
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

PIANO: PHYSICS INFORMED AUTOREGRESSIVE
NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurately solving time-dependent partial differential equations (PDEs) is funda-
mental to science and engineering. Physics-Informed Neural Networks (PINNs)
solve PDEs using deep learning. However, PINNs perform pointwise predictions
that neglect the autoregressive property of dynamical systems, leading to instabil-
ities and inaccurate predictions. We introduce Physics-Informed Autoregressive
Networks (PIANO)—a framework that redesigns PINNs to model dynamical sys-
tems. PIANO operates autoregressively, explicitly conditioning future predictions
on the past. It is trained with self-supervised rollouts that enforce physical consis-
tency. We present a rigorous theoretical analysis demonstrating that PINNs suffer
from temporal instability, while PIANO achieves stability through autoregressive
modeling. Extensive experiments on challenging time-dependent PDEs demon-
strate that PIANO achieves state-of-the-art performance, significantly improving
accuracy and stability over existing methods. We further show that PIANO out-
performs existing methods in weather forecasting.

1 INTRODUCTION

Pierre-Simon Laplace remarked in 1814, “We may regard the present state of a system as the effect of
its past and the cause of its future” (De Laplace, 1995). This observation reflects a core principle in
classical physics: the behavior of a dynamical system is determined by its current state, with future
states unfolding autoregressively. From predicting global weather to modeling heat diffusion or fluid
flow, the challenge lies in understanding how the present state shapes the future. Such phenomena
are mathematically described by time-dependent PDEs. Yet, modern machine learning approaches
for solving PDEs such as PINNs (Raissi et al., 2019) predict states at each time step independently,
without explicitly conditioning on prior states. As we show in this paper, neglecting autoregression
in PINNs can lead to unstable and inaccurate predictions, underscoring the need to model dynamical
systems autoregressively.

Autoregressive (AR) models are defined by a recursive structure in which the state u(·, tn) at time tn
is computed as a function of one or more preceding states: u(·, tn) := f(u(·, tn−1), u(·, tn−2), . . .).
Non-autoregressive (non-AR) models, by contrast, compute the solution independently at each time
step from the input coordinates, typically as u(·, tn) := f(·, tn).
PINNs solve time-dependent PDEs by training neural networks with a loss that penalizes the resid-
uals of the governing equations. PINNs are non-AR by design and estimate the state u(·, t) directly
from the coordinates (·, t) in a pointwise fashion. PINNs have been successfully applied to many
physical systems, including fluid mechanics (Cai et al., 2021) and cardiovascular flows (Raissi et al.,
2020), among others. Despite their success, PINNs often struggle to accurately model dynamical
systems (Wang et al., 2024). To address this, recent extensions have incorporated sequential archi-
tectures to better capture temporal dependencies in the input space, as in PINNsFormer (Zhao et al.,
2024) and PINNMamba (Xu et al., 2025). However, these models remain non-AR, as they are only
sequential in the coordinates (·, t) and prediction u(·, tn) at each time step tn is made independently
of prior state u(·, tn−1).

In this work, we first show that PINNs suffer from temporal instability in dynamical systems, leading
to error growth over time. To address this, we introduce PIANO (Physics-Informed Autoregressive
Network), an autoregressive PDE solver that enforces physical laws through PDE residuals in the
loss function while systematically penalizing error growth. As illustrated in Figure 1, PIANO learns

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Comparison of (a) standard PINNs and (b) our PIANO framework on solving the Reaction
equation. PINNs predict û(x, t) independently for each sample (x, t), leading to trivial near-zero
solutions. In contrast, PIANO conditions predictions at tn on the previous state û(x, tn−1), enabling
stable, accurate solution propagation from the known initial state u(x, 0).

a state-transition function conditioned on its own past predictions, enabling accurate propagation of
the solution from known initial conditions forward in time. PIANO thus provides a robust, stable,
and physically consistent framework for simulating dynamical systems. Our contributions are as
follows:

• Theoretical Foundations. We prove that PINNs are temporally unstable for time-
dependent PDEs, with errors growing uncontrollably over time (Section 3).

• A Novel Autoregressive Framework. We propose PIANO, a physics-informed approach
that reformulates PINNs to models temporal evolution autoregressively, conditioning each
prediction on prior states to curb error growth (Section 4).

• Empirical Validation. In Section 5, we validate PIANO on challenging time-dependent
PDE benchmarks and weather forecasting, demonstrating improved accuracy and stability
over existing methods.

2 RELATED WORK

Physics-Informed Neural Networks (PINNs) Neural networks for solving PDEs date back sev-
eral decades (Lagaris et al., 1998). The modern PINN framework (Raissi et al., 2019) uses au-
tomatic differentiation to enforce PDE residuals as soft constraints, enabling applications across
fluid dynamics (Cai et al., 2021), solid mechanics (Haghighat et al., 2021), and weather forecast-
ing (Verma et al., 2024). Standard PINNs, typically implemented as pointwise MLPs mapping
(x, t) 7→ u(x, t), neglect temporal dependencies and thus suffer from compounding errors in dy-
namical systems (Zhao et al., 2024; Krishnapriyan et al., 2021). Neural operators (e.g., FNOs (Li
et al., 2021)) are a family of data-driven surrogate models that approximate the PDE solution op-
erator from labeled pairs, whereas PINNs solve a given PDE instance by enforcing residuals and
boundary/initial conditions. Since our focus in this work is on PINNs, we benchmark primarily
against PINN variants. For real-world forecasting tasks such as weather prediction, we include
FNO-based methods as baselines for completeness.

Improving PINNs for Dynamical Systems Recent work has sought to address the limitations of
PINNs on time-dependent PDEs. Wang et al. (2024) show that dynamical systems are inherently
autoregressive and that standard PINNs violate this principle, leading to temporal errors; they pro-
pose a causal re-weighting of the PDE residual to restore physical causality. Other strategies include
curriculum and sequence-to-sequence training (Krishnapriyan et al., 2021; Penwarden et al., 2023),
as well as adaptive losses and sampling (Wight & Zhao, 2020). Li et al. (2024) introduce causality-
enhanced PINNs using discretized losses and transfer learning. Architectural advances capture tem-
poral context more explicitly, e.g., PINNsFormer (transformers) (Zhao et al., 2024), PINNMamba
(state-space models) (Xu et al., 2025), and RoPINNs (spatio-temporal regions) (Wu et al., 2024).
While these approaches improve temporal consistency, they remain non-autoregressive. In contrast,
we propose a fully autoregressive framework that addresses this critical gap.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Autoregressive Models and Self-Supervision Autoregressive models, which predict the next to-
ken or state from preceding ones, underpin modern sequence modeling in NLP (Brown et al., 2020)
and time-series forecasting (Das et al., 2024). Their structure is also well-suited for physical simula-
tions (Wang et al., 2024; Li et al., 2024), but existing AR models are typically trained in a supervised
setting on large datasets. Our work adapts this paradigm to the unsupervised, physics-constrained
regime of PINNs. Related ideas appear in self-supervised rollouts from reinforcement learning
(Hafner et al., 2019; Schrittwieser et al., 2020) and generative modeling (Ho et al., 2020), where
models learn from their own predictions. PIANO is the first to bring autoregressive modeling and
self-supervised rollouts into a PINN framework.

