands, and adjunct is-211

lands. Each construction includes 20 items. This212

resulted in 5 sub-datasets: gap-distance-obj213

and gap-distance-PP for gap distance sen-214

tences with different gap positions, double-gaps,215

wh-islands, and adjunct-islands. In particular,216

we focus on structural factors like filler-gap dis-217

tance length, presence of multiple gaps, and island218

2We use the GPT-2 model hosted on Hugging Face under
the MIT License and comply with its terms of use and intended
use.

constraints. Full details of the testing materials are 219

provided in Appendix B. 220

3 Evaluation Metrics 221

The primary evaluation metric is surprisal, calcu- 222

lated as: St = − log2 P (wt | w1, w2, . . . , wt−1) 223

where wt is the target word at position t, and the 224

probability is conditioned on the preceding con- 225

text w1, w2, . . . , wt−1. We calculate surprisals at 226

critical regions of the sentences. This includes lo- 227

cal surprisal measuring the post-gap region, and 228

global surprisal assessing effects across the whole 229

embedded clause (Ozaki et al., 2022). Wilcox et al. 230

(2018) consistently measured local surprisal in the 231

region after the potential gap. Following Wilcox 232

et al. (2019b); Ozaki et al. (2022), we adopt a dif- 233

ferent practice to account for surprisal spikes of il- 234

licitly filled gaps that occur at the filled gap region. 235

For [-gap] sentences, local suprisal is measured at 236

the filled gap position, while for [+gap] sentences 237

it is measured at the post-gap region. Additionally, 238

global suprisal is normalized by clause length to 239

control for possible confounding effects as [+gap] 240

sentences tend to be shorter, resulting in lower total 241

suprisals (Ozaki et al., 2022). These metrics are 242

measured and tested to examine the co-occurrence 243

expectations of fillers and gaps more exhaustively. 244

We use the wh-licensing score (aka. wh- 245

licensing interaction, licensing interaction, and 246

filler-gap interaction, Wilcox et al., 2018) to mea- 247

sure the degree to which the presence of a wh- 248

licensor reduces the surprisal at the gap position: 249

[S(+filler, -gap)− S(-filler, -gap)] 250

− [S(+filler, +gap)− S(-filler, +gap)] 251

where S stands for surprisal. This compares the 252

surprisal values across the four combinations of 253

[+filler/-filler] and [+gap/-gap] conditions. An ide- 254

alized wh-licensing score would show a large posi- 255

tive difference in the [-gap] condition and a large 256

negative difference in the [+gap] condition, sug- 257

gesting that the model expects a gap when a filler 258

is present and penalizes unlicensed gaps. 259

Following Wilcox et al.’s (2018) experimental 260

setup, we fit mixed-effects linear regression mod- 261

els on filler-gap conditions to predict the two sur- 262

prisal metrics mentioned above, including random 263

intercepts by sentence sets. This is to determine 264

by statistical significance whether the model has 265

correctly acquired the rules and constraints sur- 266

rounding filler-gap dependencies. The fixed effect 267
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structure includes filler-gap conditions and struc-268

