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Abstract

Humans acquire syntactic constructions like
filler—gap dependencies from limited and often
noisy input. Can neural language models do
the same? We investigate this question by eval-
uating GPT-2 models trained on child-directed
input from the BabyLM Challenge. Our experi-
ments focus on whether these “baby” language
models acquire filler—gap dependencies, gen-
eralize across constructions, and respect struc-
tural constraints such as island effects. We ap-
ply a suite of syntactic constructions to four
models trained on child language, including
two base models (trained on 10M and 100M to-
kens) and two well-performing models from the
BabyLM Challenge (ConcreteGPT and Bab-
bleGPT). We evaluate model behavior using
wh-licensing scores, flip tests, and grammati-
cality contrasts across four constructions. Re-
sults show that BabyLLM-scale models partially
acquire filler—gap dependencies but often fail
to generalize or fully capture island constraints.

1 Introduction

Babies are remarkable learners, but how they do so
remains a central question in language acquisition
research (Yang, 2016). A long-standing debate con-
cerns whether the linguistic input children receive
is sufficient to explain the grammatical knowledge
they develop. According to the Poverty of the Stim-
ulus (POS) argument, children’s input is too sparse
and underspecified to support acquisition of cer-
tain abstract structures, thus innate learning biases
are required (Chomsky, 1968, 1973, 1980; Pearl,
2022). However, this remains an open debate, with
some arguing that domain-general, input-driven
learning suffices (Lewis and Elman, 2001), while
others argue that domain-specific innate knowledge
is necessary (Yang, 2004).

A particularly relevant test case for this debate
involves structural dependencies like filler-gap con-
structions. These involve a filler (e.g., a wh-phrase

such as who and what) that licenses a gap — an
empty syntactic position often spanning interven-
ing structure (e.g., Who did the intern say _ left
the meeting early?). Such dependencies are con-
strained by certain syntactic structures — for exam-
ple, they can be blocked by certain syntactic is-
lands (e.g., *What did he leave [before she finished
_listana?) (Ross, 1967; Huang, 1982). Substantial
research shows that human learners acquire these
patterns during early childhood with limited input
exposure (Omaki et al., 2015; Gagliardi et al., 2016;
Atkinson et al., 2018; Perkins and Lidz, 2021).
Prior work has shown that RNN-based language
models trained on vast amounts of data can demon-
strate sensitivity to these dependencies and even
some island effects across multiple languages,
though their generalizations often remain shal-
low and construction-specific (Wilcox et al., 2018;
Bhattacharya and van Schijndel, 2020; Chaves,
2020; Ozaki et al., 2022; Kobzeva et al., 2023;
Howitt et al., 2024). Meanwhile, recent studies
have begun comparing neural language models
(LMs) to human language acquisition on basic
syntactic patterns that require hierarchical repre-
sentation of the sentence structures, such as sub-
ject—verb agreement and yes/no question formation
(Yedetore et al., 2023; Evanson et al., 2023). What
remains less understood is whether LMs can ac-
quire more complex, non-local generalizations like
filler—gap dependencies from small datasets that are
developmentally plausible, especially in contexts
that involve structural constraints such as islands.
Lan et al. (2024) supports the POS argument by
showing that models trained on limited data fail to
learn complex long-distance dependencies like par-
asitic gaps, likely due to insufficient input richness,
suggesting a role for innate biases in human learn-
ing. However, their focus on rare constructions
leaves open whether such models can generalize to
core filler—gap dependencies and show human-like



sensitivity to structural constraints such as island
effects. This motivates the following research ques-
tions addressed in our study:

1. Can LMs trained on child-directed input ac-
quire filler-gap dependencies?

2. Do they exhibit human-like sensitivity to struc-
tural constraints, such as island effects?

3. What do their successes and failures tell us
about the nature of linguistic generalization?

To answer these questions, we build a suite
of syntactic evaluations inspired by prior work
(Wilcox et al., 2018; Ozaki et al., 2022; Howitt
et al., 2024), covering four constructions that test
key aspects of filler-gap knowledge: gap distance,
multiple gaps, and two types of islands. We ap-
ply these to four GPT-2 models trained on datasets
from the BabyLM challenge (Warstadt et al., 2023,
https://babylm.github.io/index.html): two
base models (trained on 10M and 100M tokens),
and two competitive models from the BabyLM
Challenge (henceforth BabyLM models), Con-
creteGPT (Capone et al., 2024) and BabbleGPT
(Goriely et al., 2024).! A vanilla pre-trained GPT-
2 serves as a high-resource benchmark. Our key
findings are as follows:

* No model, including the vanilla pre-trained GPT-
2, captures the full structural generalizations con-
sistently across constructions.

e All BabyLM models (10M or 100M words)
show partial acquisition of filler-gap dependen-
cies. Models trained on 100M tokens outperform
10M-token models.

* GPT-2-100M and BabbleGPT learn gap-distance
dependencies and some island effects (especially
for wh-islands), but fail to generalize consis-
tently across constructions.

* ConcreteGPT, despite its smaller scale, shows
evidence of partially capturing the bijectivity of
filler-gap dependencies for several constructions.

2 Methodology

This project investigates the acquisition of filler-
gap dependencies by GPT models trained on child-
'We focus on standard decoder-only architectures to main-

tain consistency in our comparisons, and abstract away from
hybrid models such as GPT-BERT (Charpentier et al., 2025).

language data. Our methodology builds upon es-
tablished work assessing syntactic generalization
in LMs (Wilcox et al., 2018; Ozaki et al., 2022;
Howitt et al., 2024).