3 THEORETICALLY ANALYZING TEMPORAL INSTABILITY IN PINNS

This section presents preliminaries and a theoretical analysis of error propagation in PINNs for
time-dependent PDEs.

3.1 PRELIMINARIES

We consider a differential equation defined over a domain Ω ⊂ Rd, with solution u : Rd → Rl.
The domain’s interior, initial, and boundary subset are denoted by Ω, Ω0, and ∂Ω, respectively.
Differential operatorsOΩ,OΩ0 , andO∂Ω encode the governing equations (PDEs), initial conditions
(ICs), and boundary conditions (BCs). For example, the heat equation is written as OΩ(u)(x) =
ut − uxx. The complete problem formulation is:

OΩ(u)(x) = 0, x ∈ Ω; OΩ0(u)(x) = 0, x ∈ Ω0; O∂Ω(u)(x) = 0, x ∈ ∂Ω
PINNs (Raissi et al., 2019) approximate the solution uwith a neural network uθ, trained to minimize
the residuals of the governing constraints:

L(uθ) =
∑

X∈{Ω,Ω0,∂Ω}

λX
NX

NX∑
i=1

∥∥∥OX(uθ)(x
(i)
X)
∥∥∥2 , (1)

where NX is the number of collocation points in subset X , and λX weights each term.

3.2 UNCONTROLLED ERROR PROPAGATION IN PINNS

The standard PINN formulation often fails to produce accurate solutions for time-dependent PDEs
(Zhao et al., 2024; Xu et al., 2025). We argue that this is not simply an optimization issue, but
a deeper architectural mismatch. Classical time-stepping schemes like finite difference or Runge–
Kutta are explicitly autoregressive: they update the solution at time tn+1 using the known state at
tn, preserving how dynamical systems evolve in time (Iserles, 2009; Butcher, 2016). In contrast,
PINNs predict each state directly from coordinates (·, t) without conditioning on prior predictions,
effectively breaking this autoregressive structure. Viewed through the lens of semigroup theory
(Pazy, 2012), time-stepping methods approximate an evolution operator that advances the system
forward, an operator that PINNs fail to represent. We now formalize this mismatch by defining the
evolution operator.
Definition 3.1 (Evolution Operator). A time-dependent PDE of the form ∂u

∂t = F(u, t) defines a
dynamical system. Its solution can be described by an evolution operator, G(∆t), which maps the
state of the system at time tn to the state at time tn+1 = tn +∆t:

utrue(x, tn+1) = G(∆t)[utrue(x, tn)]. (2)

A stable solver must ensure that errors do not amplify uncontrollably as this operator is applied
repeatedly. Let the error of a model uθ at time step tn be en(x) = uθ(x, tn)− utrue(x, tn). We can
now define the source of instability in non-AR models.
Definition 3.2 (One-Step Rollout Error). Given a model’s solution uθ(x, tn), the true physical evo-
lution would yield the state G(∆t)[uθ(x, tn)] at time tn+1. The one-step rollout error is the discrep-
ancy between the model’s actual prediction at tn+1 and the physically evolved state:

δn = ∥uθ(x, tn+1)− G(∆t)[uθ(x, tn)]∥2 . (3)
This error quantifies how poorly the model approximates the true one-step dynamics when initialized
from its own prediction at the previous time step.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: PIANO overview. (Left) The model processes a sequence of collocation points (xi, tj)nj=0

for each fixed xi. At each time step tj , the input—formed by concatenating (xi, tj) with the previous
prediction û(xi, tj−1)—is passed through: an embedding network pψ to produce a high-dimensional
embedding, a state transition network fϕ to model latent temporal dynamics, and a PDE probe qη
to decode the final solution. (Right) Solution propagation from the initial state. The known initial
condition u(x, t0) anchors the sequence, enabling stable and accurate learning.

Theorem 3.3 (Error Propagation in PINNs). For non-autoregressive PINNs, the error at step tn+1

is bounded by the sum of the propagated error from the previous step tn and the one-step rollout
error δn:

∥en+1∥2 ≤ LG · ∥en∥2 + δn, (4)

where LG is the Lipschitz constant of the true evolution operator G(∆t).

Proof Sketch. By definition, en+1 = uθ(x, tn+1) − utrue(x, tn+1). Substituting utrue(x, tn+1) =
G(∆t)[utrue(x, tn)] and adding and subtracting G(∆t)[uθ(x, tn)], we have:

en+1 = (uθ(x, tn+1)− G(∆t)[uθ(x, tn)]) + (G(∆t)[uθ(x, tn)]− G(∆t)[utrue(x, tn)]) .

Applying the triangle inequality and the Lipschitz property of G yields the result. The complete
proof is provided in Appendix A

Remark 3.4. Theorem 3.3 reveals a critical flaw in non-autoregressive PINNs. The loss function in
Eq. 1 only penalizes the static PDE residual, leaving the one-step rollout error, δn, unconstrained.
This allows a new error to be introduced at each time step, which then compounds with previously
propagated errors, causing long-term instability and error growth.

4 METHODOLOGY

We propose PIANO (Physics-Informed Autoregressive Network), a framework that addresses the
temporal instability in PINNs by integrating autoregressive modeling into the PINN paradigm. This
section outlines the PIANO architecture and its self-supervised training strategy.

4.1 ARCHITECTURE

The architecture is shown in Figure 2. The domain is defined over coordinates (x, t) ∈ Ω ⊂ Rd,
where x denotes spatial or physical variables and t denotes time. The domain is discretized, and for
each xi, a sequence of time points (tj)Mj=0 is sampled. At each step tj , the input is constructed by
concatenating (xi, tj) with the previous prediction û(xi, tj−1). The inputs are processed by three
components: an Embedding Network, a state-space Transition Network, and a PDE Probe to predict
the solution û(xi, tj) ∈ Rl. We now describe each component in detail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Sampling and Input: For each fixed xi, we sample an evenly spaced temporal sequence Sxi
:=

[(xi, t0), (xi, t1), . . . , (xi, tM)] from the domain Ω, where t0 ∈ Ω0 is the initial time and tM the
final step. At each (xi, tj) ∈ Sxi

, the input vector sij := (xi, tj , û(xi, tj−1)) ∈ Rd+l is constructed
by concatenating the coordinate with the previous prediction.