tural conditions (e.g., filler-gap distance for the269

gap distance construction, gap count for the dou-270

ble gap construction) for basic construction types,271

and filler-gap conditions and island types for island272

constructions. For double gap constructions, since273

potential gap positions can be at either the subject274

position or the object position, or both, we do not275

measure local surprisal for this construction as the276

target regions for measurement are inconsistent.277

We adopt two additional tests proposed by Ozaki278

et al. (2022): the flip test and the grammatical-279

ity division test. The flip test requires that the280

surprisal difference (between [+filler] and [–filler]281

conditions) flips its direction depending on the pres-282

ence of a gap. That is, the filler should reduce sur-283

prisal in the [+gap] condition (i.e., the presence of284

the filler helps reduce the uncertainty at the gap),285

but increase surprisal in the [–gap] condition (i.e.,286

the filler increases uncertainty when there is no gap287

to license). It specifically tests for the bijectivity288

of filler-gap dependencies. The grammaticality di-289

vision test, on the other hand, directly compares290

the surprisal of grammatical sentences with that of291

their ungrammatical counterparts, to see whether292

the model assigns lower surprisal to grammatical293

configurations.294

Both of these tests are performed through mixed-295

effects linear regression modeling. In the flip tests,296

surprisal is predicted on [filler] for [+gap] and [-297

gap] sentences separately; in the grammaticality298

division test, we assign a grammaticality variable299

[gram] to all sentences and predict surprisal on300

[gram], while treating [+gram] as the baseline. For301

basic constructions, we assign [gram] depending on302

whether the numbers of fillers and gaps satisfy the303

one-to-one relationship of filler-gap dependencies;304

for island constructions, the presence of islands305

blocks the filler-gap dependency, rendering [+filler,306

+gap] sentences ungrammatical. The grammatical-307

ity division test would only be conducted on global308

surprisal, since the location where the local sur-309

prisal is measured in a sentence now confounds the310

presence of gaps (Ozaki et al., 2022).311

4 Primary Results312

We evaluate the models’ learning of filler-gap313

dependencies through calculating wh-licensing314

scores, and determining statistical significance315

through mixed effects modeling tests. All results re-316

ported are statistically significant (p < 0.05) unless317

stated otherwise. 318

4.1 Licensing-Gap Interaction 319

As our threshold model, GPT-2 demonstrates ex- 320

pected licensing behavior in most of the construc- 321

tions. Learning of the dependency is observed 322

with gap-distance-obj and gap-distance-PP, 323

both locally and globally. However, treating gap 324

distance length as a continuous variable, we see 325

that gap distance length poses negative effects on 326

wh-licensing score for gap-distance-obj, when 327

measuring global surprisal (β = 0.003, p < 0.01). 328

This indicates that intervening material length af- 329

fects the model’s judgment of filler-gap licensing 330

relationships, with longer intervening material ren- 331

dering a gap more surprising even with the presence 332

of a filler. Although exhibiting similar patterns of 333

decreasing wh-licensing scores as length increases 334

in other conditions, as seen in Figure 1 and Figure 335

2, the model remains statistically robust to inter- 336

vening material length for all other metrics and gap 337

positions in this construction. Measuring global 338

surprisal for double-gaps, we discover that when 339

a filler is present, GPT-2 finds the absence of a cor- 340

responding gap more surprising than licensed sin- 341

gle gaps, although the model does not find double 342

gaps more surprising in a statistically significant 343

manner (p = 0.553). 344

Results also show that GPT-2 has learned island 345

constraints to a certain extent. When island con- 346

straints are present, wh-licensing scores are ex- 347

pected to decrease. With wh-islands, island con- 348

straints lead to lower wh-licensing scores when 349

compared to the non-island baseline, in all condi- 350

tions. As for adjunct-islands, we see reduction 351

in the wh-licensing score of the adjunct-back con- 352

dition when compared to the object condition base- 353

line, in both post-gap and embedded clause regions. 354

We also see reduction in the wh-licensing score 355

of the adjunct front condition when compared to 356

the object condition baseline, but results are only 357

significant when measured in the embedded clause 358

region (local: p = 0.06, global: p < 0.01). 359

The trained models in general show evidence for 360

partial filler-gap dependency representation, possi- 361

bly due to limitations of the training corpora sizes. 362

GPT-2-10M does not learn the filler-gap depen- 363

dency with statistical significance at all, for any of 364

the constructions. GPT-2-100M acquires the de- 365

pendency for gap-distance-obj both locally and 366

globally, while staying robust to different lengths 367
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Figure 1: Wh-Licensing Score with Local Surprisals. Each row represents the results for one construction: (a)
gap-distance-obj, (b) gap-distance-pp, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with statistical
significance (robust to intervening factors and capturing island constraints) are marked by asterisks.

Figure 2: Wh-Licensing Score with Global Surprisals. Each row represents the results for one construction: (a)
gap-distance-obj, (b) gap-distance-pp, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with statistical
significance (robust to intervening factors and capturing island constraints) are marked by asterisks.
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of intervening material. For double-gaps, GPT-368

