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ABSTRACT

Shape assembly, the process of combining parts into a complete whole, is a crucial
skill for robots with broad real-world applications. Among the various assembly
tasks, geometric assembly—where broken parts are reassembled into their origi-
nal form (e.g., reconstructing a shattered bowl)—is particularly challenging. This
requires the robot to recognize geometric cues for grasping, assembly, and subse-
quent bimanual collaborative manipulation on varied fragments. In this paper, we
exploit the geometric generalization of point-level affordance, learning affordance
aware of bimanual collaboration in geometric assembly with long-horizon action
sequences. To address the evaluation ambiguity caused by geometry diversity of
broken parts, we introduce a real-world benchmark featuring geometric variety
and global reproducibility. Extensive experiments demonstrate the superiority of
our approach over both previous affordance-based and imitation-based methods.

1 INTRODUCTION

Shape assembly, the task of assembling individual parts into a complete whole, is a critical skill
for robots with wide-ranging real-world applications. This task can be broadly categorized into
two main branches: furniture assembly (Zhan et al., 2020; Heo et al., 2023; Lee et al., 2021) and
geometric assembly (Wu et al., 2023c; Sellán et al., 2022; Lu et al., 2024c). Furniture assembly
focuses on combining functional components, such as chair legs and arms, into a fully constructed
piece, emphasizing both the functional role of each part and the overall structural design. In con-
trast, geometric assembly involves reconstructing broken objects, like piecing together parts of a
shattered mug, to restore their original form. While furniture assembly has been relatively well-
studied—ranging from computer vision tasks that predict part poses in the assembled object (Zhan
et al., 2020) to robotic systems that assemble parts in both simulation (Ankile et al., 2024; Yu et al.,
2021; Wang et al., 2022a) and real-world environments (Heo et al., 2023; Suárez-Ruiz et al., 2018;
Xian et al., 2017)—geometric assembly remains under-explored despite its significant potential for
real-world applications (Sellán et al., 2022; Lu et al., 2024b), such as repairing broken household
items, reconstructing archaeological artifacts (Papaioannou & Karabassi, 2003), assembling irreg-
ularly shaped objects in industrial tasks, aligning bone fragments in surgery (Liu et al., 2014), and
reconstructing fossils in paleontology (Clarke et al., 2005).

Previous works on geometric assembly primarily focused on generating physically plausible broken
parts through precise physics simulations in the graphics domain Sellán et al. (2022; 2023), and
estimating the target assembled part poses based on observations in the computer vision domain Wu
et al. (2023c); Lu et al. (2024c). These studies only consider the geometries and ideal assembled
poses of broken parts, dismissing the process of step-by-step assembling parts to the complete shape.
However, different from opening a door or closing a drawer, only with the ideal part poses, it is
difficult for a robot to directly and successfully manipulate broken parts to the complete shape.

The challenges of the above robotic geometric shape assembly task mainly come from the exception-
ally large observation and action spaces. For the observation space, the broken parts have arbitrary
geometries, and the graspness on the object surface should consider not only the local geometry it-
self, but also whether grasping on such point can afford the subsequent bimanual assembly actions.
For the action space, as illustrated in Figure 1, it requires long-horizon action trajectories. Given the
contact-rich nature of the task, where collisions among the two parts and two robots will easily exist,
the actions should be fine-grained and aware of bimanual collaboration. Consequently, the policy
must account for geometry, contact-rich assembly processes, and bimanual coordination.
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Figure 1: (A) Direct learning long-horizon action trajectories of geometric assembly may face many
challenges: grasping ungraspable points, grasping points not suitable for assembly (e.g., seams of
fragments), robot colliding with parts and the other robot. (B) We formulate this task into 3 steps:
pick-up, alignment and assembly. For assembly, we predict the direction that will not result in part
collisions. For alignment, we transformed any assembled poses to poses easy for the robot to ma-
nipulate from the initial poses without collisions. For pick-up, we learn point-level affordance aware
of graspness and the following 2 steps. (C) Real-World Evaluations with affordance predictions on
two mugs and the corresponding manipulation.

We propose our BiAssemble framework for this challenging task. For geometric awareness, we uti-
lize point-level affordance, which is trained to focus on local geometry. This approach has demon-
strated strong geometric generalization in diverse tasks Wu et al. (2022; 2023b), including short-term
bimanual manipulation Zhao et al. (2022), such as pushing a box or picking up a basket. To enhance
the affordance model with an understanding of subsequent long-horizon bimanual assembly actions,
we draw inspiration from how humans intuitively assemble fragments: after picking up two frag-
ments, we align them at the seam, deliberately leaving a gap (since directly placing them in the
target pose often causes geometric collisions), with part poses denoted as alignment poses. We then
gradually move the fragments toward each other to fit them together precisely. The alignment poses
of the two fragments can be obtained by disassembling assembled parts in opposite directions. With
this information, it becomes straightforward to extend the geometry-aware affordance to further be
aware of whether the controller can move fragments into their alignment poses without collisions.

We develop a simulation environment where robots can be controlled to assemble broken parts. This
simulation environment bridges the gap between vision-based pose prediction for broken parts and
the real-world robotic geometric assembly. Moreover, since broken parts exhibit varied geometries
(e.g., the same bowl falling from different heights breaking into different groups of fragments), it
is challenging to fairly assess policy performance in real-world settings. To address this, we fur-
ther introduce a real-world benchmark featuring globally available objects with reproducible broken
parts, along with their corresponding 3D meshes, which can be integrated into simulation environ-
ment. This benchmark enables consistent and fair evaluation of robotic geometric assembly policies.
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Extensive experiments on diverse categories demonstrate the superiority of our method both quanti-
tatively and qualitatively. More results can be found in our supplementary video or on our website.

2 RELATED WORK

2.1 3D SHAPE ASSEMBLY

Shape assembly is a well-established problem in visual manipulation, with many studies focusing
on constructing a complete shape from given parts. These typically involve predicting the pose of
each part for accurate placement using techniques like Dynamic Graph Learning (Zhan et al., 2020),
or providing step-by-step guidance through human-designed visual manuals (Wang et al., 2022a).
Further work (Heo et al., 2023; Tian et al., 2022; Jones et al., 2021; Willis et al., 2022) studied assem-
bly with robotic execution, requiring robots to carry out each step. These studies offer benchmarks
spanning various applications, from home furniture assembly (Lee et al., 2021) to factory-based
nut-and-bolt interactions (Narang et al., 2022). We categorize these tasks into two types: furniture
assembly and geometric assembly. In this paper, we focus on geometric assembly, which involves
assembling pieces that are less semantically defined as individual parts. For example, in the case
of a broken bowl, the pieces are irregular in shape and lack specific names, making categorization
difficult. This contrasts with furniture assembly, where each piece, like a nut, bolt, or screw, has a
distinct function and is named accordingly, with specific roles in the overall construction.

Previous work on geometric assembly (Sellán et al., 2022; Chen et al., 2022; Wu et al., 2023c; Lu
et al., 2024c; Lee et al., 2024), such as (Wu et al., 2023c), learns SE(3)-equivariant part representa-
tions by capturing part correlations for multi-part assembly, while (Lee et al., 2024) introduces Proxy
Match Transform (PMT), a low-complexity, high-order feature transform layer that refines feature
pair matching. However, these methods primarily focus on synthesizing parts into a cohesive object
based on pose considerations without incorporating robotic execution, which is impractical in real-
world scenarios where collisions may occur if the assembly process ignores actions. To overcome
this challenge, we introduce the robotic bimanual geometric assembly framework. Our approach
leverages two robots to collaboratively assemble pieces, enhancing stability in real-world execution.