Embedding Network (pψ): An embedding network pψ maps each input vector sij to a higher-
dimensional representation mi

j ∈ Rk, enhancing expressiveness and preparing the sequence for
further processing.

State Transition Network (fϕ): The transition network fϕ models latent dynamics by maintain-
ing a hidden state h that summarizes past information. It follows a discrete-time state-space formu-
lation with two steps:

hij = σ(LN(Ahij−1 +Bmi
j))

oij = Chij +Dmi
j +mi

j ,

where hij ∈ Rk is the recurrent hidden state and oij ∈ Rk is the output representation. The function
fϕ is parameterized by learnable matrices A,B,C,D ∈ Rk×k, along with a nonlinearity σ and
layer normalization (LN).

PDE Probe (qη): Finally, the probe decodes each output:

û(xi, tj) = qη(o
i
j), oij ∈ Rk 7→ û(xi, tj) ∈ Rl.

qη is applied independently at each time step, translating latent features into the PDE solutions.

4.2 PHYSICS-INFORMED EXPERIENCE LEARNING

We propose Physics-Informed Experience Learning (PIEL), a training paradigm where the model
improves by enforcing physical consistency over its own rollouts. Starting from the known initial
condition u(x, t0), PIANO autoregressively predicts the trajectory by conditioning each new state on
the previous one, with gradients propagated through time via backpropagation through time (BPTT).

For each spatial location xi, the rollout is:

û(xi, tj) = uθ(xi, tj , û(xi, tj−1)), j = 1, . . . ,M,

where θ = {ψ, ϕ, η} denotes model parameters.

The computational graph is discrete in time and not connected across neighboring spatial points.
Hence, we approximate all PDE derivatives using second-order accurate finite differences applied
over the full predicted solution grid.

For region X ∈ {Ω, ∂Ω}, we define the residual energy:

EX(xi, uθ) =
1

M

M∑
j=1

∥OX [û](xi, tj)∥2 , (5)

where OX [û] denotes the PDE residual (via second-order finite differences) for X = Ω and the
boundary condition error for X = ∂Ω.

The total training loss aggregates these contributions:

LPIANO =
∑

X∈{Ω,∂Ω}

λX
NX

NX∑
i=1

EX(xi, uθ), (6)

where λX weights PDE and boundary contributions. When data is available, teacher forcing with
a data loss can be added, allowing PIEL to operate in both white-box (physics-only) and grey-box
(physics+data) settings. Appendix B provides the full PIEL training algorithm for completeness.
We now provide theoretical bound on one-step rollout error in PIANO.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: PIANO as a robust and accurate PDE solver across a range of PDE benchmarks. rMAE and
rRMSE are reported separately for each PDE. Best values are highlighted in bold and the second
best are underlined. PIANO outperforms baselines across all benchmarks. Promotion refers to the
relative error reduced w.r.t. the second best model (1− Our Error

Second Best Error).

Model Wave Reaction Convection Heat

rMAE rRMSE rMAE rRMSE rMAE rRMSE rMAE rRMSE

PINNs (JCP’19) 0.4101 0.4141 0.9803 0.9785 0.8514 0.8989 0.8956 0.9404
QRes (ICDM’21) 0.5349 0.5265 0.9826 0.9830 0.9035 0.9245 0.8381 0.8800
FLS (TAI’22) 0.1020 0.1190 0.0220 0.0390 0.1730 0.1970 0.7491 0.7866
PINNsFormer (ICLR’24) 0.3559 0.3632 0.0146 0.0296 0.4527 0.5217 0.2129 0.2236
RoPINNs (NeurIPS’24) 0.1650 0.1720 0.0070 0.0170 0.6350 0.7200 0.1545 0.1622
KAN (ICLR’25) 0.1433 0.1458 0.0166 0.0343 0.6049 0.6587 0.0901 0.1042
PINNMamba (ICML’25) 0.0197 0.0199 0.0094 0.0217 0.0188 0.0201 0.0535 0.0583

PIANO (ours) 0.0057 0.0059 0.0001 0.0008 0.0032 0.0104 0.0000 0.0002
Promotion (%) 71.1 70.4 98.6 95.3 83.0 48.3 100.0 99.7

Theorem 4.1 (Bound on One-Step Rollout Error in PIANO). Let G(∆t) denote the exact evolution
operator of the PDE, and let Gh,∆t be a finite-difference approximation of temporal order p and
spatial order q with discretization constant κ > 0. Here ∆t > 0 is the temporal step size and
h > 0 is the spatial grid spacing. If PIANO is trained with the PIEL loss in Eq. 6, and ρ denotes the
residual energy controlled by LPIANO, then the one-step rollout error (Definition 3.2) satisfies

δn ≤ ρ + κ
(
∆t p + h q

)
, for all n = 0, . . . ,M − 1. (7)

Sketch Proof. We decompose

δn = ∥û(x, tn+1)− G(∆t)[û(x, tn)]∥2 ≤ ∥û(x, tn+1)− Gh,∆t(û(x, tn))∥2
+ ∥Gh,∆t(û(x, tn))− G(∆t)[û(x, tn)]∥2.

The first term is directly penalized by the PIEL objective and bounded by ρ. The second term is the
consistency error of the (p, q) finite-difference scheme, bounded by κ(∆tp + hq).

Remark 4.2. In PIANO the initial error is zero (e0 = 0), since rollouts are propagated from the true
initial condition. For the second-order discretization used in practice (p = q = 2), the consistency
term κ(∆t2 + h2) vanishes under mesh refinement. Thus, the dominant contribution to δn is the
residual ρ, which is minimized during training via Eq. 6. Consequently, δn can be made arbitrarily
small by improving training (reducing ρ) and refining the discretization (∆t, h→ 0).

5 EXPERIMENTS

To empirically demonstrate the effectiveness of PIANO, we evaluate its performance on PDE bench-
marks (Section 5.1) and a real-world weather forecasting task (Section 5.2).

5.1 PDE BENCHMARKS

Benchmarks We evaluate PIANO on four time-dependent PDE benchmarks: the Wave, Reaction,
Convection, and Heat equations. These benchmarks are widely used in the literature (Zhao et al.,
2024; Xu et al., 2025) and span diverse numerical challenges: higher-order derivatives (Wave),
nonlinear dynamics (Reaction), numerical stiffness (Heat), and transport-dominated behavior prone
to numerical diffusion (Convection). Detailed description of each PDE is provided in Appendix C.1.