2-100M exhibits licensing behavior for global sur-369

prisals with licensed single gaps being less sur-370

prising than the lack of a gap when given a filler.371

The presence of illicit double gaps does not pose372

statistically significant effects on surprisal values373

(p = 0.817). However, through directly plotting374

out surprisals, we see that mean surprisal increases375

with the number of illicit gaps for both the GPT-376

2-10M and GPT-2-100M models (Figure 3). For377

wh-islands, GPT-2-100M is shown to have ac-378

quired the filler-gap dependency alongside with379

island constraints globally. It also shows usual380

licensing behavior for global adjunct-islands,381

however failing to recognize island constraints.382

Comparing the two BabyLM models with383

our base models, we see slight improvement in384

filler-gap dependency capabilities on the 10M385

scale. While GPT-2-10M shows no statisti-386

cally significant evidence in acquiring any of387

the constructions, its 10M-word counterpart Con-388

creteGPT displays usual licensing behavior for389

global wh-islands (p < 0.05) but ignores island390

constraints. Similar to GPT-2-100M, BabbleGPT391

acquires gap-distance-obj (local: p < 0.01,392

global: p < 0.01) but not gap-distance-PP. With393

island constructions, it displays usual licensing be-394

havior globally for wh-islands and both locally395

and globally for adjunct-islands, again com-396

pletely overlooking island constraints.397

4.2 Flips398

In flip tests, positive signs of correct licensing be-399

havior would be for the presence of a filler to ren-400

der a sentence more surprising with [-gap] sen-401

tences, and less surprising with [+gap] sentences.402

In the case of island constraints, island sentences403

should be viewed as more surprising under the404

[+filler, +gap] condition, when compared to non-405

island baselines.406

The threshold GPT-2 model shows good per-407

formance in flip tests in general. The GPT-2408

model passes the flip test for gap-distance-obj409

and gap-distance-PP with local surprisal. This410

holds true when measuring global surprisal for411

gap-distance-obj, but does not hold true for412

gap-distance-PP. With double-gaps, when413

given a filler, the model finds gapless sentences414

more surprising, which is the expected behavior.415

In the [+gap] direction, it however does not find416

licensed gaps less surprising, or illicit double gaps417

more surprising. In the case of wh-islands, the 418

GPT-2 model passes the flip test in both the post- 419

gap and embedded clause regions. Under the 420

[+filler, +gap] condition, island sentences are found 421

to be more surprising than baseline non-island 422

sentences, showing that the model is aware of is- 423

land constraints. Results with adjunct-islands 424

are rather mixed, with the model failing to cap- 425

ture the [+gap] direction of the bijectivity globally. 426

When considering island constraints for [+filler, 427

+gap] sentences, it finds the adjunct-back condi- 428

tion more surprising than the non-island baseline, 429

while in the adjunct-front condition islandhood 430

does not pose any significant effects on local sur- 431

prisal (p = 0.057). 432

For the trained models, we can see that while the 433

GPT-2-10M did not fully acquire filler-gap depen- 434

dencies, it does capture half of the filler-gap bijec- 435

tivity for some of the constructions. GPT-2-10M 436

partially captures the [-gap] direction of the filler- 437

gap bijectivity for gap-distance-obj, where the 438

presence of a filler increases local surprisal, but not 439

global surprisal (p = 0.052). The model also ex- 440

hibits usual flipping behavior for wh-islands with 441

local surprisal, and captures the [+gap] direction 442

of the bijectivity with global surprisal, however 443

showing no acknowledgments of island constraints 444

in both cases. Similarly, for adjunct-islands, it 445

captures the [-gap] direction of the bijectivity with 446

local surprisals, while islandhood does not pose 447

any significant effect on surprisals. GPT-2-100M 448

passes the flip test for local gap-distance-obj 449

and local wh-islands, correctly rendering island- 450

hood as more surprising. It also showcases usual 451

flipping behavior for global wh-islands and lo- 452

cal adjunct-islands, however failing to show 453

effective islandhood effects. It captures half of 454

the bijectivity for global gap-distance-obj ([gap- 455

]), local gap-distance-PP ([gap+]), and global 456

adjunct-islands ([gap-]), while somehow cap- 457

turing islandhood effects for the adjunct-front con- 458

dition (β = 0.14, p < 0.05). For double-gaps, 459

both of the models find gapless sentences more 460

surprising when given a filler. 461

ConcreteGPT captures one direction of the filler- 462

gap bijectivity for the majority of the construc- 463

tions globally, showing improvement over its 10M- 464

word trained counterpart GPT-2-10M. It captures 465

the [-gap] direction for global gap-distance-obj, 466

global gap-distance-PP, double-gaps, local 467

and global adjunct-islands, and the [+gap] 468
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Figure 3: Double Gaps Mean Surprisal (y-axis) as a function of Number of Illicit Gaps (x-axis)

Construction GPT-2 GPT-2-10M GPT-2-100M ConcreteGPT BabbleGPT

gap_distance_obj 0.497*** 0.024 (p = 0.771) 0.124 (p = 0.08) 0.061 (p = 0.481) 0.187**
gap_distance_pp 0.209** -0.010 (p = 0.898) 0.016 (p = 0.823) 0.005 (p = 0.948) 0.069 (p = 0.337)
double_gaps 1.015*** 0.389*** 0.806*** 0.647*** 1.017***
wh_islands 0.64*** 0.218** 0.323*** 0.191** 0.366***
adjunct_islands 0.513*** 0.131 (p = 0.093) 0.271*** 0.179* 0.489***

Table 1: Estimated effect of grammaticality on surprisal. Baseline is [+gram]. A positive value denotes increase in
surprisal when a sentence is ungrammatical, which is the expected behavior. Significance levels: *p < .05, **p <
.01, ***p < .001.

