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Abstract

Automatic segmentation of lung lesions associated with COVID-19 in CT images requires
large amount of annotated volumes. Annotations mandate expert knowledge and are time-
intensive to obtain through fully manual segmentation methods. Additionally, lung lesions
have large inter-patient variations, with some pathologies having similar visual appearance
as healthy lung tissues. This poses a challenge when applying existing semi-automatic
interactive segmentation techniques for data labelling. To address these challenges, we
propose an efficient convolutional neural networks (CNNs) that can be learned online while
the annotator provides scribble-based interaction. To accelerate learning from only the
samples labelled through user-interactions, a patch-based approach is used for training the
network. Moreover, we use weighted cross-entropy loss to address the class imbalance that
may result from user-interactions. During online inference, the learned network is applied
to the whole input volume using a fully convolutional approach. We compare our proposed
method with state-of-the-art using synthetic scribbles and show that it outperforms existing
methods on the task of annotating lung lesions associated with COVID-19, achieving 16%
higher Dice score while reducing execution time by 3x and requiring 9000 lesser scribbles-
based labelled voxels. Due to the online learning aspect, our approach adapts quickly
to user input, resulting in high quality segmentation labels. Source code for ECONet is
available at: https://github.com/masadcv/ECONet-MONAILabel.

1. Introduction

COVID-19 causes pneumonia-like symptoms, adversely affecting respiratory systems in
some patients. In their response to the disease, clinicians have used Computed Tomography
(CT) imaging to assess the amount of lung damage and disease progression by localizing
lung lesions (Roth et al., 2021; Revel et al., 2021; Rubin et al., 2020). This has been essen-
tial in providing relevant treatment for COVID-19 patients with severe conditions and has
resulted in acquisition of large number of CT volumes from COVID-19 patients (Roth et al.,
2021; Tsai et al., 2021; Wang et al., 2020; Revel et al., 2021). Deep learning-based automatic
lung lesion segmentation methods may ease burden on clinicians, however, these methods
require large amounts of manually labelled data (Wang et al., 2020; Gonzalez et al., 2021;
Tilborghs et al., 2020; Chassagnon et al., 2020). Labelling CT volumes for lung lesion is
a time-intensive task which requires expert knowledge, putting further strain on clinicians’
workload. In addition, future variants of novel coronaviruses may result in variations in
lesion pathologies (McLaren et al., 2020). In such cases, automatic segmentation methods
that are trained on existing datasets may fail. To address this, rapid labelling of relevant
data is needed to augment existing dataset with new labelled volumes.
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Figure 1: Comparison of appearance of lung lesions vs non-lesions in CT volumes from
COVID-19 dataset (Wang et al., 2020). Top row shows a selected slice, and
bottom row shows the distribution of HU intensity values for each bounding box.
The large overlap between background and lesion distributions indicates that the
appearance of some parts of lesion may look similar to background, leading to
ambiguity in likelihood models learned from appearance-based features alone.

Related work. Due to their quick adaptability and efficiency, a number of existing online
likelihood methods have been applied as semi-automatic methods for interactively segment-
ing objects in images (Boykov and Jolly, 2001; Criminisi et al., 2008; Rother et al., 2004;
Barinova et al., 2012; Wang et al., 2016). One of the first approach for interactive segmenta-
tion used histogram of intensity values for generating likelihood (Boykov and Jolly, 2001),
which was then regularized using a conditional random field formulation solved using a
max-flow algorithm. Similarly, (Criminisi et al., 2008) also used histogram-based likelihood
for interactively segmenting objects using geodesic symmetric filtering for regularization. In
(Rother et al., 2004), a set of Gaussian Mixture Models (GMMs) were employed to model
class-specific intensity distribution.

While the intensity-based methods provided significant advancement in terms of inter-
actively segmenting an object, they failed to model ambiguous cases, e.g., where the object
intensity is similar to that of the background. To bypass this limitation, hand-crafted
features were employed to build online likelihood models in (Barinova et al., 2012; Wang
et al., 2016). Barionova et al. (Barinova et al., 2012) proposed an Online Random Forests
(ORF) trained using fixed class weights. Dynamically Balanced Online Random Forests
(DybaORF) (Wang et al., 2016) utilized dynamically changing weights based on distribu-
tion of classes after each user-interaction. Both ORF and DybaORF used hand-crafted
features, where DybaORF outperformed all existing online likelihood methods.

