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Abstract

Different from classical one-model-fits-all strategy, individualized models allow
parameters to vary across samples and are gaining popularity in various fields,
particularly in personalized medicine. Motivated by medical imaging analysis, this
paper introduces a novel individualized modeling framework for matrix-valued
data that does not require additional information on sample similarity for the
individualized coefficients. Under our framework, the model individualization
stems from an optimal internal relation map within the samples themselves. We
refer to the proposed method as Attention boosted Individualized Regression, due
to its close connections with the self-attention mechanism. Therefore, our approach
provides a new interpretation for attention from the perspective of individualized
modeling. Comprehensive numerical experiments and real brain MRI analysis
using an ADNI dataset demonstrated the superior performance of our model.

1 Introduction

Model-based machine learning methods have advanced significantly and become essential in modern
data analysis. From linear regression to deep neural networks, most approaches fundamentally follow
an one-model-fits-all strategy, meaning that parameters of a well-trained model are fixed and do
not change for different samples. However, in fields like medical diagnosis and treatment design, it
is important to explore and apply individualized models with parameters tailored to each sample,
adapting to their unique features. Due to the heterogeneity among instances, individualized models
are expected to provide more accurate predictions and personalized interpretations, which are their
main advantages.

Individualized modeling has been extensively investigated in research, with the earliest example
possibly being the varying coefficient models [10, 6] in statistics community. A varying coefficient
model usually includes an additional variable and represents the varying coefficient as a function of
this extra variable. These models have been applied and adapted in various contexts. For instance,
[8] explored spatial modeling using a spatially varying coefficient process. In a similar vein, [26]
considered varying coefficient models in image response regression and proposed using deep neural
networks to estimate the varying coefficients.
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Beyond varying coefficient models, recent studies have also incorporated prior knowledge of sample
similarity to regulate sample-specific coefficients. The fundamental assumption is that the similarity
among coefficients for different samples relies on the sample similarity, meaning that the more similar
the samples, the closer their coefficients. For instance, [24] tackled personalized medical models
using a multi-task learning approach called FORMULA, assuming that models for similar patients are
close and achieving this through Laplacian regularization. [25] developed the localized Lasso, which
assumes a known weighted network over samples that reflects the distance in parameter space. [15]
loosened the aforementioned prior assumption by considering additional covariates and assuming
the existence of some measurement of similarity corresponding to similarity in parameter space.
Moreover, they constrained the matrix of personalized parameters to be low-rank, so closeness in
loadings implies closeness in parameters. While effective in various contexts, these methods heavily
rely on the prior knowledge about parameter similarity, which might not be readily available in
numerous real-world applications.

This paper aims to develop a novel individualized modeling framework for matrix-valued data, without
the need for additional information on sample similarities. In our framework, model individualization
is derived from the heterogeneity inherent in the samples themselves. Specifically, we seek to find
an optimal sample-specific internal relation map to enhance model fitting and interpretation. The
sample-specific relation map allows us to capture the local dependence between patches within each
matrix input, thereby enhancing prediction performance and model interpretability.

It is worth noting that the proposed individualized modeling framework with sample-specific internal
relation map is highly connected to the self-attention mechanism [21], which has demonstrated its
exceptional performance in various field, including natural language processing, computer vision, and
more. Due to such connection, we named the proposed framework Attention boosted Individualized
Regression (AIR). Therefore, our approach could also provide a new interpretation for attention from
the perspective of individualized modeling.

We should emphasize that our proposed approach is particularly well-suited for applications in
personalized medicine and brain connectomics analysis, which initially motivated us to study
individualized modeling. In recent years, the field of brain connectomics has experienced rapid
growth due to advancements in medical imaging technology. This area of study focuses on examining
comprehensive maps of connections within the human brain, playing a vital role in cognitive
neuroscience, clinical diagnosis, and more. Brain networks can be represented by relation matrices,
often established based on connections among regions of interest (ROIs). Besides sample features, the
internal relationships within each sample may also influence relevant responses. This consideration
has been addressed in the literature, such as [18, 9]. In this context, differentiated internal relations
can emphasize heterogeneity among subjects, providing individual-level information about brain
connectivity. This effect supports the use of internal relations in individualized models and further
contributes to personalized medicine.

2 Attention boosted individualized regression

Given any matrix M , we first introduce a matrix reshaping operator that allows us to explore the
internal relations within M . Let M have dimensions D1 ×D2 and let d1, d2 be factors of D1, D2.
Define (p1, p2) = (D1/d1, D2/d2). We can now define the operator R(d1,d2)(·) : RD1×D2 →
R(p1p2)×(d1d2) as a mapping from M to

R(d1,d2)(M) =
[
vec
(
Md1,d2

1,1

)
, . . . , vec

(
Md1,d2

p1,p2

)]⊤
, (1)

where Md1,d2

j,k represents the (j, k)-th block of M with size d1 × d2. The operator R(d1,d2)(·)
essentially vectorizes each of the p1 × p2 block (of size d1 × d2) and stacks the vectorized blocks
together. Denote the inverse operation of R(d1,d2)(·) as R−1

(d1,d2)
(·). A special case occurs when

(d1, d2) = (1, D2), in which case we have R(1,D2)(M) = R−1
(1,D2)

(M) = M . It is worth noting
that this reshaping operation has also been applied in attention mechanisms, allowing us to examine
the relations or correlations among the p1 × p2 patches.

Suppose we observe n samples with scalar outcomes yi ∈ R and matrix inputs Xori
i ∈ RD1×D2

for i = 1, . . . , n. Given a block size (d1, d2), we first reshape the original images to obtain
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Xi = R(d1,d2)(X
ori
i ) ∈ Rp×d, where p = p1p2 and d = d1d2. Then we consider the following

individualized linear regression model with coefficient matrices varying across samples

yi = ⟨Xi,Ci⟩+ εi, i = 1, . . . , n, (2)

where Ci ∈ Rp×d is the unknown individualized coefficient matrix for i-th sample and εi is the noise
term. Note that the reshaping operation R(d1,d2)(·) is one-to-one. Thus, model (2) is equivalent to
yi = ⟨X(ori)

i ,C
(ori)
i ⟩+ εi, with C

(ori)
i = R−1

(d1,d2)
(Ci). As previously mentioned, model (2) type of

individualized regression has been studied under various constraints on the individualized coefficients,
such as [10, 6, 24, 25].

In this paper, we propose to model Ci with two components: a homogeneous coefficient C
reflecting common effects and a heterogeneous coefficient Di containing individualized information.
Specifically,

Ci = C +Di, i = 1, . . . , n. (3)

For the heterogeneous coefficients, we further assume that they share an unknown common factor D
across samples,

Di = A⊤
i D. (4)

Here, Ai represents unknown sample-specific factors serving as a re-weighting matrix to aggregate
the coefficients in D, where the transpose is to better connect with self-attention mechanism later.
The matrix D ∈ Rp×d can be viewed as a base coefficient matrix for the heterogeneous effects.
Clearly, additional constraints on the individual factor Ai are necessary to ensure the identifiability
of the model. The choice of factor Ai may vary depending on the purpose. In this paper, we propose
an internal-relation-boosted individualized factor for matrix-valued inputs. Specifically, we consider
Ai ∈ Rp×p of the form

Ai = g(XiWX⊤
i ), (5)

where W ∈ Rd×d is an unknown matrix to be learned, while g(·) : Rp×p → Rp×p is a known
function that preserves dimension, of which different forms to be discussed. It is worth recalling
that Xi = R(d1,d2)(X

ori
i ) ∈ Rp×d is the reshaped matrix. The reshaping operation (1) enables us

to calculate the “generalized correlation” between patches through (5). When fixing W = Id and
setting g(·) as the identity function, Ai = XiX

⊤
i reduces to standard covariance matrix of patches

within i-th sample when Xi is properly centered.