direction for global wh-islands. It demon-469

strates flips for wh-islands locally, though is-470

landhood does not render a sentence more sur-471

prising under the [+filler, +gap] condition, as472

it should have. Similarly, BabbleGPT captures473

the [-gap] direction of the bijectivity for sev-474

eral constructions, including local and global475

gap-distance-obj, global gap-distance-PP,476

double-gaps, global wh-islands, and global477

adjunct-islands. It passes the flip test for478

wh-islands and adjunct-islands locally, while479

recognizing island constraints. Full details of the480

flip test results can be found in Appendix C.481

4.3 Division by Grammaticality482

The GPT-2 model passes the grammaticality test483

for all constructions, all with high statistical signif-484

icance, as seen in Table 1. In contrast, our trained485

models do not perform as well as the threshold486

model on the grammaticality test. GPT-2-10M487

passes the grammaticality test for double-gaps488

and wh-islands. GPT-2-100M passes the gram-489

maticality test for double-gaps, wh-islands, and490

adjunct-islands.491

The BabyLM models show stronger abili-492

ties in judging grammaticality. ConcreteGPT493

passes the grammaticality test for double-gaps,494

wh-islands, and adjunct-islands. BabbleGPT495

passes the grammaticality test for all constructions496

except for gap-distance-PP, displaying compe-497

tency nearing the threshold GPT-2 model in judging498

grammaticality.499

5 Model Retraining on Enriched Corpus 500

The POS argument posits that children, despite 501

limited exposure to direct evidence, are capable 502

of acquiring complex linguistic structures. Our 503

training corpora contained many instances of the 504

adjunct island construction (10M: 4,145; 100M: 505

20,115),3 yet both trained models failed to learn it. 506

This alone suggests that purely statistical learners 507

lack the innate biases that support human language 508

acquisition. 509

Following Lan et al. (2024), we conducted an 510

additional experiment to investigate whether en- 511

hanced exposure to a specific construction could 512

improve the model’s learning of that construction. 513

We augmented the training data with additional in- 514

stances of adjunct island sentences, a construction 515

which both of our trained models failed to acquire, 516

and retrained the models. Models were retrained 517

using the exact same training configurations, with 518

additional adjunct island instances that are sepa- 519

rate from the testing suite. If enhanced exposure 520

leads to better performance, this would suggest that 521

the models’ failures stem from a lack of sufficient 522

statistical evidence, highlighting the role of data 523

volume in model learning. If the models still fail 524

to learn the construction after the data augmenta- 525

tion, it would further emphasize that the issue is 526

not simply one of insufficient exposure, but rather 527

a divergence between the learning mechanisms of 528

statistical learners and human learners. 529

3Instances were identified using the spaCy package.
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Despite the additional training materials, nei-530