2.2 BIMANUAL MANIPULATION.
Bimanual manipulation (Chen et al., 2023; Grannen et al., 2023; Mu et al., 2021; Chitnis et al.,
2020; Lee et al., 2015; Xie et al., 2020; Ren et al., 2024b; Liu et al., 2024; 2022; Li et al., 2023; Mu
et al., 2024) offers several advantages, particularly in tasks requiring stable control or wide action
space. Current research in this field primarily focuses on planning and collaboration. For instance,
ACT (Fu et al., 2024; Zhao et al., 2023) introduces a transformer-based encoder-decoder architec-
ture that leverages semantic knowledge from image inputs to predict joint positions for both arms
in the next time step. PerAct2 (Grotz et al., 2024) learns features at both voxel and language levels,
utilizing shared and private transformer blocks to coordinate two robotic arms based on semantic in-
structions, such as ’bring me a coke.’ However, in tasks rich in geometric complexity, where objects
have limited semantic information but intricate geometric structures, these approaches—focused
on semantic understanding—may encounter generalization limits. DualAfford (Zhao et al., 2022)
learns point-level collaborative visual actionable affordance, while only for short-term tasks like
pushing or rotating. To address this, we leverage the geometric generalization capability of point-
level affordance, and enhance it with the awareness of subsequent long-horizon assembly actions.

2.3 VISUAL AFFORDANCE FOR ROBOTIC MANIPULATION

Among various vision-based approaches for robotic manipulation An et al. (2024); Goyal et al.
(2023); Brohan et al. (2023); Ze et al. (2024); Ju et al. (2024), for objects with rich geometric in-
formation and tasks requiring geometric generalization, point-level affordance, which reflects the
functionality of each point for downstream manipulation (Mo et al., 2021; Li et al., 2024a), is
broadly leveraged and can easily generalize to novel shapes with similar local geometries. A se-
ries of research have leverage this representation to a broad range of robotic manipulation tasks,
such as deformable object manipulation (Wu et al., 2023b; Lu et al., 2024a; Wu et al., 2024), object
manipulation in complex environments (Ding et al., 2024; Li et al., 2024b; Wu et al., 2023a), ob-
ject manipulation with efficient exploration (Ning et al., 2024; Wang et al., 2022b), and short-term
bimanual manipulation Zhao et al. (2022). Leveraging the strengths of affordance representation,
we design a sophisticated approach that incorporates this representation into bimanual geometric
assembly task requiring long-horizon fine-grained actions, enhancing generalization and enabling
more effective collaboration in addressing long-horizon geometric assembly challenges.
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3 PROBLEM FORMULATION

The task is to use two grippers to assemble a pair of 3D fractured parts initialized in random poses on
the table. A camera situated in front of the table captures a partially scanned point cloud O. Given
O, current state-of-the-art methods Scarpellini et al. (2024); Lu et al. (2024c); Chen et al. (2022) can
imagine the assembled part poses and the assembled object S in any pose. Thus we assume taking
imaginary assembled shape S as the input.

For the policy π, as illustrated in Figure 1, we can simplify this long-term process into 3 key steps:

• Pick-up: the two grippers pick up the fractured parts with actions (gpick1 , gpick2 );

• Alignment: grippers carry parts to alignment poses with actions (galign1 , galign2 ), position-
ing part seams to face each other and ensuring precise alignment for a perfect assembly;

• Assembly: grippers move forward to complete the assembly with actions (gasm1 , gasm2 ).

Here, 1 and 2 denote the left and the right grippers, respectively. Each gripper action g is formulated
as an SE(3) matrix, representing the gripper pose in 3D space.

4 METHOD

4.1 OVERVIEW

Our BiAssembly framework is designed to predict collaborative affordance and gripper actions for
bimanual geometric shape assembly. As illustrated in Figure 2, BiAssembly consists of several key
components. First, to propose the assembly direction on two aligned parts, we develop the Disas-
sembly Predictor to learn the feasible disassembly directions in which the opposite assembly direc-
tion will result in no collisions, based on the fracture geometry of the imaginary assembled shape
in any pose (4.2). Next, we design the Transformation Predictor, to transform disaasembled parts
to poses where the controller can successfully manipulate the initial parts to these alignment poses
(4.3). Based on the predicted part alignment poses, we propose the BiAffordance Predictor, which
not only predicts where to grasp the fractured parts, but also considers the subsequent collaborative
alignment and assembly steps (4.4). Finally, we explain training strategy and loss functions(4.6).

4.2 DISASSEMBLY PREDICTION BASED ON FRACTURE GEOMETRY

The set of feasible disassembly directions (in which the disassembly and opposite assembly pro-
cesses will not result in collisions) is an inherent attribute of a pair of fractured parts, determined
by fracture geometries. Therefore, we predict the disassembly directions, from the object-centric
perspective, on the imaginary assembled shape S in any pose. Additionally, we observe that when
fractured parts rotate, the feasible disassembly directions will rotate correspondingly, maintaining
SO(3) equivariance relative to part poses. This SO(3) equivariance property is advantageous for dis-
entangling shape geometry from shape poses, as demonstrated in previous works (Wu et al., 2023c;
Scarpellini et al., 2024). Therefore, we adopt VN-DGCNN (Wu et al., 2023c; Deng et al., 2021) to
encode the imaginary assembled shape parts S and acquire the SO(3)-equivariant shape feature fs.

Inputting the equivariant representation fs, we use the Disassembly Predictor to predict the dis-
tribution of disassembly directions. Concretely, the Disassembly Predictor is implemented as a
conditional variational autoencoder (cVAE) (Sohn et al., 2015), where the cVAE encoder maps the
input disassembly direction v into Gauissian noise z ∈ R32, and the cVAE decoder reconstructs the
disassembly direction v from z, with fs as the condition.

4.3 TRANSFORMATION PREDICTION FOR ALIGNMENT POSE

Given the object-centric disassembly direction resulting in no collisions in the last-step assembly,
we want to predict the alignment poses, where the robot can manipulate two parts from the initial
poses to the alignment poses without collisions, and then the robot can execute the assembly step.
This problem can be formulated as predicting an SE(3) transformation M ∈ R4×4 that is applied to
the combination of the imaginary assembled shape S and the disassembly direction v. To capture
this, we adopt PointNet++ (Qi et al., 2017a;b) to encode the initial point cloud observation O into the
global feature fO. We also employ a multi-layer perception (MLP) to encode disassembly direction
v into the feature fv . The transformation predictor, which is implemented as a cVAE, takes in
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Figure 2: BiAssembly Framework Overview. With the point cloud observation and Imaginary
Assembled Shape, the model predicts the disassembly direction in which the disassembled part
poses can be easily reached by manipulating the raw parts under the guidance Bi-Affordance.

concatenation of (fO, fv) to predict the SE(3) transformation M . The yellow and blue arrow in
Figure 2 illustrate the data flow in this process: by applying the transformation M to the imaginary
assembly S and disassembly direction v, we obtain the transformed S′ and v′. Therefore, we can get
the target poses to which the objects should be moved during the alignment and assembly phases.