In the formulation (5), the individualized matrix Ai is designed to capture the internal relationships
among the p rows of reshaped matrix (or p patches of original matrix) for each sample. Relations
between two vectors can be measured in different ways, such as correlation, similarity, distance,
etc. Our formulation of (5) is motivated by the rotation correlation introduced by [20]. For any two
vectors u and v, the rotation correlation is defined as

max
H

u⊤Hv,

where the matrix H is usually required to be orthogonal. This rotational correlation aims to find the
maximized correlation between u and v with the best possible rotation. When H is the identity matrix
and ∥u∥2 = ∥v∥2 = 1, the rotation correlation reduces to standard Pearson correlation. We note that
the (j, k)-th element of the sample-specific factor can be written as {Ai}jk = {Xi}j·W {Xi}⊤k·,
where {Xi}j· and {Xi}k· are the j-th and k-th rows of Xi, respectively. In other words, {Ai}jk is
related to the rotation correlation between {Xi}j· and {Xi}k·. However, our goal is not to maximize
the correlation between {Xi}j· and {Xi}k· but to find the optimal rotation that achieves the best
fitting for the responses.

Combining (2) to (5), we obtain our individualized model in the following form

yi = ⟨Xi,C⟩︸ ︷︷ ︸
homogeneous

+ ⟨Xi, g(XiWX⊤
i )

⊤D⟩︸ ︷︷ ︸
heterogeneous

+ εi. (6)

Here, C ∈ Rp×d, D ∈ Rp×d, and W ∈ Rd×d are the coefficient matrices that need to be learned.
The decomposition of (6) allows us to understand and assess the individuation degree of each sample
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and the entire model. At the sample level, a larger magnitude of the heterogeneous part indicates that
the sample is more distinctive, affected by its internal relations. At the model level, the larger the
magnitude of the homogeneous part, the closer the model is to an ordinary linear model, and vice
versa. Naturally, achieving a proper balance between the two parts contributes to a better model fit.

We shall note that model (6) could be easily extended to a generalized linear model (GLM) setting to
accommodate other types of outcomes. For example, by allowing certain link function f(·), we may
consider a GLM of the form f(E(yi)) = ⟨Xi,Ci⟩. Then, the coefficients Ci could still be modeled
as in (3) to (5).

To learn the coefficients C, D and W , we propose the following penalized minimization problem

min
C,D,W

1

n

n∑
i=1

(yi − ⟨Xi,Ci⟩)2 + λ1∥C∥2F + λ2∥D∥2F , (7)

s.t. Ci = C + g(XiWX⊤
i )

⊤D, ∥W ∥F = 1,

where ∥ · ∥F is the Frobenius norm and λ1 and λ2 are regularization parameters to balance the
homogeneous and heterogeneous effects. Besides, a norm constraint for W is also required due to
identifiability consideration. We defer to Section 4 for the computation of (7).

3 Individualized regression and attention

We refer to our individualized modeling as Attention boosted Individualized Regression due to its
connections with the self-attention mechanism. The self-attention mechanism was proposed in the
seminal work [21], and the Transformer model based on it has demonstrated exceptional performance
in natural language processing, computer vision, and other fields. In this section, we establish the
connection between the proposed model (6) and the self-attention mechanism.

Given the input X ∈ Rn×d, the Scaled Dot-Product Attention mechanism computes the output using
Q ∈ Rn×dk , K ∈ Rn×dk , and V ∈ Rn×dv , representing query, key, and value, respectively. The
three essential components are linearly transformed from X by

Q = XWQ, K = XWK , V = XW V

with corresponding weight matrices WQ, WK , and W V . Incorporating a softmax function for
normalization, the Scaled Dot-Product Attention is defined as

f(X) = softmax

(
QK⊤
√
dk

)
V . (8)

In the attention mechanism, the first part softmax
(

QK⊤
√
dk

)
essentially computes the pairwise similarity

between queries and keys, normalized by a combination of scaling and row-wise softmax. With the
resulting attention map, the output is obtained by reweighing the pairs’ values. The attention map is
at the core of the attention mechanism, as it provides an individualized map that captures information
on pairwise similarity within each sample.

Moreover, the attention mechanism (8) could also be expressed in a row-wise form. Let O =
Attention(Q,K,V ) be the output of the attention function. Further let oi, qi,ki and vi be the i-th
row of O, Q, K, and V , respectively. Then, (8) is equivalent to

oi =

∑N
j=1 exp

(
q⊤
i kj/

√
dk
)
vj∑N

j=1 exp
(
q⊤
i kj/

√
dk
) . (9)

This form clearly highlights that the basis of the weights in the attention map is formed by
vector correlation. In fact, the dot-product-based pairwise similarity is derived from a nonlinear
transformation of the correlation between pairs. Beyond softmax function, normalization in attention
could also be accomplished using a general function g(·). As a result, we obtain the following
generalized attention

f(X) = g
(
QK⊤

)
V . (10)
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The attention mechanism in the form of (10) with a nonlinear function g(·) can face computational
challenges, as the direct computation of attention maps requires significant resources to handle n× n
matrices. To address the computation issues, several recent works have emerged, such as sparse
transformers [4], efficient transformers [13], and more. Linear attention mechanisms have been
studied as a subcategory, which can dramatically decrease complexity from quadratic to linear. [16]
proposed a linear attention boosted on the first-order Taylor expansion of the exponential part in the
softmax function, i.e., exp(q⊤k) ≈ 1 + q⊤k. [12] presented the linearized attention using kernel
functions, which measure the similarity between q and k through ϕ(q)⊤ϕ(k). In this case, ϕ(·)
represents a specific kernel function. [22] introduced Linformer, which leverages the low-rankness of
the attention map to reduce complexity to linear. Notably, [19] considered linear ρ(Y ) = Y /n as
scaling normalization, consequently,

f(X) =
1

n
QK⊤V . (11)

Linear attention mechanisms are efficient because they bypass the need to compute n×n matrices by
using associative multiplication, reducing complexity from O(n2) to O(n). While on the other hand,
experiments show that Linear attentions does not result in a significant compromise in performance.

Now we demonstrate the connections between our individualized regression model (6) and the
self-attention mechanism. We let the homogeneous coefficient C = 0 and focus on the model

yi = ⟨Xi, g(XiWX⊤
i )

⊤D⟩+ εi. (12)

Proposition 3.1. Suppose the model (12) holds and matrices W and D in model (12) could be
decomposed as below

(I) W = WQW
⊤
K for two matrices WQ,WK ∈ Rd×dk with dk ≤ d,

(II) D = BW⊤
V for two matrices B,W V ∈ Rd×dv with dv ≤ d.

Then, the following equation holds for each sample Xi〈
Xi, g(XiWX⊤

i )
⊤D

〉
=
〈
g(QiK

⊤
i )V i, B

〉
, (13)

where

Qi = XiWQ, Ki = XiWK , V i = XiW V .

Remark 3.2. Proposition 3.1 establishes the connection between our individualized regression model
(12) and the self-attention mechanism (10). We shall note that the product of the query and key
QiK

⊤
i = XiWX⊤

i essentially acts as an internal relation map, capturing the inter-dependence
between local patches. By applying an appropriate function g(·), we can obtain the normalized sample-
specific internal relation map. Furthermore, the value matrix V i can be enhanced by multiplying
with such relation map. The final outcome is obtained as the inner product of the aggregated features
and the coefficient matrix.

It is important to note that the two conditions in the proposition are mild, as they correspond to the
low-rank assumptions: (I) rank(W ) ≤ dk and (II) rank(D) ≤ dv . In particular, (I) is consistent with
Theorem 1 in [22], which demonstrated that the self-attention mechanism, i.e., the attention matrix,
is low-rank. Moreover, if assumption (II) is not considered, (13) becomes equivalent to the simplified
Vision Transformer in [11] without considering the value.

