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Abstract

We study open-world multi-label text classifica-001
tion under extremely weak supervision (XWS),002
where the user only provides a brief descrip-003
tion for classification objectives without any004
labels or ground-truth label space. Similar005
single-label XWS settings have been explored006
recently, however, these methods cannot be eas-007
ily adapted for multi-label. We observe that008
(1) most documents have a dominant class cov-009
ering the majority of content and (2) long-tail010
labels would appear in some documents as a011
dominant class. Therefore, we first utilize the012
user description to prompt a large language013
model (LLM) for dominant keyphrases of a014
subset of raw documents, and then construct a015
(initial) label space via clustering. We further016
apply a zero-shot multi-label classifier to locate017
the documents with small top predicted scores,018
so we can revisit their dominant keyphrases019
for more long-tail labels. We iterate this pro-020
cess to discover a comprehensive label space021
and construct a multi-label classifier as a novel022
method, X-MLClass. X-MLClass exhibits a re-023
markable increase in ground-truth label space024
coverage on various datasets, for example, a025
40% improvement on the AAPD dataset over026
topic modeling and keyword extraction meth-027
ods. Moreover, X-MLClass achieves the best028
end-to-end multi-label classification accuracy.029

1 Introduction030

Multi-label text classification (MLTC) aims to as-031

sign one or more labels to each input document in032

the corpus. Traditional methods (Liu et al., 2022;033

Xiong et al., 2021; Gera et al., 2022) require a034

complete list of class names, which is challenging035

to provide beforehand given the massive number036

of documents and diverse topics. This work fo-037

cuses on a new problem, open-world1 MLTC un-038

1Our “open-world” definition denotes the absence of any
class information during the training and testing phase, which
is more challenging than the traditional settings.

der extremely weak supervision (XWS), where the 039

user only provides a brief description for classifica- 040

tion objectives without any labels or ground-truth 041

label space. Despite the considerable technical 042

challenges posed by this task, its practical signifi- 043

cance in real-world applications cannot be underes- 044

timated. For instance, the need for product tagging 045

and categorization is ubiquitous in online shopping 046

platforms. It requires identifying multiple labels for 047

each product without access to a predefined label 048

space, a challenge our model adeptly addresses. 049

The most related XWS problems are text clus- 050

tering (Zhang et al., 2023; Wang et al., 2023b) 051

and topic modeling (Grootendorst, 2022; Pham 052

et al., 2023), where those methods are typically 053

only capable of assigning a single label to each 054

document. These single-label methods cannot be 055

easily adapted for multi-label. 056

We observe that (1) most documents have a dom- 057

inant class covering the majority of content and 058

(2) long-tail labels would appear as the dominant 059

class in some documents. Experiments reveal that 060

over 90% of documents contain a dominant class, 061

and 100% of labels appear as the dominant class 062

in at least one document, as analyzed further in 063

Section 4. Based on these observations, we pro- 064

pose a novel method, X-MLClass, to discover a 065

pragmatic label space by iteratively adding (long- 066

tailed) labels and construct a multi-label text classi- 067

fication classifier with the assistance of LLM (i.e., 068

llama-2-13b-chat in our experiments), as shown 069

in Figure 1. Our approach requires only a brief 070

user description about the classification objective 071

as prompt for LLM, which significantly reduces 072

the cost of model training. 073

The first step in X-MLClass is to construct a 074

high-quality label space. We start with a reason- 075

ably large subset of the raw documents. For each 076

document, we partition it into chunks to better align 077

with the context length of LLM and also ensure that 078

each chunk contains a single topic, and then prompt 079
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Documents
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Large Language M
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)
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…
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Per Chunk

LLM
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…

Keyphrase 
Clusters

Constructed
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Zero-shot Text 
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golf, golfer, …;
crime, shooting, 
law, …;
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government, …;
…

judge
crime
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bird
golf
politics
…
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<example>
Hypothesis: This 
example is <label>
____

Run entailment 
between chunks / 

keyphrases and labels

Identify the chunks without dominant class (i.e., max entailment score is low)

Add long-tail yet dominant keyphrase

Figure 1: An overview of our X-MLClass framework. The only required supervision from the user is a brief
description of the classification objective. During the first LLM prompting stage for keyphrases, X-MLClass
leverages this description as a part of the prompt, so it will be helpful if the description includes some demonstrations.