2.1 “Baby” Language Models

To approximate the limited and sparse linguistic
input of early human language acquisition, we
trained GPT-2-small models (Radford et al., 2019)
on datasets from the BabyLLM challenge (Warstadt
et al., 2023), which consist of 10M and 100M En-
glish words, with a large proportion of child and
child-directed language (Charpentier et al., 2025,
https://babylm.github.io/). These models
serve as base models to assess the performance
of a standard GPT-2 architecture trained on devel-
opmentally plausible amounts of data. Notably,
these models were trained using standard training
procedures without specialized techniques, reflect-
ing the limited and unstructured input characteristic
of early language acquisition in children.

In addition to these base models, we include
two well-performing GPT-2 models from the 2024
BabyLM challenge (Hu et al., 2024): ConcreteGPT
(Capone et al., 2024) and BabbleGPT (Goriely
et al., 2024). ConcreteGPT, trained on the 10M-
word dataset, incorporates a curriculum learning
approach. By utilizing concreteness ratings from
Brysbaert et al. (2014), training data was ordered to
introduce simpler, more concrete language patterns
before progressing to more abstract structures, to
mirror the developmental trajectory of human lan-
guage acquisition. BabbleGPT represents one of
the most advanced models trained on the BabyLM
100M-word dataset. An innovative input trans-
formation approach of converting text data into
phoneme streams was applied, simulating the early
stages of human language acquisition where chil-
dren process spoken language before written text.

The inclusion of both the base GPT-2 models
and the competitive BabyLM models of similar ar-
chitecture provides a valuable comparison of how
training data size and learning strategies influence
model performance on syntactic tasks. While the
base models offer insight into the general behav-
ior of LMs trained on child-language data, the
BabyLLM models bring in specialized optimiza-
tion approaches. These models represent some of
the best results achievable with constrained child-
language data and offer a clear benchmark for un-
derstanding the potential and limitations of typ-
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ical LMs — GPT-2 specifically — in this context.
Finally, we also include an unconstrained GPT-2
model, pre-trained on a 40GB corpus, as the high-
performance upper bound.?

All models and tokenizers were trained from
scratch using Hugging Face’s GPT-2 implementa-
tion (Wolf et al., 2020), adhering to established
model specifications (Sennrich et al., 2015; Rad-
ford et al., 2019; Brown et al., 2020). See Ap-
pendix A for details on training configurations.

2.2 Experimental Design

We adopt a 2x2 factorial design following Wilcox
etal. (2018) and Wilcox et al. (2023) to test whether
GPT-style language models, when trained with
child-directed speech data, are capable of acquiring
filler-gap dependencies. In particular, we manipu-
late the presence of a wh-licensor (i.e., a filler) and
the presence of a syntactic gap in each sentence.

The following shows the basic filler-gap licens-
ing conditions (Wilcox et al., 2018):

1. [—FILLER, —GAP]: I know that the lion de-
voured a gazelle at sunrise.

2. [+FILLER, —GAP]: *I know what the lion
devoured a gazelle at sunrise.

3. [—FILLER, +GAP]: *I know that the lion de-
voured [___] at sunrise.

4. [+FILLER, +GAP]: I know what the lion de-
voured [___] at sunrise.

Based on the basic filler-gap licensing condi-
tions, we designed a suite of syntactic evaluation
items to probe whether language models gener-
alize filler-gap dependencies across distinct con-
structions. Following Wilcox et al. (2018, 2023),
we investigate four of the most-studied syntactic
constructions known to influence how filler-gap de-
pendencies are processed by humans (Ross, 1967;
Huang, 1982; Wilcox et al., 2018, 2023): gap dis-
tance, double gaps, wh-islands, and adjunct is-
lands. Each construction includes 20 items. This
resulted in 5 sub-datasets: gap-distance-obj
and gap-distance-PP for gap distance sen-
tences with different gap positions, double-gaps,
wh-islands, and adjunct-islands. In particular,
we focus on structural factors like filler-gap dis-
tance length, presence of multiple gaps, and island

*We use the GPT-2 model hosted on Hugging Face under

the MIT License and comply with its terms of use and intended
use.

constraints. Full details of the testing materials are
provided in Appendix B.

3 Evaluation Metrics

The primary evaluation metric is surprisal, calcu-
lated as: S; = —logy P(wy | wi,wa, ..., wi_1)
where wy is the target word at position ¢, and the
probability is conditioned on the preceding con-
text wy, wo, ..., wy—1. We calculate surprisals at
critical regions of the sentences. This includes lo-
cal surprisal measuring the post-gap region, and
global surprisal assessing effects across the whole
embedded clause (Ozaki et al., 2022). Wilcox et al.
(2018) consistently measured local surprisal in the
region after the potential gap. Following Wilcox
et al. (2019b); Ozaki et al. (2022), we adopt a dif-
ferent practice to account for surprisal spikes of il-
licitly filled gaps that occur at the filled gap region.
For [-gap] sentences, local suprisal is measured at
the filled gap position, while for [+gap] sentences
it is measured at the post-gap region. Additionally,
global suprisal is normalized by clause length to
control for possible confounding effects as [+gap]
sentences tend to be shorter, resulting in lower total
suprisals (Ozaki et al., 2022). These metrics are
measured and tested to examine the co-occurrence
expectations of fillers and gaps more exhaustively.
We use the wh-licensing score (aka. wh-
licensing interaction, licensing interaction, and
filler-gap interaction, Wilcox et al., 2018) to mea-
sure the degree to which the presence of a wh-
licensor reduces the surprisal at the gap position:

[S(+fller, -gap) — S(-filler, -gap)]
— [S(+filler, +gap) — S(-filler, +gap)]

where S stands for surprisal. This compares the
surprisal values across the four combinations of
[+filler/-filler] and [+gap/-gap] conditions. An ide-
alized wh-licensing score would show a large posi-
tive difference in the [-gap] condition and a large
negative difference in the [+gap] condition, sug-
gesting that the model expects a gap when a filler
is present and penalizes unlicensed gaps.
Following Wilcox et al.’s (2018) experimental
setup, we fit mixed-effects linear regression mod-
els on filler-gap conditions to predict the two sur-
prisal metrics mentioned above, including random
intercepts by sentence sets. This is to determine
by statistical significance whether the model has
correctly acquired the rules and constraints sur-
rounding filler-gap dependencies. The fixed effect



structure includes filler-gap conditions and struc-
tural conditions (e.g., filler-gap distance for the
gap distance construction, gap count for the dou-
ble gap construction) for basic construction types,
and filler-gap conditions and island types for island
constructions. For double gap constructions, since
potential gap positions can be at either the subject
position or the object position, or both, we do not
measure local surprisal for this construction as the
target regions for measurement are inconsistent.

We adopt two additional tests proposed by Ozaki
et al. (2022): the flip test and the grammatical-
ity division test. The flip test requires that the
surprisal difference (between [+filler] and [filler]
conditions) flips its direction depending on the pres-
ence of a gap. That is, the filler should reduce sur-
prisal in the [+gap] condition (i.e., the presence of
the filler helps reduce the uncertainty at the gap),
but increase surprisal in the [-gap] condition (i.e.,
the filler increases uncertainty when there is no gap
to license). It specifically tests for the bijectivity
of filler-gap dependencies. The grammaticality di-
vision test, on the other hand, directly compares
the surprisal of grammatical sentences with that of
their ungrammatical counterparts, to see whether
the model assigns lower surprisal to grammatical
configurations.

Both of these tests are performed through mixed-
effects linear regression modeling. In the flip tests,
surprisal is predicted on [filler] for [+gap] and [-
gap] sentences separately; in the grammaticality
division test, we assign a grammaticality variable
[gram] to all sentences and predict surprisal on
[gram], while treating [+gram] as the baseline. For
basic constructions, we assign [gram] depending on
whether the numbers of fillers and gaps satisfy the
one-to-one relationship of filler-gap dependencies;
for island constructions, the presence of islands
blocks the filler-gap dependency, rendering [+filler,
+gap] sentences ungrammatical. The grammatical-
ity division test would only be conducted on global
surprisal, since the location where the local sur-
prisal is measured in a sentence now confounds the
presence of gaps (Ozaki et al., 2022).

4 Primary Results

We evaluate the models’ learning of filler-gap
dependencies through calculating wh-licensing
scores, and determining statistical significance
through mixed effects modeling tests. All results re-
ported are statistically significant (p < 0.05) unless

stated otherwise.

4.1 Licensing-Gap Interaction

As our threshold model, GPT-2 demonstrates ex-
pected licensing behavior in most of the construc-
tions. Learning of the dependency is observed
with gap-distance-obj and gap-distance-PP,
both locally and globally. However, treating gap
distance length as a continuous variable, we see
that gap distance length poses negative effects on
wh-licensing score for gap-distance-obj, when
measuring global surprisal (5 = 0.003, p < 0.01).
This indicates that intervening material length af-
fects the model’s judgment of filler-gap licensing
relationships, with longer intervening material ren-
dering a gap more surprising even with the presence
of a filler. Although exhibiting similar patterns of
decreasing wh-licensing scores as length increases
in other conditions, as seen in Figure 1 and Figure
2, the model remains statistically robust to inter-
vening material length for all other metrics and gap
positions in this construction. Measuring global
surprisal for double-gaps, we discover that when
a filler is present, GPT-2 finds the absence of a cor-
responding gap more surprising than licensed sin-
gle gaps, although the model does not find double
gaps more surprising in a statistically significant
manner (p = 0.553).

Results also show that GPT-2 has learned island
constraints to a certain extent. When island con-
straints are present, wh-licensing scores are ex-
pected to decrease. With wh-islands, island con-
straints lead to lower wh-licensing scores when
compared to the non-island baseline, in all condi-
tions. As for adjunct-islands, we see reduction
in the wh-licensing score of the adjunct-back con-
dition when compared to the object condition base-
line, in both post-gap and embedded clause regions.
We also see reduction in the wh-licensing score
of the adjunct front condition when compared to
the object condition baseline, but results are only
significant when measured in the embedded clause
region (local: p = 0.06, global: p < 0.01).

The trained models in general show evidence for
partial filler-gap dependency representation, possi-
bly due to limitations of the training corpora sizes.
GPT-2-10M does not learn the filler-gap depen-
dency with statistical significance at all, for any of
the constructions. GPT-2-100M acquires the de-
pendency for gap-distance-obj both locally and
globally, while staying robust to different lengths
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Figure 1: Wh-Licensing Score with Local Surprisals. Each row represents the results for one construction: (a)
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of intervening material. For double-gaps, GPT-
2-100M exhibits licensing behavior for global sur-
prisals with licensed single gaps being less sur-
prising than the lack of a gap when given a filler.
The presence of illicit double gaps does not pose
statistically significant effects on surprisal values
(p = 0.817). However, through directly plotting
out surprisals, we see that mean surprisal increases
with the number of illicit gaps for both the GPT-
2-10M and GPT-2-100M models (Figure 3). For
wh-islands, GPT-2-100M is shown to have ac-
quired the filler-gap dependency alongside with
island constraints globally. It also shows usual
licensing behavior for global adjunct-islands,
however failing to recognize island constraints.