Conversely, the equivalence (13) also helps understand our model from the perspective of the
self-attention mechanism. Since the tuple (WQ,WK ,W V ) represents embedding projections in
self-attention, W = WQW

⊤
K is equivalent to a composite embedding that is adaptive and determines

the attention map. Meanwhile, D = BW⊤
V represents a projected regression coefficient that can be

learned as a whole. The heterogeneous coefficients Di = g(XiWX⊤
i )

⊤D can be considered as an
aggregation of base coefficients through the attention map, contributing to model interpretation. If we
set g(·) as the identity function, (13) simplifies to linear attention, thus enjoying the computational
advantages of linear attention.

We should also note that with the growing popularity of transformers in natural language processing,
self-attention-based architectures have begun to be introduced in computer vision, encompassing
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various visual tasks such as detection, segmentation, and generation. However, we mainly discuss their
initial involvement in regression and classification tasks [23, 3, 5]. In particular, [5] directly applied a
pure transformer to address the image classification problem and proposed Vision Transformer (ViT).
ViT treats images as sequences by dividing them into fixed-size patches and processes them using
a transformer architecture. ViT comprises two main components: the Encoder and the Classifier.
In the transformer encoder, each attention map is computed for each image based on patch-wise
similarity. The embedded patches are then followed by a multilayer perceptron head that serves as a
regressor/classifier. Although some details are not discussed, this simplification helps to understand
the connection with our model. More recently, [11] proposed simplifying transformer blocks. By
removing skip connections, value parameters, sequential sub-blocks, and normalization layers, the
simplified transformer has the potential to achieve fewer parameters and faster training.

4 Computation

In this section, we demonstrate the computation of the penalized minimization problem (7). From
now on, we shall focus on the special case where g(x) = x is the identity function, which corresponds
to linear attention. Namely, the model is

yi = ⟨Xi,C +XiW
⊤X⊤

i D⟩+ εi. (14)
In this context, we develop an alternating minimization algorithm and highlight its benefits compared
to gradient-based ones. First, we observe that the heterogeneous part in model (14) satisfies〈

Xi,XiW
⊤X⊤

i D
〉
=
〈
X⊤

i DX⊤
i Xi,W

〉
=
〈
XiWX⊤

i Xi,D
〉
. (15)

Moreover, let w = vec(W ) and d = vec(D) be the vectorization of W and D. It holds that〈
X⊤

i DX⊤
i Xi,W

〉
=
〈
Zi,wd⊤

〉
, where Zi =

(
X⊤

i Xi

)
⊗X⊤

i (16)

and ⊗ denotes the Kronecker product. Clearly, (16) displays a bilinear form. We start our algorithm
by initializing w as the top left singular vector of

∑n
i=1 yiZi. Formally,

ŵ(0) = SVDu

(
n∑

i=1

yiZi

)
, (17)

where SVDu(·) represents the top left singular vector of a matrix.

Now we introduce our alternating minimization algorithm. Denote Ĉ
(t)

, D̂
(t)

and Ŵ
(t)

as the

iterates in t-th loop. According to (15), we alternatively update
(
Ĉ

(t)
, D̂

(t)
)

and Ŵ
(t)

as below.

Given Ŵ
(t−1)

, denote U
(t−1)
i = XiŴ

(t−1)
X⊤

i Xi. Then
(
Ĉ

(t)
, D̂

(t)
)

can be updated by(
Ĉ

(t)
, D̂

(t)
)

= argmin
C,D

1

n

n∑
i=1

(
yi −

〈[
Xi,U

(t−1)
i

]
,
[
C, D

]〉)2
+ λ1∥C∥2F + λ2∥D∥2F .

(18)
Clearly, (18) can be seen as a ridge-like regression with two levels of penalization on distinct
coefficients, which has an explicit solution shown in Section A in the appendix.

Given
(
Ĉ

(t)
, D̂

(t)
)

, then Ŵ
(t)

can be updated by

Ŵ
(t)

= argmin
W

1

n

n∑
i=1

(
yi −

〈
Xi, Ĉ

(t)
〉
−
〈
X⊤

i D̂
(t)
X⊤

i Xi,W
〉)2

, (19)

Ŵ
(t)

= Ŵ
(t)
/∥Ŵ

(t)
∥F . (20)

It implies that Ŵ
(t)

could be obtained easily through ordinary least squares followed by normalization.
We summarize the alternating minimization algorithm in Algorithm 1 in Section A in the appendix.
In practice, the regularization level (λ1, λ2) are treated as hyperparameters and we can use cross-
validation to search for the optimal combination.
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5 Theoretical analysis

In this section, we provide theoretical guarantees for our Attention boosted Individualized Regression.
Specifically, we show that W (t) and D(t) obtained by alternating minimization algorithm converge
to the true counterparts at a geometric rate. To simplify analysis, we focus on the heterogeneous part
of model (14), although our results can be extended to more general cases. Suppose that

yi = ⟨Xi,XiW
⊤X⊤

i D⟩+ εi. (21)

Let w = vec(W ) and d = vec(D), the optimization problem could be written as

min
d,w

1

n

n∑
i=1

{
yi −

〈(
X⊤

i Xi

)
⊗X⊤

i ,wd⊤
〉}2

+ λ2∥d∥22. (22)

which is non-convex on w and d. For the rearranged images Xi for i = 1, . . . , n, we define

Z =
(

vec
{(

X⊤
1 X1

)
⊗X⊤

1

}
, . . . , vec

{(
X⊤

nXn

)
⊗X⊤

n

})⊤
. (23)

Here each row of Z represents a transformed sample. For the new feature matrix Z, we suppose the
following RIP condition.
Condition 5.1. (Restricted Isometry Property) For each integer = 1, 2, . . ., a matrix P ∈ Rn×q1q2 is
said to satisfy the r-RIP condition with constant δr ∈ (0, 1), if for all M ∈ Rq1×q2 of rank at most r,
it holds that

(1− δr)∥M∥2F ≤ 1/n∥P vec(M)∥22 ≤ (1 + δr)∥M∥2F . (24)

The Restricted Isometry Property (RIP) was initially introduced by [2] for sparse vector recovery and
subsequently extended by [17] for low-rank matrices, as in Condition 5.1. Many random matrices
with an adequately large number of independent observations, such as Gaussian or sub-Gaussian
matrices, satisfy the RIP condition [17]. In our analysis, we require that Z defined in (23) satisfies
the 2-RIP condition with constant δ2.

To evaluate the estimation error of parameters, we consider an angle-based distance between two
matrices. Formally, for any two matrices U and V with the same dimension, we define the distance
as dist(U ,V ) =

√
1− ⟨U ,V ⟩2/(∥U∥2F ∥V ∥2F ). This distance metric corresponds to the squared

sine value after vectorization, that is, dist(U ,V ) = sin(u,v), where u = vec(U) and v = vec(V ).
Now we are ready to present our main theorem.
Theorem 5.2. Suppose model (21) holds and solved by alternating minimization algorithm. Assume

that Z satisfies 2-RIP Condition 5.1 with a constant δ2. Denote µ0 = dist
(
Ŵ

(0)
,W

)
as the initial

distance. Let κ1 = µ0/2+ 3δ2/(1− 3δ2) and κ2 = µ0/2+ (3δ2 + λ2)/(1− 3δ2 + λ2) and assume
κ1, κ2 < 1. And τ1, τ2 are noise related terms. Suppose κ1µ0 + τ1 ≤ µ0 and κ2µ0 + τ2 ≤ µ0. Then,
after t iterations we have

dist
(
Ŵ

(t)
,W

)
≤ (κ1κ2)

tµ0 +
κ1τ2 + τ1
1− κ1κ2

, (25)

dist
(
D̂

(t)
,D

)
≤ κt−1

1 κt
2µ0 +

κ2τ1 + τ2
1− κ1κ2

. (26)