the LLM to generate the most dominant keyphrases080

for each chunk. As previous LLM-based text clus-081

tering work has suggested (Wang et al., 2023b,a),082

there are very likely some semantically redundant083

yet lexically different keyphrases among the gener-084

ated ones. We cluster these keyphrases, and within085

every cluster, we pull together the corresponding086

chunks of the keyphrases closest to the cluster cen-087

ter to prompt the LLM once again, generating one088

single label for each cluster. After eliminating la-089

bels with high similarity scores, we constitute an090

initial label space.091

We then apply the state-of-the-art textual092

entailment-based classification methods (Pàmies093

et al., 2023) to construct a classifier that revisits the094

documents and identifies long-tail labels. Specif-095

ically, we query every text chunk against all the096

labels for the entailment score, identifying chunks097

with low top predicted scores that lack a dominant098

class. We revisit the keyphrases generated by these099

chunks to unveil more long-tail labels, selectively100

choosing keyphrases with a modest presence in the101

entire keyphrase set but absent in the original label102

space. These new keyphrases are included in the103

label set, and documents are reassessed with this104

updated set. By repeating these steps for a fixed105

number of iterations, the final label space contains106

a substantial number of long-tail labels.107

Extensive experiments on 5 benchmark datasets108

reveal the superiority of X-MLClass outperform-109

ing all compared methods. Remarkably, compared110

with baselines, X-MLClass achieves a significant111

enhancement of 40% and 30% in ground-truth la-112

bel space coverage on the AAPD and RCV1-V2113

datasets. Furthermore, it achieves the highest accu-114

racy in zero-shot MLTC, surpassing the top-ranking 115

models on HuggingFace across all datasets. 116

Our contributions are summarized as: 117

• We attack a challenging problem, open-world 118

MLTC with XWS, where the user only provides 119

a brief description for classification objectives 120

without any labels or ground-truth label space. 121

• We propose a novel framework X-MLClass 122

which iteratively discovers the label space and 123

builds an MLTC classifier. 124

• Compared with all traditional label generation 125

methods, X-MLClass achieves a significantly 126

higher coverage score along with superior end- 127

to-end classification accuracy. 128

We will release the code upon acceptance. 129

2 Related Work 130

Topic Modeling: Topic modeling has been 131

widely adopted for discovering latent thematic 132

structures within collections of text documents. 133

Traditional models, such as Latent Dirichlet Allo- 134

cation (LDA) (Blei et al., 2003) and Non-Negative 135

Matrix Factorization (NMF) (Févotte and Idier, 136

2011) represent documents as mixtures of latent 137

topics using bag-of-words representations. New 138

techniques like Top2Vec (Angelov, 2020) and 139

BERTopic (Grootendorst, 2022) build primarily on 140

clustering embeddings, demonstrating the potential 141

of embedding-based topic modeling approaches. 142

Another recent method, TopicGPT (Pham et al., 143

2023), takes a different approach by prompting 144

large language models for topic generation, align- 145

ing more closely with ground truth labels. However, 146

these existing methods typically provide a single 147

topic for each document, which poses challenges 148
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when extending them to multi-label scenarios.149

