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ABSTRACT

Simultaneous machine translation (SiMT) outputs the target sequence while re-
ceiving the source sequence, and hence learning when to start translating each
target token is the core challenge for SiMT task. However, it is non-trivial to
learn the optimal moment among many possible moments of starting translating,
as the moments of starting translating always hide inside the model and can only
be supervised with the observed target sequence. In this paper, we propose a
Hidden Markov Transformer (HMT), which treats the moments of starting trans-
lating as hidden events and the target sequence as the corresponding observed
events, thereby organizing them as a hidden Markov model. HMT explicitly mod-
els multiple moments of starting translating as the candidate hidden events, and
then selects one to generate the target token. During training, by maximizing the
marginal likelihood of the target sequence over multiple moments of starting trans-
lating, HMT learns to start translating at the moments that target tokens can be
generated more accurately. Experiments on multiple SiMT benchmarks show that
HMT outperforms strong baselines and achieves state-of-the-art performance1.

1 INTRODUCTION

Recently, with the increase of real-time scenarios such as live broadcasting, video subtitles and con-
ferences, simultaneous machine translation (SiMT) attracts more attention (Cho & Esipova, 2016;
Gu et al., 2017; Ma et al., 2019; Arivazhagan et al., 2019), which requires the model to receive source
token one by one and simultaneously generates the target tokens. For the purpose of high-quality
translation under low latency, SiMT model needs to learn when to start translating each target token
(Gu et al., 2017), thereby making a wise decision between waiting for the next source token (i.e.,
READ action) and generating a target token (i.e., WRITE action) during the translation process.

However, learning when to start translating target tokens is not trivial for a SiMT model, as the mo-
ments of starting translating always hide inside the model and we can only supervise the SiMT model
with the observed target sequence (Zhang & Feng, 2022a). Existing SiMT methods are divided into
fixed and adaptive in deciding when to start translating. Fixed methods directly decide when to start
translating according to pre-defined rules instead of learning them (Dalvi et al., 2018; Ma et al.,
2019; Elbayad et al., 2020). Such methods ignore the context and thus sometimes force the model to
start translating even if the source contents are insufficient (Zheng et al., 2020a). Adaptive methods
dynamically decide READ/WRITE actions, such as predicting a variable to indicate READ/WRITE
action (Arivazhagan et al., 2019; Ma et al., 2020; Miao et al., 2021). However, due to the lack of
clear correspondence between READ/WRITE actions and the observed target sequence (Zhang &
Feng, 2022c), it is difficult to learn precise READ/WRITE actions only with the supervision of the
observed target sequence (Alinejad et al., 2021; Zhang & Feng, 2022a; Indurthi et al., 2022).

To seek the optimal moment of starting translating each target token that hides inside the model,
an ideal solution is to clearly correspond the moments of starting translating to the observed target

∗ Corresponding author: Yang Feng.
1 Code is available at https://github.com/ictnlp/HMT
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Figure 1: Illustration of hidden Markov Transformer. HMT explicitly produces K = 3 states for
each target token to represent starting translating the target token when receiving different numbers
of source tokens respectively (where h≤n means starting translating when receiving the first n source
tokens). Then, HMT judges whether to select each state from low latency to high latency (i.e., from
left to right). Once a state is selected, HMT will translate the target token based on the selected state.

sequence, and further learn to start translating at those moments that target tokens can be gener-
ated more accurately. To this end, we propose Hidden Markov Transformer (HMT) for SiMT, which
treats the moments of starting translating as hidden events and treats the translation results as the cor-
responding observed events, thereby organizing them in the form of hidden Markov model (Baum &
Petrie, 1966; Rabiner & Juang, 1986; Wang et al., 2018). As illustrated in Figure 1, HMT explicitly
produces a set of states for each target token, where multiple states represent starting translating the
target token at different moments respectively (i.e., start translating after receiving different numbers
of source tokens). Then, HMT judges whether to select each state from low latency to high latency.
Once a state is selected, HMT will generate the target token based on the selected state. For example,
HMT produces 3 states when generating the first target token to represent starting translating after
receiving the first 1, 2 and 3 source tokens respectively (i.e., h≤1, h≤2 and h≤3). Then during the
judgment, the first state is not selected, the second state is selected to output ‘I’ and then the third
state is not considered anymore, thus HMT starts translating ‘I’ when receiving the first 2 source
tokens. During training, HMT is optimized by maximizing the marginal likelihood of the target
sequence (i.e., observed events) over all possible selection results (i.e., hidden events). In this way,
those states (moments) which generate the target token more accurately will be selected more likely,
thereby HMT effectively learns when to start translating under the supervision of the observed tar-
get sequence. Experiments on English→Vietnamese and German→English SiMT benchmarks show
that HMT outperforms strong baselines under all latency and achieves state-of-the-art performance.

2 RELATED WORK

Learning when to start translating is the key to SiMT. Recent SiMT methods fall into fixed and
adaptive. For fixed method, Ma et al. (2019) proposed a wait-k policy, which first READs k source
tokens and then READs/WRITEs one token alternately. Elbayad et al. (2020) proposed an efficient
training for wait-k policy, which randomly samples different k between batches. Zhang & Feng
(2021a) proposed a char-level wait-k policy. Zheng et al. (2020a) proposed adaptive wait-k, which
integrates multiple wait-k models heuristically during inference. Guo et al. (2022) proposed post-
evaluation for the wait-k policy. Zhang et al. (2022) proposed wait-info policy to improve wait-k
policy via quantifying the token information. Zhang & Feng (2021c) proposed a MoE wait-k to
learn multiple wait-k policies via multiple experts. For adaptive method, Gu et al. (2017) trained
an READ/WRITE agent via reinforcement learning. Zheng et al. (2019b) trained the agent with
golden actions generated by rules. Zhang & Feng (2022c) proposed GMA to decide when to start
translating according to the predicted alignments. Arivazhagan et al. (2019) proposed MILk, which
uses a variable to indicate READ/WRITE and jointly trains the variable with monotonic attention
(Raffel et al., 2017). Ma et al. (2020) proposed MMA to implement MILk on Transformer. Liu
et al. (2021) proposed CAAT for SiMT to adopt RNN-T to the Transformer architecture. Miao
et al. (2021) proposed GSiMT to generate READ/WRITE actions, which implicitly considers all
READ/WRITE combinations during training and takes one combination in inference. Zhang &
Feng (2022d) proposed an information-transport-based policy for SiMT.

Compared with the previous methods, HMT explicitly models multiple possible moments of starting
translating in both training and inference, and integrates two key issues in SiMT, ‘learning when to
start translating’ and ‘learning translation’, into a unified framework via the hidden Markov model.
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Figure 2: The architecture of hidden Markov decoder.

3 HIDDEN MARKOV TRANSFORMER

To learn the optimal moments of starting translating that hide inside the SiMT model, we propose
hidden Markov Transformer (HMT) to organize the ‘moments of starting translating’ and ‘observed
target sequence’ in the form of hidden Markov model. By maximizing the marginal likelihood of the
observed target sequence over multiple possible moments of starting translating, HMT learns when
to start translating. We will introduce the architecture, training and inference of HMT following.