4.4 BIAFFORDANCE PREDICTOR

We build the BiAffordance Predictor to propose actions in the Pick-up step, indicating where to
grasp for the two fractured parts that can facilitate the whole long-horizon robotic assembly task.
The BiAffordance Predictor should both identify easy-to-grasp regions on the fractured parts and
consider the subsequent Alignment and Assembly steps. This means (1) avoiding grasping regions
in the seam and (2) preventing each gripper from adopting poses that could collide with the other
part or gripper during subsequent steps.

Following DualAfford (Zhao et al., 2022), we disentangle the bimanual task into two conditional
submodules. As presented in Figure 2 (bottom), during inference, the BiAffordance Predictor con-
ditionally predicts two gripper actions. The first Affordance Network generates the affordance map
for the first gripper, highlighting the actionable regions for the bimanual assembly task, and we se-
lect a contact point p∗1 with high actionable value. Then, the Actor Network predicts the gripper
orientation r1 for interaction at p∗1. Based on the first action g1 = (p∗1, r1), we can then predict the
second gripper action g2 = (p∗2, r2) using the second Affordance Network and Actor Network.

Different from DualAfford that only predicts affordance for short-term tasks, we use whether the
manipulation points can satisfy the following alignment pose (by the robotic controller) and the
subsequent assembly step as the training signal.

To encode input information, one PointNet++ encodes the initial point cloud O obtains per-point
features {fp}. Another PointNet++ encodes the transformed shape S′ and derives the global feature
fs′ . Additionally, a MLP encodes the transformed disassembly direction v′ into fv′ .
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For Affordance and Actor Networks’ designs, the first Affordance Network is implemented as an
MLP that receives the concatenated features (fp, fS′ , fv′) and predicts an affordance score in the
range of [0, 1] for each point p. By aggregating the affordance scores of all points, we obtain the first
affordance map, and from which we select p∗1. The first Actor Network is implemented as a cVAE
that takes the concatenated features (fp∗

1
, fS′ , fv′) as condition, and outputs the gripper orientation

r1. The design of the second Affordance Network and Actor Network follows a similar structure,
with the difference that they additionally incorporate the first gripper action’s feature (fp∗

1
, fr1) along

with (fp, fS′ , fv′). More details about the BiAffordance Predictor can be found in Appendix C.

4.5 ALIGNMENT AND ASSEMBLY ACTIONS

After successfully grasping a part, we now predict the gripper alignment poses galigni and assembly
poses gasmi , with i ∈ {1, 2} denotes the gripper id. We assume the relative pose between the gripper
and the object remains stable. For example, in the first pickup step and the third assembly step, the
relative gripper-object pose remains consistent, as expressed in Equation 1:

gpicki · qpicki = gasmi · qasmi ; g, q ∈ SE(3). (1)

Here, g and q denote the gripper and object poses, respectively.

Next, as we have the imaginary part shapes P with pose qiniti , we can utilize a pretrained pose
estimation model (Wen et al., 2024) to predict the relative pose of qpicki with respect to qiniti . Besides,
by applying the predicted transformation M to P , we obtain the target assembled part P ′ and its
pose as qasmi = M · qiniti . The gripper pose gpicki can be acquired from the robot control interface.
Therefore, the gripper’s final pose for assembling the parts can be calculated using Equation 2:

gasmi = gpicki · qpicki · (qiniti )
−1 ·M−1; g, q ∈ SE(3). (2)

It is important to note that, as indicated in the above simplified equation, we do not need to define a
canonical pose or try to obtain the values of qiniti ; we only require the relative pose of qpicki to qiniti .

A similar relationship can be established between the first and the second intermediate steps, with
the difference being that qaligni = M · qiniti + v′.

4.6 TRAINING AND LOSSES

Disassembly Direction Loss. The Disassembly Predictor is implemented as cVAE. We apply Co-
sine Similarity Loss to measure the error between the reconstructed disassembly direction v and
ground-truth v∗, and KL Divergence to measure the difference between two distributions:

LDisasm = LCLS(v, v
∗) +DKL

(
q(z|v∗, fs)||N (0, 1)

)
. (3)

Transformation Loss. The predicted SE(3) transformation matrix M consists of translation T and
rotation R. Our model predicts the translation as a 3D-vector using L1 Loss. The rotation, repre-
sented as a SO(3) matrix, can be expressed as a 6D vector by using two 3D vectors that correspond
to the directions of the two orthogonal axes. Consequently, ours model predicts the rotation as a
6D-vector and employs the geodesic loss. In summary, let T ∗ and R∗ denote the ground-truth, and
for simplicity, denote DKL

(
q(z|x, f)||N (0, 1)

)
as DKL(x, f). The loss function is:

LTransformation = L1(T, T
∗) + Lgeo(R,R∗) +DKL(T

∗, (fs, fv)) +DKL(R
∗, (fs, fv)). (4)

For the losses used in the Bi-Affordance Predictor, we provide detailed explanation in Appendix C.

5 BENCHMARK

5.1 SIMULATION BENCHMARK

Constructing a large-scale dataset with real objects is both time-consuming and costly. To address
this challenge, we utilize the Breaking Bad Dataset Sellán et al. (2022), which models the natural
destruction process of geometric objects into fragments. This dataset features multiple categories,
diverse objects, and varying fracture patterns. For physics simulation, we employ the SAPIEN Xiang
et al. (2020) platform along with two two-finger Franka Panda grippers as robot actuators.

6
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Figure 3: Part A illustrates the pipeline for scanning and reconstructing real objects. Part B presents
examples of fractured parts from various categories, showcasing diverse geometries.

We randomly select a pair of 3D fractured parts from a randomly chosen shape within a random
category. The initial part poses are also randomized. Given the considerable diversity in fractured
parts, collecting successful manipulation data for assembly can be quite challenging. To enhance
data collection efficiency, we implement several heuristic strategies, with details in Appendix B.

5.2 REAL-WORLD BENCHMARK

A real-world benchmark is crucial not only for evaluating the performance of various methods but
also for providing a standardized platform that enables researchers to reproduce and share their
approaches. As illustrated in Figure 3, we build the real-world benchmark by scanning with a smart
phone camera. First, we put the object on an automatic turntable with 6 aruco markers around for
precise camera localization, and capture a RGB video from a top-down view to a level view, lowering
the height by one level for each 360-degree rotation. After capturing 4-5 levels, we uniformly sample
around 300 frames, and feed them to COLMAP (Schönberger & Frahm (2016); Schönberger et al.
(2016)) for estimating camera poses. Then, we use Grounded SAM 2 (Ren et al. (2024a); Ravi et al.
(2024)) to generate object masks and Depth Anything V2 (Yang et al. (2024)) to predict monocular
depths, and use SDFStudio (Yu et al. (2022),Wang et al. (2021)) with depth ranking loss (Wang et al.
(2023)) to reconstruct object mesh. To annotate the ground-truth of scanned object assembly, we
import the object slices to Blender (Community (2018)) and edit the object transformations.