Existing online likelihood methods either directly depend on intensity values (Boykov
and Jolly, 2001; Criminisi et al., 2008; Rother et al., 2004) or utilize hand-crafted features
(Barinova et al., 2012; Wang et al., 2016). While these methods work well for cases where
appearance/features for object and background differ sufficiently, they result in failure for
cases where this assumption breaks. As shown in Figure 1, the appearance of lung lesions
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in COVID-19 patients may have ambiguity, where the distribution of their HU intensity
may appear similar to background regions.

A number of deep learning-based interactive segmentation methods exist that provide
Al-assisted annotation (Luo et al., 2021; Wang et al., 2018b,a; Rajchl et al., 2016). DeepCut
(Rajchl et al., 2016) used bounding box provided by user to train CNNs for fetal brain and
lung segmentation from MRI. DeepIlGeoS (Wang et al., 2018b) combined CNNs with user-
provided scribbles interaction in a two stage CNN approach, where the first stage inferred
an initial segmentation and the second refined it using user-scribbles. BIFSeg (Wang et al.,
2018a) utilized bounding box interactions with image-specific fine-tuning of CNN to segment
unseen objects. MIDeepSeg (Luo et al., 2021) incorporated user-clicks with input image
using exponential geodesic distance for interactive segmentation. Deep learning-based in-
teractive segmentation methods consist of large networks that require offline pre-training on
large labelled datasets. Additionally, due to the amount of parameters, these networks do
not adapt quickly in an online setting to changes in unseen examples. Some methods, such
as BIFSeg, propose to use image-specific fine-tuning, however this has limited application
in online on-the-fly learning due to extensive computational requirements.

Contributions. To address the challenge of learning a distinctive likelihood model in an
online and data-light manner, we propose a method which we refer to as Efficient Convo-
lutional Online likelihood Network (ECONet). To the best of our knowledge, ECONet is
the first online likelihood method that enables joint and efficient on-the-fly learning of both
features and classifier using only scribbles-based labels. The proposed model is lightweight,
using only a single convolutional feature layer and three fully-connected layers and can
be learned online, while the user provides labels interactively, without the need for any
pre-training. We propose an efficient online training technique, where only the patches ex-
tracted from scribble-labelled voxels are used. Efficient inference from ECONet is achieved
through fully convolutional application of the network on whole input volume (Long et al.,
2015). We evaluate ECONet on the problem of labelling lung lesions in CT volumes from
COVID-19 patients, with comparison against high-quality segmentation labels from expert
annotators. We show that the proposed ECONet outperforms existing state-of-the-art on-
line likelihood methods (Boykov and Jolly, 2001; Rother et al., 2004; Wang et al., 2016),
achieving 16% higher Dice score in 3x lower online training and inference time and requiring
approximately 9000 lesser interactively labelled voxels.

2. Method

2.1. Problem Formulation

Let X = (z;);_, € R" represents an image volume that is to be labelled, where i is the
index of a given voxel. Given X, the user provides scribble-based interaction indicating
class labels for a subset of voxels of the image X. Let S = S/ U S? represent the set of
scribbles, where S/ and S? denote the foreground and background scribbles, respectively,
and S N S® = (. For a given voxel i, the provided scribble label is s; = 1 if i € S and
s; = 0if i € S®. The scribbles in S and image patches centered at each scribbles S are used
for online training of a given model with parameters 6.
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Figure 2: ECONet online training and inference shows (a) patch-based online training of
ECONet where a patch of size K x K x K, extracted around a scribble voxel, is
used. The loss function in Eq. (1) is used along with label from scribble to learn
the model parameters. (b) shows online likelihood inference using ECONet as
fully convolutional network on full image volume.

2.2. Online Training and Inference using ECONet

The proposed Efficient Convolutional Online Likelihood Network (ECONet) is a lightweight
fully convolutional neural network designed to be trained and applied in an online setting.
ECONet consists of one convolution layer used for learning relevant features, which is fol-
lowed by three fully-connected layers that enable learning the classifier for a given voxel.
Each layer is followed by a batch normalization and ReLLU activation. To train and apply
ECONet in an online setting and using only scribbles-based labels from a user, we propose
to use a training and inference strategy that maximizes the efficiency of both tasks. Figure 2
shows an overview of the proposed online training and inference method.

Scribbles S provided by an annotator at a given stage only label a small subset of voxels
within a given image volume X. Based on this observation, we minimize the computational
budget required to perform training passes on ECONet by using KxKxK kernel for input
convolution and, extracting and learning only from patches with KxK xK dimensions, each
centered around a voxel with user-scribble (Figure 2 (a)). Once the parameters of ECONet
have been learned, efficient online inference is done by applying it to the whole input CT
volume. ECONet is converted to a fully convolutional network for inference (Figure 2 (b)),
where appropriate padding is used in the input convolution layer and fully-connected layers
are converted to 1x1x1 conv3d (Long et al., 2015). This enables ECONet to efficiently infer
a volume with likelihood for each voxel within image X.