Multi-label Text Classification: Numerous ap-150

proaches have been proposed to tackle the complex-151

ities of Multi-Label Text Classification (MLTC)152

problems. Bhatia and Jain (Bhatia et al., 2015)153

employ embedding-based methods, leveraging the154

power of embeddings to train individual classifiers155

for each label. Later, XML-CNN (Liu et al., 2017)156

uses a Convolutional Neural Network (CNN) to157

learn text representations, demonstrating improve-158

ments in MLTC accuracy. Recent works have159

started to tackle MLTC problems using a small160

amount of labeled data or even with no labels at161

all. For example, Shen et al. (2021) achieves im-162

pressive results by using only class names and tax-163

onomies. Rios and Kavuluru (2018) train a neural164

architecture with both true labels and their natural165

language descriptor. However, these methods still166

require access to the ground-truth label space.167

Open-world Single-label Text Classification:168

There has been a surge in open-world models169

utilizing LLM prompts to derive labels without170

relying on ground-truth label spaces. Notably,171

GOALEX (Wang et al., 2023b) generates labels for172

text samples based on users’ specific goals, demon-173

strating a goal-driven approach. Another notewor-174

thy model, CLUSTERLLM (Zhang et al., 2023),175

leverages API-based LLMs to guide text clustering,176

resulting in improved performance. The approach177

of intent discovery (Zhang et al., 2022), aiming to178

infer latent intents from a document set, has proven179

effective in generating label spaces. A newly in-180

troduced method, IDAS (De Raedt et al., 2023),181

prompts LLMs to succinctly summarize utterances,182

enhancing intent prediction.183

3 Problem Formulation184

Given an unlabeled corpus D = {D1, D2, . . . ,185

Dn}, where Di ∈ D represents a document in186

the collection. Our task is to (1) identify class187

names C = {Cj}Kj=1, where K is the unknown188

number of classes, and (2) build a text classifier189

f(·) to map any raw document Di to its target la-190

bels Yi = {yji }
p
j=1, where yji is the single label191

name and p is the number of target labels for Di.192

The definition of "open world" denotes the absence193

of labeled information during training, which is194

more stringent than the original definition where195

new labels only appear in the test phase. Several ex-196

isting works (Brunet et al., 2023; Zhu et al., 2023)197

adopt a similar “open world” definition to ours. 198

To the best of our knowledge, this is the first 199

work that explores open-world multi-label text clas- 200

sification without the presence of a ground-truth 201

label space. Given the challenging nature of the 202

problem, we assume that human experts are willing 203

to devote some very limited effort, i.e., extremely 204

weak supervision, typically in the form of brief 205

classification objective descriptions. 206

4 Our Observations 207

Our two observations mentioned in Section 1 are 208

confirmed by experiments based on 5 benchmark 209

datasets: AAPD (Yang et al., 2018), Reuters- 210

21578 (Debole and Sebastiani, 2005), RCV1- 211

V2 (Lewis et al., 2004), DBPedia-298 (Lehmann 212

et al., 2015), and Amazon-531 (McAuley and 213

Leskovec, 2013). Specifically, we prompt a large 214

language model (LLM) to check if any of the 215

ground truth labels of a given document is domi- 216

nant, i.e., covering more than 50% of the content; 217

and if it exists, which one is the dominant label. 2 218

We randomly sample 1000 examples from each 219

dataset and calculate the percentage of documents 220

with a dominant class. The dominance percentages 221

across datasets are AAPD: 92%, RCV1-V2: 91.7%, 222

DBPedia-298: 95.2%, Reuters-21578: 96.4%, and 223

Amazon-531: 87.3%. Notably, Reuters dataset ex- 224

hibits a higher proportion of dominant labels due 225

to its mainly consisting of single-labeled examples. 226

Conversely, Amazon presents a lower dominance 227

percentage, attributed to the mix of fine-grained 228

and coarse-grained labels, posing challenges in de- 229

termining dominance. Overall, our analysis indi- 230

cates that across all datasets, more than 90% of 231

documents contain a dominant class. Moving to 232

our second observation, labels existing in less than 233

1% of the dataset are identified as long-tail labels. 234

Upon examination, instances of long-tail labels 235

emerging as dominant classes in at least one docu- 236

ment are observed, indicating that 100% of labels 237

serve as dominant classes in some instances. These 238

observations highlight the potential for generating 239

labels, particularly long-tail labels, from raw docu- 240

ments and guide the design of our framework. 241

5 Our X-MLClass Framework 242

X-MLClass consists of three key steps. First, every 243

document is split into chunks and transformed into 244

keyphrases by prompting an LLM to construct an 245

2The specific prompt can be found in Appendix A
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initial label space. We further assign labels to each246