Our real-world benchmark encompasses a diverse range of object categories, including wine glass,
plate, beer bottle, bowl, mug, and teapot. These objects have been primarily selected from well-
known international brands, ensuring both durability and accessibility. To promote object diversity,
our shapes vary in size, geometry, transparency, and texture, with different seam geometries.

6 EXPERIMENTS

6.1 SIMULATION AND SETTINGS

The simulation environment is built on the SAPIEN (Xiang et al., 2020) platform, utilizing the
Franka Panda grippers as the robot actuator. We employ the EverydayColorPieces dataset from
the Breaking Bad Dataset Sellán et al. (2022), covering 15 categories, 445 shapes and 11,820 frag-
ment pairs, with 10 categories for training and the remaining 5 for testing. Training categories are
further divided into training shapes and novel instances, allowing the evaluation on generalization
capabilities at both the object and category levels. More details can be found in Appendix A.

For each method, we provide 7,000 positive and 7,000 negative samples. The negative samples
encompass manipulation failures occurring during the grasping, alignment, and assembly steps.

7
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Table 1: Quantitative results in novel instances within training categories.
Novel Instances in Training Categories

Method AVG

ACT 2% 0% 0% 0% 1% 0% 0% 0% 0% 0% 0.30%
Heuristic 5% 8% 0% 3% 2% 4% 3% 5% 10% 2% 4.20%

DualAfford 21% 17% 0% 2% 2% 4% 14% 8% 10% 6% 8.40%
w/o SE(3) 59% 29% 13% 14% 11% 8% 15% 19% 24% 20% 21.20%

Ours 60% 38% 13% 13% 12% 9% 26% 18% 27% 25% 24.10%
w/ GT Target 71% 28% 4% 9% 9% 13% 27% 19% 25% 19% 22.40%

Table 2: Quantitative results in the novel unseen categories.
Unseen Categories

Method AVG

ACT 0% 1% 0% 0% 1% 0.4%
Heuristic 1% 5% 2% 0% 14% 4.4%

DualAfford 5% 10% 4% 1% 16% 7.2%
w/o SE(3) 13% 24% 4% 9% 22% 14.4%

Ours 14% 31% 10% 7% 25% 17.4%
w/ GT Target 14% 33% 12% 9% 27% 19%

6.2 EVALUATION METRIC, BASELINES AND ABLATION

Evaluation Metric. Our metric evaluates whether the relative distance (measured in unit-length)
and rotation angle (measured in degrees) of two parts are within the threshold range at the end of
the assembly. These thresholds ensure that the success of the assembly process can be measured
consistently and meaningfully. To evaluate each method, we prepare 100 samples in each category.
For each sample, all methods are presented with the same initial observation for a fair comparison.

Baselines and Ablations. We compare our approach with three baselines and two ablated version:
(1) ACT (Zhao et al., 2023), a transformer network with action chunking that imitates successful ac-
tion sequences in the closed-loop manner. We enhance this method by providing depth information,
object pose, and an additional target goal image as inputs. Besides, this method is trained and
tested on individual categories, whereas other learning-based methods are trained on all training
categories and evaluated on both the novel instances and unseen categories. (2) Heuristic, where we
hand-engineer a set of heuristic strategies to improve manipulation success rate. These strategies
are similar to the data collection heuristics described in Appendix B. (3) DualAfford Zhao et al.
(2022), a framework that learns collaborative visual affordance for bimanual manipulation. While
DualAfford focuses on short-term manipulation, we adapt it to determine where to grasp the two
fractured parts, using heuristic methods for the alignment and assembly steps. (4) w/o SE(3), an
ablated version that replaces the SO(3)-equivariant VN-DGCNN encoder with PointNet++. (5) w/
GT target, where we provide the additional ground-truth disassembly direction v and transformation
M . The ground truth is sampled using a heuristic method that ensures at least one feasible assembly.

6.3 QUANTITATIVE RESULTS AND ANALYSIS

Table 1 and Table 2 show the success rate comparisons across different methods on both the novel
instance dataset and the unseen category dataset. Our method outperforms the baselines and ablation
models in most cases, demonstrating its effectiveness and geometric generalization capabilities. For
ACT, though we provide additional input such as depth, object poses, and the goal image, it achieves
lower scores on our task. Although ACT successfully picks up parts in approximately 40% of trials,
it often fails during the alignment phase, with a misalignment of over 100° between the parts in
many cases. Furthermore, ACT struggles to avoid grasping the fractured seam regions, leading to
collisions during the assembly process. This is because the observation and action spaces in robotic
geometric assembly are exceptionally large, making it challenging to directly learn the appropri-
ate fine-grained actions. For heuristic, it achieves higher scores because we provide substantial
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Figure 4: We present qualitative results of the predicted affordance maps and robot actions from our
method. In each row, from left to right, we respectively present the input observation, the predicted
affordance maps for the two fractured parts, and the bimanual actions for the pick-up, alignment,
and assembly steps. In the top part are novel shapes from the training categories, while in the bottom
part are shapes from unseen categories.

ground-truth information in the simulation. However, due to the significant diversity in both inter-
and intra-category shape geometries, it is unrealistic to expect hand-engineered rules to generalize
effectively across all shapes. DualAfford performs better than the heuristic policy, demonstrating its
superior ability to learn geometric-aware pick-up poses compared to heuristic sampling. However,
only with designs focused on short-term manipulation, it still lacks awareness of subsequent align-
ment and assembly steps. Comparing our method to the ablation w/o SE(3), we observe that utilizing
the SE(3)-equivariant representation enhances the performance across most categories. Lastly, com-
pared to the ablation w/ GT Target, our method performs better on novel instances but worse on
novel categories. This suggests that, for the training categories, our method learns to predict a more
accurate distribution of disassembly and transformation, surpassing those sampled from the heuristic
strategy. However, on novel unseen categories, while our method still demonstrates generalization
capability, the ablated version with the ground-truth target remains more effective.

6.4 QUALITATIVE RESULTS AND ANALYSIS

In Figure 4, we present the collaborative affordance maps and robot manipulations predicted by
our methods across multiple categories, including novel instances in the training categories and the
unseen categories. The predicted affordance demonstrates an awareness of part geometry, highlight-
ing graspable regions while avoiding areas near the table that could result in collisions between the
gripper and the surface. Additionally, the affordance accounts for subsequent alignment and as-
sembly steps, avoiding seam areas that may cause collisions during the approach phase. Based on
the predicted affordance map, our model predicts appropriate gripper actions for assembling parts.
Moreover, the results demonstrate the model’s ability to generalize to unseen categories and shapes.

6.5 REAL-WORLD EXPERIMENTS

We set up two Franka Panda robots with the fractured parts positioned between them. An Azure
Kinect camera is mounted in front of the robots, capturing partial 3D point cloud data as inputs

9
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Initial Observation Pick-up Alignment Assembly

Figure 5: Real-World Experiment. We present the results of our model tested on real-world
scans. For each data, We visualized the affordance map, and the bimanual actions for the pick-up,
alignment, and assembly steps. Manipulation videos can be found in our supplementary materials.

for our models. The robots are controlled via the Robot Operating System (ROS) (Quigley et al.,
2009), with control and communication managed through the frankapy library (Zhang et al., 2020).
Communication with the Kinect Azure is facilitated by the pyk4a library (pyk4a, 2019).