2.3. Scribbles-balanced Cross-Entropy Loss

User-scribbles suffer from class imbalance problem, resulting from the user-interactions
being biased towards the object of interest. In addition, during the course of an interactive
session, the user may focus on labelling different segments, which results in dynamically
changing class imbalance in S (Wang et al., 2016). To address this, we utilize a scribbles-
balanced cross-entropy loss (Kukar et al., 1998; Ho and Wookey, 2019), with dynamically
changing class weights from scribbles distribution.
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Given a model with parameters 6, the foreground likelihood from this model is defined
as p; = P(s; = 11X, 0). Then, the scribbles-balanced cross-entropy loss is:

Lpy)=-) (wfyi log p; + w’(1 — y;) log(1 — pz’)) (1)
where w! and w® are scribble-based class weights for foreground and background, respec-
tively, and are defined as: w/ = [9|/|S/| and w® = [S]/|S°|.

3. Experimental Validation

We compare our proposed ECONet with existing state-of-the-art methods in online likeli-
hood inference, which are Histogram (Boykov and Jolly, 2001), Gaussian Mixture Model
(GMM) (Rother et al., 2004) and DybaORF-Haar-Like (Wang et al., 2016). In addition, to
show the effectiveness of learning features in ECONet, we define ECONet-Haar-Like that
replaces the first convolution layer of ECONet with hand-crafted haar-like features (Jung
et al., 2013) and learns the three fully-connected layers. Both DybaORF-Haar-Like and
ECONet-Haar-Like utilize our GPU-based implementation of 3d haar-like features, avail-
able at: https://github.com/masadcv/PyTorchHaarFeatures. A GPU-based implementa-
tion of GMM is used (MONAI Consortium, 2020). DybaORF was implemented using
CPU-based Random Forest implementation from (Pedregosa et al., 2011). All experiments
were performed on Tesla V100 GPU with 32 GB memory. For user interactions, we utilized
the scribbles-based interactive segmentation tools from project MONAI Label! (Diaz-Pinto
et al., 2022).

Data. We use the UESTC-COVID-19 dataset for experimental validation and comparison
of ECONet with existing methods (Wang et al., 2020). This dataset contains a total of 120
CT volumes with lung lesion labels, of which 50 are by expert annotators and 70 are by non-
expert annotators. In order to compare robustness of our proposed ECONet against expert
annotators, we use only the 50 CT volumes labelled by experts for all our experiments.
In our validation, the ground-truth labels are only used for generating interactions with a
synthetic scribbler and to compute evaluation metrics.

Training Parameters. Adam optimizer (Kingma and Ba, 2014) with 200 epochs and
an initial learning rate of 0.01 dropped to 0.001 at 140th epoch is used for training of
ECONet-based methods. Dropout probability of 0.3 is used during training for all fully-
connected layers. The size of each layer in ECONet is selected through line search ablation
experiments (see Appendix A), which are as follows: (i) input patch and conv3d kernel size
is Tx7x7 (K = 7), (ii) number of filters in input conv3d is 128 and (iii) fully-connected
layer sizes are 32x16x2. The best performing configuration from (Wang et al., 2016)
are used for DybaORF, which are 50 trees with maximum tree depth of 20 and minimum
samples for split equal to 6. GMM-based method uses 20 Gaussians for each GMM, whereas
in the Histogram-based method 128 bins were used to build each histogram. Similar to
(Wang et al., 2016), likelihood from ECONet (and all comparison methods) is spatially
regularized by applying GraphCut using max-flow/min-cut algorithm (Boykov and Jolly,
2001). Following (Luo et al., 2021), we use A = 5.0 and o = 0.1 for GraphCut regularization.

1. https://github.com/Project-MONAI/MONAILabel
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Table 1: Quantitative comparison of online likelihood generation methods using synthetic
scribbler from Section 3.1. Mean and standard deviation of DICE (%), ASSD,
Time (s) and Synthetic Scribble Voxels Required (S) is reported.