Comparing the two BabyLM models with
our base models, we see slight improvement in
filler-gap dependency capabilities on the 10M
scale.  While GPT-2-10M shows no statisti-
cally significant evidence in acquiring any of
the constructions, its 10M-word counterpart Con-
creteGPT displays usual licensing behavior for
global wh-islands (p < 0.05) but ignores island
constraints. Similar to GPT-2-100M, BabbleGPT
acquires gap-distance-obj (local: p < 0.01,
global: p < 0.01) but not gap-distance-PP. With
island constructions, it displays usual licensing be-
havior globally for wh-islands and both locally
and globally for adjunct-islands, again com-
pletely overlooking island constraints.

4.2 Flips

In flip tests, positive signs of correct licensing be-
havior would be for the presence of a filler to ren-
der a sentence more surprising with [-gap] sen-
tences, and less surprising with [+gap] sentences.
In the case of island constraints, island sentences
should be viewed as more surprising under the
[+filler, +gap] condition, when compared to non-
island baselines.

The threshold GPT-2 model shows good per-
formance in flip tests in general. The GPT-2
model passes the flip test for gap-distance-obj
and gap-distance-PP with local surprisal. This
holds true when measuring global surprisal for
gap-distance-obj, but does not hold true for
gap-distance-PP. With double-gaps, when
given a filler, the model finds gapless sentences
more surprising, which is the expected behavior.
In the [+gap] direction, it however does not find
licensed gaps less surprising, or illicit double gaps

more surprising. In the case of wh-islands, the
GPT-2 model passes the flip test in both the post-
gap and embedded clause regions. Under the
[+filler, +gap] condition, island sentences are found
to be more surprising than baseline non-island
sentences, showing that the model is aware of is-
land constraints. Results with adjunct-islands
are rather mixed, with the model failing to cap-
ture the [+gap] direction of the bijectivity globally.
When considering island constraints for [+filler,
+gap] sentences, it finds the adjunct-back condi-
tion more surprising than the non-island baseline,
while in the adjunct-front condition islandhood
does not pose any significant effects on local sur-
prisal (p = 0.057).

For the trained models, we can see that while the
GPT-2-10M did not fully acquire filler-gap depen-
dencies, it does capture half of the filler-gap bijec-
tivity for some of the constructions. GPT-2-10M
partially captures the [-gap] direction of the filler-
gap bijectivity for gap-distance-obj, where the
presence of a filler increases local surprisal, but not
global surprisal (p = 0.052). The model also ex-
hibits usual flipping behavior for wh-islands with
local surprisal, and captures the [+gap] direction
of the bijectivity with global surprisal, however
showing no acknowledgments of island constraints
in both cases. Similarly, for adjunct-islands, it
captures the [-gap] direction of the bijectivity with
local surprisals, while islandhood does not pose
any significant effect on surprisals. GPT-2-100M
passes the flip test for local gap-distance-obj
and local wh-islands, correctly rendering island-
hood as more surprising. It also showcases usual
flipping behavior for global wh-islands and lo-
cal adjunct-islands, however failing to show
effective islandhood effects. It captures half of
the bijectivity for global gap-distance-obj ([gap-
1), local gap-distance-PP ([gap+]), and global
adjunct-islands ([gap-]), while somehow cap-
turing islandhood effects for the adjunct-front con-
dition (8 = 0.14, p < 0.05). For double-gaps,
both of the models find gapless sentences more
surprising when given a filler.

ConcreteGPT captures one direction of the filler-
gap bijectivity for the majority of the construc-
tions globally, showing improvement over its 10M-
word trained counterpart GPT-2-10M. It captures
the [-gap] direction for global gap-distance-obj,
global gap-distance-PP, double-gaps, local
and global adjunct-islands, and the [+gap]
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Construction GPT-2 GPT-2-10M GPT-2-100M ConcreteGPT BabbleGPT
gap_distance_obj 0.497*** 0.024 (p=0.771) 0.124 (p=0.08)  0.061 (p =0.481) 0.187**
gap_distance_pp  0.209**  -0.010 (p =0.898) 0.016 (p=0.823) 0.005 (p =0.948) 0.069 (p = 0.337)
double_gaps 1.015%**  (,389%#%* 0.806%** 0.647%%** 1.017%%*
wh_islands 0.64%*%%  (2]18%* 0.323%3%* 0.191 % 0.366%%**
adjunct_islands 0.513*%**  0.131 (p=0.093) 0.271%%* 0.179* 0.489%3#*

Table 1: Estimated effect of grammaticality on surprisal. Baseline is [+gram]. A positive value denotes increase in
surprisal when a sentence is ungrammatical, which is the expected behavior. Significance levels: *p < .05, **p <

01, *=%p < 001.

direction for global wh-islands. It demon-
strates flips for wh-islands locally, though is-
landhood does not render a sentence more sur-
prising under the [+filler, +gap] condition, as
it should have. Similarly, BabbleGPT captures
the [-gap] direction of the bijectivity for sev-
eral constructions, including local and global
gap-distance-obj, global gap-distance-PP,
double-gaps, global wh-islands, and global
adjunct-islands. It passes the flip test for
wh-islands and adjunct-islands locally, while
recognizing island constraints. Full details of the
flip test results can be found in Appendix C.

4.3 Division by Grammaticality

The GPT-2 model passes the grammaticality test
for all constructions, all with high statistical signif-
icance, as seen in Table 1. In contrast, our trained
models do not perform as well as the threshold
model on the grammaticality test. GPT-2-10M
passes the grammaticality test for double-gaps
and wh-islands. GPT-2-100M passes the gram-
maticality test for double-gaps, wh-islands, and
adjunct-islands.