Theorem 5.2 suggests that the estimation errors of W (t) and D(t) converge at a geometric rate,
with the contraction parameter being κ1κ2. On the right-hand-side of (25) and (26), the first term
represents the optimization error, while the second term represents the statistical error. It becomes
evident that the optimization error decays geometrically with each iteration t.
Theorem 5.3. Suppose model (21) holds and solved by alternating minimization algorithm. Assume

that Z satisfies 2-RIP Condition 5.1 with a constant δ2. Denote µ0 = ∥Ŵ
(0)

− W ∥F as the
initialization error. Let ν1 = 2µ0 + 3δ2/(1− 3δ2) and ν2 = 2µ0 + (3δ2 + λ2)/(1− 3δ2 + λ2), and
assume ν1, ν2 < 1. And τ1, τ2 are noise related terms. Suppose ν1µ0+ τ1 ≤ µ0 and ν2µ0+ τ2 ≤ µ0.
Then, after t iterations we have

∥Ŷ
(t)

− Y ∥2 ≤ 3∥D∥F
√

1 + δ2

{
(ν1ν2)

t−1µ0 +
τ1 + τ2
1− ν1ν2

}
. (27)
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Theorem 5.3 suggests that the prediction error decreases in a similar manner as the estimation errors
in Theorem 5.2. It is important to note that the error bounds in both theorems are dependent on
suitable initialization. We employ spectral initialization as shown in (17), which has been proven to
have an error closely approximating the true value.

6 Simulation

We conduct extensive simulation studies to evaluate the performance of our Attention boosted
Individualized Regression compared to related methods in this section. Besides, ablation studies are
deferred to Section B.1 in the appendix to show the advantage of combining the homogeneous and
heterogeneous parts. Throughout the simulation, we assume that the data is generated according
to the model (6). The size of the images is set to 28 × 28, with a sample size of 4000 for training
and 1000 for testing. The noise εi follows an i.i.d. N (0, 1). The coefficient matrices Cori and Dori

are generated as two circles depicted in Figure 1. For the images Xori
i , we assume that internal

relations exist among blocks of size 4× 4 within each image, where two blocks at random locations
are correlated. The entries in Xori

i follow i.i.d N (0, 1), while the correlated blocks are generated
using the two methods below.

Case 1: With specific W , the internal relations are subject to (5). Consider a low-rank W =
2 ·u1v

⊤
1 +1 ·u2v

⊤
2 where u1,u2 and v1,v2 are random vectors with entries subject to i.i.d. N (0, 1).

Then, the correlated blocks are generated as u1 plus noise vectors with i.i.d. entries from N (0, 0.25).

Case 2: Without specific W , the internal relations are Pearson correlation coefficients. Given a
random vector u as a base with i.i.d. entries from N (0, 1), the correlated blocks are also generated
as u plus noise vectors with i.i.d. entries from N (0, 0.25). Then Ai is taken as the correlation matrix
where (j, k)-th element of Ai is the Pearson correlation coefficient between j-th and k-th blocks
within Xori

i .

Furthermore, we consider different levels of model individualization and investigate the effects
on model performance. To this end, we define the degree of individuation (DI) of model (6)
by the relative total magnitude of the heterogeneous part and homogeneous part. Specifically,
DI =

√∑n
i=1⟨Xi,Di⟩2/

∑n
i=1⟨Xi,C⟩2.

The performance of AIR is compared with four competing methods, including, low-rank matrix
regression [LRMR, 27], tensor regression with lasso penalty [TRLasso, 28], Deep Kronecker Network
[DKN, 7], and Vision Transformer [ViT, 5], respectively. Implementation details are provided in
Section B.2 in the appendix. Of note is that we cannot implement several individualized regression
methods [25, 14] as they require additional information of unknown variables. We evaluate prediction
performance of different methods, measured by the root mean squared error (RMSE) on test set:√
(1/ntest)

∑ntest
i=1(ŷ

test
i − ytest

i )2. The average and standard error of 100 repetitions are reported in
Table 1, and the estimated coefficients of different methods are illustrated in Figure 1 and 4.

Table 1: Prediction errors of different methods.

DI Methods
AIR LRMR TRLasso DKN ViT

Case 1
0.5 4.422 (0.130) 6.616 (0.020) 8.215 (0.021) 4.886 (0.018) 18.429 (0.049)
1.0 8.102 (0.325) 13.101 (0.040) 14.655 (0.044) 7.028 (0.032) 18.351 (0.047)
2.0 10.599 (0.816) 26.239 (0.081) 27.007 (0.085) 11.741 (0.043) 24.098 (0.069)

Case 2
0.5 3.590 (0.046) 6.766 (0.018) 8.337 (0.021) 8.269 (0.018) 24.492 (0.063)
1.0 6.632 (0.022) 13.408 (0.037) 14.739 (0.039) 14.964 (0.034) 29.939 (0.084)
2.0 13.002 (0.044) 26.864 (0.074) 27.484 (0.073) 28.686 (0.060) 44.036 (0.111)

The numerical results indicate that AIR outperforms all other methods, with the advantage increasing
as the degree of individuation becomes greater. Figure 1 and 4 demonstrate that AIR, when solved
by our algorithm, can accurately recover the shape of the true parameters. It is worth noting that in
Case 2, even though our model is mis-specified with no explicit W exists, AIR still performs well.
Common-model methods such as LRMR, TRLasso, and DKN tend to estimate the sum of the true
coefficients for both parts. On the other hand, ViT typically requires a large number of samples and
is thus not as effective due to the limited sample size.
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Figure 1: Case 1 simulation results with DI = 1.0. The first three columns show true parameters and
estimations from AIR. The last two columns show estimations from other methods except ViT, as it
has no explicit coefficient matrix. An additional OLS estimation is added for reference.

7 Real data analysis

In this section, we analyze the relationship between cognitive assessment scores and brain MRI data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The ADNI is a study on Alzheimer’s
disease (AD) that includes clinical, genetic, and imaging data, covering AD patients, individuals
with mild cognitive impairment (MCI), and healthy controls. We collected a total of 1059 subjects
from ADNI 1 and GO/2 phases with Mini-Mental State Examination (MMSE) score and brain
MRI. The MMSE score measures a patient’s cognitive impairment which can assist in the diagnosis
of AD. Brain MRI were carefully preprocessed following a standard pipeline involving denoising,
registration, skull-stripping and so on and were resized to tensors of size 48×60×48 for computation
efficiency. Then we extracted 10 middle coronal slices for each subject, resulting in images of size
48× 48. Two samples are shown in the first column in Figure 2.

We compare the methods described in the simulation section by 5-fold cross-validation in test
RMSE, of which average and standard error are presented in Table 2. AIR exhibits the best prediction
performance among all methods, of which the significance can be shown by paired t-test. Furthermore,
Figure 2 compares estimations of different methods while illustrates the individualized estimations

from AIR for two different subjects, including the heterogeneous effect D̂
ori

and significant internal
relations. To screen significant internal relations for each subject, we summarize relations of each
node in the internal relation matrix Âi and select top 5 as significant nodes. Subsequently, we mark
these nodes at corresponding locations in the original sample by red boxes and show their relations
by a chord diagram. For example, the block (4, 5) in sample 1 has the strongest relations, and is
related to both (6, 4) and (6, 5), indicating the important relations between corpus callosum and

hippocampus. We also note that after separating heterogeneous effect, the homogeneous effect Ĉ
ori

highlights regions of the hippocampus, which have been acknowledged in medical literature as a
crucial substructure associated with Alzheimer’s disease [1]. By this means, we can find important
regions and relations among them for each subject, which is potential to help personalized treatment.
In contrast, other methods do not reveal clear shapes and fail to offer valuable interpretations.

Table 2: Prediction errors of different methods.