In the bottom row of Figure 1 and in Figure 5, we present promising results by directly testing our
method in real-world scenarios. We observe that our model not only learns which regions of the
fractured parts to grasp but also avoids manipulating areas near the fracture regions or too close to
the table surface, reducing the likelihood of collisions during manipulation. The results from the
real-world experiments demonstrate our model’s capacity for generalization to real-world scenarios.

7 CONCLUSION

In conclusion, we have leveraged the geometric generalization capability of point-level affordance
to develop a method that enables both generalization and collaboration in long-horizon geometric
assembly tasks. To evaluate performance across diverse geometries, we introduced a real-world
benchmark that features significant geometric variety and global reproducibility. Extensive experi-
ments have shown that our approach outperforms previous methods, demonstrating its effectiveness
in handling complex and long-horizon assembly tasks. For more discussions, including potential
extensions to multi-part shape assembly and future directions, are detailed in Appendix F.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Boshi An, Yiran Geng, Kai Chen, Xiaoqi Li, Qi Dou, and Hao Dong. Rgbmanip: Monocular image-
based robotic manipulation through active object pose estimation. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 7748–7755. IEEE, 2024.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation
learning for robotic assembly. arXiv preprint arXiv:2404.03729, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Yuanpei Chen, Yiran Geng, Fangwei Zhong, Jiaming Ji, Jiechuang Jiang, Zongqing Lu, Hao Dong,
and Yaodong Yang. Bi-dexhands: Towards human-level bimanual dexterous manipulation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Yun-Chun Chen, Haoda Li, Dylan Turpin, Alec Jacobson, and Animesh Garg. Neural shape mating:
Self-supervised object assembly with adversarial shape priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 12724–12733, 2022.

Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual manip-
ulation using learned task schemas. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1149–1155. IEEE, 2020.

Julia A Clarke, Claudia P Tambussi, Jorge I Noriega, Gregory M Erickson, and Richard A Ketcham.
Definitive fossil evidence for the extant avian radiation in the cretaceous. Nature, 433(7023):
305–308, 2005.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 12200–12209, 2021.

Kairui Ding, Boyuan Chen, Ruihai Wu, Yuyang Li, Zongzheng Zhang, Huan-ang Gao, Siqi Li,
Yixin Zhu, Guyue Zhou, Hao Dong, et al. Preafford: Universal affordance-based pre-grasping for
diverse objects and environments. IROS, 2024.

Zipeng Fu, Tony Z Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

Ankit Goyal, Jie Xu, Yijie Guo, Valts Blukis, Yu-Wei Chao, and Dieter Fox. Rvt: Robotic view
transformer for 3d object manipulation. In Conference on Robot Learning, pp. 694–710. PMLR,
2023.

Jennifer Grannen, Yilin Wu, Brandon Vu, and Dorsa Sadigh. Stabilize to act: Learning to coordinate
for bimanual manipulation. In Conference on Robot Learning, pp. 563–576. PMLR, 2023.

Markus Grotz, Mohit Shridhar, Tamim Asfour, and Dieter Fox. Peract2: A perceiver actor frame-
work for bimanual manipulation tasks. arXiv preprint arXiv:2407.00278, 2024.

Minho Heo, Youngwoon Lee, Doohyun Lee, and Joseph J Lim. Furniturebench: Reproducible
real-world benchmark for long-horizon complex manipulation. arXiv preprint arXiv:2305.12821,
2023.

Benjamin Jones, Dalton Hildreth, Duowen Chen, Ilya Baran, Vladimir G Kim, and Adriana Schulz.
Automate: A dataset and learning approach for automatic mating of cad assemblies. ACM Trans-
actions on Graphics (TOG), 40(6):1–18, 2021.

Yuanchen Ju, Kaizhe Hu, Guowei Zhang, Gu Zhang, Mingrun Jiang, and Huazhe Xu. Robo-abc:
Affordance generalization beyond categories via semantic correspondence for robot manipulation.
arXiv preprint arXiv:2401.07487, 2024.

11

http://www.blender.org


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alex X Lee, Henry Lu, Abhishek Gupta, Sergey Levine, and Pieter Abbeel. Learning force-based
manipulation of deformable objects from multiple demonstrations. In 2015 IEEE International
Conference on Robotics and Automation (ICRA), pp. 177–184. IEEE, 2015.

Nahyuk Lee, Juhong Min, Junha Lee, Seungwook Kim, Kanghee Lee, Jaesik Park, and Minsu
Cho. 3d geometric shape assembly via efficient point cloud matching. arXiv preprint
arXiv:2407.10542, 2024.

Youngwoon Lee, Edward S Hu, and Joseph J Lim. Ikea furniture assembly environment for long-
horizon complex manipulation tasks. In 2021 ieee international conference on robotics and au-
tomation (icra), pp. 6343–6349. IEEE, 2021.

Xiaoqi Li, Mingxu Zhang, Yiran Geng, Haoran Geng, Yuxing Long, Yan Shen, Renrui Zhang,
Jiaming Liu, and Hao Dong. Manipllm: Embodied multimodal large language model for object-
centric robotic manipulation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 18061–18070, 2024a.

Yitong Li, Ruihai Wu, Haoran Lu, Chuanruo Ning, Yan Shen, Guanqi Zhan, and Hao Dong. Broad-
casting support relations recursively from local dynamics for object retrieval in clutters. RSS,
2024b.

Yunfei Li, Chaoyi Pan, Huazhe Xu, Xiaolong Wang, and Yi Wu. Efficient bimanual handover and
rearrangement via symmetry-aware actor-critic learning. In 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 3867–3874. IEEE, 2023.

Bin Liu, Xinjian Luo, Rui Huang, Chao Wan, Bingbing Zhang, Weihua Hu, and Zongge Yue. Virtual
plate pre-bending for the long bone fracture based on axis pre-alignment. Computerized medical
imaging and graphics, 38(4):233–244, 2014.

Junjia Liu, Yiting Chen, Zhipeng Dong, Shixiong Wang, Sylvain Calinon, Miao Li, and Fei Chen.
Robot cooking with stir-fry: Bimanual non-prehensile manipulation of semi-fluid objects. IEEE
Robotics and Automation Letters, 7(2):5159–5166, 2022.

Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, and Li Yi. Taco:
Benchmarking generalizable bimanual tool-action-object understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21740–21751, 2024.

Haoran Lu, Yitong Li, Ruihai Wu, Chuanruo Ning, Yan Shen, and Hao Dong. Unigarment: A
unified simulation and benchmark for garment manipulation. In ICRA Workshop on Deformable
Object Manipulation, 2024a.

Jiaxin Lu, Yongqing Liang, Huijun Han, Jiacheng Hua, Junfeng Jiang, Xin Li, and Qixing Huang.
A survey on computational solutions for reconstructing complete objects by reassembling their
fractured parts. arXiv preprint arXiv:2410.14770, 2024b.

Jiaxin Lu, Yifan Sun, and Qixing Huang. Jigsaw: Learning to assemble multiple fractured objects.
Advances in Neural Information Processing Systems, 36, 2024c.

Kaichun Mo, Leonidas J Guibas, Mustafa Mukadam, Abhinav Gupta, and Shubham Tulsiani.
Where2act: From pixels to actions for articulated 3d objects. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 6813–6823, 2021.