The BabyLM models show stronger abili-
ties in judging grammaticality. ConcreteGPT
passes the grammaticality test for double-gaps,
wh-islands, and adjunct-islands. BabbleGPT
passes the grammaticality test for all constructions
except for gap-distance-PP, displaying compe-
tency nearing the threshold GPT-2 model in judging
grammaticality.

5 Model Retraining on Enriched Corpus

The POS argument posits that children, despite
limited exposure to direct evidence, are capable
of acquiring complex linguistic structures. Our
training corpora contained many instances of the
adjunct island construction (10M: 4,145; 100M:
20,115),3 yet both trained models failed to learn it.
This alone suggests that purely statistical learners
lack the innate biases that support human language
acquisition.

Following Lan et al. (2024), we conducted an
additional experiment to investigate whether en-
hanced exposure to a specific construction could
improve the model’s learning of that construction.
We augmented the training data with additional in-
stances of adjunct island sentences, a construction
which both of our trained models failed to acquire,
and retrained the models. Models were retrained
using the exact same training configurations, with
additional adjunct island instances that are sepa-
rate from the testing suite. If enhanced exposure
leads to better performance, this would suggest that
the models’ failures stem from a lack of sufficient
statistical evidence, highlighting the role of data
volume in model learning. If the models still fail
to learn the construction after the data augmenta-
tion, it would further emphasize that the issue is
not simply one of insufficient exposure, but rather
a divergence between the learning mechanisms of
statistical learners and human learners.

3Instances were identified using the spaCy package.



Despite the additional training materials, nei-
ther of the retrained models fully learned the ad-
junct island construction. The retrained GPT-2-
100M shows usual licensing behavior for global
adjunct-islands but fails to recognize island
constraints, similar as before. Though looking
at flip test results we do see slight improve-
ment. GPT-2-100M passes the flip test for local
adjunct-islands (p < 0.01), while recognizing
both the adjunct-front and adjunct-back island con-
ditions that it failed to recognize before (p < 0.05).

Increased exposure to the adjunct island con-
struction did lead to slightly better performance,
however, the models still fail to fully capture the
construction. This highlights a fundamental differ-
ence between statistical learners and human learn-
ers: when given language input of similar scale,
current models are not comparable to human lan-
guage learners, supporting the argument that mod-
els lack the innate learning biases that humans use
to acquire complex linguistic structures.

6 Discussion and Conclusion

This study investigates the ability of language mod-
els trained on child-directed speech data to learn
and generalize filler-gap dependencies, specifically
on how these models handle basic constructions
and complex structures such as island constraints.

Our results show that while models trained on
the BabyLLM corpus exhibit limited success in fully
acquiring filler-gap dependencies, GPT-2-small
models gradually learn the licensing relationship
when trained on a larger corpus. While GPT-2-
10M fails to learn the full filler-gap relationship
for any constructions with statistical significance,
the model shows evidence of learning half of the
filler-gap bijectivity for several constructions, as
demonstrated by the flip test results. GPT-2-100M
fully learns the dependency for gap distance and
global wh-islands, however failing to learn island
constraints for adjunct islands.

Moreover, we demonstrate that models often
struggle with generalizing across gap positions
under increased distance. In particular, even
the threshold GPT-2 model shows reduced wh-
licensing scores with longer intervening material
in several conditions, suggesting that long-distance
dependencies remain a challenge. This pattern
aligns with findings from child language acqui-
sition, where such dependencies are known to be
acquired relatively late (Atkinson et al., 2018).

While the threshold GPT-2 model generally dis-
plays correct behavior in assessing island con-
straints, flip test results show that it does not nec-
essarily capture the full bijectivity of filler-gap de-
pendencies. In particular, the model’s performance
on island constructions remains mixed, suggesting
that while the model can identify island constraints,
it does not fully learn the intricate dependencies be-
tween fillers and gaps when island constraints are
involved. Our results support previous work, which
suggests that even if a computational model is able
to approximate human acceptability judgments, in-
ductive biases are necessary to reliably acquire is-
land constraints (Pearl and Sprouse, 2013). This
is in opposition to what naturally occurs in human
learners, where these patterns are acquired in early
childhood with limited input exposure and gives
merit to the idea that humans have innate mecha-
nisms which aid language acquisition (Gagliardi
et al., 2016; Atkinson et al., 2018).

BabyLM models show stronger performance on
filler-gap dependencies and grammaticality judg-
ments than base models at the 10M scale, while
results at the 100M scale remain mixed. At 10M,
flip test results indicate that although ConcreteGPT
fails to fully acquire filler-gap dependencies, it cap-
tures half of the bijectivity in more constructions
than GPT-2-10M. At 100M, both models learn the
object gap condition in the gap distance construc-
tion, but only GPT-2-100M shows sensitivity to
island constraints in global wh-islands, which Bab-
bleGPT fails to achieve. BabyLM models also
outperform our trained models in grammaticality
judgments. These findings suggest that while spe-
cialized training techniques may yield modest gains
in filler-gap learning, complex constraints like is-
lands remain difficult.

The enriched corpus experiment reveals that
while models benefit from additional training mate-
rials, they still do not reach human-level language
capabilities even with ample exposure to language.

To summarize, when trained on child-like lan-
guage input, the examined language models fail to
exhibit the structure-sensitive generalizations that
characterize human language acquisition, particu-
larly in filler-gap dependencies. This discrepancy
between model and human learning offers empiri-
cal support for a central claim of the POS argument
that some aspects of syntactic knowledge may not
be learnable from input alone and likely require
additional inductive biases.