Baselines We benchmark PIANO against a broad set of baselines: classical PINN vari-
ants (MLP-based PINNs (Raissi et al., 2019), First-Layer Sine networks (FLS) (Wong et al.,
2022), and Quadratic Residual Networks (QRes) (Bu & Karpatne, 2021)); recent advances (Kol-
mogorov–Arnold Networks (KANs) (Liu et al., 2025) and Region-Optimized PINNs (RoPINNs)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

5% Training Progress
rRMSE: 0.760

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

25% Training Progress
rRMSE: 0.423

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

50% Training Progress
rRMSE: 0.334

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

100% Training Progress
rRMSE: 0.010

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
Exact Solution u(x,t)

1.0

0.5

0.0

0.5

1.0

Figure 3: Training dynamics of PIANO on the convection equation. At 5%, predictions are accurate
only near the initial state; by 25–50% temporal propagation improves, and at convergence prediction
is visually indistinguishable from the exact solution. This confirms that propagating correct solutions
from known initial conditions ensures stable convergence without intermediate failure.

(a): Rollout error (rRMSE) vs. time. (b): One-step defect δn vs. time.

Figure 4: Temporal stability diagnostics. PIANO maintains near-flat error growth and the smallest
one-step defect, while PINNsFormer and PINNMamba exhibit rapidly increasing rollout error and
larger δn. Lower is better in both panels.

(Wu et al., 2024)); and state-of-the-art sequential models (PINNsFormer (Zhao et al., 2024) and
PINNMamba (Xu et al., 2025)), which are sequential but not autoregressive—ideal for testing PI-
ANO’s autoregressive advantage. Full baseline descriptions are provided in Appendix C.2.

Implementation Details PIANO is implemented as a state-space architecture (Section 4) and
trained on a 200 × 200 discretized spatio-temporal grid using the AdamW optimizer. All models
are trained on approx. same number of samples. For fairness, baselines rely on official implemen-
tations with reported hyperparameters and training routines. Regarding computational cost, PIANO
is comparable to sequential baselines like PINNsFormer and PINNMamba, while its simpler state-
space architecture offers efficiency gains (Appendix C.3). Performance is measured using relative
Mean Absolute Error (rMAE) and relative Root Mean Squared Error (rRMSE), which are standard
metrics in the PINN literature (Xu et al., 2025). Full detail on hyperparameters and implementation
are provided in Appendix C.4.

Results Table 1 summarizes the PDE benchmark results. Pointwise PINNs suffer from high er-
rors (consistent with Theorem 3.3), while sequential models such as PINNMamba perform better.
PIANO, however, consistently sets a new state of the art across all four benchmarks. For the Reac-
tion and Heat equations, errors are driven to near zero with about 100% promotion over the second
best model, while on the more challenging Wave and Convection equations PIANO outperforms
PINNMamba by 70–80% promotion. These results highlight the accuracy and robustness of our
autoregressive formulation for time-dependent PDEs. A two-tailed t-test (p < 0.05) confirms PI-
ANO’s improvements are statistically significant (Appendix C.5).

Training Dynamics Figure 3 shows PIANO learning the convection equation during training.
Starting from the initial state, predictions are initially localized (5%), gradually extend forward
but remain blurry (25–50%), and at convergence (100%) become visually indistinguishable from
the ground truth (rRMSE 0.010). This confirms the intuition that propagating the correct solution
from known initial conditions enables stable convergence without failure in between. Additional
examples on other PDEs are provided in Appendix C.6.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: Ablations and hyperparameter guidance. The plots show the effect of finite difference
order, the performance of different PIANO variants, and sensitivity to state dimension and training
grid resolution. Error bars denote standard deviations across ten runs.

Temporal Stability Diagnostics We perform stability diagnostics to validate the theoretical argu-
ments using the Reaction. Results are reported in Figure 4. Panel (a) shows rollout error (rRMSE)
over time. Baselines suffer from uncontrolled error propagation, with errors compounding and grow-
ing rapidly as time advances. In contrast, PIANO maintains nearly flat error growth throughout the
rollout. Panel (b) reports the one-step defect δn defined in Def. 3.2. PIANO consistently achieves
the smallest δn by explicitly penalizing this quantity during training, while the baselines accumu-
late larger defects over time. These results validate our theoretical analysis: non-AR PINNs are
inherently unstable with exponential error growth, whereas PIANO’s autoregressive design ensures
stability and accurate long-term predictions.

Ablations and Hyperparameter Guidance. Figure 5 summarizes the ablation and hyperparam-
eter guidance for PIANO. The experiments are conducted on the Reaction equation. The ablation
studies demonstrate that a second-order finite difference scheme yields substantially lower error
than the first-order version, confirming the importance of accurate derivative approximations. They
also show that autoregression is critical: while a non-autoregressive baseline performs poorly, pro-
gressively richer backbones (MLP, GRU, SSM) with PIANO deliver significant gains, with the SSM
achieving the lowest error. The sensitivity analysis further highlights that increasing the state dimen-
sion and training grid resolution consistently reduces error, with diminishing returns once k = 256
and a 200×200 grid are reached. Together, these findings validate the design of PIANO and provide
practical guidance for hyperparameter choices in PDE learning. Extended analysis is presented in
Appendix C.7.

5.2 GLOBAL WEATHER FORECASTING

Background. Global weather forecasting is the task of predicting the future evolution of key atmo-
spheric variables (e.g., temperature, winds, pressure) across the entire Earth. Numerical simulations
of atmospheric physics remain the standard for weather forecasting but are computationally demand-
ing. Deep learning has emerged as a faster alternative, yet most models operate as black boxes that
ignore physical laws, leading to unstable or unphysical predictions. Physics-informed approaches
aim to bridge this gap by embedding governing equations into neural networks. ClimODE (Verma
et al., 2024), for example, formulates weather evolution as a neural ODE constrained by the advec-
tion PDE, which models how quantities such as temperature and pressure are transported by winds.
This inductive bias yields forecasts that are both stable and physically consistent. Building on this
idea, PIANO introduces an autoregressive training scheme to further improve long-term accuracy
and stability.