raw document Di using a custom keyphrase-chunk247

zero-shot textual entailment classifier. Finally, we248

iteratively enhance the label space by incorporat-249

ing additional long-tail labels. The framework250

overview is depicted in Figure 1, and the below251

sections provide a detailed discussion.252

5.1 Initial Label Space Construction253

The first step in X-MLClass is to construct a high-254

quality label space. To balance label coverage and255

the computational cost of LLM, X-MLClass is ap-256

plied to a reasonably large subset of the corpus D,257

denoted as Dsub ⊂ D.258

Dominant Keyphrase Generation: For each259

document, we partition it into chunks to better260

align with the context length of LLM, and then261

prompt for the most dominant keyphrases per262

chunk. Specifically, each document Di ∈ Dsub263

is segmented into chunks {S1
i , S

2
i , . . . }, with a pre-264

defined chunk size of 50 tokens. This choice is265

also made to ensure each chunk primarily contains266

one label. To generate keyphrases for each chunk267

Sj
i , we employ an LLM and provide it with an in-268

struction based on a brief user description of the269

classification objective. 3 The LLM then refines270

keyphrases pji from the chunk Sj
i , serving as poten-271

tial class candidates for subsequent stages of our272

X-MLClass model. Keyphrases generated from273

each chunk collectively form a set P .274

Keyphrase Clustering: As previous LLM-based275

text clustering work has suggested (Wang et al.,276

2023b,a), there are very likely some semanti-277

cally redundant yet lexically different keyphrases278

among the generated ones, so we employ279

the instruction-tuned text embedding model,280

instructor-large (Su et al., 2022), to generate281

vector representations for all the keyphrases in P .282

Traditional clustering methods face challenges in283

high-dimensional spaces (Aggarwal et al., 2001;284

Wang et al., 2020b). To address this, we apply285

UMAP (McInnes et al., 2018) for dimensionality286

reduction, effectively balancing local and global287

structures. Finally, we obtain the clusters using the288

Gaussian Mixture Model (GMM) in the projected289

low-dimensional space, renowned for its enhanced290

flexibility in capturing intricate data distributions.291

Number of Clusters: The number of clusters292

is determined by considering both the insights of293

3The specific prompt can be found in Appendix B

human experts regarding the magnitude of the la- 294

bel space and non-parametric clustering methods 295

such as BERTopic (Grootendorst, 2022), a highly 296

effective topic modeling method. For example, 297

one can train BERTopic on the keyphrase set P to 298

obtain the topic number K0, serving as the hyper- 299

parameter to GMM. This approach also ensures a 300

fair comparison with baseline methods by main- 301

taining consistency in the number of clusters. 302

Redundant Keyphrase Removal: Within every 303

cluster, we focus on the three keyphrases closest 304

to the cluster center to synthesize one single label. 305

Instead of directly employing the keyphrases for 306

label space creation, we trace back to the original 307

chunks that generated these keyphrases, as they 308

likely contain similar content and represent the 309

same label. Concatenating these three chunks for 310

each cluster results in a new document. For each 311

document, we prompt LLM with an instruction 312

“find one label for this document”, yielding the 313

initial K0 classes {Cj}K
0

j=1. This strategy allows 314

us to generate a single label that best represents the 315

cluster. 316

This initial label space may contain redundant 317

labels. Sentence-Transformer models (Wang et al., 318

2020a) are used to identify distinct pairs of classes 319

with relatively high cosine similarity scores. The 320

first class in each identified pair is then removed 321

to eliminate redundancy. For those borderline sim- 322

ilar label pairs, we prompt GPT-4 (Achiam et al., 323

2023) with an instruction “Do label pairs have sim- 324

ilar meanings? If Yes, please output the label that 325

we should delete.” to help us detect distinct pairs 326

where cosine similarity scores alone are insuffi- 327

cient. This method proves effective in creating a 328

robust label space {Cj}K
1

j=1, and while human in- 329

volvement can enhance the refinement process, it is 330

not mandatory. Further details on human involve- 331

ment in the label space refinement are provided in 332

appendix C. 333

5.2 Textual Entailment-based Classifier 334

Given a label space, we build a zero-shot textual 335

entailment-based classifier (Yin et al., 2019). Since 336

each chunk is designed to have only one label, state- 337

of-the-art zero-shot single-label text classification 338

methods (Pàmies et al., 2023; Gera et al., 2022; He 339

et al., 2021) are all applicable here. Specifically, 340

we compare every text chunk against all the labels 341

using a textual entailment model. For each chunk 342

s ∈ S and each class name c ∈ C, we derive Es,c 343
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Dataset # Train # Text # Class

AAPD 53,840 2,000 54
Reuters 7,769 3,019 90
RCV1-V2 643,531 160,883 103
DBPedia 196,665 49,167 298
Amazon 29,487 19,658 531

Table 1: Dataset statistics.

representing the confidence for the chunk s entail-344

ing the hypothesis “This example is constructed for345

c”, and similarly obtain Ep,c for each keyphrase346

p ∈ P . Subsequently, for each example in S, we347

identify the label c∗ with the top entailment score,348

denoted by Es,c∗ > Es,c, ∀c ̸= c∗.349

Finally, we find all s and p belong to the same350

document Di and group them into a new set Q.351

For each instance in Q, we rank the label candi-352

dates according to their entailment scores. We iden-353

tify the labels that occur most frequently with the354

same ranking as the predicted labels for document355

Di, progressing from the top-ranking to the lowest-356

ranking order.357

5.3 Label Space Improvement358

We further identify the chunks with lower top pre-359

dicted scores — these chunks lack a dominant class360

in the initial label space. By ranking Es,c∗ in as-361

cending order, we select a subset Ssub ⊂ S with362

relatively lower entailment scores, suggesting po-363

tential association with tail classes not included364

in our label space. Since keyphrases generated365

by the LLM may include outliers that are too spe-366

cific to their corresponding documents, we retain367

only keyphrases occurring more than 15 times. For368

each s ∈ Ssub, we examine all keyphrases in the369

corresponding p. If a keyphrase is absent in the370

label space but occurs more than 15 times in P , we371

incorporate it into the label space C.372

Additionally, we compute the frequency of each373

label c with the top entailment score. Labels with374

lower frequency are removed from the label space375

C. The high-frequency labels, secured as a part of376

the label space, are temporarily excluded from the377

later label space improvement process. By itera-378

tively training the classifier based on the updated379

label space, the label set gets finalized by adding380

more long-tail labels. In the concluding stages, all381

high-frequency labels are reintroduced, culminat-382

ing in the formation of ultimate label space.383

6 Experiments384

We assess the performance of X-MLClass through385

two primary criteria: label space quality and zero-386

shot MLTC accuracy. Our evaluation involves a 387

comparison of our model’s label coverage with 388

that of four topic modeling and three keyword ex- 389

traction methods. In terms of end-to-end classifi- 390

cation accuracy, we test our method with several 391

top-ranking models available on HuggingFace. The 392

subsequent section provides comprehensive details 393

on the datasets, baseline methods, evaluation met- 394

rics, implementation specifics, and performance 395

analysis. 396

6.1 Datasets 397

We perform experiments on five benchmark 398

datasets for multi-label text classification across 399

various domains: AAPD, Reuters-21578, RCV1- 400

V2, DBPedia-298, and Amazon-531. Detailed 401

information about each dataset is provided in Ap- 402

pendix D. Table 1 shows that the number of labels 403

in these datasets varies from tens to hundreds. All 404

the methods will be applied on the documents from 405

the training set, and then evaluated on the test set. 406

6.2 Compared Methods 407

We compare our X-MLClass framework with two 408

types of methods. 409

Label (Space) Generator: We select four rep- 410

resentative topic modeling methods with dis- 411

tinct paradigms. LDA (Blei et al., 2003) and 412

NMF (Févotte and Idier, 2011) extract top- 413

ics based on word frequency within documents. 414

Topic2Vec (Angelov, 2020) extends the Word2Vec 415

model to embed topics, facilitating the explo- 416

ration of semantic relationships between docu- 417

ments. Meanwhile, BERTopic (Grootendorst, 418

2022) leverages BERT embeddings and the HDB- 419

SCAN clustering algorithm to identify topics. 420

The three keyword extraction methods include 421

PKE(Boudin, 2016), TextRank(Mihalcea and Ta- 422

rau, 2004), and TF-IDF (Ramos et al., 2003). PKE 423

selects keyphrase candidates based on their confi- 424

dence scores, TextRank is a graph-based ranking 425

model that ranks keywords using a voting mech- 426

anism, and TF-IDF scores words based on their 427

frequency in the document and inversely propor- 428

tional to their frequency across documents. 429

Despite the above methods generating a single 430

label per document, based on our observations, they 431

often align with the dominant label for each doc- 432

ument. Given their potential to cover all labels, it 433

is reasonable to compare the label space coverage 434

between our task and these label generators. 435
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Model AAPD Reuters RCV1-V2 DBPedia Amazon