AIR LRMR TRLasso DKN ViT
3.145 (0.019) 3.715 (0.008) 3.292 (0.023) 3.261 (0.017) 3.282 (0.025)
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Figure 2: Results on ADNI dataset. (I) Column 1 shows two original samples. Column 2 shows
heterogeneous coefficients estimated by AIR. Column 3 presents chord diagrams that illustrate the
significant internal relations estimated by AIR. Each coordinate in the chord diagram corresponds
to a red box marked in the sample. (II) Columns 4 and 5 compare the homogeneous coefficients
estimated by AIR with the coefficients obtained from other methods.

8 Discussion

In this paper, we present an Attention boosted Individualized Regression model that emphasizes
internal relationships within samples and is based on the concept of rotation vector correlation. Our
method is specifically tailored for data with heterogeneous internal relationships. By concentrating
on the internal relations within samples, our approach effectively addresses the complex and
heterogeneous nature of data, making it highly beneficial for various fields, particularly, brain imaging
analysis and personalized medicine. On the other hand, we realize that the AIR framework also has
limitations. First, its capability to handle general data is more or less restricted. When there are
minimal heterogeneous effects, its performance will be similar to an ordinary linear model. Second,
as discussed earlier, our framework could be viewed as a simplified version of the Vision Transformer;
however, such simplifications may also reduce its approximation power for more complex scenarios.
Furthermore, this paper primarily investigates the linear form of AIR. Although the linear form
performs well in the cases of interest, it remains worthwhile to explore the generalization of the
model in future work.
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Appendix

A Computation

The pseudocode of the alternating minimization algorithm is summarized in Algorithm 1. As

mentioned in Section 4, updating
(
Ĉ

(t)
, D̂

(t)
)

is a ridge-like regression problem and updating

Ŵ
(t)

is an ordinary least squares problem, both of which have explicit solutions. For the former,
we consider the vectorzied version of the problem (32). With bold lowercase letters being the
vectorization of corresponding matrices, we have(

ĉ

d̂

)
= argmin

c,d

1

n

n∑
i=1

{
yi −

(
x⊤
i ,u

⊤
i

)(c
d

)}2

+ λ1∥c∥22 + λ2∥d∥22 (28)

= argmin
β

∥Y −Nβ∥22 + β⊤Λβ, (29)

where β stores all coefficients, N is the new design matrix within this step and Λ =

(
λ1I 0
0 λ2I

)
includes different intensities of penalization. Therefore, (29) has the following solution

β̂ =
(
N⊤N +Λ

)−1

N⊤Y . (30)

Similarly, the vectorization of (34) implies its OLS solution as below

ŵ = argmin
w

∥∥∥Ỹ −Mw
∥∥∥2
2
=
(
M⊤M

)−1

M⊤Ỹ , (31)

where Ỹ is the response minus homogeneous part and M is the new design matrix within this step.

Algorithm 1 Alternating minimization algorithm
Input: Xi, yi, i = 1, . . . , n.
Initialize ŵ(0) = SVDu (

∑n
i=1 yiZi).

repeat

(
Ĉ

(t)
, D̂

(t)
)

= argmin
C,D

1

n

n∑
i=1

(
yi −

〈[
Xi,U

(t−1)
i

]
,
[
C, D

]〉)2
+ λ1∥C∥2F + λ2∥D∥2F .

(32)

Ŵ
(t)

= argmin
W

1

n

n∑
i=1

(
yi −

〈
Xi, Ĉ

(t)
〉
−
〈
X⊤

i D̂
(t)
X⊤

i Xi,W
〉)2

. (33)

Ŵ
(t)

= Ŵ
(t)
/∥Ŵ

(t)
∥F . (34)

until Converges or reaches maximal iterations.

Output: Ĉ
(T )

, D̂
(T )

, Ŵ
(T )

.

B Experimental extras

B.1 Ablation studies

We conduct ablation studies in this section to investigate the effects of homogeneous part and
heterogeneous part. Specifically, we compare

(1) AIR: yi = ⟨Xi,C⟩+ ⟨Xi,Di⟩ + εi, subject to Di = XiWX⊤
i D.
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(2) Hetero: yi = ⟨Xi,Di⟩ + εi, subject to Di = XiWX⊤
i D.

(3) Homo: yi = ⟨Xi,C⟩+ εi.

Hetero refers to the AIR with only heterogeneous part, which is solved by alternately updating D and
W . Homo refers to the AIR with only homogeneous part which is actually a linear regression model
and can be solved by OLS directly. For comparison among these three models, we follow Case 1 and
Case 2 in the simulation part, i.e. with and without explicit W when generating true internal relation
matrices. We extend the degree of individuation (DI) to {1/4, 1/2, 1, 2, 4}, indicating the true model
becomes more and more individualized. We plot the average prediction errors, i.e. RMSE on test
set, based on 100 repetitions, against DI in Figure 3 Both subplots show that the Homo is better than
Hetero when DI is small while get worse when DI increases. However, the AIR is always the best all
over different DI. It demonstrates the advantage of combining the homogeneous and heterogeneous
parts, which adapts the model to more scenarios.

Figure 3: Results of ablation studies. Incorporating homogeneous part and heterogeneous part makes
the AIR more robust, especially better than the one with only heterogeneous part.

B.2 Simulation

Codes of our approach are available at https://github.com/YLKnight/AIR. Implementation
details of different methods are explained here. The AIR is implemented in Python with
hyperparameters λ1 and λ2 selected by 5-fold cross-validation, of which the candidate sets are
both from 1 to 10. LRMR and TRLasso are implemented by their Matlab code, with hyperparameters
selected by BIC in default setting. DKN is implemented by its Python code. The blocksizes are set
as 2× 2, 2× 2 and 7× 7, resulting in 3 layers while the rank is by default selected by BIC from 1
to 5. The ViT is trained by Adam optimizer in Pytorch. Followed by an MLP for regression, the
transformer model includes 4 transformer blocks with 8 heads in each Multi-head Attention layer,
and the patch size is set as 4× 4. In all experiments, the CPUs used are Intel Xeon Gold 5218R and
GPUs used are NVIDIA GeForce RTX 3090. Figure 4 below shows simulation results under Case 2.
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Figure 4: Simulation results under Case 2 with DI = 1.0. There does not exist an explicit true
W while the internal relation matrix Ai is computed directly by patchwise Pearson correlation
coefficients. Because such Ai is close to a diagonal matrix, it is rational that Ŵ from AIR is close to
a diagonal matrix.

C Proofs

C.1 Useful lemmas

Lemma C.1. Define the distance of two vectors u,v ∈ Rp as

dist(u,v) =

√
1− ⟨u,v⟩2

∥u∥22∥v∥22
(35)

For any vectors u,v ∈ Rp where ∥v∥2 = 1, it holds that

dist (u,v) ≤ ∥u− v∥2 (36)

Lemma C.2. For any vectors u,v ∈ Rp, it holds that

∥u− v∥2 ≥ 1

2
(∥u∥2 + ∥v∥2)

∥∥∥∥ u

∥u∥2
− v

∥v∥2

∥∥∥∥
2

(37)

Lemma C.3. Define

Z =
(

vec
((

X⊤
1 X1

)
⊗X⊤

1

)
, . . . , vec

((
X⊤

nXn

)
⊗X⊤

n

))⊤
(38)

Z ′ =
(

vec
((

X⊤
1 X1

)
⊗X1

)
, . . . , vec

((
X⊤

nXn

)
⊗Xn

))⊤
(39)

If Z satisfies the 2-RIP condition with constant δ2, Z ′ also satisfies the 2-RIP condition with constant
δ2.
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Proof.∥∥Z ′vec(M)
∥∥2
2

= {vec(M)}⊤ Z ′⊤Z ′vec(M)