Setup. The forecasting task involves predicting the temporal evolution of five key atmospheric
variables from the ERA5 (Rasp et al., 2020) dataset: atmospheric temperature (t), surface tem-
perature (t2m), horizontal wind components (u10, v10), and geopotential height (z). Following
ClimODE, we adopt a physics-informed framework with two coupled components: (i) an advection
term that enforces conservation of transported quantities, and (ii) a neural network fθ that learns to
update the velocity field from the current state and its spatial gradients. PIANO retains the physics-
informed structure of ClimODE but trains autoregressively with teacher forcing. Instead of predict-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 6: Comparison of global weather forecasting performance on the ERA5 dataset. The plot
shows the latitude-weighted root mean square error (RMSE) and anomaly correlation coefficient
(ACC) for PIANO against recent baselines over lead times from 6 to 24 hours. The task involves
predicting five key atmospheric variables: geopotential (z), atmospheric temperature (t), 2-meter
surface temperature (t2m), and the 10-meter U-wind (u10) and V-wind (v10) components. PIANO
consistently achieves lower error across all variables, showcasing the effectiveness of its autoregres-
sive physics-informed framework for modeling complex dynamical systems.

ing an entire trajectory in one step, each forecast is conditioned on the true state at the previous time
point. At inference, we use free-rollout forecasting: the model advances autoregressively using its
own predictions at each step, without teacher forcing.

We evaluate on ERA5, which provides 6-hourly reanalysis data at 5.625◦ resolution for the five vari-
ables listed above. Comparisons are made against NODE (Verma et al., 2024), FCN (Pathak et al.,
2022), ClimaX (Nguyen et al., 2023), and ClimODE (Verma et al., 2024), with the IFS (ECMWF,
2023) serving as the gold-standard numerical baseline. Performance is assessed using two latitude-
weighted metrics: Root Mean Square Error (RMSE), which measures absolute prediction error,
and Anomaly Correlation Coefficient (ACC), which quantifies directional accuracy by correlating
predicted and observed anomalies. Extended setup and implementation details are provided in Ap-
pendix D.1.

Results Figure 6 compares PIANO against baselines on RMSE and ACC across five key atmo-
spheric variables over 6 to 24-hour lead times. PIANO consistently achieves a lower RMSE across
all variables and horizons, indicating improved forecast accuracy. Notably, its performance gains
are most significant at shorter lead times, where the autoregressive use of observed initial states
effectively limits error propagation. These results highlight superior performance of PIANO for
ERA5 forecasting, highlighting the benefits of combining an autoregressive training strategy with a
physics-informed framework for simulating complex dynamical systems. The complete result table
is provided in Appendix D.2.

6 CONCLUSION

We present PIANO, a physics-informed autoregressive framework for solving time-dependent
PDEs. Our theoretical analysis demonstrates that non-autoregressive PINN formulations are un-
stable and accumulate errors. By aligning model design with the autoregressive property of dynam-
ical systems, PIANO mitigates the error accumulation seen in conventional PINNs and provides a
stable foundation for learning physical dynamics. Experiments on a challenging PDE benchmark
show that PIANO achieves state-of-the-art accuracy. It also improves physics-informed methods
for global weather forecasting. Beyond these gains, PIANO points to a broader direction: physics-
informed learning can benefit significantly from architectures that respect the temporal evolution of
the systems they model. Extending this approach to multi-scale processes and real-world scientific
applications presents an exciting avenue for future research.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

All PDE benchmarks used in this work are described in detail in Appendix C.1, including gov-
erning equations, domains, and analytical solutions. Implementation details, training procedures,
hyperparameters, and complexity analysis are provided in Appendix C.4 and Appendix C.3, with
full training algorithms given in Appendix B. Extended proofs and theoretical results are docu-
mented in Appendix A. For empirical evaluation, we report both single-run and multi-run statis-
tics, with significance testing in Appendix C.5. Additional qualitative results and training dynam-
ics are included in Appendix C.6, along with guidance on hyperparameters and ablations in Ap-
pendix C.7. The ERA5 dataset used for global weather forecasting is publicly available, and our
preprocessing steps and forecasting setup are described in Appendix D.1. An anonymous code
repository containing implementations of PIANO and scripts to reproducing experiments is avail-
able at https://anonymous.4open.science/r/piano_iclr-73C8.

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Jie Bu and Anuj Karpatne. Quadratic residual networks: A new class of neural networks for solv-
ing forward and inverse problems in physics involving pdes. In Proceedings of the 2021 SIAM
International Conference on Data Mining (SDM), pp. 675–683. SIAM, 2021.

John Charles Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons,
2016.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, 37(12):
1727–1738, 2021.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. In Forty-first International Conference on Machine Learning, 2024.

Marquis De Laplace. A philosophical essay on probabilities. Courier Corporation, 1995.

ECMWF. IFS Documentation CY48R1 - Part I: Observations. Number 1. ECMWF, 06/2023 2023.
doi: 10.21957/0f360ba4ca.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
informed deep learning framework for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineering, 379:113741, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Arieh Iserles. A first course in the numerical analysis of differential equations, volume 44. Cam-
bridge university press, 2009.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W Mahoney. Char-
acterizing possible failure modes in physics-informed neural networks. Advances in Neural In-
formation Processing Systems, 34:26548–26560, 2021.

Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks for solving
ordinary and partial differential equations. IEEE transactions on neural networks, 9(5):987–1000,
1998.

10

https://anonymous.4open.science/r/piano_iclr-73C8

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Ye Li, Siqi Chen, Bin Shan, and Sheng-Jun Huang. Causality-enhanced discreted physics-informed
neural networks for predicting evolutionary equations. In Proceedings of the Thirty-Third Inter-
national Joint Conference on Artificial Intelligence, pp. 4497–4505, 2024.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljacic,
Thomas Y. Hou, and Max Tegmark. KAN: Kolmogorov–arnold networks. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=Ozo7qJ5vZi.

Tung Nguyen, Johannes Brandstetter, Ashish Kapoor, Jayesh K Gupta, and Aditya Grover. Climax:
A foundation model for weather and climate. arXiv preprint arXiv:2301.10343, 2023.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Four-
castnet: A global data-driven high-resolution weather model using adaptive fourier neural opera-
tors. arXiv preprint arXiv:2202.11214, 2022.

Amnon Pazy. Semigroups of linear operators and applications to partial differential equations,
volume 44. Springer Science & Business Media, 2012.

Michael Penwarden, Ameya D Jagtap, Shandian Zhe, George Em Karniadakis, and Robert M Kirby.
A unified scalable framework for causal sweeping strategies for physics-informed neural networks
(pinns) and their temporal decompositions. Journal of Computational Physics, 493:112464, 2023.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Stephan Rasp, Peter D Dueben, Sebastian Scher, Jonathan A Weyn, Soukayna Mouatadid, and Nils
Thuerey. Weatherbench: a benchmark data set for data-driven weather forecasting. Journal of
Advances in Modeling Earth Systems, 12(11):e2020MS002203, 2020.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Yogesh Verma, Markus Heinonen, and Vikas Garg. ClimODE: Climate forecasting with physics-
informed neural ODEs. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=xuY33XhEGR.