LDA 30.61 17.77 12.74 11.40 13.18
NMF 28.57 17.77 12.74 28.18 15.06
Top2Vec 32.65 20.00 28.43 30.87 14.50
BERTopic 20.41 20.00 10.68 33.22 16.76
PKE 14.29 14.44 25.24 25.84 15.44
TextRank 18.37 11.11 11.65 14.77 12.43
TF-IDF 14.29 15.56 8.74 26.51 12.24
X-MLClass 77.56 37.78 61.17 67.45 38.04

Table 2: Label Space Coverage Comparison. Top2Vec
and BERTopic generate topics with multiple keywords.
The predicted label is determined by selecting the top-
ranking keyword based on each model’s setting.

Zero-shot Text Classification: State-of-the-art436

zero-shot text classifiers typically follow textual437

entailment (Yin et al., 2019; Pàmies et al., 2023).438

Therefore, we choose three entailment models: (1)439

bart-large-mnli exclusively trained on the MNLI440

dataset, (2) deberta-v3-large-all trained on 33441

datasets reformatted into the universal NLI format,442

and (3) xlm-roberta-large-xnli fine-tuned on the443

XNLI dataset. We apply these models using the444

HuggingFace Transformer pipeline, with a hypoth-445

esis template “This example is {label}”.446

6.3 Evaluation Metrics447

Label Space Quality: We employ an automatic448

evaluation metric, coverage, to meature the align-449

ment between the ground-truth (GT) label space450

and the predicted label space. A ground-truth label451

is considered “covered” if it exhibits a similarity452

score exceeding a predefined threshold when com-453

pared to a predicted label, or if it receives a positive454

evaluation from GPT-4. We compute the similarity455

scores using the all-MiniLM-L6-v2 model from456

HuggingFace Sentence-Transformers. If the simi-457

larity score exceeds 0.75, the ground-truth label is458

considered “covered.” For scores between 0.5 and459

0.75, we prompt GPT-4 with specific instructions460

(see Appendix E). Labels with scores below 0.5 are461

not compared due to obvious dissimilarity.462

The coverage score is computed as follows:463

Coverage =
1

N
G
(
I
(
Cpred, CGT))464

Here N is the total number of topics in the465

GT label set, CGT(Cpred) denotes the set of466

ground-truth (predicted) labels. I is an indicator467

that returns 1 if the GT label is considered “cov-468

ered”. G represents the bipartite graph maximum469

match algorithm.470

Classification Accuracy: Because of the large471

label space, multi-label text classification typically472

employs the rank-based evaluation metric precision 473

at k, i.e., P@k. It captures the percentage of true 474

labels among top-k score labels and is used for 475

performance comparison. P@k can be defined as: 476

P@k =
1

N

N∑
i=1

Crk
i ∩ Li

min(k, |Li|)
477

where Li and Ci denote the true labels and pre- 478

dicted labels for document Di, |Li| is the number 479

of true labels for Di, and rk is the k-th highest 480

predicted label. The ground-truth label is defined 481

“covered” using the same coverage metric. 482

6.4 Implementation Details 483

We use llama-2-13b-chat LLM for X-MLClass 484

implementation. The chunk size is uniformly set 485

to 50 across all datasets, ensuring a consistent ap- 486

proach. In configuring LDA and NMF, we align the 487

number of topics with our approach. For Top2Vec 488

and BERTopic, which employ HDBSCAN as a 489

clustering method, specifying an exact number of 490

topics is not feasible. However, to maintain con- 491

sistency, we ensure that these methods generate 492

clusters neither exceeding nor falling below 10 in 493

comparison to our label number. 494

We employ a dynamic addition strategy to de- 495

termine the size of Dsub for each dataset. Start- 496

ing with the empty set, we iteratively add 1000 497

examples at a time, generating the initial label 498

space until no additional labels are generated. 499

Consequently, Dsub contains 3000 documents for 500

AAPD, Reuters-21578, and RCV1-V2; 8000 doc- 501

uments for DBPedia-298; and 14000 documents 502

for Amazon-531. In the label space improvement 503

phase, by ranking the top entailment scores in as- 504

cending order, we select a subset of chunks S with 505

comparatively lower entailment scores. To ensure 506

consistency with Dsub, we control the size of S 507

proportionally. For AAPD, Reuters-21578, and 508

RCV1-V2 datasets, we select the top 500 examples. 509

For DBPedia-298, the subset size is set at 1,000, 510

and for Amazon-531, we choose 1,500 examples. 511

We consider labels existing in less than 1% of 512

the dataset as long-tail labels. Therefore, we select 513

all keyphrases that occur in less than 1% of P . By 514

calculating the semantic similarity score between 515

these selected keyphrases and all labels in C, we 516

identify the highest score for each keyphrase and 517

use the median of these scores as our threshold γ. 518

Only labels with a semantic similarity score lower 519

than γ compared to existing labels are added to 520
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Classifier Method
AAPD Reuter RCV1-V2 DBPedia Amazon