ther of the retrained models fully learned the ad-531

junct island construction. The retrained GPT-2-532

100M shows usual licensing behavior for global533

adjunct-islands but fails to recognize island534

constraints, similar as before. Though looking535

at flip test results we do see slight improve-536

ment. GPT-2-100M passes the flip test for local537

adjunct-islands (p < 0.01), while recognizing538

both the adjunct-front and adjunct-back island con-539

ditions that it failed to recognize before (p < 0.05).540

Increased exposure to the adjunct island con-541

struction did lead to slightly better performance,542

however, the models still fail to fully capture the543

construction. This highlights a fundamental differ-544

ence between statistical learners and human learn-545

ers: when given language input of similar scale,546

current models are not comparable to human lan-547

guage learners, supporting the argument that mod-548

els lack the innate learning biases that humans use549

to acquire complex linguistic structures.550

6 Discussion and Conclusion551

This study investigates the ability of language mod-552

els trained on child-directed speech data to learn553

and generalize filler-gap dependencies, specifically554

on how these models handle basic constructions555

and complex structures such as island constraints.556

Our results show that while models trained on557

the BabyLM corpus exhibit limited success in fully558

acquiring filler-gap dependencies, GPT-2-small559

models gradually learn the licensing relationship560

when trained on a larger corpus. While GPT-2-561

10M fails to learn the full filler-gap relationship562

for any constructions with statistical significance,563

the model shows evidence of learning half of the564

filler-gap bijectivity for several constructions, as565

demonstrated by the flip test results. GPT-2-100M566

fully learns the dependency for gap distance and567

global wh-islands, however failing to learn island568

constraints for adjunct islands.569

Moreover, we demonstrate that models often570

struggle with generalizing across gap positions571

under increased distance. In particular, even572

the threshold GPT-2 model shows reduced wh-573

licensing scores with longer intervening material574

in several conditions, suggesting that long-distance575

dependencies remain a challenge. This pattern576

aligns with findings from child language acqui-577

sition, where such dependencies are known to be578

acquired relatively late (Atkinson et al., 2018).579

While the threshold GPT-2 model generally dis- 580

plays correct behavior in assessing island con- 581

straints, flip test results show that it does not nec- 582

essarily capture the full bijectivity of filler-gap de- 583

pendencies. In particular, the model’s performance 584

on island constructions remains mixed, suggesting 585

that while the model can identify island constraints, 586

it does not fully learn the intricate dependencies be- 587

tween fillers and gaps when island constraints are 588

involved. Our results support previous work, which 589

suggests that even if a computational model is able 590

to approximate human acceptability judgments, in- 591

ductive biases are necessary to reliably acquire is- 592

land constraints (Pearl and Sprouse, 2013). This 593

is in opposition to what naturally occurs in human 594

learners, where these patterns are acquired in early 595

childhood with limited input exposure and gives 596

merit to the idea that humans have innate mecha- 597

nisms which aid language acquisition (Gagliardi 598

et al., 2016; Atkinson et al., 2018). 599

BabyLM models show stronger performance on 600

filler-gap dependencies and grammaticality judg- 601

ments than base models at the 10M scale, while 602

results at the 100M scale remain mixed. At 10M, 603

flip test results indicate that although ConcreteGPT 604

fails to fully acquire filler-gap dependencies, it cap- 605

tures half of the bijectivity in more constructions 606

than GPT-2-10M. At 100M, both models learn the 607

object gap condition in the gap distance construc- 608

tion, but only GPT-2-100M shows sensitivity to 609

island constraints in global wh-islands, which Bab- 610

bleGPT fails to achieve. BabyLM models also 611

outperform our trained models in grammaticality 612

judgments. These findings suggest that while spe- 613

cialized training techniques may yield modest gains 614

in filler-gap learning, complex constraints like is- 615

lands remain difficult. 616

The enriched corpus experiment reveals that 617

while models benefit from additional training mate- 618

rials, they still do not reach human-level language 619

capabilities even with ample exposure to language. 620

To summarize, when trained on child-like lan- 621

guage input, the examined language models fail to 622

exhibit the structure-sensitive generalizations that 623

characterize human language acquisition, particu- 624

larly in filler-gap dependencies. This discrepancy 625

between model and human learning offers empiri- 626

cal support for a central claim of the POS argument 627

that some aspects of syntactic knowledge may not 628

be learnable from input alone and likely require 629

additional inductive biases. 630
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7 Limitations631

While our study focuses on whether child-language-632

trained models can acquire filler-gap dependencies,633

several limitations constrain the generalizability of634

our findings.635

First, all models in this study share the same636

underlying architecture – GPT-2 – differing only637

in terms of training data volume and optimization638

strategies. While this consistency was maintained639

to enable controlled comparisons, it also limits the640

scope of our conclusions. Larger models or ar-641

chitectures with different inductive biases, such as642

other decoder-only transformers like LLaMA or643

hybrid models like GPT-BERT, may exhibit funda-644

mentally different behaviors in learning and gener-645

alizing syntactic dependencies. Furthermore, while646

we performed hyperparameter tuning to optimize647

model performance, the search space we explored648

was limited due to computational constraints, and649

it is possible that alternative hyperparameter con-650

figurations might have yielded better syntactic gen-651

eralization.652

In addition, the training data used in this study,653

although drawn from the BabyLM corpora and654

designed to reflect developmentally plausible lan-655

guage input, remains limited in linguistic diver-656

sity. These corpora represent only a narrow slice657

of the kinds of input that English-spoken children658

encounter during language acquisition. They lack659

exposure to multimodal grounding, prosody, and660

certain rare or edge-case syntactic constructions.661

This narrow linguistic bandwidth may hinder the662

models’ ability to fully acquire complex grammat-663

ical phenomena, particularly those involving ab-664

stract or less frequent dependencies such as island665

constraints.666

Taken together, these limitations caution against667

broad generalizations from our results and under-668

score the need for further research across diverse669

model architectures, training regimes, and linguis-670

tic inputs.671
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sociation for Computational Linguistics (Volume 1:844
Long Papers), pages 9370–9393, Toronto, Canada.845
Association for Computational Linguistics.846