Sifan Wang, Shyam Sankaran, and Paris Perdikaris. Respecting causality for training physics-
informed neural networks. Computer Methods in Applied Mechanics and Engineering, 421:
116813, 2024.

Colby L Wight and Jia Zhao. Solving allen-cahn and cahn-hilliard equations using the adaptive
physics informed neural networks. arXiv preprint arXiv:2007.04542, 2020.

Jian Cheng Wong, Chin Chun Ooi, Abhishek Gupta, and Yew-Soon Ong. Learning in sinusoidal
spaces with physics-informed neural networks. IEEE Transactions on Artificial Intelligence, 5
(3):985–1000, 2022.

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, and Mingsheng Long. Ropinn: Region
optimized physics-informed neural networks. In Advances in Neural Information Processing
Systems, 2024.

11

https://openreview.net/forum?id=c8P9NQVtmnO
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=Ozo7qJ5vZi
https://openreview.net/forum?id=xuY33XhEGR

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Chenhui Xu, Dancheng Liu, Yuting Hu, Jiajie Li, Ruiyang Qin, Qingxiao Zheng, and Jinjun
Xiong. Sub-sequential physics-informed learning with state space model. arXiv preprint
arXiv:2502.00318, 2025.

Zhiyuan Zhao, Xueying Ding, and B. Aditya Prakash. PINNsformer: A transformer-based frame-
work for physics-informed neural networks. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=DO2WFXU1Be.

A PROOFS AND EXTENDED THEORETICAL ANALYSIS

A.1 PROOFS

Theorem A.1 (Error Propagation in PINNs). For non-autoregressive PINNs, the error at step tn+1

is bounded by the sum of the propagated error from the previous step tn and the one-step rollout
error δn:

∥en+1∥2 ≤ LG · ∥en∥2 + δn, (8)

where LG is the Lipschitz constant of the true evolution operator G(∆t).

Proof. The proof relies on the key assumption that the true evolution operator, G(∆t), is Lipschitz
continuous with a constant LG . This property ensures that the operator does not excessively amplify
differences between input states, and it is formally stated as:

∥G(∆t)[a]− G(∆t)[b]∥2 ≤ LG · ∥a− b∥2 (9)

for any two system states a and b.

We begin with the definition of the error at time step tn+1:

en+1 = uθ(x, tn+1)− utrue(x, tn+1). (10)

By definition, the true solution at tn+1 is given by the evolution operator G(∆t) applied to the true
solution at tn. Substituting this into our error expression gives:

en+1 = uθ(x, tn+1)− G(∆t)[utrue(x, tn)]. (11)

We now add and subtract the term G(∆t)[uθ(x, tn)]. This allows us to connect the model’s predic-
tion at tn+1 to the evolution of its own prediction from tn:

en+1 =(uθ(x, tn+1)− G(∆t)[uθ(x, tn)])
+ (G(∆t)[uθ(x, tn)]− G(∆t)[utrue(x, tn)]) . (12)

Taking the L2 norm and applying the triangle inequality (∥A+B∥ ≤ ∥A∥+ ∥B∥) yields:

∥en+1∥2 ≤∥uθ(x, tn+1)− G(∆t)[uθ(x, tn)]∥2
+ ∥G(∆t)[uθ(x, tn)]− G(∆t)[utrue(x, tn)]∥2 . (13)

We recognize the first term on the right-hand side as the definition of the one-step rollout error, δn.
For the second term, we apply the Lipschitz continuity of the operator G:

∥G(∆t)[uθ(x, tn)]− G(∆t)[utrue(x, tn)]∥2
≤ LG · ∥uθ(x, tn)− utrue(x, tn)∥2
= LG · ∥en∥2. (14)

Substituting these two results back into Equation equation 13, we arrive at the final inequality:

∥en+1∥2 ≤ δn + LG · ∥en∥2. (15)

Rearranging the terms gives the statement of the theorem:

∥en+1∥2 ≤ LG · ∥en∥2 + δn. (16)

12

https://openreview.net/forum?id=DO2WFXU1Be

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Theorem A.2 (Bound on One-Step Rollout Error in PIANO). Let G(∆t) be the exact evolution
operator and let Gh,∆t be a finite-difference (FD) approximation of temporal order p and spatial
order q, with consistency constant κ > 0. Let LPIANO be the PIEL loss in Eq. (6) and define

ρ := Cdisc(∆t, h)L
1/2
PIANO,

where Cdisc(∆t, h) collects the FD stencil constants and converts residual units to the state norm
used below. Then for the one-step rollout error δn := ∥û(·, tn+1)−G(∆t)[û(·, tn)]∥ (Def. 3.2), we
have for all n = 0, . . . ,M − 1,

δn ≤ ρ + κ
(
∆t p + h q

)
.

Proof. Fix a step n and abbreviate ûn := û(·, tn). By adding and subtracting Gh,∆t(ûn),

δn =
∥∥ûn+1 −G(∆t)[ûn]

∥∥ ≤ ∥∥ûn+1 −Gh,∆t(ûn)
∥∥︸ ︷︷ ︸

(I)

+
∥∥Gh,∆t(ûn)−G(∆t)[ûn]∥∥︸ ︷︷ ︸

(II)

. (17)

LetRh,∆t[û](xi, tj) denote the FD residual of the governing PDE evaluated on the predicted rollout
(Eq. (5)), i.e.,

Rh,∆t[û](xi, tj) = Dtû(xi, tj)−Fh
(
û(·, tj)

)∣∣∣
xi

,

where Dt is the chosen temporal difference operator and Fh the spatial FD discretization of F . For
a one-step scheme, the FD update can be written as

Gh,∆t(û
n) = ûn +∆tAh,∆t(ûn),

for some (possibly nonlinear) discrete operator Ah,∆t induced by the stencil. A standard algebraic
manipulation of the stencil (equivalently, a discrete variation-of-constants identity) yields a bounded
linear map Bh,∆t such that

ûn+1 −Gh,∆t(ûn) = Bh,∆t(Rh,∆t[û](·, tn+θ)) , (18)

for some θ ∈ {0, 1/2, 1} depending on the time stencil (forward/Crank–Nicolson/backward). On
the discrete grid, all norms are equivalent and ∥Bh,∆t∥ ≤ Cdisc(∆t, h) for a constant that depends
only on the stencil and (∆t, h). Taking norms in Eq.18 and averaging over spatial points {xi}NΩ

i=1
gives

(I) ≤ Cdisc(∆t, h)

(
1

NΩ

NΩ∑
i=1

∥∥Rh,∆t[û](xi, tn+θ)∥∥2)1/2

.