P@1 P@3 P@1 P@3 P@1 P@3 P@1 P@3 P@1 P@3

bart-large-
mnli

Vanilla 0.2030 0.2585 0.0940 0.2547 0.4220 0.3760 0.6420 0.3657 0.5080 0.3930

X-MLClass 0.3323 0.3735 0.1630 0.3617 0.4530 0.3808 0.6890 0.4000 0.6620 0.4608

deberta-v3-
large-all

Vanilla 0.3860 0.3700 0.1290 0.3937 0.4660 0.4152 0.6370 0.3816 0.5970 0.4068

X-MLClass 0.3573 0.4009 0.1320 0.4150 0.4820 0.4307 0.6350 0.3953 0.6200 0.4650

xlm-roberta-
large-xnli

Vanilla 0.1860 0.2330 0.1450 0.3477 0.3270 0.3053 0.6500 0.3673 0.5060 0.3860

X-MLClass 0.2713 0.3467 0.2040 0.3968 0.4040 0.3383 0.6610 0.3910 0.5840 0.4547

Table 3: Zero-Shot Multi-Label Text Classification Accuracy Comparison: Vanilla method represents baseline
classifier trained on raw documents. We compare the Vanilla performance with X-MLClass performance.

the new label space. This methodology ensures521

a refined and relevant augmentation of the label522

space. Details on the time and computational re-523

sources required for model training and prediction524

are provided in Appendix F.525

6.5 Label Space Coverage Results526

We present the coverage of the predicted label527

space in comparison to topic modeling and key-528

word extraction baselines, as detailed in Table 2.529

Our method consistently outperforms all baseline530

approaches. Specifically, for the AAPD, RCV1-V2,531

and DBPedia-298 datasets, we achieve over 60%532

coverage of the ground-truth label space, showcas-533

ing a noteworthy increase of up to 40% compared534

to the baseline methods. These results demonstrate535

that our method excels at predicting labels that536

align closely with the ground-truth label space. For537

example, our model can generate long-tail labels, a538

task that is particularly challenging for all baselines.539

However, our model exhibits comparatively lower540

performance on the Reuters-21578 and Amazon-541

531 datasets. Regarding Reuters-21578, the lower542

performance is due to a higher proportion of long-543

tail labels and the use of abbreviations in ground-544

truth labels. For Amazon dataset, the initially gen-545

erated label space by X-MLClass is only one-third546

of the ground-truth size. Even after adding more547

labels in the improvement stage, the predicted la-548

bel space is still less than half of the ground-truth549

space, leading to lower coverage scores.550

We also use Meta-Llama-3-8B-Instruct for551

model implementation and test on AAPD and552

RCV1-V2 datasets. The coverage scores were553

75.51% and 60.19%, respectively, similar to the554

results obtained using llama-2-13b-chat.555

6.6 Zero-shot Text Classification Accuracy556

We present the comprehensive zero-shot perfor-557

mance across all methods in Table 3. The results558

Dataset Initial Improvement ∆

AAPD 44.90 77.56 +32.66%
Reuters-21578 24.44 37.78 +13.34%
RCV1-V2 49.51 61.17 +11.66%
DBPedia-298 55.70 67.45 +11.75%
Amazon-531 23.35 38.04 +14.69%

Table 4: Label Coverage Score Improvement Results.

unequivocally demonstrate that our framework con- 559

sistently outperforms nearly all baseline models. 560

Notably, the P@3 scores of X-MLClass surpass 561

those of the baseline methods across all datasets. 562

This observation implies that training the zero-shot 563

classifier for both the keyphrases set and the chunk 564

set, followed by merging the results, enhances the 565

multi-label performance. Specifically, our chunk- 566

splitting procedure increases the likelihood of find- 567

ing the less dominant labels for each document, 568

as these labels may become dominant in smaller 569

chunks. Similarly, our approach improves the accu- 570

rate prediction of tail labels by the classifier, con- 571

tributing to the overall MLTC performance. 572

6.7 Label Space Coverage Improvement 573

Table 4 shows that iteratively updating the label 574

space leads to an enhancement in label coverage 575

across all datasets. Figure 2 visually represents 576

the normalized incremental coverage during each 577

iteration across datasets. Notably, the improvement 578

is more pronounced for datasets with smaller initial 579

label space sizes or lower initial coverage scores. 580

This finding aligns with expectations, as AAPD 581

exhibits significantly smaller label space sizes com- 582

pared to all other datasets, rendering label space 583

improvement easier. For the Reuters-21578 and 584

Amazon-531 datasets, the initial coverage score is 585

low, meaning that many matching labels are not 586

initially included in the label space. This results in 587

a higher potential for improvement by adding these 588

labels. Additionally, the criteria for adding new 589

labels must align with all existing ones in the gen- 590
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Figure 2: Coverage Improvement across Iterations.