Method DICE (%) ASSD Time (s) Synthetic Scribbles (S)
ECONet (proposed) 82.81+ 8.77 7.57+14.65 2.03£1.79 2605+2929
ECONet-Haar-Like 71.61£12.43  20.284+36.24  0.5940.09 3737+2471
DybaORF-Haar-Like (Wang et al., 2016)  66.81+14.92  40.81+46.40 6.33+£1.63 11699+7383
GMM (Rother et al., 2004) 50.96+ 5.35  77.76+38.77 0.1240.06 13502+£2209
Histogram (Boykov and Jolly, 2001) 49.63+ 0.37  82.09£31.60 0.21+£0.06 18862+2928

Evaluation Metrics. Segmentation results from each method are compared against
ground truth labels from experts annotators from UESTC-COVID-19 dataset using Dice
similarity (DICE) and average symmetric surface distance (ASSD) metrics (see Appendix B
for more details) (Luo et al., 2021). Mean and std values for DICE/ASSD are computed by
averaging/std a list of per sample metric values. In addition, we also evaluate comparison
methods on their online training and inference execution time (Time) as well as the number
of voxels with scribbles (S) needed for achieving a given DICE and ASSD score.

3.1. Quantitative Comparison using Synthetic Scribbler

We employ a synthetic scribbling method based on the training method in (Wang et al.,
2018b). The proposed synthetic scribbler first compares the inferred segmentation label
against the ground truth to identify each mis-segmented regions. For the first interaction,
where the network is randomly initialized, ground truth is used as mis-segmented region.
Following this, each under-segmented (false negative) and over-segmented (false positive)
region is localized using connected component analysis. Let V,, define the volume of a
given under-segmented or over-segmented region, the synthetic scribbler labels n voxels
randomly within that region. n is set to 0 if V;, < 62 and otherwise to [Vm / 103] based
on empirical experiments. A likelihood based segmentation label is then inferred using a
comparison method with these synthetic scribbles. This synthetic interaction process is
repeated 10 times and the metrics corresponding to the final interaction are reported. Note
that since the number of synthetically scribbled voxels directly depends on the volume of a
given under/over-segmented region, therefore the amount of voxels required by each method
directly relate to how well that method performs. An ideal method needs the least amount
of synthetic interactions to achieve the best accuracy.

Table 1 shows quantitative comparison of the comparison methods using the proposed
synthetic scribbler. It can be observed that ECONet outperforms all existing state-of-the-art
in terms of accuracy, while requiring least number of synthetically scribbled voxels. In terms
of efficiency, online training and inference of the proposed ECONet takes around 2 seconds
combined, which is significantly faster as compared to 6 seconds for DybaORF-Haar-Like,
however it is slower than methods that do not learn a classifier (i.e., GMM and Histogram).

To further analyze the quantitative results, we visualize the percentage of dataset sam-
ples below a given DICE score for all methods in Figure 3 (a). It can be observed that 70%
of the dataset achieves above 80% DICE using ECONet. As compared to this, ECONet-
Haar-Like has 50% and DybaORF-Haar-Like has 15% samples above 80% DICE. It can
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Figure 3: Quantitative analysis using synthetic scribbler on UESTC-COVID-19 dataset,
shows (a) percentage of dataset samples that are below a given DICE score, and
(b) number of synthetically scribbled voxels (S) needed to achieve corresponding
DICE score for method. Plateaus in (b) indicate that a method does not require
further interactively labelled voxels to improve accuracy.

also be observed that both GMM and Histogram method failed in most cases achieving
50% DICE, which indicates labelling of all voxels with same label.

Figure 3 (b) presents analysis of the amount of synthetic scribbled voxels required to
achieve a given DICE for all comparison methods. It can be observed that for ECONet,
an average of ~1600 labelled voxels achieve DICE > 80%. Similarly, ECONet-Haar-Like
requires ~1650 labelled voxels to achieve DICE > 70%. Unlike ECONet-based methods,
DybaORF-Haar-Like requires significantly greater number of labelled voxels (~5000) and
only achieves DICE > 65%. Both GMM and Histogram fail, with additional labelled voxels
having no effect on Histogram. Interestingly, for GMM increasing the number of labelled
voxel adversely affects the accuracy resulting in drop in DICE. We believe this is due to
the limited representation capability of GMM learning from voxel intensity alone, which is
insufficient to model the additional ambiguous variations.

3.2. Qualitative Comparison using Scribbles from Non-expert Annotator

A non-expert annotator provided scribble-based interaction for labelling CT volumes from
UESTC-COVID-19 dataset. The provided scribbles were used for annotation using learned
likelihood methods i.e., ECONet, ECONet-Haar-Like and DybaORF-Haar-Like. Figure 4
shows the qualitative results from this experiment. As can be observed, ECONet is able to
provide segmentation labels close to the ground truth, which is due to the learned features
that enable the network to better differentiate lung lesions from the background. In our
future work, we will do a quantitative analysis to measure the quality of these annotations.
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Figure 4: Qualitative comparison of online likelihood methods using scribbles from a non-
expert annotator. Segmentations are in red, while foreground and background
scribbles are in green and blue, respectively.  shows mis-segmented regions.