7 Limitations

While our study focuses on whether child-language-
trained models can acquire filler-gap dependencies,
several limitations constrain the generalizability of
our findings.

First, all models in this study share the same
underlying architecture — GPT-2 — differing only
in terms of training data volume and optimization
strategies. While this consistency was maintained
to enable controlled comparisons, it also limits the
scope of our conclusions. Larger models or ar-
chitectures with different inductive biases, such as
other decoder-only transformers like LLaMA or
hybrid models like GPT-BERT, may exhibit funda-
mentally different behaviors in learning and gener-
alizing syntactic dependencies. Furthermore, while
we performed hyperparameter tuning to optimize
model performance, the search space we explored
was limited due to computational constraints, and
it is possible that alternative hyperparameter con-
figurations might have yielded better syntactic gen-
eralization.

In addition, the training data used in this study,
although drawn from the BabyLM corpora and
designed to reflect developmentally plausible lan-
guage input, remains limited in linguistic diver-
sity. These corpora represent only a narrow slice
of the kinds of input that English-spoken children
encounter during language acquisition. They lack
exposure to multimodal grounding, prosody, and
certain rare or edge-case syntactic constructions.
This narrow linguistic bandwidth may hinder the
models’ ability to fully acquire complex grammat-
ical phenomena, particularly those involving ab-
stract or less frequent dependencies such as island
constraints.

Taken together, these limitations caution against
broad generalizations from our results and under-
score the need for further research across diverse
model architectures, training regimes, and linguis-
tic inputs.
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A Model Training

A.1 Data Preprocessing

Our preprocessing approach follows the method-
ology for handling CHILDES data outlined by
Yedetore et al. (2023), with additional modifica-
tions to better suit our needs. The process includes
format standardization converting all text into plain
text format through applying the NLTK (Bird and
Loper, 2004)* CHILDESCorpusReader for XML
parsing, punctuation and spacing normalization
preserving contractions (don’t — do n’t) to align
with CHILDES Treebank tokenization standards,
non-linguistic content filtering removing annota-
tion markers (e.g., [laughter], [noise]) and extra
non-linguistic characters (e.g. placeholder token
"xxx"), and child-directed speech filtering retaining
only child-directed utterances.

In addition to the CHILDES corpus, the
BabyLM dataset also consists of multiple smaller
datasets from the Gutenburg Project, Open Subti-
tles, Simple Wikipedia, and Switchboard corpora.
Preprocessing for these datasets focused on remov-
ing non-linguistic features such as added headers,
special characters outside of those used for punctua-
tion, and line-by-line labels which showed speakers
in the Open Subtitle dataset.

We allocated 90% of the final corpus to training
and 10% to validation.

A.2 Tokenizer Training

The process of training a tokenizer from scratch is
a crucial step in preparing data for language model
training. We employed Byte Pair Encoding (BPE)
tokenizers compatible with GPT models. Below
are the detailed configurations and steps involved
in the tokenizer training process.

1. Training Corpus: We used the same child-
language input data corpora we used for
model training to train the tokenizer. This is
good practice as it ensures consistency in tok-
enization and vocabulary alignment between
the tokenizer and the model. The GPT-2-
10M tokenizer was trained on the 10M-word
dataset, while the GPT-2-100M tokenizer was

*https://www.nltk.org/
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trained on the 100M-word dataset, meticu-
lously controlling for training data sizes com-
parable to child-language input.

. Tokenizer Initialization: BPE tokenizers were

initialized using the HuggingFace tokenizers
library. The tokenizers were then configured
with the several key components listed below.

* Normalizer: This component ensures
that the text is cleaned and normalized
before tokenization. We applied multiple
normalization steps, including:

— Prepend: Prepending spaces for byte-
level tokenization to ensure format
consistency.

— NFKC: Normalization form KC
(Compeatibility Composition) for Uni-
code normalization.

— Replace: We applied regular
expression-based replacements to
handle newline characters and extra
spaces.

* Pre-tokenizer: This component breaks
the input text into smaller parts be-
fore the BPE algorithm is applied. In
this case, we used a Whitespace pre-
tokenizer to split text on spaces.

* Decoder: The decoder reverses the to-
kenization process. Here, we used a
sequence of decoding steps that handle
byte-level decoding, and stripped spaces.

* Post-processor: This step is responsible
for adding special markers such as the
start-of-sequence token. In this case, we
configured the post-processor for byte-
level token processing without trimming
offsets.

3. Tokenizer Training: The BPE tokenizers were

trained on the prepared corpus files with a
vocabulary size of 50,257 tokens. We set a
minimum frequency of 2 for the inclusion of
tokens in the vocabulary. No special tokens
were defined during training.

4. Saving the Tokenizer: After training, the to-

kenizers were saved as JSON format files to
later be used for tokenization during model
training and evaluation.


https://www.nltk.org/

A.3 Model Training

Once the tokenizer was trained, the next step was to
train the GPT-2 model using the prepared tokenizer.
Below are the steps and configurations used for the
model training process.

1. Model Configuration: The GPT-2 model con-
figuration was set up using the GPT-2Config
class from the HuggingFace Transformers
library (https://huggingface.co/docs/
transformers/en/model_doc/gpt2). The
model’s configuration was aligned with the
specifications typically used for GPT-2-small.

Dataset Loading: The training datasets were
tokenized using the respective trained BPE
tokenizers. This was to ensure that the data
was encoded in the appropriate format that the
GPT-2 model could process.