3.1 ARCHITECTURE

Hidden Markov Transformer (HMT) consists of an encoder and a hidden Markov decoder. Denoting
the source sequence as x= (x1, · · · , xJ) and the target sequence as y= (y1, · · · , yI), a unidirec-
tional encoder (Arivazhagan et al., 2019; Ma et al., 2020; Miao et al., 2021) is used to map x to the
source hidden states h= (h1, · · · , hJ). Hidden Markov decoder explicitly produces a set of states
for yi corresponding to starting translating yi at multiple moments, and then judges which state
is selected to output the target token. Specifically, as shown in Figure 2, hidden Markov decoder
involves three parts: state production, translation and selection.

State Production When translating yi, HMT first produces a set of K states si = {si,1, · · · , si,K}
to represent starting translating yi when receiving different numbers of source tokens respectively.
Then, we set the translating moments ti = {ti,1, · · · , ti,K} for these states, where state si,k is
required to start translating yi when receiving the first ti,k source tokens x≤ti,k .

Lower boundary
wait-L path

Upper boundary
wait-(L+K-1) path

READ

WRITE

state

Figure 3: Setting of translating
moment t (e.g., L=1, K=4).

To set the suitable t for states, we aim to pre-prune those un-
favorable translating moments, such as translating y1 after re-
ceiving xJ or translating yI after receiving x1 (Zhang & Feng,
2022b;a). Therefore, as shown in Figure 3, we introduce a wait-
L path as the lower boundary and a wait-(L+K−1) path as
the upper boundary accordingly (Zheng et al., 2019a), and then
consider those suitable moments of starting translating within
this interval, where L and K are hyperparameters. Formally, the
translating moment ti,k of the state si,k is defined as:

ti,k = min {L+ (i− 1) + (k − 1) , |x|} . (1)

Translation The representations of K states for each target token are initialized via upsampling the
target inputs K times, and then calculated through N Transformer decoder layers, each of which
consists of three sub-layers: self-attention between states, cross-attention and feed-forward network.

For self-attention between states, state si,k can pay attention to the state sj,k′ of all previous target
tokens (i.e., j ≤ i), while ensuring that sj,k′ starts translating no later than si,k (i.e., tj,k′ ≤ ti,k) to
avoid future source information leaking from sj,k′ to si,k. The self-attention from si,k to sj,k′ is:

SelfAtt
(
si,k, sj,k′

)
=

softmax

 si,kW
Q
(
s
j,k

′WK
)⊤

√
d

 if j ≤ i and tj,k′ ≤ ti,k

0 otherwise

, (2)
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where WQ and WK are learnable parameters. Owing to the self-attention between states, HMT
can capture more comprehensive state representations by considering different moments of starting
translating. For cross-attention, since state si,k starts translating when receiving the first ti,k source
tokens, si,k can only focus on the source hidden state hj with j≤ ti,k, calculated as:

CrossAtt (si,k, hj) =

softmax

(
si,kW

Q(hjW
K)⊤√

d

)
if j ≤ ti,k

0 otherwise
. (3)

Through N decoder layers, we get the final representation of state si,k. Accordingly, the translation
probability of yi from the state si,k is calculated based on its final representation:

p
(
yi | x≤ti,k ,y<i

)
= softmax

(
si,kW

O
)
, (4)

where WO are learnable parameters and y<i are the previous target tokens.

Selection After getting the final representations of states, in order to judge whether to select state
si,k to generate yi, HMT predicts a confidence ci,k of selecting state si,k. The confidence ci,k is
predicted based on the final state representation of si,k and the received source contents:

ci,k = sigmoid
([

h≤ti,k : si,k
]
WS

)
, (5)

where h≤ti,k =
1

ti,k

∑ti,k
j=1 hj is the average pooling result on the hidden states of the received source

tokens, [:] is concatenating operation and WS are learnable parameters. In inference, HMT judges
whether to select the state from si,1 to si,K . If ci,k≥0.5 (i.e., achieving enough confidence), HMT
selects the state si,k to generate yi. Otherwise HMT moves to the next state si,k+1 and repeats the
judgment. Note that we set ci,K=1 to ensure that HMT starts translating before the last state si,K .

3.2 TRAINING

Since when to start translating is hidden inside the model while the target sequence is observable,
HMT treats when to start translating target tokens (i.e., which states are selected) as hidden events
and treats target tokens as the observed events. Further, HMT organizes them in the form of hidden
Markov model, thereby associating the moment of starting translating with the observed target token.
Formally, for hidden events, we denoted which states are selected as z= (z1, · · · , zI), where zi ∈
[1,K] represents selecting state si,zi to generate yi. Then, following the HMM form, we introduce
the transition probability between selections and the emission probability from the selection result.

Transition probability expresses the probability of the selection zi conditioned on the previous se-
lection zi−1, denoted as p(zi | zi−1). Since HMT judges whether to select states from si,1 to si,K
(i.e., from low latency to high latency), si,k+1 can be selected only if the previous state si,k is not
selected. Therefore, the calculation of p(zi | zi−1) consists of two parts2: (1) si,zi is confident to be
selected, and (2) those states whose translating moment between ti−1,zi−1

and ti,zi (i.e., those states
that were judged before si,zi ) are not confident to be selected, calculated as3:

p(zi | zi−1) =

{
ci,zi ×

∏
l

ti−1,zi−1
≤ti,l<ti,zi

(1−ci,l) if ti,zi ≥ ti−1,zi−1

0 if ti,zi < ti−1,zi−1

. (6)

Emission probability expresses the probability of the observed target token yi from the selected state
si,zi , i.e., the translation probability in Eq.(4). For clarity, we rewrite it as p

(
yi | x≤ti,zi

,y<i, zi
)

to
emphasize the probability of HMT generating the target token yi under the selection zi.

HMM Loss To learn when to start translating, we train HMT by maximizing the marginal likeli-
hood of the target sequence (i.e., observed events) over all possible selection results (i.e., hidden
events), thereby HMT will give higher confidence to selecting those states that can generate the tar-
get token more accurately. Given the transition probabilities and emission probabilities, the marginal
likelihood of observed target sequence y over all possible selection results z is calculated as:

p(y | x) =
∑
z

p(y | x, z)× p(z) =
∑
z

|y|∏
i=1

p
(
yi | x≤ti,zi

,y<i, zi
)
× p(zi | zi−1) . (7)

2Please refer to Appendix A for detailed instructions of the transition probability between selections.
3We add a selection z0 with p(z0) = 1 before z1 to indicate that no source tokens are received at the

beginning of translation, i.e., t0,z0 =0. Therefore, p(z1 | z0) is the initial probability of the selection in HMT.
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Algorithm 1 Inference Policy of Hidden Markov Transformer
Input: Source sequence x; Translating moments t; Number of states K.
Output: Translated sequence ŷ.
Init: Received source sequence x̂=[ ], source index j=0; Translated sequence ŷ=[⟨bos⟩], target index i=1.
1: while ŷi−1 ̸= ⟨eos⟩ do
2: if |x̂| < ti,1 then ▷ To reach the low boundary
3: Wait for source tokens until |x̂| = ti,1; j ← ti,1;
4: for k ← 1 to K do
5: if |x̂| > ti,k then continue; ▷ Skip si,k if its translating moment ti,k is less than |x̂|
6: Calculate representation of state si,k and its confidence ci,k according to Eq.(5);
7: if ci,k ≥ 0.5 then ▷ Select⇒ WRITE
8: Translate target token ŷi according to Eq.(4);
9: ŷ← ŷ + ŷi ; i← i+ 1;

10: Break;
11: else ▷ Unselect⇒ READ
12: Wait for the next source token xj+1;
13: x̂← x̂+ xj+1 ; j ← j + 1;
14: return ŷ;

We employ dynamic programming to reduce the computational complexity of marginalizing all
possible selection results, and detailed calculations refer to Appendix B. Then, HMT is optimized
with the negative log-likelihood loss Lhmm:

Lhmm = −log p(y | x) . (8)

Latency Loss Besides, we also introduce a latency loss Llatency to trade off between translation
quality and latency. Llatency is also calculated by marginalizing all possible selection results z:

Llatency =
∑
z

p(z)× C(z) =
∑
z

|y|∏
i=1

p(zi | zi−1)× C(z) , (9)

where C(z) is a function to measure the latency of a given selection results z, calculated by the
average lagging (Ma et al., 2019) relative to the lower boundary: C(z) = 1

|z|
∑|z|

i=1 (ti,zi − ti,1).