A Model Training847

A.1 Data Preprocessing848

Our preprocessing approach follows the method-849

ology for handling CHILDES data outlined by850

Yedetore et al. (2023), with additional modifica-851

tions to better suit our needs. The process includes852

format standardization converting all text into plain853

text format through applying the NLTK (Bird and854

Loper, 2004)4 CHILDESCorpusReader for XML855

parsing, punctuation and spacing normalization856

preserving contractions (don’t → do n’t) to align857

with CHILDES Treebank tokenization standards,858

non-linguistic content filtering removing annota-859

tion markers (e.g., [laughter], [noise]) and extra860

non-linguistic characters (e.g. placeholder token861

"xxx"), and child-directed speech filtering retaining862

only child-directed utterances.863

In addition to the CHILDES corpus, the864

BabyLM dataset also consists of multiple smaller865

datasets from the Gutenburg Project, Open Subti-866

tles, Simple Wikipedia, and Switchboard corpora.867

Preprocessing for these datasets focused on remov-868

ing non-linguistic features such as added headers,869

special characters outside of those used for punctua-870

tion, and line-by-line labels which showed speakers871

in the Open Subtitle dataset.872

We allocated 90% of the final corpus to training873

and 10% to validation.874

A.2 Tokenizer Training875

The process of training a tokenizer from scratch is876

a crucial step in preparing data for language model877

training. We employed Byte Pair Encoding (BPE)878

tokenizers compatible with GPT models. Below879

are the detailed configurations and steps involved880

in the tokenizer training process.881

1. Training Corpus: We used the same child-882

language input data corpora we used for883

model training to train the tokenizer. This is884

good practice as it ensures consistency in tok-885

enization and vocabulary alignment between886

the tokenizer and the model. The GPT-2-887

10M tokenizer was trained on the 10M-word888

dataset, while the GPT-2-100M tokenizer was889

4https://www.nltk.org/

trained on the 100M-word dataset, meticu- 890

lously controlling for training data sizes com- 891

parable to child-language input. 892

2. Tokenizer Initialization: BPE tokenizers were 893

initialized using the HuggingFace tokenizers 894

library. The tokenizers were then configured 895

with the several key components listed below. 896

• Normalizer: This component ensures 897

that the text is cleaned and normalized 898

before tokenization. We applied multiple 899

normalization steps, including: 900

– Prepend: Prepending spaces for byte- 901

level tokenization to ensure format 902

consistency. 903

– NFKC: Normalization form KC 904

(Compatibility Composition) for Uni- 905

code normalization. 906

– Replace: We applied regular 907

expression-based replacements to 908

handle newline characters and extra 909

spaces. 910

• Pre-tokenizer: This component breaks 911

the input text into smaller parts be- 912

fore the BPE algorithm is applied. In 913

this case, we used a Whitespace pre- 914

tokenizer to split text on spaces. 915

• Decoder: The decoder reverses the to- 916

kenization process. Here, we used a 917

sequence of decoding steps that handle 918

byte-level decoding, and stripped spaces. 919

• Post-processor: This step is responsible 920

for adding special markers such as the 921

start-of-sequence token. In this case, we 922

configured the post-processor for byte- 923

level token processing without trimming 924

offsets. 925

3. Tokenizer Training: The BPE tokenizers were 926

trained on the prepared corpus files with a 927

vocabulary size of 50,257 tokens. We set a 928

minimum frequency of 2 for the inclusion of 929

tokens in the vocabulary. No special tokens 930

were defined during training. 931

4. Saving the Tokenizer: After training, the to- 932

kenizers were saved as JSON format files to 933

later be used for tokenization during model 934

training and evaluation. 935
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A.3 Model Training936