Training Arguments: The training hyperpa-
rameters were specified using the TrainingAr-
guments class, which defines how the model
would be trained. Key hyperparameters in-
clude:

¢ Training Epochs: 10

e Batch Size: A batch size of 1 was cho-
sen to fit GPT-2’s large size within the
available GPU memory.

Gradient Accumulation: To simulate
a larger effective batch size while
conserving memory, gradient accu-
mulation was employed, with the
gradient_accumulation_steps pa-
rameter set to 16. This means that
gradients were accumulated over 16
steps before an update to the model’s
parameters occurred.

Learning Rate: The learning rate was set
to Se-4. This rate was found to provide
a balance between performing effective
training and avoiding issues related to
overshooting the optimal weights.

* Warmup Ratio: A warmup ratio of 0.1
was applied, meaning that 10% of the to-
tal training steps were used for the grad-
ual warmup of the learning rate. This
helps stabilize training in the early stages
by avoiding large gradient updates.

* Weight Decay: Weight decay was ap-
plied at a rate of 0.01, a typical value for
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regularization, to help prevent overfitting
by penalizing large model weights.

Learning Rate Scheduler: A cosine learn-
ing rate scheduler was used. This sched-
uler reduces the learning rate in a cosine
manner, starting high and gradually de-
caying to zero, which is effective for en-
suring stable convergence towards the
end of training.

* Adam Optimizer: The Adam opti-
mizer was used with default beta values:
adam_betal = 0.9 and adam_beta2 =
0.999. These values help control the
momentum and moving averages of the
gradient during optimization.

Precision: To optimize computational ef-
ficiency, mixed-precision training was
enabled using fp16 = True, which al-
lows the model to use 16-bit floating-
point precision instead of 32-bit preci-
sion, reducing memory usage and speed-
ing up computation without significant
loss in accuracy.

4. Trainer Initialization: The Trainer class from
HuggingFace was used to manage the train-
ing loop, including data loading and model
updates. The trainer was initialized with the
model, the tokenizer, and training arguments.
The model training process included the use
of EarlyStoppingCallback with the patience
parameter set to 3. This callback monitors
the validation loss and halts training if no im-
provement is observed for three consecutive
evaluation steps, helping to prevent overfitting
and unnecessary computation.

Training and validation losses were logged ev-
ery 100 steps. See Figure 4 for the loss curves
of GPT-2-10M and GPT-2-100M. Training rounds
took roughly 4 GPU hours per round for 10M mod-
els, and 50 GPU hours per round for 100M models
using V100 double precision GPUs.

B Testing Materials

We designed a suite of syntactic evaluation items
to probe whether language models generalize filler-
gap dependencies. Following Wilcox et al. (2018,
2023), we focus on four of the most-studied syn-
tactic constructions known to influence how filler-
gap dependencies are processed by humans (Ross,


https://huggingface.co/docs/transformers/en/model_doc/gpt2
https://huggingface.co/docs/transformers/en/model_doc/gpt2
https://huggingface.co/docs/transformers/en/model_doc/gpt2

GPT2-10M

GPT2-100M

—e— Taining Loss
Evaluation Loss

—e~ Taining Loss
Evaluation Loss

[ 1000 3000

Step

0 2000
Step

Figure 4: Training and Evaluation Loss Curves of the Trained GPT-2 Models.

1967; Huang, 1982). Each construction includes
20 items.

Gap Distance Here we test how increasing the
amount of intervening material (in the form of rel-
ative clause modifiers) affects the model’s ability
to maintain long-distance dependencies. This con-
dition is split into two subparts: direct object gaps
and indirect object gaps. Each modifier is varied in
length.

Gap Distance with DO Gap

(2) a. The manager predicts what the intern
forwarded [___] to the client earlier this morning.
[+FILLER, +GAP, NO MODIFIER]

b. The manager predicts what the intern who
you admire forwarded [___] to the client earlier
this morning. [+FILLER, +GAP, SHORT
MODIFIER]

c. The manager predicts what the intern who
you worked closely with on the project forwarded
[___] to the client earlier this morning. [+FILLER,
+GAP, MEDIUM MODIFIER]

d. The manager predicts what the intern who
you recommended highly after the summer project
forwarded [___] to the client earlier this morning.
[+FILLER, +GAP, LONG MODIFIER]

Gap Distance with 10 Gap

(3) a. The manager predicts who the intern
forwarded an important email to [___] earlier this
morning. [+FILLER, +GAP, NO MODIFIER]

b. The manager predicts who the intern who
you admire forwarded an important email to [___]
earlier this morning. [+FILLER, +GAP, SHORT
MODIFIER ]

c¢. The manager predicts who the intern who
you worked closely with on the project forwarded
an important email to [___] earlier this morning.
[+FILLER, +GAP, MEDIUM MODIFIER]

d. The manager predicts who the intern who
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you recommended highly after the summer project
forwarded an important email to [___] earlier this
morning. [+FILLER, +GAP, LONG MODIFIER]

Multiple Gaps This condition tests whether the
model can handle the presence of more than one
gap in the same clause. We include subject gaps,
object gaps, and double gap sentences.

(4) a. James realized what [___] chased the cat
through the yard. [+FILLER, +GAP, SUBJECT GAP
ONLY]

b. James realized what the dog chased [___]
through the yard. [+FILLER, +GAP, OBJECT GAP
ONLY]

c. *James realized what [___ ] chased [___ ]
through the yard. [+FILLER, +GAP, SUBJECT AND
OBJECT GAPS]

Island Constraints To evaluate whether models
can learn syntactic constraints on long-distance de-
pendencies, we include two classic island types,
following those proposed in Ross (1967) and fur-
ther formalized in Huang (1982). Specifically, we
test the model’s sensitivity to wh-islands and ad-
junct islands. These constructions are known to
block filler—gap dependencies in adult grammars
and are considered central to the study of structural
locality in syntax. We do not include sentential sub-
ject islands, as their status in child acquisition of
filler—gap dependencies remains unclear and war-
rants further empirical confirmation.