State Loss We additionally introduce a state loss Lstate to encourage HMT to generate the correct
target token yi no matter which state zi is selected (i.e., no matter when to start translating), thereby
improving the robustness on the selection. Since K states are fed into the hidden Markov decoder
in parallel during training, Lstate is calculated through a cross-entropy loss on all states:

Lstate = − 1

K

|y|∑
i=1

K∑
zi=1

log p
(
yi | x≤ti,zi

,y<i, zi
)
. (10)

Finally, the total loss L of HMT is calculated as:
L = Lhmm + λlatencyLlatency + λstateLstate, (11)

where we set λlatency = 1 and λstate = 1 in our experiments.

3.3 INFERENCE

In inference, HMT judges whether to select each state from low latency to high latency based on
the confidence, and once a state is selected, HMT generates the target token based on the state
representation. Specifically, denoting the current received source tokens as x̂, the inference policy
of HMT is shown in Algorithm 1. When translating ŷi, HMT judges whether to select the state
from si,1 to si,K , so HMT will wait at least ti,1 source tokens to reach the lower boundary (line
2). During judging, if the confidence ci,k ≥0.5, HMT selects state si,k to generate ŷi (i.e., WRITE
action) according to Eq.(4), otherwise HMT waits for the next source token (i.e., READ action) and
moves to the next state si,k+1. We ensure that HMT starts translating ŷi before the last state si,K
(i.e., before reaching the upper boundary) via setting ci,K =1. Note that due to the monotonicity of
the moments to start translating in SiMT, state si,k will be skipped and cannot be selected (line 5) if
its translating moment ti,k is less than the number of received source tokens |x̂| (i.e., the moment of
translating ŷi−1), which is in line with the transition between selections in Eq.(6) during training.
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4 EXPERIMENTS

4.1 DATASETS

We conduct experiments on the following datasets, which are the widely used SiMT benchmarks.

IWSLT154 English→Vietnamese (En→Vi) (133K pairs) We use TED tst2012 (1553 pairs) as the
validation set and TED tst2013 (1268 pairs) as the test set. Following the previous setting (Ma et al.,
2020; Zhang & Feng, 2021c), we replace the token whose frequency is less than 5 by ⟨unk⟩, and
the vocabulary sizes of English and Vietnamese are 17K and 7.7K, respectively.
WMT155 German → English (De→En) (4.5M pairs) We use newstest2013 (3000 pairs) as the
validation set and newstest2015 (2169 pairs) as the test set. BPE (Sennrich et al., 2016) is applied
with 32K merge operations and the vocabulary of German and English is shared.

4.2 EXPERIMENTAL SETTINGS

We conduct experiments on several strong SiMT methods, described as follows.

Full-sentence MT (Vaswani et al., 2017) Transformer model waits for the complete source sequence
and then starts translating, and we also apply uni-directional encoder for comparison.
Wait-k (Ma et al., 2019) Wait-k policy first waits for k source tokens, and then alternately translates
one target token and waits for one source token.
Multipath Wait-k (Elbayad et al., 2020) Multipath Wait-k trains a wait-k model via randomly
sampling different k between batches, and uses a fixed k during inference.
Adaptive Wait-k (Zheng et al., 2020a) Adaptive Wait-k trains a set of wait-k models (e.g., from
wait-1 to wait-13), and heuristically composites these models during inference.
MoE Wait-k6 (Zhang & Feng, 2021c) Mixture-of-experts (MoE) Wait-k applies multiple experts to
learn multiple wait-k policies respectively, and also uses a fixed k during inference.
MMA7 (Ma et al., 2020) Monotonic multi-head attention (MMA) predicts a variable to indicate
READ/WRITE action, and trains this variable through monotonic attention (Raffel et al., 2017).
GMA8 (Zhang & Feng, 2022c) Gaussian multi-head attention (GMA) introduces a Gaussian prior to
learn the alignments in attention, and decides when to start translating based on the aligned positions.
GSiMT (Miao et al., 2021) Generative SiMT (GSiMT) generates a variable to indicate
READ/WRITE action. GSiMT considers all combinations of READ/WRITE actions during training
and only takes one combination of READ/WRITE actions in inference.
HMT The proposed hidden Markov Transformer, described in Sec.3.

Settings All systems are based on Transformer (Vaswani et al., 2017) from Fairseq Library (Ott
et al., 2019). Following Ma et al. (2020) and Miao et al. (2021), we apply Transformer-Small (4
heads) for En→Vi, Transformer-Base (8 heads) and Transformer-Big (16 heads) for De→En. Due
to the high training complexity, we only report GSiMT on De→En with Transformer-Base, the same
as its original setting (Miao et al., 2021). The hyperparameter settings are reported in Appendix D.

Evaluation For SiMT performance, we report BLEU score (Papineni et al., 2002) for translation
quality and Average Lagging (AL) (Ma et al., 2019) for latency. AL measures the token number that
outputs lag behind the inputs. For comparison, we adjust L and K in HMT to get the translation
quality under different latency, and the specific setting of L and K are reported in Appendix E

4.3 MAIN RESULTS

We compare HMT with the existing SiMT methods in Figure 4, where HMT outperforms the pre-
vious methods under all latency. Compared with fixed methods Wait-k, Multipath Wait-k and MoE
Wait-k, HMT has obvious advantages as HMT dynamically judges when to start translating and
thereby can handle complex inputs (Arivazhagan et al., 2019). Compared with adaptive methods,

4nlp.stanford.edu/projects/nmt/
5statmt.org/wmt15/translation-task.html
6github.com/ictnlp/MoE-Waitk
7github.com/facebookresearch/fairseq/tree/main/examples/simultaneous_

translation
8github.com/ictnlp/GMA

6

nlp.stanford.edu/projects/nmt/
statmt.org/wmt15/translation-task.html
github.com/ictnlp/MoE-Waitk
github.com/facebookresearch/fairseq/tree/main/examples/simultaneous_translation
github.com/facebookresearch/fairseq/tree/main/examples/simultaneous_translation
github.com/ictnlp/GMA
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Figure 4: Translation quality (BLEU) against latency (AL) of HMT and previous SiMT methods.