=

n∑
i=1

{vec(M)}⊤ vec
((

X⊤
i Xi

)
⊗Xi

){
vec
((

X⊤
i Xi

)
⊗Xi

)}⊤
vec(M)

=

n∑
i=1

〈
M ,

(
X⊤

i Xi

)
⊗Xi

〉2
=

n∑
i=1

〈
M⊤,

(
X⊤

i Xi

)
⊗X⊤

i

〉2
=

n∑
i=1

{
vec
(
M⊤

)}⊤
vec
((

X⊤
i Xi

)
⊗X⊤

i

){
vec
((

X⊤
i Xi

)
⊗X⊤

i

)}⊤
vec
(
M⊤

)
=
∥∥∥Zvec

(
M⊤

)∥∥∥2
2

According to RIP condition on Z,

(1− δ2) ∥M∥2F = (1− δ2)
∥∥∥M⊤

∥∥∥2
F
≤ 1

n

∥∥∥Zvec
(
M⊤

)∥∥∥2
2
≤ (1 + δ2)

∥∥∥M⊤
∥∥∥2
F
= (1 + δ2) ∥M∥2F

It follows that

(1− δ2)∥M∥2F ≤ 1

n

∥∥Z ′vec(M)
∥∥2
2
≤ (1 + δ2)∥M∥2F

which indicates that Z ′ satisfies the same 2-RIP condition as Z. □
Lemma C.4. Suppose Z satisfies the 2-RIP condition with constant δ2. For two matrices M1 and
M2, we have

| ⟨Zvec(M1),Zvec(M2)⟩ − ⟨M1,M2⟩ | ≤ 3δ2∥M1∥F ∥M2∥F (40)

Proof. Due to RIP condition, we directly have ∥Zvec(M1 +M2)∥22 ≤ (1 + δ2)∥M1 +M2∥2F ,
which can be expanded as

∥Zvec(M1)∥2F + ∥Zvec(M2)∥2F + 2⟨Zvec(M1),Zvec(M2)⟩
≤ (1 + δ2)(∥M1∥2F + ∥M2∥2F + 2⟨M1,M2⟩)

Again due to RIP condition, we also have
(1− δ2)∥M1∥2F ≤ ∥Zvec(M1)∥22 and (1− δ2)∥M2∥2F ≤ ∥Zvec(M2)∥22

Consequently, it holds that
(1− δ2)(∥M1∥2F + ∥M1∥2F ) + 2⟨Zvec(M1),Zvec(M2)⟩

≤ (1 + δ2)(∥M1∥2F + ∥M2∥2F + 2⟨M1,M2⟩)
Namely,

⟨Zvec(M1),Zvec(M2)⟩ − ⟨M1,M2⟩ ≤ δ2(∥M1∥2F + ∥M2∥2F + ⟨M1,M2⟩)
Furthermore, we note that the last inequality still holds if we replace M1 by λM1 and M2 by
1/λM2. Optimizing the RHS with λ, we get

⟨Zvec(M1),Zvec(M2)⟩ − ⟨M1,M2⟩ ≤ 3δ2∥M1∥F ∥M2∥F
Proving the other side of the inequality is similar. □

Lemma C.5. Let Zi =
(
X⊤

i Xi

)
⊗X⊤

i . With ∥d̃∥2 = ∥d∗∥2 = 1, denote Σ̌ and Σ̂ respectively
as

Σ̌ =

n∑
i=1

Zid̃d̃
⊤
Z⊤

i , Σ̂ =

n∑
i=1

Zid̃ (d∗)
⊤
Z⊤

i .

Then we have ∥∥∥Σ̌−1
(
⟨d̃,d∗⟩Σ̌− Σ̂

)∥∥∥
2
≤ 3δ2

1− 3δ2
dist

(
d̃,d∗

)
(41)
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Proof. First consider the minimal eigenvalue of Σ̌

λmin

(
Σ̌
)
= min

∥u∥2=1
u⊤Σ̌u

= min
∥u∥2=1

n∑
i=1

u⊤Zid̃d̃
⊤
Z⊤

i u

= min
∥u∥2=1

n∑
i=1

tr
(
u⊤Zid̃

)
tr
(
u⊤Zid̃

)
= min

∥u∥2=1

n∑
i=1

(〈
Zi,ud̃

⊤〉)2
= min

∥u∥2=1

∥∥∥Zvec
(
ud̃

⊤)∥∥∥2
2

≥ 1− 3δ2

The inequality holds due to Lemma C.4.

Further consider∥∥∥⟨d̃,d∗⟩Σ̌− Σ̂
∥∥∥
2
= max

∥u∥2=∥v∥2=1
u⊤
(
⟨d̃,d∗⟩Σ̌− Σ̂

)
v

= max
∥u∥2=∥v∥2=1

n∑
i=1

(
⟨d̃,d∗⟩u⊤Zid̃d̃

⊤
Z⊤

i v − u⊤Zid̃ (d∗)
⊤
Z⊤

i v
)

= max
∥u∥2=∥v∥2=1

n∑
i=1

〈
Zi,ud̃

⊤〉〈
Zi, ⟨d̃,d∗⟩vd̃

⊤〉
−
〈
Zi,ud̃

⊤〉〈
Zi,v (d∗)

⊤
〉

= max
∥u∥2=∥v∥2=1

n∑
i=1

〈
Zi,ud̃

⊤〉〈
Zi,v

(
⟨d̃,d∗⟩d̃− d∗

)⊤〉
=

〈
Zvec

(
ud̃

⊤)
,Zvec

(
v
(
⟨d̃,d∗⟩d̃− d∗

)⊤)〉
≤ 3δ2

∥∥∥⟨d̃,d∗⟩d̃− d∗
∥∥∥
2
+

〈
ud̃

⊤
,v
(
⟨d̃,d∗⟩d̃− d∗

)⊤〉
= 3δ2dist(d̃,d∗)

The inequality holds due to Lemma C.4 where the inner product equals to 0 because d̃ ⊥ ⟨d̃,d∗⟩d̃−
d∗. □

C.2 Proof of Theorem 5.2

For ease of display, we present a prerequisite theorem before proof of Theorem 5.2. The following
theorem provides error bounds within each iteration, which is the key to prove Theorem 5.2.
Theorem C.6. Suppose model (21) holds and solved by alternating minimization algorithm. Assume
Condition 5.1 with a small constant δ2. Let κ1 = µ0+3δ2/(1−3δ2) and κ2 = µ0+(3δ2+λ2)/(1−
3δ2 + λ2). Then we have

dist
(
ŵ(t),w

)
≤ κ1dist

(
d̂
(t)
,d

)
+ τ1 (42)

dist
(
d̂
(t)
,d

)
≤ κ2dist

(
ŵ(t−1),w

)
+ τ2 (43)

Proof. The procedures of proofs for (42) and (43) are the same, with some differences in details.

Let us focus on (42) first. Then the model (12) can be rewritten in matrix form as below

Y = Mw + ε
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with w = vec(W ) and M defined as follows

M =
(

vec
(
X⊤

1 DX⊤
1 X1

)
, . . . , vec

(
X⊤

nDX⊤
nXn

))⊤
(44)

Suppose w and ŵ(t) are normalized, so we have ∥w∥2 = ∥ŵ(t)∥2 = 1 for any t ≥ 1 in the following.

Let d̃
(t)

= d̂
(t)
/∥d̂

(t)
∥2 and d∗ = d/∥d∥2 be their unit vectors. Define two matrices in t-th iterations

Σ̌
(t)

=

n∑
i=1

Zid̃
(t)
(
d̃
(t)
)⊤

Z⊤
i , Σ̂

(t)
=

n∑
i=1

Zid̃
(t)

(d∗)
⊤
Z⊤

i .