Once the tokenizer was trained, the next step was to937

train the GPT-2 model using the prepared tokenizer.938

Below are the steps and configurations used for the939

model training process.940

1. Model Configuration: The GPT-2 model con-941

figuration was set up using the GPT-2Config942

class from the HuggingFace Transformers943

library (https://huggingface.co/docs/944

transformers/en/model_doc/gpt2). The945

model’s configuration was aligned with the946

specifications typically used for GPT-2-small.947

2. Dataset Loading: The training datasets were948

tokenized using the respective trained BPE949

tokenizers. This was to ensure that the data950

was encoded in the appropriate format that the951

GPT-2 model could process.952

3. Training Arguments: The training hyperpa-953

rameters were specified using the TrainingAr-954

guments class, which defines how the model955

would be trained. Key hyperparameters in-956

clude:957

• Training Epochs: 10958

• Batch Size: A batch size of 1 was cho-959

sen to fit GPT-2’s large size within the960

available GPU memory.961

• Gradient Accumulation: To simulate962

a larger effective batch size while963

conserving memory, gradient accu-964

mulation was employed, with the965

gradient_accumulation_steps pa-966

rameter set to 16. This means that967

gradients were accumulated over 16968

steps before an update to the model’s969

parameters occurred.970

• Learning Rate: The learning rate was set971

to 5e-4. This rate was found to provide972

a balance between performing effective973

training and avoiding issues related to974

overshooting the optimal weights.975

• Warmup Ratio: A warmup ratio of 0.1976

was applied, meaning that 10% of the to-977

tal training steps were used for the grad-978

ual warmup of the learning rate. This979

helps stabilize training in the early stages980

by avoiding large gradient updates.981

• Weight Decay: Weight decay was ap-982

plied at a rate of 0.01, a typical value for983

regularization, to help prevent overfitting 984

by penalizing large model weights. 985

• Learning Rate Scheduler: A cosine learn- 986

ing rate scheduler was used. This sched- 987

uler reduces the learning rate in a cosine 988

manner, starting high and gradually de- 989

caying to zero, which is effective for en- 990

suring stable convergence towards the 991

end of training. 992

• Adam Optimizer: The Adam opti- 993

mizer was used with default beta values: 994

adam_beta1 = 0.9 and adam_beta2 = 995

0.999. These values help control the 996

momentum and moving averages of the 997

gradient during optimization. 998

• Precision: To optimize computational ef- 999

ficiency, mixed-precision training was 1000

enabled using fp16 = True, which al- 1001

lows the model to use 16-bit floating- 1002

point precision instead of 32-bit preci- 1003

sion, reducing memory usage and speed- 1004

ing up computation without significant 1005

loss in accuracy. 1006

4. Trainer Initialization: The Trainer class from 1007

HuggingFace was used to manage the train- 1008

ing loop, including data loading and model 1009

updates. The trainer was initialized with the 1010

model, the tokenizer, and training arguments. 1011

The model training process included the use 1012

of EarlyStoppingCallback with the patience 1013

parameter set to 3. This callback monitors 1014

the validation loss and halts training if no im- 1015

provement is observed for three consecutive 1016

evaluation steps, helping to prevent overfitting 1017

and unnecessary computation. 1018

Training and validation losses were logged ev- 1019

ery 100 steps. See Figure 4 for the loss curves 1020

of GPT-2-10M and GPT-2-100M. Training rounds 1021

took roughly 4 GPU hours per round for 10M mod- 1022

els, and 50 GPU hours per round for 100M models 1023

using V100 double precision GPUs. 1024

B Testing Materials 1025

We designed a suite of syntactic evaluation items 1026

to probe whether language models generalize filler- 1027

gap dependencies. Following Wilcox et al. (2018, 1028

2023), we focus on four of the most-studied syn- 1029

tactic constructions known to influence how filler- 1030

gap dependencies are processed by humans (Ross, 1031
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Figure 4: Training and Evaluation Loss Curves of the Trained GPT-2 Models.

1967; Huang, 1982). Each construction includes1032

20 items.1033

Gap Distance Here we test how increasing the1034

amount of intervening material (in the form of rel-1035

ative clause modifiers) affects the model’s ability1036

to maintain long-distance dependencies. This con-1037

dition is split into two subparts: direct object gaps1038

and indirect object gaps. Each modifier is varied in1039

length.1040

Gap Distance with DO Gap1041

(2) a. The manager predicts what the intern1042

forwarded [___] to the client earlier this morning.1043

[+FILLER, +GAP, NO MODIFIER]1044

b. The manager predicts what the intern who1045

you admire forwarded [___] to the client earlier1046

this morning. [+FILLER, +GAP, SHORT1047

MODIFIER]1048

c. The manager predicts what the intern who1049

you worked closely with on the project forwarded1050

[___] to the client earlier this morning. [+FILLER,1051

+GAP, MEDIUM MODIFIER]1052

d. The manager predicts what the intern who1053

you recommended highly after the summer project1054

forwarded [___] to the client earlier this morning.1055

[+FILLER, +GAP, LONG MODIFIER]1056

Gap Distance with IO Gap1057

(3) a. The manager predicts who the intern1058

forwarded an important email to [___] earlier this1059

morning. [+FILLER, +GAP, NO MODIFIER]1060

b. The manager predicts who the intern who1061

you admire forwarded an important email to [___]1062

earlier this morning. [+FILLER, +GAP, SHORT1063

MODIFIER]1064

c. The manager predicts who the intern who1065

you worked closely with on the project forwarded1066

an important email to [___] earlier this morning.1067

[+FILLER, +GAP, MEDIUM MODIFIER]1068

d. The manager predicts who the intern who1069

you recommended highly after the summer project 1070

forwarded an important email to [___] earlier this 1071

morning. [+FILLER, +GAP, LONG MODIFIER] 1072

Multiple Gaps This condition tests whether the 1073

model can handle the presence of more than one 1074

gap in the same clause. We include subject gaps, 1075

object gaps, and double gap sentences. 1076

(4) a. James realized what [___] chased the cat 1077

through the yard. [+FILLER, +GAP, SUBJECT GAP 1078

ONLY] 1079

b. James realized what the dog chased [___] 1080

through the yard. [+FILLER, +GAP, OBJECT GAP 1081

ONLY] 1082

c. *James realized what [___] chased [___] 1083

through the yard. [+FILLER, +GAP, SUBJECT AND 1084

OBJECT GAPS] 1085

Island Constraints To evaluate whether models 1086

can learn syntactic constraints on long-distance de- 1087

pendencies, we include two classic island types, 1088

following those proposed in Ross (1967) and fur- 1089

ther formalized in Huang (1982). Specifically, we 1090

test the model’s sensitivity to wh-islands and ad- 1091

junct islands. These constructions are known to 1092

block filler–gap dependencies in adult grammars 1093

and are considered central to the study of structural 1094

locality in syntax. We do not include sentential sub- 1095

ject islands, as their status in child acquisition of 1096

filler–gap dependencies remains unclear and war- 1097

rants further empirical confirmation. 1098

Wh-Islands This condition tests whether the 1099

model suppresses filler–gap expectations when the 1100

gap is embedded in a syntactic wh-island (e.g., a 1101

whether-clause). The complementizer of the em- 1102

bedded clause is varied (null, that, whether), fol- 1103

lowing the design in Wilcox et al. (2018). 1104

(5) a. The teacher discovered what the student 1105

claimed his friend lost [___] during the field trip. 1106

[+FILLER, +GAP, NULL-COMPLEMENTIZER] 1107
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b. The teacher discovered what the student1108