HMT outperforms the current state-of-the-art MMA and GSiMT, owing to two main advantages.
First, HMT models the moments of starting translating, which has stronger corresponding corre-
lations with the observed target sequence compared with READ/WRITE action (Zhang & Feng,
2022c). Second, both MMA and GSiMT can only consider one combination of READ/WRITE ac-
tions in inference (Ma et al., 2020; Miao et al., 2021), while HMT can consider multiple moments
of starting translating in both training and inference as HMT explicitly produces multiple states
for different translating moments. Furthermore, the performance of MMA and GSiMT will drop
at some latency (Ma et al., 2020), which is mainly because considering too many combinations of
READ/WRITE actions in training may cause mutual interference (Elbayad et al., 2020; Zhang &
Feng, 2021c; Wu et al., 2021). HMT pre-prunes those unfavorable moments of starting translating
via the proposed boundaries, thereby achieving more stable and better performance under all latency.

4.4 TRAINING AND INFERENCE SPEEDS

Table 1: Training and inference speeds of HMT.

Systems #Para. Training
(s/batch)

Inference
(s/token)

Full-sentence MT 60.9M 0.204 0.0097
Wait-k 60.9M 0.205 0.0108
MMA 62.5M 2.112 0.0647
GSiMT 60.9M 5.090 0.0247

HMT
L=2, K=4 60.9M 0.531 0.0204
L=5, K=6 60.9M 0.730 0.0162
L=9, K=8 60.9M 1.051 0.0142

We compare the training and inference
speeds of HMT with previous methods on
De→En with Transformer-Base, and the
results are reported in Table 1. All speeds
are evaluated on NVIDIA 3090 GPU.

Training Speed Compared with the fixed
method Wait-k, the training speed of
HMT is slightly slower as it upsamples
the target sequence by K times. Given
the obvious performance improvements,
we argue that the slightly slower training speed than the fixed method is completely acceptable.
Compared with adaptive methods MMA and GSiMT that compute the representation of the variable
to indicate READ/WRITE circularly (Ma et al., 2020; Miao et al., 2021), the training speed of HMT
has obvious advantages owing to computing representations of multiple states in parallel. Besides,
compared to GSiMT considering all possible READ/WRITE combinations, the proposed lower and
upper boundaries of the translating moments also effectively speed up HMT training.

Inference Speed Compared with MMA which adds more extra parameters to predict READ/WRITE
action in each attention head (Ma et al., 2020), HMT only requires few extra parameters (WS in
Eq.(5)) and thereby achieves faster inference speed. Compared with GSiMT, which needs to cal-
culate the target representation and generate READ/WRITE each at each step (Miao et al., 2021),
HMT pre-prunes those unfavorable translating moments and only judges among the rest valuable
moments, thereby improving the inference speed. Note that as the lower boundary L increases,
HMT can prune more candidate translating moments and thus make the inference much faster.

5 ANALYSIS

We conducted extensive analyses to study the specific improvements of HMT. Unless otherwise
specified, all the results are reported on De→En test set with Transformer-Base.
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Table 2: Ablation study of HMM
loss, including marginalizing all pos-
sible selections or only optimizing
the most probable selection result.

AL BLEU
Marginalizing all
possible selections 3.46 29.29

Optimizing most
probable selection 1.77 24.02

Table 3: Ablation study of
the weight λlatency of la-
tency loss Llatency.

λlatency AL BLEU
0.0 6.66 30.07
0.5 4.12 29.80
1.0 3.46 29.29
1.5 2.10 26.65
2.0 2.00 25.94

Table 4: Ablation study
of the weight λstate of
state loss Lstate.

λstate AL BLEU
0.0 3.24 27.74
0.5 3.47 29.10
1.0 3.46 29.29
1.5 3.46 29.16
2.0 3.58 29.21

5.1 ABLATION STUDY

We conduct multiple ablation studies, where L=3 and K=6 are applied in all ablation studies.

HMM Loss HMT learns when to start translating by marginalizing all possible selection results dur-
ing training. To verify its effectiveness, we compare the performance of marginalizing all possible
selections and only optimizing the most probable selection in Table 2, where the latter is realized by
replacing

∑
z in Eq.(7) with Maxz. Under the same setting of L= 3 and K = 6, only optimizing

the most probable selection makes the model fall into a local optimum (Miao et al., 2021) of always
selecting the first state, resulting in latency and translation quality close to wait-3 policy. Marginal-
izing all possible selections effectively enables HMT to learn when to start translating from multiple
possible moments, achieving a better trade-off between translation quality and latency.

Weight of Latency Loss Table 3 reports the performance of HMT on various λlatency. The setting
of λlatency affects the trade-off between latency and translation quality. Too large (i.e., 2.0) or too
small (i.e., 0.0) λlatency sometimes makes the model start translating when reaching the upper or
lower boundary, while moderate λlatency achieves the best trade-off. Note that HMT is not sensitive
to the setting of λlatency, either λlatency=0.5 or λlatency=1.0 can achieve the best trade-off, where
the result with λlatency=0.5 is almost on the HMT line in Figure 4(b).

Weight of State Loss Table 4 demonstrates the effectiveness of the introduced state loss Lstate.
Lstate encourages each state to generate the correct target token, which can bring about 1.5 BLEU
improvements. In addition, the translation quality of HMT is not sensitive to the weight λstate of
state loss, and various λstate can bring similar improvements.

5.2 HOW MANY STATES ARE BETTER?

Table 5: HMT performance with
various states number K.

L K AL BLEU

Low
latency

4 1 2.57 25.57
3 2 2.15 26.07
2 4 2.20 27.60
1 6 2.28 25.69

Middle
latency

7 1 5.86 28.20
6 4 4.90 30.14
5 6 4.74 30.29
4 8 4.69 29.35

High
latency

11 1 9.71 30.36
10 6 9.06 31.32
9 8 8.36 31.45
8 10 8.27 31.36

HMT produces a set of K states for each target token to cap-
ture multiple moments of starting translating. To explore how
many states are better, we report the HMT performance under
various K in Table 5, where we adopt different lower bound-
aries L (refer to Eq.(1)) to get similar latency for comparison.

The results show that considering multiple states is signifi-
cantly better than considering only one state (K=1), demon-
strating that HMT finds a better moment to start translating
from multiple states. For multiple states, a larger state num-
ber K does not necessarily lead to better SiMT performance,
and HMT exhibits specific preferences of K at different la-
tency levels. Specifically, a smaller K performs better under
low latency, and the best K gradually increases as the latency
increases. This is because translating moments with a large
gap may interfere with each other during training (Elbayad
et al., 2020; Zhang et al., 2021; Zhang & Feng, 2021c), where the gap is more obvious at low la-
tency. Taking K=6 as an example, the gap between READ 1 tokens/6 tokens (i.e., low latency) is
more obvious than READ 10 tokens/15 tokens (i.e., high latency), as the latter contains more over-
laps on the received source tokens. Owing to the proposed boundary for translating moments, HMT
can avoid the interference via setting suitable K for different latency levels. Further, compared with
GSiMT directly considering arbitrary READ/WRITE combinations during training (Miao et al.,
2021), HMT pre-prunes those unfavorable moments and thereby achieves better performance.
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5.3 SUPERIORITY OF ATTENTION BETWEEN STATES

Table 6: Performance with various
modes of self-attention in HMT.