By definition of the residual energies and the training objective (Eq. (5)–(6)), the bracketed quantity
is controlled by LPIANO up to the weights λX/NX and the boundary terms. Thus,

(I) ≤ Cdisc(∆t, h)L
1/2
PIANO = ρ.

Units/Scaling. Since Rh,∆t has the units of the PDE operator, Cdisc carries the complemen-
tary units to yield the state norm; therefore ρ has the units of u. Because LPIANO aggregates
λX

NX

∑
iEX(xi, û), the dependence on λX , NX enters only as L1/2

PIANO ∝
√
λX/NX .

By the (p, q)-order consistency of Gh,∆t with G(∆t) applied to the same input state ûn, there exists
κ > 0 such that

(II) ≤ κ
(
∆t p + h q

)
.

Substituting the bounds for (I) and (II) into Eq.17 gives

δn ≤ ρ + κ
(
∆t p + h q

)
,

as claimed.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A.2 EXISTENCE, UNIQUENESS AND REGULARITY OF SOLUTIONS FOR EVOLUTION
OPERATORS

We study time-dependent PDEs of the form

du

dt
= −Au+ f(u), u(0) = u0 ∈ H, (19)

where H is a complete normed vector space with an inner product (Hilbert space), −A : D(A) ⊂
H → H is a linear operator generating a strongly continuous semigroup, and f : H → H is a
nonlinear operator.

A.2.1 SEMIGROUP SETUP AND MILD SOLUTIONS

Definition A.3 (Semigroup Generator). Let −A : D(A) ⊂ H → H be a closed, densely defined
linear operator such that −A generates a strongly continuous solution operator {S(t)}t≥0 ⊂ L(H);
and {S(t)}t≥0 satisfies :

1. S(t)u0(·) = u(·, t)

2. S(t) is a semigroup which satisifies S(0) = I (the identity) and S(t + s) = S(t)S(s) for
all t, s ≥ 0;

3. ∥S(t)∥ ≤ 1 for all t ≥ 0.

Starting at time t = 0, we have u(·, 0) = S(0)u0(·). You obtain u(·, s+ t) by first flowing forward
in time by s and then flow forward by time t using u(·, s) as initial data.
Definition A.4 (Mild Solution). A function u ∈ C([0, T], H) is a mild solution to equation 19 if it
satisfies the variation of constants formula:

u(·, t) = S(t)u0(·) +
∫ t

0

S(t− s)f(u(·, s)) ds. (20)

Theorem A.5 (Existence and Uniqueness of Mild Solutions). Suppose f : H → H is Lipschitz and
satisfies:

∥f(u)− f(v)∥ ≤ L∥u− v∥, (21)
∥f(u)∥ ≤ L(1 + ∥u∥), ∀u, v ∈ H. (22)

Then for any u0 ∈ H , there exists a unique mild solution u ∈ C([0, T], H), and:

∥u(t)∥ ≤ CT (1 + ∥u0∥), ∀t ∈ [0, T].

Proof. Let X := C([0, T], H) with norm ∥u∥X := supt∈[0,T] ∥u(t)∥. Define the mapping J :
X → X by

(J u)(t) := S(t)u0 +

∫ t

0

S(t− s)f(u(s)) ds.

We show J is a contraction for small T :

∥J u− J v∥X ≤ sup
t∈[0,T]

∫ t

0

∥f(u(s))− f(v(s))∥ds

≤ LT∥u− v∥X .

Choose T < 1/L so that J is a contraction. By Banach’s fixed-point theorem, there exists a unique
fixed point u ∈ X . Repeating over intervals gives global existence.

For the bound, using ∥S(t)∥ ≤ 1:

∥u(t)∥ ≤ ∥u0∥+
∫ t

0

L(1 + ∥u(s)∥)ds.

Apply Grönwall’s inequality to conclude.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A.2.2 REGULARITY AND TEMPORAL SMOOTHNESS

Theorem A.6 (Temporal Regularity). Let u0 ∈ D(Aγ) for some γ ∈ (0, 1], and let u(t) be the mild
solution. Then for any 0 ≤ t1 ≤ t2 ≤ T and ϵ > 0, there exists C > 0 such that:

∥u(t2)− u(t1)∥ ≤ C|t2 − t1|θ(1 + ∥u0∥D(Aγ)),

where θ = min{γ, 1− ϵ}.

Sketch. Write u(t2)− u(t1) = I + II , with:
I := S(t2)u0 − S(t1)u0,

II :=

∫ t2

0

S(t2 − s)f(u(s))ds−
∫ t1

0

S(t1 − s)f(u(s))ds.

Estimate I via semigroup regularity:
∥I∥ ≤ C|t2 − t1|γ∥u0∥D(Aγ).

For II , split as:

II1 :=

∫ t1

0

[S(t2 − s)− S(t1 − s)]f(u(s))ds,

II2 :=

∫ t2

t1

S(t2 − s)f(u(s))ds,

and use continuity of S(t) and boundedness of f(u(s)) to obtain:

∥II∥ ≤ C|t2 − t1|θ(1 + ∥u0∥).

A.2.3 EVOLUTION OPERATOR APPROXIMATION

Definition A.7 (Evolution Operator G). Let ∆t > 0. Define a learned operator G : H → H such
that:

G(un) ≈ un+1, where un ≈ u(n∆t), un+1 ≈ u((n+ 1)∆t).

Let Φ∆t(u) denote the exact flow:

Φ∆t(u) := S(∆t)u+

∫ ∆t

0

S(∆t− s)f(u(s))ds.

Theorem A.8 (Error Propagation of G). Let u(·, t) be the mild solution to equation 19 with u0 ∈
D(Aγ) for some γ ∈ (0, 1]. Suppose:

∥G(u)− Φ∆t(u)∥ ≤ ε(∆t), ∀u ∈ B ⊂ H.
Define ũ0 = u0, and recursively ũn+1 = G(ũn). Then for un := u(n∆t),

∥ũn − un∥ ≤ CT
(
ε(∆t) + ∆tθ(1 + ∥u0∥D(Aγ))

)
,

where θ = min{γ, 1− ϵ} and CT depends on T and L.

Proof. We proceed by induction.

Base case: ũ0 = u0 ⇒ ∥ũ0 − u0∥ = 0.

Inductive step:
∥ũn+1 − un+1∥ ≤ ∥G(ũn)− Φ∆t(ũn)∥

+ ∥Φ∆t(ũn)− Φ∆t(un)∥
≤ ε(∆t) + LΦ∥ũn − un∥.