Tongzhou Mu, Zhan Ling, Fanbo Xiang, Derek Yang, Xuanlin Li, Stone Tao, Zhiao Huang, Zhiwei
Jia, and Hao Su. Maniskill: Learning-from-demonstrations benchmark for generalizable manip-
ulation skills. CoRR, abs/2107.14483, 2021b. URL https://arxiv. org/abs/2107, 14483, 2021.

Yao Mu, Tianxing Chen, Shijia Peng, Zanxin Chen, Zeyu Gao, Yude Zou, Lunkai Lin, Zhiqiang
Xie, and Ping Luo. Robotwin: Dual-arm robot benchmark with generative digital twins (early
version). arXiv preprint arXiv:2409.02920, 2024.

Yashraj Narang, Kier Storey, Iretiayo Akinola, Miles Macklin, Philipp Reist, Lukasz Wawrzyniak,
Yunrong Guo, Adam Moravanszky, Gavriel State, Michelle Lu, et al. Factory: Fast contact for
robotic assembly. arXiv preprint arXiv:2205.03532, 2022.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chuanruo Ning, Ruihai Wu, Haoran Lu, Kaichun Mo, and Hao Dong. Where2explore: Few-shot
affordance learning for unseen novel categories of articulated objects. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Georgios Papaioannou and Evaggelia-Aggeliki Karabassi. On the automatic assemblage of arbitrary
broken solid artefacts. Image and Vision Computing, 21(5):401–412, 2003.

pyk4a. pyk4a, 2019. URL https://github.com/etiennedub/pyk4a.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. Proc. Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical fea-
ture learning on point sets in a metric space. Advances in neural information processing systems,
30, 2017b.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob Wheeler,
Andrew Y Ng, et al. Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, pp. 5. Kobe, Japan, 2009.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
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APPENDIX

A DETAILS ABOUT DATA STATISTICS

BeerBottle Bottle Bowl Mug PillBottle

Statue Teapot ToyFigure WineglassVase
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Cup DrinkBottle DrinkingUtensil Teacup WineBottle

Figure 6: Visualization of simulation data. We present one example shape from each object category
used in our paper.

Table 3: Shape and Fracture Counts Across Categories. Numbers before the slash represent the
training set, and numbers after the slash represent the testing set. The top 10 categories are the
training categories, and the bottom 5 categories are the unseen categories.

Category Shape (Train/Test) Fracture (Train/Test)

BeerBottle 6 / 3 100 / 61
Bottle 51 / 22 1296 / 559
Bowl 16 / 32 446 / 801
Mug 32 / 15 876 / 545
PillBottle 7 / 3 217 / 60
Statue 2 / 0 57 / 35
Teapot 7 / 3 315 / 104
ToyFigure 36 / 16 1118 / 556
Vase 74 / 32 1842 / 872
WineGlass 6 / 3 136 / 45
Cup 0 / 31 0 / 663
DrinkBottle 0 / 7 0 / 230
DrinkingUtensil 0 / 14 0 / 343
Teacup 0 / 7 0 / 167
WineBottle 0 / 18 0 / 376
Total 237 / 208 6403 / 5417

In Figure 6, we present a representative example for each object category from the dataset used in
our experiments.

In this paragraph, we detail the data split for our experiments. We randomly select 10 out of the 15
categories for training, reserving the remaining 5 categories exclusively for testing. Within the 10
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training categories, 60% of the shapes are randomly chosen for the training set, while the remaining
40% serve as a test set to assess the models’ performance on novel instances within the training
categories (shape-level). For the reserved 5 categories, all shapes are included in the test set to
evaluate the methods’ generalization capabilities on unseen categories (category-level). In summary,
the training set consists of 10 categories, totaling 237 shapes and 6,403 pairs of fragments. The
shape-level test set includes 10 categories, comprising 131 shapes and 3,638 pairs of fragments. The
category-level test set encompasses 5 categories, containing 77 shapes and 1,779 pairs of fragments.
Detailed statistics for each category can be found in Table 3.

B DETAILS ABOUT DATA COLLECTION IN SIMULATION

In this section, we provide detailed information about data collection in the simulation.

Due to the complexity of bimanual geometric assembly tasks, which stems from the vast observation
and action spaces, it is nearly impossible to directly acquire positive data by randomly manipulating
the fractured parts. To address this, we apply several heuristic strategies to improve the efficiency of
data collection. Specifically, our strategies focus on the following three key steps in the process:

1. Sampling the grasping poses for the two grippers

2. Sampling the alignment poses for the two grippers

3. Sampling the assembly poses for the two grippers

Each of these steps is described in detail in the following subsections.

B.1 SAMPLING GRASPING POSES

Different from furniture assembly task, where grasp points are easier to define, the objects in ge-
ometric shape assembly tasks have more diverse geometries, making it challenging to establish a
consistent grasping policy. As a result, our heuristic strategy for grasping primarily focuses on the
orientation of the grippers rather than specific grasp points.

At initialization, the two parts are randomly placed on the table. From the simulation, we obtain the
ground-truth depth map and normalization map of the two parts. The normal directions often closely
align with feasible grasping directions (i.e., the z-axis of the gripper). Consequently, we randomly
select a grasp point on the part, and then choose a grasping direction within a cone that deviates
less than 30 degrees from the normal direction at that point. To avoid potential collisions between
the grippers and the table during grasping, we discard any directions that point towards the upper
hemisphere of the world coordinate system.

In addition to the gripper’s z-axis, the x-axis also significantly impacts grasping accuracy. Therefore,
we uniformly sample a list of n x-axis candidates that are orthogonal to the gripper’s z-axis. By
combining each candidate x-axis with the z-axis, we determine the gripper pose. We test each of
these gripper poses sequentially. If a grasp pose successfully grasps the object, we proceed to the
next stage; otherwise, we reset the scene and move on to the next x-axis candidate. If all grasp pose
candidates fail, we record this as negative data for the grasping step. In our implementation, we
empirically set n = 6, resulting in each x-axis candidate being spaced 60 degrees apart.

B.2 SAMPLING ALIGNMENT POSES

To sample the grippers’ alignment poses, we begin by sampling feasible part poses during the align-
ment step. Our heuristic strategy also follows a reverse disassembly process. Specifically, we load
the ground-truth assembled object into the simulation at a height of 0.5 meters above the tabletop,
and allow the assembled object to take any pose rather than being restricted to a canonical pose.
Next, we randomly explore feasible disassembly directions for the two parts, ensuring that these
directions are collision-free. The resulting poses of the parts, after moving in their respective disas-
sembly directions, represent the parts’ alignment poses. It is important to note that we will discard
alignment poses that are too distant from the parts’ initial poses (for example, if the initial left part
has an alignment pose to the right, while the initial right part has an alignment pose to the left).
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Once we have determined the parts’ alignment poses, we can calculate the grippers’ alignment poses
using the functions described in Section 4.5.

B.3 SAMPLING ASSEMBLY DIRECTIONS

In the previous step, we identified the feasible disassembly directions for the ground-truth assembled
parts. Consequently, we can obtain the assembly directions by simply inverting these disassembly
directions, allowing the two grippers to assemble the parts accordingly. However, it is important
to note that this assembly process may lead to failures. This is because, although the parts can be
successfully aligned in an idealized scenario without grippers, the presence of grippers increases the
risk of collisions. For instance, if one gripper is positioned too close to the seam area of a fractured
part, it may collide with another part or the other gripper during the assembly process.