Training Inference AL BLEU
Multiple Multiple 3.46 29.29
Multiple Max 3.37 28.99
Multiple Selected 3.42 28.83

Max Max 3.30 28.66
Max Selected 3.36 28.46

Self-attention between states (in Eq.(2)) enables HMT
to consider multiple moments of starting translating and
thereby capture comprehensive state representations. To
verify the effectiveness of self-attention between states,
we compare the performance of paying attention to mul-
tiple states or only one state of each target token. To
this end, we apply three modes of self-attention, named
Multiple, Max and Selected. ‘Multiple’ is the proposed
self-attention in HMT that the state can attend to multi-
ple states of previous target tokens. ‘Max’ means that the state can only attend to one state with the
maximum translating moments of each target token. ‘Selected’ means that the state can only attend
to the selected state used to generate each target token, which is the most common inference way
in the existing SiMT methods (i.e., once the SiMT model decides to start translating, subsequent
translations will pay attention to the target representation resulting from this decision.) (Ma et al.,
2019; 2020). Note that all modes of attention need to avoid information leakage between states, i.e.,
satisfying tj,k′ ≤ ti,k in Eq.(2). The detailed introduction of these attention refer to Appendix C.6.

As shown in Table 6, using ‘Multiple’ in both training and inference achieves the best performance.
Compared with ‘Max’ which focuses on the state with the maximum translating moment (i.e., con-
taining most source information), ‘Multiple’ brings 0.65 BLEU improvements via considering mul-
tiple different translating moments (Zhang & Feng, 2021c). In inference, considering multiple states
with different translating moments can effectively improve the robustness as SiMT model may find
that it made a wrong decision at the previous step after receiving some new source tokens (Zheng
et al., 2020b). For ‘Selection’, if SiMT model makes a wrong decision on when to start translating,
subsequent translations will be affected as they can only focus on this selected state. Owing to the
attention between states, HMT allows subsequent translations to focus on those unselected states,
thereby mitigating the impact of uncertain decisions and bringing about 0.46 BLEU improvements.

5.4 QUALITY OF SELECTION
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Figure 5: Token accuracy
with predicted confidence.

HMT judges whether to select state si,k by predicting its confidence
ci,k. To verify the quality of the selection based on predicted confi-
dence, we calculated the token accuracy under different confidences
in Figure 5. There is an obvious correlation between confidence
and token accuracy, where HMT learns higher confidence for those
states that can generate the target tokens more accurately. Espe-
cially in inference, since HMT selects state si,k to generate the tar-
get token when its confidence ci,k≥0.5, HMT learns to start trans-
lating at the moments that can generate target tokens with more than
60% accuracy on average, thereby ensuring the translation quality.
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Figure 6: BLEU score with
probability of selection result.

Besides token accuracy, we further analyse the relationship between
translation quality and selection result over the whole sequence. We
report the BLEU score under different probabilities of selection re-
sult p(z) in Figure 6, where we apply p(z)

1
|z| to avoid the target

length |z| influencing p(z). The selection results with higher proba-
bility always achieve higher BLEU scores, showing that training by
marginal likelihood encourages HMT to give a higher probability to
the hidden sequence (i.e., selection result over the whole sequence)
that can generate the high-quality observed target sequence.

6 CONCLUSION

In this paper, we propose hidden Markov Transformer (HMT) for SiMT, which integrates learning
when to start translating and learning translation into a unified framework. Experiments on multiple
SiMT benchmarks show that HMT outperforms the strong baselines and achieves state-of-the-art
performance. Further, extensive analyses demonstrate the effectiveness and superiority of HMT.
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A CALCULATION OF TRANSITION PROBABILITY

selection
result

Figure 7: An example to depict the calculation of transition probability p(zi | zi−1).

We give the transition probability p(zi | zi−1) between selection results in Sec.3.2, and here we
describe the calculation of transition probability in more detail.

First of all, a specific selection zi represents translating yi when receiving first ti,zi source tokens
through the state si,zi . Similarly, selection zi−1 represents translating yi−1 when receiving first
ti−1,zi−1

source tokens through the state si−1,zi−1
. Due to the monotonicity of the moment to start

translating in SiMT, it is not possible to transfer from zi−1 to zi if ti−1,zi−1
> ti,zi . Then for

ti−1,zi−1
≤ ti,zi , since HMT judges whether to select each state one by one (from si,1 to si,K)

and starts translating if a state is selected, the premise of the transition from zi−1 to zi is that
all states whose translating moment belongs to [ti−1,zi−1

, ti,zi) are not confident to be selected,
and si,zi is confident to be selected. As the example shown in Figure 7, the transition probability
p(z3 = 4 | z2 = 3) from z2 to z3 consists of the probability of unselecting s3,2 and s3,3, and the
probability of selecting s3,4.

Formally, the transition probability p(zi | zi−1) is calculated as:

p(zi | zi−1) =

ci,zi ×
∏

l
ti−1,zi−1

≤ti,l<ti,zi

(1−ci,l) if ti,zi ≥ ti−1,zi−1

0 if ti,zi < ti−1,zi−1

. (12)

B DYNAMIC PROGRAMMING IN HMT

HMT treats which states are selected (i.e, when to start translating) as hidden events and the target
tokens as observed events, and organizes the generation of the target sequence as a hidden Markov
model. During training, HMT is optimized by maximizing the marginal likelihood of the target
sequence (i.e., observed events) over all possible selection results (i.e., hidden events):

p(y | x) =
∑
z

p(y | x, z)× p(z) (13)

=
∑
z

|y|∏
i=1

p
(
yi | x≤ti,zi

,y<i, zi
)
× p(zi | zi−1) . (14)

We apply dynamic programming (a.k.a. forward algorithm in HMM) to calculate the marginal like-
lihood efficiently (Baum & Petrie, 1966). Formally, we introduce the intermediate variable αi (k) to
represent the probability of selecting the kth state si,k when generating the first i target tokens y≤i,
defined as:

αi (k) = p(y≤i, zi = k | x) . (15)

Initialization The initial α1 (k) is calculated as:

α1 (k) = πk × p
(
y1 | x≤t1,k ,y<1, z1 = k

)
, (16)

where πk = p(z1=k) is the initial probability of selecting s1,k. In the implementation, we add a
certain selection z0 with p(z0) = 1 before z1 to indicate that no source tokens are received at the
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beginning of translation, i.e., t0,z0 = 0. Accordingly, the initial probability p(z1) is calculated via
the transition probability from z0 to z1.

Recursion Following, αi (k) is calculated by summing over the extensions of all transitions from
the previous step’s selection to the current selection. Therefore, αi (k) is calculated as the following
recursion form:

αi (k) =

K∑
k′=1

αi−1

(
k

′
)
× p

(
zi = k | zi−1 = k

′
)
× p

(
yi | x≤ti,k ,y<i, zi = k

)
. (17)

Termination Finally, the marginal likelihood of the target sequence over all possible selection re-
sults is calculated as:

p(y | x) =
K∑

k=1

αI (k) . (18)

C EXPANDED ANALYSES

C.1 SPECIFIC IMPROVEMENTS OF POLICY AND TRANSLATION
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Figure 8: Specific improvements
brought by HMT architecture and
inference policy.