Define M̂
(t)

as (44) with D replaced by D̂
(t)

. Then, it holds that(
M̂

(t)
)⊤

M̂
(t)

= ∥d̂
(t)
∥22Σ̌

(t)
and

(
M̂

(t)
)⊤

M = ∥d̂
(t)
∥2∥d∥2Σ̂

(t)

Given D̂
(t)

, we have

ŵ(t) =

{(
M̂

(t)
)⊤

M̂
(t)

}−1(
M̂

(t)
)⊤

Y

=

{(
M̂

(t)
)⊤

M̂
(t)

}−1(
M̂

(t)
)⊤

(Mw + ε)

=
∥d∥2
∥d̂

(t)
∥2

(
Σ̌

(t)
)−1

Σ̂
(t)

+
1

∥d̂
(t)
∥22

(
Σ̌

(t)
)−1

(
M̂

(t)
)⊤

ε

Without loss of generality, suppose ⟨d̂
(t)
,d⟩ ≥ 0. The case that ⟨d̂

(t)
,d⟩ < 0 can be proved in a

similar way. Consider the ℓ2-norm distance∥∥∥∥∥∥∥d̂
(t)
∥2

∥d∥2
ŵ(t) −w

∥∥∥∥∥∥
2

=
(
Σ̌

(t)
)−1

Σ̂
(t)
w −w +

1

∥d̂
(t)
∥2∥d∥2

(
Σ̌

(t)
)−1

(
M̂

(t)
)⊤

ε

=⟨d̃
(t)
,d∗⟩w −w −

(
Σ̌

(t)
)−1 (

⟨d̃
(t)
,d∗⟩Σ̌(t) − Σ̂

(t)
)
w +

1

∥d̂
(t)
∥2∥d∥2

(
Σ̌

(t)
)−1

(
M̂

(t)
)⊤

ε

≤ 1− ⟨d̃
(t)
,d∗⟩︸ ︷︷ ︸

A1

+

∥∥∥∥(Σ̌(t)
)−1 (

⟨d̃
(t)
,d∗⟩Σ̌(t) − Σ̂

(t)
)∥∥∥∥

2︸ ︷︷ ︸
A2

+

∥∥∥∥∥ 1

∥d̂
(t)
∥2∥d∥2

(
Σ̌

(t)
)−1

(
M̂

(t)
)⊤

ε

∥∥∥∥∥
2︸ ︷︷ ︸

A3

(45)

Note that when ⟨d̂
(t)
,d⟩ ≥ 0, we have 0 ≤ ⟨d̃

(t)
,d∗⟩ ≤ 1. Thus for A1,

1− ⟨d̃
(t)
,d∗⟩ ≤ 1− ⟨d̃

(t)
,d∗⟩2 = dist2

(
d̂
(t)
,d

)
≤ µ0dist

(
d̂
(t)
,d

)
For A2, it holds that according to Lemma C.5

A2 ≤ 3δ2
1− 3δ2

dist
(
(t),d

)
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For A3, first note that ∥Σ̌(t)∥2 ≥ 1− 3δ2.∥∥∥∥∥
(
M̂

(t)
)⊤

ε

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

εivec
(
X⊤

i D̂
(t)
X⊤

i Xi

)∥∥∥∥∥
2

≤ sup

{∥∥∥∥∥
n∑

i=1

εivec
(
X⊤

i D̂
(t)
X⊤

i Xi

)∥∥∥∥∥
2

}
= τ0

As a result, A3 can be bounded by

A3 ≤ τ0

(1− 3δ2)∥d̂
(t)
∥2∥d∥2

= τ1

One the other hand, according to Lemma C.1 we have for any c > 0 that

dist
(
ŵ(t),w

)
= dist

(
cŵ(t),w

)
≤
∥∥∥cŵ(t) −w

∥∥∥
2

Therefore,

dist
(
ŵ(t),w

)
≤
(
µ0 +

3δ2
1− 3δ2

)
dist

(
d̂
(t)
,d

)
+ τ1 (46)

To prove (43), first we need to rewrite the model (12) in another matrix form below.

Y = Nd+ ε

with d = vec(D) and N defined as follows

N =
(

vec
(
X1WX⊤

1 X1

)
, . . . , vec

(
XnWX⊤

nXn

))⊤
(47)

Note that ∥w∥2 = ∥ŵ(t−1)∥2 = 1. Define two matrices in t-th iterations

Σ̌
(t−1)

=

n∑
i=1

Z ′
iŵ

(t−1)
(
ŵ(t−1)

)⊤ (
Z ′

i

)⊤
, Σ̂

(t−1)
=

n∑
i=1

Z ′
iŵ

(t−1)w⊤ (Z ′
i

)⊤
.

Define N̂
(t−1)

as (47) with W replaced by Ŵ
(t−1)

. Then, it holds that(
N̂

(t−1)
)⊤

N̂
(t−1)

= Σ̌
(t−1)

and
(
N̂

(t−1)
)⊤

N = Σ̂
(t−1)

Given Ŵ
(t−1)

, we have

d̂
(t)

=

{(
N̂

(t−1)
)⊤

N̂
(t−1)

+ λ2I

}−1(
N̂

(t−1)
)⊤

(Nd+ ε)

=
(
Σ̌

(t−1)
+ λ2I

)−1

Σ̂
(t−1)

d+
(
Σ̌

(t−1)
+ λ2I

)−1
(
N̂

(t−1)
)⊤

ε

= ⟨ŵ(t−1),w⟩d−
(
Σ̌

(t−1)
+ λ2I

)−1 (
⟨ŵ(t−1),w⟩

(
Σ̌

(t−1)
+ λ2I

)
− Σ̂

(t−1)
)
d

+
(
Σ̌

(t−1)
+ λ2I

)−1
(
N̂

(t−1)
)⊤

ε
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Then ℓ2-norm error of d̂
(t)

can be also bounded in a similar way. Take the case ⟨ŵ(t−1),w⟩ ≥ 0 for
example.

∥d̂
(t)

− d∥2
∥d∥2

≤ 1− ⟨ŵ(t−1),w⟩︸ ︷︷ ︸
B1

+

∥∥∥∥(Σ̌(t−1)
+ λ2I

)−1 (
⟨w(t−1),w⟩

(
Σ̌

(t−1)
+ λ2I

)
− Σ̂

(t−1)
)∥∥∥∥

2︸ ︷︷ ︸
B2

+
1

∥d∥2

∥∥∥∥∥(Σ̌(t−1)
+ λ2I

)−1
(
N̂

(t−1)
)⊤

ε

∥∥∥∥∥
2︸ ︷︷ ︸

B3

(48)

Resembling A1, A2 and A3, we have

B1 = 1− ⟨ŵ(t−1),w⟩ ≤ µ0dist
(
ŵ(t−1), ŵ

)
(49)

B2 ≤ 3δ2 + λ2

1− 3δ2 + λ2
dist

(
ŵ(t−1), ŵ

)
(50)

B3 ≤ 1

1− 3δ2 + λ2
∥ε∥2 = τ2 (51)

Thus we have

dist
(
d̂
(t)
,d

)
≤
(
µ0 +

3δ2 + λ2

1− 3δ2 + λ2

)
dist

(
ŵ(t−1),w

)
+ τ2 (52)

Last we need to prove by induction that if dist
(
ŵ(0),w

)
≤ µ0 and µ0 satisfies κ1µ0 + τ1 ≤ µ0 and

κ2µ0 + τ2 ≤ µ0, then dist
(
ŵ(t),w

)
≤ µ0 and dist

(
d̂
(t)
,d

)
≤ µ0 for any t ≥ 1.