C MORE DETAILS ABOUT THE BIAFFORDANCE FRAMEWORK

In this section, we provide more details about the BiAffordance Predictor. Following DualAf-
ford (Zhao et al., 2022), we decompose the bimanual cooperation task into two separate yet closely
interconnected submodules, M1 and M2, which conditionally predict the first and second gripper
actions, respectively.

During inference, the first module M1 predicts the first gripper action g1 = (p∗1, r1), followed by the
second module M2, which predicts the second action g2 = (p∗2, r2) conditioned on g1, as described
in Section 4.4 of the main paper.

During training, M2 still takes the first gripper action g1 as input, and then generates a complemen-
tary second action g2. However, since M1 lacks knowledge of how g2 will be predicted, it faces
challenges in predicting a collaborative action g1. To address this issue, we aim to make M1 aware
of the types of actions that can be easily collaborated on. We assess the quality of M1’s actions by
evaluating whether M2 can generate cooperative actions, which encourages M1 to predict actions
with high collaborative quality. Following this approach, M2 guides the training of M1. Thus, we
first train M2 and then use the trained M2 to train M1, ensuring cooperative predictions.

During training, each submodule Mi consists of three components: (1) an Affordance Network Ai,
which predicts an affordance map to indicate where interaction should occur; (2) an Actor Network
Ui, which predicts manipulation orientations to determine how to interact at the selected point; and
(3) a Critic Network Ci, which assesses the likelihood of the action’s success.

To explain the training process, we begin with the more straightforward second module, M2, which
is also the first to be trained.

The Actor Network U2 in M2 is implemented as a conditional Variational Autoencoder (cVAE). As
detailed in Section 4.4, it takes concatenated input features fin = (fp, fS′, fv′) and the ground-truth
feature of the first action fg1 = (fp∗

1
, fr1) from the collected data. We apply a geodesic distance

loss to measure the error between the reconstructed gripper orientation r2 and the ground-truth
orientation r̂2, along with KL divergence to quantify the difference between the two distributions:

LU2
= Lgeo(r2, r̂2) +DKL

(
q(z|r̂2, fin, fg1)||N (0, 1)

)
. (5)

The Critic Network C2 in M2 is implemented as a multilayer perceptron (MLP) and evaluates how
well the predicted second gripper action g2 = (p∗2, r2) collaborates with the first action g1. Using
the collected data along with the corresponding ground-truth interaction results r (where r = 1
indicates a positive interaction and r = 0 indicates a negative one), we train C2 with the standard
binary cross-entropy loss:

LC2
= rj log

(
C2(fin, fg1 , fp∗

2
, fr2)

)
+ (1− rj)log

(
1− C2(fin, fg1 , fp∗

2
, fr2)

)
. (6)

The Affordance Network A2 in M2 is implemented as a multilayer perceptron (MLP). The predicted
affordance score represents the expected success rate for executing action proposals generated by
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the Actor Network, which can be directly evaluated by the Critic Network. To obtain the ground-
truth affordance score âpi

on pi, we use the Actor Network U2 to sample n gripper orientations at
the point pi and calculate the average action scores assigned by the Critic Network C2. We apply
L1 loss to measure the error between the predicted and ground-truth affordance scores at a specific
point pi:

âpi
=

1

n

n∑
j=1

C2
(
fin, fg1 , fpi

,U2(fin, fg1 , fpi
, zj)

)
; LA2

= |A2(fin, fg1 , fpi
)− âpi

| . (7)

After training the expert model M2 = (A2,U2, C2), we can utilize it to generate collaborative
actions g2 for a given g1 predicted by M1. Thus, we can assess the quality of M1’s actions by
evaluating whether M2 can generate cooperative actions. Specifically, to evaluate the predicted
g1, we use the trained A2 and U2 to generate multiple second gripper action candidates {g2}. We
then employ C2 to determine how well these second gripper candidates {g2} collaborate with the
proposed g1. The average critic score reflects how easily the second gripper can cooperate with the
proposed first action g1. Consequently, this average score serves as the ground truth for the first
Critic Network C1, and we apply L1 loss for supervision:

ĉg1 =
1

nm

n∑
j=1

m∑
k=1

C2
(
fin, fg1 , fpj

,U2(fin, fg1 , fpj
, zjk)

)
; LC1

= |C1(fin, fg1)− ĉg1 | . (8)

To train the Affordance Network A1 and Actor Network U1 in M1, the loss functions are similar to
those used for A2 and U2. Therefore, with the trained Critic Network C1, the Affordance Network
A1 assigns high scores to points that can be easily manipulated collaboratively by the subsequent
gripper action.

In this training pipeline, the two gripper modules can generate collaborative affordance maps and
manipulation actions for bimanual tasks. Note that during inference, the use of the Critic Networks
is optional.

D DETAILS ABOUT TRAINING AND COMPUTATIONAL COSTS

During training, there are two main components: (1) the Disassembly Predictor and the Trans-
formation Predictor are trained together in an end-to-end manner, and (2) all modules within the
BiAssembly Predictor are also trained collectively in an end-to-end manner. These two training
components can be conducted simultaneously on a single GPU. Using a single NVIDIA V100 GPU,
the total training time for our model is approximately 48 hours: the combination of the Disassem-
bly Predictor and Transformation Predictor converges in about 20 hours, while the BiAffordance
Predictor converges in about 48 hours.

During inference, our method utilizes only 1,600 MB of GPU memory and processes each data point
in an average of 0.1 seconds.

E FAILURE CASES

We provide a detailed analysis of failure cases and illustrate the inherent difficulty of the task with
scenarios that are particularly challenging for robots to figure out. Additionally, we provide insights
into potential future improvements to address these complexities more effectively.

E.1 HARD TO GRASP
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Initial Observation Pick-up

Initial Observation Assembly Initial Observation Assembly

Initial Observation Pick-up
(a) (b)

(d) (e)

Initial Observation Pick-up
(c)

Figure 7: We visualize some failure cases, which demonstrate the challenges of the tasks and some
cases that are difficult for robots to to determine appropriate actions. The first row presents three
cases where the fractured parts are either too large or too flat to grasp. The second row includes two
cases where the graspable region corresponds exactly to the seam areas; while the objects can be
grasped, collisions may occur during the assembly of the parts.

Heavy or Smooth-Surfaced Parts. Fractured parts that are heavy or have smooth surfaces often
result in grasping failures. For instance, as shown in Figure 7 (a), categories such as teapots and
vases, which are relatively large and feature smooth curved surfaces, exhibit notably high failure
rates during grasping.

Flat Parts. Flat fractured parts, particularly some shapes in categories like statues and mugs, are
challenging to pick up due to the limited gripping area. For example, as shown in (b), the statue part
on the left is too close to the desktop and has a very small thickness, which prevent the gripper from
grasping it. Similarly, in (c), the handle fragment on the right is too flat, making it impossible fo rthe
gripper to grasp it. A potential solution is incorporating pre-grasp operations, such as moving the
fractured part to the table edge, allowing the shape to hang off slightly and thus become graspable.