The proposed HMT integrates the two key issues in SiMT
‘learning when to start translating’ (i.e., inference policy) and
‘learning translation’ (i.e., translation capability) into a uni-
fied framework. Since HMT explicitly models multiple mo-
ments of starting translating in both training and inference,
HMT architecture can flexibly cooperate with other inference
policies, such as wait-k policy (Ma et al., 2019), which allows
us to learn the specific improvements brought by HMT archi-
tecture and inference policy. Specifically, we report the results
of ‘HMT architecture + Wait-k inference’ in Figure 8, where
wait-k inference for HMT architecture is realized by forcing
HMT to always select the last state.

By comparison, for wait-k inference, HMT architecture has
stronger translation capability due to the comprehensive con-
sideration of multiple translating moments, thereby bringing about 0.8 BLEU improvements. Fur-
ther, compared to wait-k inference, HMT inference learns more accurate moments to start translating
and brings about 2.8 BLEU improvements on average. In particular, the improvements brought by
the inference policy are more obvious at low latency, as the precise translating moments are more
important for SiMT under low latency (Arivazhagan et al., 2019).

C.2 ABLATION STUDY ON THRESHOLD OF CONFIDENCE
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Figure 9: HMT performance under
various thresholds δ of confidence.

In inference, HMT will select state si,k to generate yi when its
confidence ci,k ≥ 0.5, where 0.5 can be regarded as the confi-
dence threshold that HMT believes that the state can generate
the correct target token. Figure 5 also proves that the state
with higher confidence can generate the target token more ac-
curately. To study the effect of the confidence threshold in
HMT, we show the HMT performance under different confi-
dence thresholds δ in Figure 9, where HMT will select state
si,k to generate yi when its confidence ci,k ≥ δ in inference.

In inference, moderate confidence thresholds, such as δ=0.4
and δ = 0.5, achieve similar SiMT performance, indicating
that HMT is not sensitive to the setting of the confidence
threshold. Furthermore, as the confidence threshold decrease to 0.2, HMT starts translating much
earlier, resulting in a slight decrease in translation quality. As the threshold increases to 0.8, the la-
tency of HMT increases, but the improvement in translation quality is not obvious, which indicates
that 0.5 confidence is enough to generate the correct target token for the state in HMT.
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C.3 CASE STUDY

We conduct case studies on two difficult De→En cases in Figure 10 and Figure 11, where the word
order difference between German and English is more challenging for SiMT model (i.e., the verb
in German always lags behind) (Ma et al., 2019; Zhang & Feng, 2021c). We show the specific
inference process of HMT and visualize the outputs of all states (including selected, unselected and
not considered.) to illustrate that HMT successfully learns when to start translating.

auf der Liste stehen 101 Pro@@ mis . </s>
_on _the _list _stand _101 _. _</s>

Reference:
Step State Confidence Outputs

1 auf der 0.09  on 
2 auf der Liste 0.38  on 
3 auf der Liste stehen 0.38  the 
4 auf der Liste stehen 101 1.00 there
5 auf der Liste stehen 101 0.98 are
6 auf der Liste stehen 101 0.85 101
7 auf der Liste stehen 101 0.01  items 
8 auf der Liste stehen 101 Pro@@ 0.02  pro@@ 
9 auf der Liste stehen 101 Pro@@ mis 0.65 celeb@@
10 auf der Liste stehen 101 Pro@@ mis 0.87 rities
11 auf der Liste stehen 101 Pro@@ mis 0.26  in 
12 auf der Liste stehen 101 Pro@@ mis . 0.93 on
13 auf der Liste stehen 101 Pro@@ mis . 0.99 the
14 auf der Liste stehen 101 Pro@@ mis . </s> 1.00 list
15 auf der Liste stehen 101 Pro@@ mis . </s> 1.00 .
16 auf der Liste stehen 101 Pro@@ mis . </s> 1.00 </s>

Inputs (received source sequence)
there are 101 celeb@@ r@@ ity names on the list . </s>

Source: _celebrities

𝑠!,!
𝑠!,#
𝑠!,$
𝑠!,%
𝑠#,$
𝑠$,#
𝑠%,!
𝑠%,#
𝑠%,$
𝑠&,#
𝑠',!
𝑠',#
𝑠(,!
𝑠),!
𝑠*,!
𝑠!+,!

(a) Inference process of HMT. ‘State’ records the currently considered state, and HMT selects the current
state and starts translating the target token when its corresponding confidence is greater than 0.5. The outputs
marked in red strikethrough represent potential outputs for those states that are not selected.

Target

So
ur
ce

(b) Visualization of all state outputs with their cross-attention to the received source tokens. For the outputs,
the outputs marked in red represent unselected states, the outputs marked in blue represent the selected states,
and the outputs marked in gray represent the states that are not considered in inference (i.e., those states after
the selected state, or the states whose translating moment is earlier than the moment of translating the previous
target token). For the cross-attention, the numerical values in the squares report the cross-attention weight, and
blank squares indicate that those source tokens have not been received when translating the target token.

Figure 10: Case study of #2124 in De→En test set, where we apply HMT with L=2 and K=4.

Case with Word Order Difference As shown in Figure 10, ‘auf der Liste’ in German is at the
beginning of the sentence, while the corresponding translation ‘on the list’ is at the end in English.
For this case, HMT decides not to select states s1,1, s1,2 and s1,3 because their confidences are
less than 0.5, especially the outputs of these states also prove that these moments are not good to
start translating. Then, HMT generates ‘There’ at state s1,4. Similar situations also occur when
generating ‘celebrities’ and ‘on’. Figure 10(b) shows more specific outputs for all states and their
cross-attention on the received source tokens, where each state corresponds to a moment of starting
translating. By selecting one state from K states, HMT effectively finds the optimal moment to
start translating, i.e., the moment that can generate the correct target token with lower latency. In
particular, those unselected states (i.e., less confidence) tend to produce incorrect translations, while
the selected states can produce correct translations by paying attention to the newly received source
contents. About this, we already present a statistical analysis between confidence and token accuracy
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in Figure 5. Further, the selected state always tends to be the earliest state that can generate the
correct translation, i.e., the state with lower latency.

Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht . </s>
_they _a _to _expect _, _and_that _simply _not _. _</s>

Reference:
Step State Confidence Outputs

1 Sie schi@@ enen 0.51 they
2 Sie schi@@ enen einen 0.54 seemed
3 Sie schi@@ enen einen Aut@@ 0.87 to
4 Sie schi@@ enen einen Aut@@ oun@@ 0.09  be 
5 Sie schi@@ enen einen Aut@@ oun@@ fall 0.14  have 
6 Sie schi@@ enen einen Aut@@ oun@@ fall zu 0.07  have 
7 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten 0.88 expect
8 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten 0.91 an
9 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten 0.94 auto

10 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten 0.67 accident
11 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , 0.90 ,
12 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und 0.64 and
13 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das 0.55 that
14 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ 0.24  is 
15 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte 0.54 happened
16 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte 0.06  . 
17 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach 0.56 simply
18 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach 0.03  because 
19 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht 0.97 not
20 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht 0.17  . 
21 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht . 0.95 .
22 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht . 0.40  </s> 
23 Sie schi@@ enen einen Aut@@ oun@@ fall zu erwarten , und das pas@@ sierte einfach nicht . </s> 1.00 </s>

Source:

they seemed to expect a car crash and it didn 't quite happen . </s>
Inputs (received source sequence)

_seem _car accident _happened

𝑠!,!
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𝑠(,!
𝑠),!
𝑠*,!
𝑠!+,!
𝑠!!,!
𝑠!!,#
𝑠!#,!
𝑠!#,#
𝑠!$,!
𝑠!$,#
𝑠!%,!
𝑠!%,#
𝑠!&,!
𝑠!&,#

(a) Inference process of HMT.