4. Conclusion and Future Work

We proposed Efficient Convolutional Online Likelihood Network (ECONet) for scribble-
based interactive segmentation of lungs lesions in CT volumes from COVID-19 patients.
The lightweight architecture of ECONet enabled online training and inference using scribble-
based annotations. ECONet was learned online, without the need for any pre-training, from
interactive labels for a given CT volume. A method for efficient online learning of ECONet
was proposed, which consisted of extracting and using only the patches with user-provided
scribble labels. For inference, the network was applied to full volume using a fully convolu-
tional approach. Experimental validation showed that the proposed ECONet outperformed
existing state-of-the-art for online likelihood learning on the task of labelling COVID-19
lung lesions.All ECONet-based methods outperformed state-of-the-art DybaORF-Haar-Like
method in terms of accuracy as well as online learning efficiency. ECONet achieved 16%
higher DICE score in 3x lesser time while requiring around 9000 lesser scribble labelled
voxels than DybaORF-Haar-Like.

In our future work, we will use ECONet within interactive segmentation pipelines, where
it will enable quick online adaption based on user interactions. In addition, we will study the
quality of annotations achieved using ECONet and extend ECONet for multi-class online
likelihood based annotation problems.
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Appendix A. Experiments for Searching Optimal Layer Sizes for
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Figure 5: Searching for the optimal layer sizes for ECONet. Shows ablation experiments

with varying (a) input patch size/input conv3d kernel size (K), (b) number of
filters in input conv3d, and (c) size of the fully-connected layers against accuracy
DICE (%) and Time (s) for both online inference and training using the corre-
sponding ECONet model. These experiments were performed using 10 randomly
choosen CT volumes from UESTC-COVID-19 dataset. Optimal sizes selected
using these experiments are: input patch size/input conv3d kernel size 7x7x7
(K = 7) with 128 filters and 32x16 fully-connected layers. The largest impact
on DICE comes from number of filters in (b), which directly corresponds to our
observation on requirement of learned features. Increasing different layer sizes in
ECONet significantly increases the online training and inference time as evident
in these experiments. All ablation experiments are performed on a single Tesla
V100 GPU with 32GB memory.
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ECONET: EFFICIENT CONVOLUTIONAL ONLINE LIKELIHOOD NETWORK

Table 2: Execution time showing online training and online inference time for deeper
ECONet models (Lypym > 1. Lpum = 1 is the proposed ECONet model.

Execution time Lnum = 1 (proposed) Lpum = 2 Lpum = 3 Lpum = 4
Training 2605 patches, 200 epochs 2.35 seconds 177.46 seconds  770.84 seconds  1367.09 seconds
Inference on 185 x 127 x 68 input 0.0013 seconds 0.0018 seconds  0.249 seconds 1.02 seconds

Appendix B. Computing DICE and ASSD metrics

Given a region L,,..q segmented using a likelihood inference method and the corresponding
ground truth region Ly, DICE is defined as:

2. ’Lpred N Lgt’

DICE = .
’Lpred’ + ’Lgt‘

(2)

ASSD is defined by comparing surface points from a comparison method T,,.q; against
surface points Tj; from ground truth segmentation label as:

Assp= ot (S T+ Y ) 3)

| Torea | + [ Tot [\ 5~ ieTo

where d(i, Ty ) is the shortest Euclidean distance between point j and surface Tj;.

Appendix C. Efficiency of Deeper ECONet models

We designed ECONet to be lightweight, while still being adaptable and efficient for online
learning. Therefore, we choose one convolutional and 3 fully-connected layers. The size of
each layer was chosen by experiments in Appendix A. We note that additional convolutional
layers (i.e., deeper network) may improve accuracy, however it will require larger training
scribbles data and more epochs, making the method lose its quick adaptability. In addition,
as shown in Table 2, the additional layers adversely impact the efficiency of training and
inference from ECONet. In this table, we use ECONet configuration reported in paper, i.e.
(i) input patch and conv3d kernel size is 7x7x7 (K = 7), (ii) number of filters in input
convdd is 128 and (iii) fully-connected layer sizes are 32x16x2. For each method with
Lpum > 1, Lyum conv3d layers (K = 7, num filters = 128) replace the input conv3d. For
training, we used 2605 patches (average S in Table 1) and ran 200 epochs following our
setting in paper. For inference, we use 185x127x68 size volume which is the average size
of input from UESTC-COVID-19 dataset. We note that both training and inference time
were significantly increased with deeper models (Lypuym > 1). This makes deeper models
prohibitive for use in an online interactive segmentation setting. All experiments were
performed using a single Tesla V100 GPU with 32 GB memory.
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