erated label space, presenting a greater challenge591

in expanding larger label spaces like DBPedia-298.592

6.8 Label Coverage with Human593

Involvement/Evaluation594

We can seek expert assistance for refinement when595

generating the initial label space, especially for596

borderline similar label pairs. Human judgment597

helps determine whether to keep both labels, typ-598

ically requiring inspection of only about 30 pairs599

on average. Table 5 shows that the coverage score600

of initial label space across all datasets is lower601

without human involvement, as expected.602

Our model also encounters challenges in gen-603

erating labels exactly matching the ground-truth604

label space. For instance, within Reuters-298, cer-605

tain ground-truth labels are abbreviations, while606

our model generates the full-word version, lead-607

ing to a lower semantic similarity score than the608

actual score. As shown in Table 6, the ground-609

truth label “acq” corresponds to our predicted label610

“acquisitions,” possessing identical meanings, yet611

their semantic similarity score falls below 40%. In612

the Amazon-531 dataset, many ground-truth labels613

consist of phrases, which complicates the coverage614

evaluation. Achieving high scores requires precise615

matches, but predicting similar-meaning phrases616

with different words is common, resulting in lower617

scores. As evident in Table 6, “electrical_safety”618

and “electronics_troubleshooting” are identical la-619

bels, but their semantic similarity scores are lower,620

treated as distinct labels in our setting. Expert eval-621

uation can assist in such cases.622

Considering these factors, the actual coverage623

score of our predicted label space compared to the624

ground-truth label space is likely higher than the625

presented result in Table 2.626

6.9 Ablation Study for Amazon-531 Dataset627

The label space for the Amazon-531 dataset is sig-628

nificantly larger than that of the other datasets. To629

Dataset w/o Human w/ Human ∆

AAPD 40.81 44.90 +4.09%
Reuters-21578 18.89 24.44 +5.55%
RCV1-V2 45.63 49.51 +3.88%
DBPedia-298 46.31 55.70 +9.39%
Amazon-531 21.28 23.35 +2.07%

Table 5: Initial Coverage w/wo Human Involvement.

Ground-truth Predicted Label

acq acquisitions
money-fx monetary policy

earn earnings
plug_play_video_games gaming_electronics

electrical_safety electronics_troubleshooting
teether baby_dental_care

Table 6: Matching pairs between the ground-truth labels
and the predicted labels through human evaluation.

address this discrepancy and enhance label cov- 630

erage, we increased the number of iterations to 631

add more long-tailed labels. Using the same num- 632

ber of iterations as for the other datasets would 633

result in a final label space only half the size of the 634

ground-truth label space. As depicted in Figure 3, 635

increasing the number of iterations facilitates the 636

addition of more labels to the predicted label space, 637

leading to an improvement in the coverage score. 638

7 Conclusion and Future Work 639

We attack a novel and challenging problem, open- 640

world MLTC with extremely weak supervision. In 641

this scenario, user only provides a brief description 642

for classification objectives without any labels or 643

ground-truth label space. Our LLM-based frame- 644

work, X-MLClass, is designed to overcome this 645

challenge by discovering a practical label space 646

and constructing an MLTC classifier for label pre- 647

diction. Notably, it excels in identifying long-tail 648

labels, arguably the most challenging aspect in 649

MLTC problems. Our experiment results show 650

that X-MLClass surpasses baselines in terms of 651

ground-truth label coverage and exhibits higher 652

zero-shot text classification performance compared 653

to top-ranking models. 654

Despite our model’s success in generating some 655

tail labels, a considerable number of tail labels 656

remain undiscovered. Future work should focus 657

on refining our approach to capture more long-tail 658

labels. Subsequent studies could explore method- 659

ologies tailored for datasets featuring significantly 660

larger label spaces, contributing to the broader ap- 661

plicability of our model. 662
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Limitations663

Our work aims to discover the label space from664

extensive input text documents and then construct665

a multi-label text classifier. The most formidable666

challenge in this problem setting revolves around667

label space construction — how can we discover668

the labels, especially the long-tail ones? There-669

fore, our primary focus is on developing a novel670

method to address this challenge; we didn’t pro-671

pose any new zero-shot multi-label text classifier,672

since it is beyond the scope of this paper. Given673

that our proposed X-MLClass starts with a sub-674

set of documents, its efficacy may be limited for675

extremely long-tail labels (e.g., those occurring676

less frequently than 0.0001% of the documents).677

Alternatively, a considerably large subset would678

be required, potentially incurring significant com-679

putational costs from LLM. While our evaluation680

includes a diverse set of datasets, there is potential681

for further extension to more challenging datasets682

with an exceptionally large label space (e.g., over683

1000 different labels are expected).684

Ethical Considerations685

This paper uses open-source datasets and models686

for training and evaluation, which is reproducible.687

We will also release the code upon acceptance. It is688

important to note that the keyphrases generated by689

LLMs may vary with each run, potentially leading690

to minor differences in results compared to those691

presented. Additionally, our evaluation toolkit uses692

OpenAI models, which may impact reproducibility.693
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Figure 3: Improvement of Label Coverage for Amazon-
531 by increasing the number of iterations.