Target

So
ur
ce

(b) Visualization of all state outputs with their cross-attention to the received source tokens.

Figure 11: Case study of #378 in De→En test set, where we apply HMT with L=3 and K=6.
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Case that Verb Lags Behind Figure 11 gives a more complex case as the verb ‘erwarten’ and
‘passierte’ in German lag behind, which requires the SiMT model to accurately judge when to start
translating (Grissom II et al., 2014; Ma et al., 2019). In HMT, when the verb has not been received,
the states always get lower confidence, so HMT can start translating the corresponding ‘expect’
and ‘happened’ after receiving the source verb. Besides, the cross-attention in Figure 11(b) shows
that HMT generates the correct translations at state s4,4 and s11,2 because they pay attention to
the received verb ‘erwarten’ and ‘passierte’ (Zhang & Feng, 2021b), proving the effectiveness of
predicting confidence according to the target representation and received source contents.

C.4 EFFECT OF STATE LOSS Lstate

Target

So
ur
ce

(a) HMT without the state loss Lstate. Translation result: ‘my first choice was to train the army.’. The green
box marks the incorrect translation, where the correct translation should be ‘in’ but the model generated ‘the’.

Target

So
ur
ce

(b) HMT with the state loss Lstate. Translation result: ‘my first choice was to train in the army.’.

Figure 12: Effect of the proposed state loss Lstate. We apply HMT with L = 3 and K = 6 and
visualize the state outputs of case #912 in De→En test set (Source: ‘meine erste Wahl war eine
Ausbildung in der Armee.’; Reference: ‘my first choice was to go in the army.’). The outputs marked
in red represent unselected states, the outputs marked in blue represent the selected states, and the
outputs marked in gray represent the states that are not considered in inference. The numerical
values in the squares report the cross-attention weight, and blank squares indicate that those source
tokens have not been received when translating the target token.

For HMT training (refer to Sec.3.2), we propose the state loss Lstate to encourage HMT to generate
the correct target token no matter which state is selected (i.e., no matter when to start translating),
and the ablation study in Sec.5.1 demonstrates the improvements brought by the state loss. To
further study the effect of state loss Lstate, we visualize the state outputs of case #912 with and
without Lstate in Figure 12.

When removing the state loss Lstate in training, those states that are selected with lower probability
hardly learn to generate the correct target token, because the emission probability from these states
may contribute little to the marginal likelihood of the target sequence. As shown in Figure 12(a),
some later states incorrectly generate ‘I’ when generating the first target token, and some states
generate ‘was’ when generating the third target token, etc. Although in most cases HMT will not
select these states during inference, when the selection is slightly uncertain, the model may output
the incorrect target token, such as generating ‘the’ instead of ‘in’ (marked with the green box in
Figure 12(a)). As shown in Figure 12(b), with the state loss Lstate, multiple states in HMT all
can learn to generate the correct target token, no matter when to start translating the target token.
Therefore, HMT can still generate the correct target token even if it makes the wrong decision in the
selection, thereby improving the robustness on the selection.
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C.5 QUALITY OF POLICY

The quality of the policy directly affects the SiMT performance, and a good policy should en-
sure that the model receives its corresponding source token before translating each target token,
thereby achieving high-quality translation. Following Zhang & Feng (2022a), we calculate the pro-
portion of the ground-truth aligned source tokens received before translating for the evaluation of
the policy quality. We apply RWTH9 De→En alignment dataset and perform force-decoding10

to get the moments of translating each target token. Specifically, we denote the ground-truth
aligned source position11 of yi as ai, and use gi to record the translating moments of yi (i.e., the
number of received source tokens when translating yi). Given the alignment ai and translating
moment gi, the proportion of aligned source tokens received before translating is calculated as:
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Figure 13: Quality of the policy in
HMT. We calculate the proportion of
aligned source tokens received before
translating in various policies.

Proportion =
1

|y|

|y|∑
i=1

1ai≤gi , (19)

where 1ai≤gi =

{
1, ai ≤ gi
0, ai > gi

. (20)

The evaluation results are shown in Figure 13. Compared
with previous policies, HMT receives more aligned source
tokens before translating under the same latency, which
demonstrates that HMT can make more precise decisions
on when to start translating. Owing to the superiority of
policy, HMT can receive more aligned source tokens and
thereby achieve higher translation quality than previous
methods under the same latency.

C.6 WHY SELF-ATTENTION BETWEEN STATES?

(a) Multiple (b) Max

selected state

(c) Selected

Figure 14: Schematic diagram of self-attention between states in HMT, named ‘Multiple’. We also
propose two variants, ‘Max’ and ‘Selected’, to demonstrate the superiority of ‘Multiple’ attention
mode. The schematic diagram shows an example of HMT with L = 1 and K = 4, where the
translating moments of states for y3 and y4 are t3 = (3, 4, 5, 6) and t4 = (4, 5, 6, 7), respectively.

HMT applies self-attention among all states based on Eq.(2), and here we explain why HMT applies
this attention pattern in more depth. For comparison, we introduce three modes of self-attention in
Sec.5.3, named Multiple, Max and Selected:

• Multiple: The self-attention mode between states in HMT. In ‘Multiple’, the state can pay
attention to multiple states of previous target tokens. Taking Figure 14(a) as an example,
when translating y4, state s4,3 can pay attention to s3,1, s3,2, s3,3 and s3,4 of y3, meanwhile
state s4,3 also pay attention to s4,1, s4,2, s4,3 of y4.

• Max: In ‘Max’, the state can pay attention to one state of each target token, which has the
maximum translating moment. Taking Figure 14(b) as an example, when translating y4,
state s4,3 can only pay attention to s3,4 of y3, as t3,4 = 6 is the state with the maximum

9https://www-i6.informatik.rwth-aachen.de/goldAlignment/
10Force-decoding: we force the model to generate the ground-truth target token, thereby comparing the

translating moments with the ground-truth alignments
11For many-to-one alignment, we choose the last source position in the alignment.
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translating moments that s4,3 (t4,3 = 6) can pay attention to. Meanwhile, state s4,3 pay
attention to s4,1, s4,2, s4,3 of y4 as well.

• Selected: The most common attention mode in the existing SiMT methods. In ‘Selected’,
the state can pay attention to the selected state used to generate the previous target token.
Once the SiMT model determines WRITE (i.e., selects a state), subsequent translations will
only depend on this target representation. Taking Figure 14(c) as an example, assuming that
s3,3 has been selected to generate y3, subsequent s4,2, s4,3 and s4,4 can only focus on the
representation of s3,3. Note that s4,1 cannot focus on s3,3 as t3,3 > t4,1.