E.2 HARD TO ASSEMBLE

Graspable Regions Overlapping Seam Areas. When the graspable regions of a fractured part
align with its seam areas, collisions during assembly become frequent. This issue is common in
categories such as wineglasses, mugs, and bowls. For example, as shown in Figure 7 (d), the left
gripper avoids collision-prone regions, but the right gripper must grasp the neck of the wine bottle.
Similarly, in (e), while the left gripper avoids collisions, the right gripper ends up grasping the
handle of a mug. A potential solution is to perform a series of pick-and-place operations to adjust
the object’s initial pose. This adjustment can reduce the overlap between the object’s graspable
regions and seam areas, thereby minimizing collisions during the assembly process.

Complex Object Shapes. Objects with intricate shapes, like those in the statues category, pose
challenges due to irregular edges and complex curves. Such designs increase the difficulty of align-
ment and manipulation, leading to higher failure rates during assembly.

Relative Displacement During Operations. Relative displacement between the gripper and frac-
tured parts often occurs due to small contact areas and insufficient support, which can cause sliding
or tipping during manipulation. For example, wine bottles with narrow necks, which have unstable
center of gravity, making the gripper prone to sliding during movement and leading to operational
failures.
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F DISCUSSIONS AND FUTURE WORKS

F.1 HANDLING MULTIPLE BROKEN PARTS

Our method can be extended to handle multiple fragments. Below, we provide a detailed explana-
tion of how our method can be adapted for multi-fragment assembly, followed by the experimental
results.

The multi-fragment assembly task can be achieved by iteratively applying the two-fragment as-
sembly process. First, at each iteration, we can identify which two fragments, piand pj , should
be assembled next. (If some parts have already been assembled in previous iterations, their com-
bination is treated as a new fragment.) Specifically, based on the imaginary assembled shape S,
we can calculate the minimum distance,min ∥pi − pj∥, between sampled points from every pair
of fragments, and the pair (pi, pj) with the minimum distance is chosen for assembly:(pi, pj) =

argmin
(pi,pj)∈S1×S2

∥pi − pj∥.Once pi and pj are identified on S, we then map these fragments to their

corresponding parts in the observed point cloud O. This mapping is formulated as a classification
task, where the similarity between parts in S and O is estimated.

Finally, using the imaginary assembled shape of the selected fragments, Spi
∪ Spj

, and the corre-
sponding observed point cloud Opi

∪Opj
, our method predicts the actions to pick up and assemble

the fragments. This process mirrors the steps of the standard two-fragment assembly method. By
iteratively applying this two-fragment assembly process, the complete assembly of all fragments
can be achieved. To validate the feasibility of this multi-fragment assembly process, we evaluated
our pretrained BiAssembly model on broken beerbottles with three pieces without any finetune pro-
cess. We provide the visualization of the predicted affordance maps and actions in Figure 8, we can
see that for multi-fragment assembly task, our method can still predict reasonable results in each
iteration.

While the above proposed method is a practical approach for assembling multi-part fractures, an-
other potential strategy is training the Affordance Network to identify which two fragments are
easiest to assemble in each iteration. In this new method, the Affordance Network would involve
assigning high affordance scores to the reasonable regions of these fragments, while predicting low
affordance scores for the fragments that are not being assembled in the current iteration. Imple-
menting this strategy would require additional data collection for training and modifications to the
framework. We leave this exploration for future work.

F.2 THE IMAGINARY ASSEMBLED SHAPE

Predicting the imaginary assembled shape from multiple fractured parts is a relatively well-studied
vision problem (Sellán et al., 2022; Wu et al., 2023c; Lu et al., 2024c; Tsesmelis et al., 2024;
Scarpellini et al., 2024). Previous works have demonstrated the ability to predict precise fragment
poses that allow for an imaginary assembled shape, making it reasonable to assume the existence
of such shapes in our framework. Additionally, in traditional furniture assembly tasks, several stud-
ies (Wang et al., 2022a; Sera et al., 2021; Wan et al., 2024) also assume the existence of an imaginary
assembled shape as part of their formulation. While this assumption aligns with advancements in
prior works, we hope future research can achieve complex and challenging shape assembly tasks
without depending on an imaginary assembled shape.

G MORE EXPERIMENTAL RESULTS

In this section, we conduct three additional ablation studies, and provide the quantitative results in
Table 4 and Table 5.
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Figure 8: We provide the visualization of the predicted affordance maps and actions for multi-part
assembly task.

w/o Affordance Network: During inference, we do not use the trained Affordance Network to
highlight actionable regions. Instead, we randomly sample a contact point on the part. The results
show a significant drop in the success rates, which decrease to 4.60% for training categories and
2.80% in unseen categories. This demonstrates that the Affordance Network plays a crucial role in
filtering out non-graspable points and points that are unsuitable for the subsequent assembly process.

w/o Transformation Predictor: In this ablation, we remove the Transformation Predictor during
inference. This results in success rates of 7.40% on training categories and 4.80% on unseen cate-
gories, both substantially lower than our original method. These results show that the Transforma-
tion Predictor plays an essential role in predicting alignment poses, enabling the robot to manipulate
parts from their initial to alignment poses without collisions.

w/ heuristic disassembly direction v: In this case, we remove the Disassembly Predictor during
inference. Instead, we compute the center of each part from the imaginary assembled shape S
by averaging the part points, and then use the relative direction of the two parts’ centers as the
disassembly direction v. This ablation achieves success rates of 19.70% on training categories and
15.20% on unseen categories, both of which are lower than those achieved by our method. While this
ablated version performs well on certain categories, suggesting that the calculated relative direction
can approximate the relative positions of the two parts, it falls short in categories with complex
geometries. In such cases, the heuristic method lacks the accuracy needed to replace the assembly
direction required for our task. This highlights the critical role of the Disassembly Predictor in
achieving better performance.

Table 4: More ablation studies: quantitative results in novel instances within training categories.
Novel Instances in Training Categories

Method AVG

w/o Affordance 7% 11% 0% 0% 1% 8% 1% 4% 6% 8% 4.60%
w/o Transformation 29% 19% 0% 0% 0% 0% 8% 4% 5% 9% 7.40%

w/ heuristic v 54% 28% 0% 3% 10% 5% 28% 23% 21% 25% 19.70%
Ours 60% 38% 13% 13% 12% 9% 26% 18% 27% 25% 24.10%
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Table 5: More Ablation studies: quantitative results in the novel unseen categories.
Unseen Categories

Method AVG

w/o Affordance 2% 6% 2% 0% 4% 2.8%
w/o Transformation 4% 10% 1% 0% 9% 4.8%

w/ heuristic v 18% 22% 15% 9% 12% 15.20%
Ours 14% 31% 10% 7% 25% 17.4%

H MORE VISUALIZATIONS

In Figure 9, we present additional qualitative results from our method.
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Initial Observation Affordance Pick-up Alignment Assembly

Figure 9: We visualize additional qualitative results that augment Figure 4 in the main paper. In
each row, from left to right, we respectively present the input observation, the predicted affordance
maps for the two fractured parts, and the bimanual actions for the pick-up, alignment, and assembly
steps. In the top part are novel shapes from the training categories, while in the bottom part are
shapes from unseen categories.
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