A Prompt Templates for Dominant Label 853

Code 1 is the prompt we use to find the dominant 854

label for the selected document. 855
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B Prompt Templates for Generating856

Keyphrases857

Code 2 provides an example of the prompt used858

to generate keyphrases for a selected chunk of the859

Amazon-531 dataset. Users can help us define860

the objective with examples. For example, the861

coarse-grained objectives look like “games” and862

“animals”, while the corresponding fine-grained ob-863

jectives are “trading_card_games” and “reptiles”.864

C Label Space refinement with human865

involvement866

Human experts play a crucial role in refining the867

label space generated by LLM. For instance, when868

the cosine similarity score between two labels falls869

between 0.50 and 0.75, indicating a certain degree870

of semantic similarity, human intervention is pre-871

ferred to determine whether these labels are synony-872

mous. Synonyms need to be identified and treated873

accordingly, with one of them being removed from874

the label space. To specify, we show them with an875

instruction “Do label pairs have similar meanings876

in the text classification problem? If Yes, please877

output the label that we should delete.” However,878

there is also the case that these two labels may rep-879

resent concepts from different scopes; for example,880

“health_care” and “health_personal_care.” In such881

instances, human judgment is necessary to detect882

and treat them as separate labels.883

Furthermore, some predicted labels may contain884

multiple meanings, necessitating human interven-885

tion to split them into distinct labels. For instance,886

if a predicted label is “computer vision and ma-887

chine learning,” it is evident that the label should888

be divided into two separate labels. These judg-889

ments require human expertise for accurate and890

context-aware decisions.891

D Datasets Detailed Information892

• AAPD (Yang et al., 2018) contains computer893

science papers. The labels are research topics.894

• Reuters-21578 (Debole and Sebastiani, 2005)895

is a collection of news articles from the Reuters896

financial newswire service in 1987. The labels897

are the news topics.898

• RCV1-V2 (Lewis et al., 2004) contains catego-899

rized newswire articles by Reuters Ltd. The la-900

bels are the news topics.901

• DBPedia-298 (Lehmann et al., 2015) are ex-902

tracted from Wikipedia articles. The labels are903

the article categories.904

• Amazon-531 (McAuley and Leskovec, 2013) en- 905

compasses product reviews and associated meta- 906

data. The labels are the product tags. 907

E GPT Instructions for Verifying 908

Matching Pairs 909

Code 3 is the instruction we used to verify matching 910

pairs. 911

F Time and Computational Resources 912

Required for Model Training and 913

Prediction 914

The number of training examples we select varies 915

based on the scope of each dataset. On average, we 916

prompt LLM on approximately 18,000 chunks for 917

each dataset. We use a single 80GB A100 for LLM 918

prompting, and the process consumes less than 919

35GB of GPU memory. Each prompting only takes 920

less than 1 second to execute. Thus, on average, 921

each dataset requires less than 4 hours for LLM 922

prompting, making it a manageable cost. 923

During the text classification and label space im- 924

provement step, the majority of the computation 925

cost arises from calculating the textual entailment 926

score for each chunk. However, the entailment 927

model is lightweight, occupying only around 3GB 928

of GPU memory. When dealing with large label 929

spaces, nearest-neighbor techniques can be applied 930

to trim down label candidates, reducing the time 931

required for calculating entailment scores. On aver- 932

age, we require approximately 2 hours to complete 933

one iteration. However, users have the flexibility to 934

choose the number of iterations needed to update 935

the label space. Given that our model already out- 936

performs the baseline with the initial label space, 937

only a few iterations are necessary, making both 938

time and cost manageable. 939
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sys_prompt = "You are a poetic assistant, skilled in explaining complex programming concepts with creative flair."
user_prompt = "

Which label in the label space {true_label_array} is the dominant label that covers more than 50% of the below content?
{documents}

Please output the dominant label only if exist or output \'NO\' if there are no dominant labels.
"

prompt = "{sys_prompt} \n {user_prompt}"

Code 1: Prompt to find the dominant label for the selected document

#Amazon-531 keyphrases generation template
sys_prompt = "<s>[INST] <<SYS>>

You are a helpful, respectful and honest assistant for labeling topics.
<</SYS>>."

example_prompt = "
The following is a customer review of a product bought from Amazon.
[documents]
Based on the topic information mentioned above, the coarse-grained keyphrases are formatted as {user classification
objective}, while the fine-grained keyphrases are formatted as {user classification objective}.

"
main_prompt = "

[INST]
Based on the information about the topic above, please find two coarse-grained and two fine-grained keyphrases for the
example.

[DOCUMENTS]
Please only return the keyphrases in one line using the format below:
[/INST] [keyphrase] and [/keyphrase].
"

prompt = "{sys_prompt} \n {example_prompt} \n {main_prompt}"

Code 2: Prompt templates to generate keyphrases

sys_prompt = "You are an expert in text classification, with specialized skills in discerning matching pairs for labels."
user_prompt = "

Given that we have established matching pairs such as
"\'Machine learning\' and \'artificial intelligence\'",
"\'Computational Geometry\' and \'Algebraic Geometry\'",
"\'Physics and Society\' and \'Physics\'", //optional
"\'teether\' and \'baby_dental_care\'", //optional
when using util.dot_score to measure semantic similarity between tokens, would you consider {ground_truth} and {prediction}
as a matching pair in a text classification problem?

Please respond with Yes or No.
"

prompt = "{sys_prompt} \n {user_prompt}"

Code 3: Prompt templates for verifying match pairs
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