Multiple v.s. Max The results reported in Table 6 show that ‘Multiple’ brings 0.65 BLEU im-
provements compared with ‘Max’. The maximum translating moments that ‘Multiple’ and ‘Max’
can focus on are the same (in both ‘Multiple’ and ‘Max’, state s4,3 can pay attention to s4,3 with
t3,4 = 6.), but ‘Multiple’ can also consider those states that start translation earlier, such as s3,1, s3,2
and s3,3. Comprehensively considering the representation of multiple states helps ‘Multiple’ make
more precise judgments and get more accurate state representations (Zhang & Feng, 2021c). Fur-
thermore, in ‘Max’, the current state always focuses on one previous state with the largest translating
moment, regardless of which state is selected to generate the previous target token. For example,
even if s4,2 is selected to generate y3, state s4,3 still only pays attention to s4,3 in ‘Max’, where
ignoring the previous selected state s4,2 will disturb the dependency of y4 on y3 and thereby affect
the translation quality. Therefore, owing to more comprehensive attention to multiple states, the
proposed ‘Multiple’ attention mode achieves better performance.

Multiple v.s. Selected ‘Selected’ is the most commonly used attention mode of the current SiMT
method, i.e., once a WRITE action is decided, subsequent target tokens can only pay attention to
the representation of this state (Ma et al., 2019; Arivazhagan et al., 2019; Ma et al., 2020). The
reason for applying ‘Selected’ attention mode is that the previous methods can only retain a unique
translating moment and corresponding representation for each target token in inference, unlike HMT
which can explicitly model multiple translating moments for each target token. Keeping the only
target representation of the selected translating moment is susceptible to inaccurate decisions (Zheng
et al., 2020b). Assuming that the model selects the state s3,3 to generate y3, but this decision is
not necessarily completely accurate, it may be more reasonable to use s3,2 or s3,4 to generate y3.
‘Selected’ requires subsequent states to only focus on the representation of s3,3, which may cause
translation errors. ‘Multiple’ allows the following states to focus on multiple states, including those
not selected, and thereby make comprehensive decisions to achieve better results.

In conclusion, ‘Max’ ignores the previous selected state, ‘Selected’ only considers the selected state,
while the proposed ‘Multiple’ attention mode pays attention to all previous states and keeps training
and inference matching. Therefore, ‘Multiple’ performs best among these three attention modes.

D HYPERPARAMETER

Table 7 gives the hyperparameter settings of HMT.

E NUMERICAL RESULTS WITH MORE METRICS

E.1 LATENCY METRICS

Besides Average Lagging (AL) (Ma et al., 2019), we additionally use Consecutive Wait (CW) (Gu
et al., 2017), Average Proportion (AP) (Cho & Esipova, 2016) and Differentiable Average Lagging
(DAL) (Arivazhagan et al., 2019) to evaluate the latency of HMT. We denote the number of waited
source tokens before translating yi as gi (i.e., the moment to start translating yi), and the calculations
of these latency metrics are as follows.

Consecutive Wait (CW) (Gu et al., 2017) evaluates the average number of source tokens waited
between two target tokens. Given gi, CW is calculated as:

CW =

∑|y|
i=1(gi − gi−1)∑|y|
i=1 1gi−gi−1>0

, (21)
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Table 7: Hyperparameters of HMT.

Hyperparameters En→Vi
Transformer-Small

De→En
Transformer-Base

De→En
Transformer-Big

encoder-layers 6 6 6
encoder-attention-heads 4 8 16
encoder-embed-dim 512 512 1024
encoder-ffn-embed-dim 1024 2048 4096
decoder-layers 6 6 6
decoder-attention-heads 4 8 16
decoder-embed-dim 512 512 1024
decoder-ffn-embed-dim 1024 2048 4096
dropout 0.3 0.3 0.3
optimizer adam adam adam
adam-β (0.9, 0.98) (0.9, 0.98) (0.9, 0.98)
clip-norm 0 0 0
lr 2e-4 5e-4 5e-4
lr-scheduler inverse sqrt inverse sqrt inverse sqrt
warmup-updates 4000 4000 4000
warmup-init-lr 1e-7 1e-7 1e-7
weight-decay 0.0001 0.0001 0.0001
label-smoothing 0.1 0.1 0.1
max-tokens 16000 8192×4 8192×4

where 1gi−gi−1>0 counts the number of gi − gi−1 > 0.

Average Proportion (AP) (Cho & Esipova, 2016) evaluates the proportion between the number of
received source tokens and the total number of source tokens. Given gi, AP is calculated as:

AP =
1

|x| |y|

|y|∑
i=1

gi. (22)

Average Lagging (AL) (Ma et al., 2019) evaluates the average number of tokens that target outputs
lag behind the source inputs. Given gi, AL is calculated as:

AL =
1

τ

τ∑
i=1

gi −
i− 1

|y| / |x|
, where τ = argmin

i
(gi = |x|) . (23)

Differentiable Average Lagging (DAL) (Arivazhagan et al., 2019) is a differentiable version of
average lagging. Given gi, DAL is calculated as:

DAL =
1

|y|

|y|∑
i=1

g
′

i −
i− 1

|x| / |y|
, where g

′

i =

{
gi i = 1

max
(
gi, g

′

i−1 +
|x|
|y|

)
i > 1

. (24)

E.2 NUMERICAL RESULTS

We adjust L and K in HMT (refer to Eq.(1)) to get the translation quality under different latency. For
clarity, we present the numerical results of HMT with the specific setting of hyperparameters L and
K in Table 8, Table 9 and Table 10. Note that for comparison, we set L=−1 to get the translation
quality of HMT under extremely low latency (AL<1, i.e., the outputs lagging the inputs less than 1
token on average) on De→En. When setting L=−1, we constrain the translating moment ti,k of all
states to be at least 1, i.e., ti,k = max {min {L+ (i− 1) + (k − 1) , |x|} , 1}. Therefore, all states
will start translating after receiving at least 1 source token.
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Table 8: Numerical results of HMT on En→Vi with Transformer-Small.

IWSLT15 En→Vi Transformer-Small
L K CW AP AL DAL BLEU
1 2 1.15 0.64 3.10 3.72 27.99
2 2 1.22 0.67 3.72 4.38 28.53
4 2 1.24 0.72 4.92 5.63 28.59
5 4 1.53 0.76 6.34 6.86 28.78
6 4 1.96 0.83 8.15 8.71 28.86
7 6 2.24 0.89 9.60 10.12 28.88

Table 9: Numerical results of HMT on De→En with Transformer-Base.

WMT15 De→En Transformer-Base
L K CW AP AL DAL BLEU
-1 4 1.58 0.52 0.27 2.41 22.52
2 4 1.78 0.59 2.20 4.53 27.60
3 6 2.06 0.64 3.46 6.38 29.29
5 6 1.85 0.69 4.74 6.95 30.29
7 6 2.03 0.74 6.43 8.35 30.90
9 8 2.48 0.79 8.36 10.09 31.45

11 8 3.02 0.83 10.06 11.57 31.61
13 8 3.73 0.86 11.80 13.08 31.71

Table 10: Numerical results of HMT on De→En with Transformer-Big.

WMT15 De→En Transformer-Big
L K CW AP AL DAL BLEU
-1 4 1.65 0.52 0.06 2.43 22.70
2 4 1.79 0.60 2.19 4.50 27.97
3 6 2.04 0.64 3.46 6.30 29.91
5 6 1.88 0.69 4.85 7.07 30.85
7 6 2.06 0.74 6.56 8.47 31.99
9 8 2.47 0.79 8.34 10.10 32.28

11 8 2.98 0.83 10.12 11.58 32.46
13 8 3.75 0.86 11.78 13.09 32.58
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