claimed that his friend lost [___] during the field1109

trip. [+FILLER, +GAP, THAT-COMPLEMENTIZER]1110

c. The teacher discovered what the student1111

claimed whether his friend lost [___] during the1112

field trip. [+FILLER, +GAP,1113

WH-COMPLEMENTIZER]1114

Adjunct Islands In this condition, the gap is em-1115

bedded in an adjunct clause introduced by “while.”1116

We test three versions: no adjunct, adjunct attached1117

at the back, and fronted adjunct, following the de-1118

sign in Wilcox et al. (2018).1119

(6) a. We discovered what the intern at the new1120

office was preparing for [___] with extra care.1121

[+FILLER, +GAP, NO ADJUNCT]1122

b. We discovered what the lights went out1123

while the intern at the new office was preparing for1124

[___] with extra care. [+FILLER, +GAP, ADJUNCT1125

BACK]1126

c. We discovered what while the intern at the1127

new office was preparing for [___] with extra care1128

the lights went out. [+FILLER, +GAP, ADJUNCT1129

FRONT]1130

C Flip Test Results1131

We include full details of flip test results in Table 2.1132

1133
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G
PT-2

G
PT-2-10M

G
PT-2-100M

C
oncreteG

PT
B

abbleG
PT

local
global

local
global

local
global

local
global

local
global

gap_distance_obj
[gap-]

2.599***
0.258***

0.33***
0.095

(p
=

0.052)
0.861***

0.162***
0.595

(p
=

0.274)
0.166**

1.211**
0.198***

[gap+]
-2.424***

-0.239***
0.021

(p
=

0.817)
0.072

(p
=

0.061)
-0.578***

0.038
(p

=
0.486)

-0.103
(p

=
0.855)

0.106(p
=

0.1)
-0.811

(p
=

0.104)
0.011

(p
=

0.83)

gap_distance_pp
[gap-]

0.772**
0.183***

-0.009
(p

=
0.838)

0.046
(p

=
0.347)

0.136
(p

=
0.074)

0.06
(p

=
0.186)

0.072
(p

=
0.883)

0.113*
0.252

(p
=

0.52)
0.128**

[gap+]
-2.083***

-0.026
(p

=
0.633)

-0.093
(p

=
0.211)

0.056
(p

=
0.307)

-0.226*
0.04

(p
=

0.332)
-0.073

(p
=

0.902)
0.108*

-0.68
(p

=
0.237)

0.059
(p

=
0.195)

double_gaps
[gap

=
0]

0.039***
0.136***

0.245***
0.156***

0.439***

[gap
=

1]
-0.088

(p
=

1.44)
0.08

(p
=

0.089)
-0.077

(p
=

0.134)
-0.086

(p
=

0.191)
-0.067

(p
=

0.279)

[gap
=

2]
-0.024

(p
=

0.725)
0.059

(p
=

0.149)
-0.078

(p
=

0.102)
-2.43***

-0.189**

w
h_islands

[gap-]
2.236***

0.255***
0.297**

-0.02
(p

=
0.415)

0.928***
0.087**

1.12***
0.043

(p
=

0.267)
1.083***

0.202***

[gap+]
-2.404***

-0.23***
-0.254*

-0.08**
-1.014***

-0.119***
-0.514**

-0.112*
-0.63***

0.041
(p

=
0.456)

islandhood
(w

h_com
p)

2.127***
0.157**

0.035
(p

=
0.808)

-0.002
(p

=
0.966)

0.955***
0.031

(p
=

0.487)
0.413

(p
=

0.09)
-0.049

(p
=

0.466)
0.589*

-0.116
(p

=
0.136)

adjunct_islands

[gap-]
2.043***

0.341***
0.297***

0.08
(p

=
0.07)

1.229***
0.222***

1.05***
0.294***

1.706***
0.36***

[gap+]
-0.825**

0.022
(p

=
0.571)

-0.049
(p

=
0.66)

0.062
(p

=
0.198)

-0.41*
0.088*

0.203
(p

=
0.179)

0.243***
-0.905***

0.145**

islandhood
(adjunct_front)

0.632
(p

=
0.057)

0.203***
0.076

(p
=

0.631)
0.06

(p
=

0.381)
0.195

(p
=

0.447)
0.14*

-0.151
(p

=
0.48)

0.002
(p

=
0.978)

0.99**
0.115

(p
=

0.129)

islandhood
(adjunct_back)

0.665*
0.186**

-0.011
(0.944)

0.016
(p

=
0.819)

0.437
(p

=
0.088)

-0.009
(p

=
0.873)

-0.07
(p

=
0.742)

-0.168**
0.898**

0.103
(p

=
0.176)

Table 2: Flip test results. Listed are the estimated effects when [+filler]. With the presence of a filler, [-gap]
should see an increase in surprisal (positive value), while [+gap] should see a decrease in surprisal (negative value).
Islandhood effects are estimated under [+filler, +gap]. When a filler-gap relationship exists given island constraints,
there should be an increase in surprisal (positive value).
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