When t = 1,

dist
(
d̂
(1)

,d

)
≤ dist2

(
ŵ(0),w

)
+

3δ2 + λ2

1− 3δ2 + λ2
dist

(
ŵ(0),w

)
+ τ2

≤
(
µ0 +

3δ2 + λ2

1− 3δ2 + λ2

)
dist

(
ŵ(0),w

)
+ τ2

≤ κ2µ0 + τ2
≤ µ0

Furthermore,

dist
(
ŵ(1),w

)
≤ dist2

(
d̂
(1)

,d

)
+

3δ2
1− 3δ2

dist
(
d̂
(1)

,d

)
+ τ1

≤
(
µ0 +

3δ2
1− 3δ2

)
dist

(
d̂
(1)

,d

)
+ τ1

≤ κ1µ0 + τ1
≤ µ0

This completes the proof of initial step t = 1.
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When t ≥ 2, suppose dist
(
ŵ(t−1),w

)
≤ µ0 to prove the t-th case.

dist
(
d̂
(t)
,d

)
≤ dist2

(
ŵ(t−1),w

)
+

3δ2 + λ2

1− 3δ2 + λ2
dist

(
ŵ(t−1),w

)
+ τ2

≤
(
µ0 +

3δ2 + λ2

1− 3δ2 + λ2

)
dist

(
ŵ(t−1),w

)
+ τ2

≤ κ2µ0 + τ2
≤ µ0

Furthermore,

dist
(
ŵ(t),w

)
≤ dist2

(
d̂
(t)
,d

)
+

3δ2
1− 3δ2

dist
(
d̂
(t)
,d

)
+ τ1

≤
(
µ0 +

3δ2
1− 3δ2

)
dist

(
d̂
(t)
,d

)
+ τ1

≤ κ1µ0 + τ1
≤ µ0

This completes the induction. In words, the distances dist
(
ŵ(t),w

)
and dist

(
d̂
(t)
,d

)
in all

iterations are guaranteed to not exceed the initial distance µ0, which is required when proving (42)
and (43). The proof is now complete. □

Proof of Theorem 5.2

Theorem C.6 provides the error bounds within an iteration. Therefore, we have the following by
recursion,

dist
(
ŵ(t),w

)
≤ κ1dist

(
d̂
(t)
,d

)
+ τ1

≤ (κ1κ2)dist
(
ŵ(t−1),w

)
+ κ1τ2 + τ1

≤ (κ1κ2)
tdist

(
ŵ(0),w

)
+

t−1∑
s=0

(κ1κ2)
s(κ1τ2 + τ1)

≤ (κ1κ2)
tµ0 +

κ1τ2 + τ1
1− κ1κ2

On the other hand,

dist
(
d̂
(t)
,d

)
≤ κ2dist

(
ŵ(t−1),w

)
+ τ2

≤ (κ1κ2)dist
(
d̂
(t−1)

,d

)
+ κ2τ1 + τ2

≤ (κ1κ2)
t−1dist

(
d̂
(1)

,d

)
+

t−2∑
s=0

(κ1κ2)
s(κ2τ1 + τ2)

≤ κt−1
1 κt

2µ0 +
κ2τ1 + τ2
1− κ1κ2

The proof is completed. □

C.3 Proof of Theorem 5.3

Theorem C.7. Suppose model (21) holds and solved by alternating minimization algorithm. Assume

Condition 5.1 with a small constant δ2. Denote c(t) = ∥d̂
(t)
∥2/∥d∥2. Let ν1 = 2µ0 + 3δ2/(1− 3δ2)
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and ν2 = 2µ0 + (3δ2 + λ2)/(1− 3δ2 + λ2). Then for any t ≥ 0 we have

∥∥∥c(t)ŵ(t) −w
∥∥∥
2
≤ (ν1ν2)

tµ0 +
ν1τ2 + τ1
1− ν1ν2

(53)

∥d̂
(t)

− d∥2
∥d∥2

≤ νt−1
1 νt2µ0 +

ν2τ1 + τ2
1− ν1ν2

(54)

Proof. The proof of Theorem C.7 is also completed by induction, resembling that of Theorem 5.2.
Thus we just note some key inequalities that are different in induction procedures. Suppose for any

t ≥ 1 that ∥d̂
(t)

− d∥2/∥d∥2 ≤ µ0 and ∥c(t)ŵ(t) −w∥2 ≤ µ0.

According to (48) we have

∥d̂
(t)

− d∥2
∥d∥2

≤ 1

2
∥ŵ(t−1) −w∥22 +

3δ2 + λ2

1− 3δ2 + λ2
dist

(
ŵ(t−1),w

)
+ τ2

≤ 2∥c(t−1)ŵ(t−1) −w∥22 +
3δ2 + λ2

1− 3δ2 + λ2
∥c(t−1)ŵ(t−1) −w∥2 + τ2

≤
(
2µ0 +

3δ2 + λ2

1− 3δ2 + λ2

)
∥c(t−1)ŵ(t−1) −w∥2 + τ2 (55)

The second inequality holds because Lemma C.2.

On the other hand, according to (45) we have

∥∥∥c(t)ŵ(t) −w
∥∥∥
2
≤ 1

2
∥d̃

(t)
− d∗∥22 +

3δ2
1− 3δ2

dist
(
d̃
(t)
,d∗
)
+ τ1

≤ 2
∥d̂

(t)
− d∥22

∥d∥22
+

3δ2
1− 3δ2

∥d̂
(t)

− d∥2
∥d∥2

+ τ1

≤
(
2µ0 +

3δ2
1− 3δ2

)
∥d̂

(t)
− d∥2

∥d∥2
+ τ1 (56)

Given (55) and (56), ℓ2-norm errors can be also bounded in t-th iteration. The remaining proof can
be completed in the same way as Theorem 5.2. □

Proof of Theorem 5.3

According to Condition 5.1, firstly we have

∥Ŷ
(t)

− Y ∥2 =

∥∥∥∥∥Zvec

(
ŵ(t)

(
d̂
(t)
)⊤

−wd⊤

)∥∥∥∥∥
2

≤
√
1 + δ2

∥∥∥∥∥ŵ(t)

(
d̂
(t)
)⊤

−wd⊤

∥∥∥∥∥
F
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It follows that∥∥∥∥∥ŵ(t)

(
d̂
(t)
)⊤

−wd⊤

∥∥∥∥∥
F

=

∥∥∥∥∥ŵ(t)

(
d̂
(t)

− d

)⊤

+
(
ŵ(t) −w

)
d⊤

∥∥∥∥∥
F

≤∥d̂
(t)

− d∥2 + ∥d∥2
∥∥∥ŵ(t) −w

∥∥∥
2

≤∥d∥2
∥d̂

(t)
− d∥2

∥d∥2
+ ∥d∥2

2

c(t) + 1

∥∥∥c(t)ŵ(t) −w
∥∥∥
2

≤∥d∥2

∥d̂
(t)

− d∥2
∥d∥2

+ 2
∥∥∥c(t)ŵ(t) −w

∥∥∥
2


≤∥d∥2

{(
(ν1ν2)

t−1µ0 +
ν1τ2 + τ1
1− ν1ν2

)
+ 2

(
(ν1ν2)

t−1µ0 +
ν2τ1 + τ2
1− ν1ν2

)}
≤3∥d∥2

(
(ν1ν2)

t−1µ0 +
τ1 + τ2
1− ν1ν2

)
Therefore we have

∥Ŷ
(t)

− Y ∥2 ≤ 3∥D∥F
√

1 + δ2

{
(ν1ν2)

t−1µ0 +
τ1 + τ2
1− ν1ν2

}
□
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used
by reviewers as grounds for rejection, a worse outcome might be that reviewers
discover limitations that aren’t acknowledged in the paper. The authors should use
their best judgment and recognize that individual actions in favor of transparency play
an important role in developing norms that preserve the integrity of the community.
Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are well-explained.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
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Answer: [Yes]
Justification: In the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand
the results?
Answer: [Yes]
Justification: Experimental details are well-explained.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Numerical results reported are the mean and standard error of repetitions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments that
support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: In the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Conform.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special

consideration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In the discussion.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification: Codes are submitted in the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The dataset used is a public dataset and the study is non-clinical.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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