Wh-Islands This condition tests whether the
model suppresses filler—gap expectations when the
gap is embedded in a syntactic wh-island (e.g., a
whether-clause). The complementizer of the em-
bedded clause is varied (null, that, whether), fol-
lowing the design in Wilcox et al. (2018).

(5) a. The teacher discovered what the student
claimed his friend lost [___] during the field trip.
[+FILLER, +GAP, NULL-COMPLEMENTIZER]



b. The teacher discovered what the student
claimed that his friend lost [___] during the field
trip. [+FILLER, +GAP, THAT-COMPLEMENTIZER]

c¢. The teacher discovered what the student
claimed whether his friend lost [___] during the
field trip. [+FILLER, +GAP,
WH-COMPLEMENTIZER |

Adjunct Islands In this condition, the gap is em-
bedded in an adjunct clause introduced by “while.”
We test three versions: no adjunct, adjunct attached
at the back, and fronted adjunct, following the de-
sign in Wilcox et al. (2018).

(6) a. We discovered what the intern at the new
office was preparing for [___] with extra care.
[+FILLER, +GAP, NO ADJUNCT]

b. We discovered what the lights went out
while the intern at the new office was preparing for
[___] with extra care. [+FILLER, +GAP, ADJUNCT
BACK]

c. We discovered what while the intern at the
new office was preparing for [___] with extra care
the lights went out.  [+FILLER, +GAP, ADJUNCT
FRONT]

C Flip Test Results

We include full details of flip test results in Table 2.
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GPT-2 GPT-2-10M GPT-2-100M ConcreteGPT BabbleGPT
i i i local i global i local i global i local i global i local i global i local i global i
| aap. distance_obj | [gap-] | 2.599%%* | 0258 | 0.33 | 0.095 (p=0.052) | 0.861%** | 0.162%* | 0595 (p=0.274) | 0.166** | 12115 | 0.198#* |
| | [gap+] 2404 | -0.239% [ 0.021 (p=0.817) | 0.072 (p=0.061) | -0.578%** | 0.038 (p=0.486) | -0.103 (p=0.855) | 0.106(p=0.1) | -0.811 (p=0.104) | 0.011 (p=0.83) |
| aap_distance_pp | [gap-] | 0772+ | 0.183%+ | -0.009 (p=0.838) | 0.046 (p=0.347) | 0.136 (p=0.074) | 0.06 (p=0.186) | 0.072 (p=0.883) | 0.113* [ 0252 (p=0.52) | 0.128%* |
| | le 2,083 | -0.026 (p=0.633) | -0.093 (p=0.211) | 0.056 (p=0.307) | -0.226* [ 0.04(p=0332) | -0.073 (p=0.902) | 0.108* | -0.68 (p=0.237) | 0.059 (p=0.195) |
| | [ga | 0039+ | | 0.136* | | 0.245%x | | 0.156%+ | | 0.439%x |
| double_gaps | -0.088 (p=144) | | 0.08 (p=0089) | | -0.077 (p=0.134) | | -0.086 (p=0.191) | | -0.067 (p =0.279) |
| | | -0.024 (p=0.725) | [ 0.059 (p=0.149) | | -0.078 (p=0.102) | | 243w | | -0.189%* |
| | 2236+ | 0.255% | 0.297+ | -0.02(p=0415) | 0928%*x | 0.087%* | Lo | 0.043 (p=0.267) | 1.083*** | 0.202:* |
| Whislands | 2404555 | -0.23%x | -0.254% | -0.08++ | -1.014%%% | -0.119%% | -0.514%* | -0.112+ | -0.63% | 0.041 (p=0.456) |
| | 2,127 | 0.157%+ [ 0.035 (p=0.808) | -0.002 (p=0.966) | 0.955%** [ 0.031 (p=0487) | 0413 (p=0.09) | -0.049 (p=0.466) | 0.589* [ -0.116 (p=0.136) |
| | 20435 | 03415 | 0.297%%* [ 0.08(p=0.07) | 1.229%* | 0.222%% | 1.05% | 0294 | 1.706%%* | 0.36% |
| adjunct_islands | -0.825% | 0022 (p=0.571) | -0.049 (p=0.66) | 0.062 (p=0.198) | -0.41* | 0.088+ | 0203 (p=0.179) | 0.243%+x | -0.905%++ | 0.145% |
| | islandhood (adjunct_front) | 0.632 (p = 0.057) | 0.203%#* | 0.076 (p=0.631) | 0.06 (p=0381) | 0.195 (p=0.447) | 0.14* [ -0.151 (p=048) | 0.002 (p=0978) | 0.99** [ 0.115 (p=0.129) |
f | islandhood (adjunct_back) | 0.665* | 0.186%* [ -0.011(0.944) | 0.016 (p=0.819) | 0.437 (p=0.088) | -0.009 (p =0.873) | -0.07 (p=0.742) | -0.168** | 0.898+* | 0.103 (p=0.176) |

d are the estimated effects when [+filler]. With the presence of a filler, [-gap]

1ste

Flip test results. Li

Table 2

should see an increase in surprisal (positive value), while [+gap] should see a decrease in surprisal (negative value).

Islandhood effects are estimated under [+filler, +gap]. When a filler-gap relationship exists given island constraints,

1 (positive value).

1n surprisa

there should be an increase
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