Apply recursively and use the regularity bound from A.6 for ∥un+1−Φ∆t(un)∥ to close the estimate.

While PIANO mitigates the recurrence error by minimizing the one-step rollout term, Theorem A.8
proves that autoregressive models that approximate the true evolution operator enjoy a provably
bounded global error.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

B TRAINING ALGORITHM

Algorithm 1 Training PIANO via Experience Learning

1: Initialize model parameters ψ, ϕ, η.
2: for each training iteration do
3: Sample a batch of spatial coordinates {xi}Nx

i=1 ⊂ Ω ∪ ∂Ω.
4: Set initial state from the known condition: û(xi, t0)← u(xi, t0) for all i.
5: Initialize hidden state hi0 ← 0 for all i.
6: for each time step tj , for j = 1, . . . ,M do
7: Form input vector: sij = (xi, tj , û(xi, tj−1)).
8: Compute embedding: mi

j = pψ(s
i
j).

9: Update hidden state and output representation: (hij , o
i
j) = fϕ(h

i
j−1,m

i
j).

10: Predict solution: û(xi, tj) = qη(o
i
j).

11: Compute loss using Eq. 6
12: end for
13: Normalize loss over time steps and batch size.
14: Update parameters ψ, ϕ, η.
15: end for

This training procedure, which we refer to as Physics-Informed Experience Learning (PIEL), opti-
mizes the model to generate physically consistent solution trajectories based on its own predictions.
The experience learning component comes from the autoregressive rollout described in Algorithm 1:
for each spatial coordinate xi in a batch, the model generates an entire temporal trajectory starting
from the known initial condition u(xi, t0). Each subsequent prediction û(xi, tj) is conditioned on
the model’s own previous output û(xi, tj−1), which forces the model to learn from its own generated
experience.

The physics-informed component governs the optimization process. Instead of comparing the pre-
dicted rollout to a ground-truth solution, the loss function measures how well the generated trajectory
satisfies the governing physical laws. This is done by evaluating the residuals of the underlying par-
tial differential equation (PDE), as well as the errors in satisfying the boundary conditions. These
residuals are computed over the full predicted spatiotemporal grid, using finite difference approxi-
mations for both spatial and temporal derivatives. The total loss is then aggregated over all points
and time steps in the trajectory.

The model parameters are updated through backpropagation through time (BPTT). By maintaining
gradient flow through the full autoregressive sequence, the model learns a stable state transition
function, or evolution operator, that captures long-range temporal dependencies and adheres to the
physical constraints. This end-to-end training on physically constrained rollouts directly minimizes
the one-step rollout error discussed in Theorem 3.4. As a result, the model mitigates error accumu-
lation commonly found in non-autoregressive approaches and produces stable, accurate long-term
predictions.

C ADDITIONAL DETAILS ON PDE BENCHMARK EXPERIMENT

C.1 PDE SETUP

We evaluate PIANO on four canonical time-dependent partial differential equations (PDEs) that are
standard benchmarks in the physics-informed machine learning literature. For each benchmark, we
define the governing equation, the domain, the initial conditions (ICs), and the boundary conditions
(BCs). The analytical solution for each PDE is provided for the purpose of evaluating model ac-
curacy. Table 2 summarizes the unique numerical challenges posed by each equation, which test
different aspects of a solver’s stability and accuracy.

1. Wave Equation: The 1D wave equation models phenomena like vibrating strings and sound
waves. It is a second-order hyperbolic PDE.

• Equation: ∂
2u
∂t2 = c2 ∂

2u
∂x2 , with c = 2.0.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

• Domain: (x, t) ∈ [0, 1]× [0, 1].

• Initial Conditions:

– u(x, 0) = sin(πx) + 0.5 sin(3πx).
– ∂u

∂t (x, 0) = 0.

• Boundary Conditions: u(0, t) = 0 and u(1, t) = 0 (Dirichlet).

• Analytical Solution: u(x, t) = sin(πx) cos(2πt) + 0.5 sin(3πx) cos(6πt).

2. Reaction Equation: This equation models systems with nonlinear reaction dynamics, common
in chemistry and biology. It is a first-order nonlinear PDE.

• Equation: ∂u∂t = 5u(1− u).
• Domain: (x, t) ∈ [0, 2π]× [0, 1].

• Initial Condition: u(x, 0) = exp
(
− (x−π)2

2(π/4)2

)
.

• Boundary Conditions: u(0, t) = u(2π, t) (Periodic).

• Analytical Solution: Let h(x) = u(x, 0). Then u(x, t) = h(x)e5t

h(x)e5t+1−h(x) .

3. Convection Equation: A first-order hyperbolic PDE that models the transport of a quantity. It
is known for being sensitive to numerical diffusion, where sharp features can be smoothed out by
inaccurate solvers.

• Equation: ∂u∂t + c∂u∂x = 0, with c = 50.

• Domain: (x, t) ∈ [0, 2π]× [0, 1].

• Initial Condition: u(x, 0) = sin(x).

• Boundary Conditions: u(0, t) = u(2π, t) (Periodic).

• Analytical Solution: u(x, t) = sin(x− ct).

4. Heat Equation: The heat equation is a second-order parabolic PDE that describes heat distri-
bution in a given region over time. It is a classic example of a diffusive system, which presents
challenges related to numerical stiffness.

• Equation: ∂u∂t = α∂
2u
∂x2 , with α = 0.1.

• Domain: (x, t) ∈ [0, 1]× [0, 1].

• Initial Condition: u(x, 0) = sin(πx).

• Boundary Conditions: u(0, t) = 0 and u(1, t) = 0 (Dirichlet).

• Analytical Solution: u(x, t) = sin(πx)e−απ
2t.

Table 2: Summary of numerical challenges presented by each PDE benchmark.

PDE Benchmark Primary Numerical Challenge

Wave Equation Accurate handling of second-order temporal and spatial derivatives.
Propagating wave solutions without numerical dispersion.

Reaction Equation Modeling stiff nonlinear dynamics where solutions change rapidly.
Capturing exponential growth accurately.

Convection Equation Minimizing numerical diffusion to preserve the shape of the
propagating wave. High wave speed (c = 50) makes it challenging.

Heat Equation Handling diffusive processes and numerical stiffness, which can
require very small time steps for traditional explicit solvers.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C.2 BASELINES

To rigorously evaluate PIANO, we benchmark it against a comprehensive suite of models that rep-
resent the cutting edge of physics-informed learning. These baselines were chosen to cover classical
architectures, recent architectural innovations, and state-of-the-art sequential models, providing a
multi-faceted comparison.

• Canonical PINN: This is the foundational framework introduced by Raissi et al. (2019).
It employs a Multilayer Perceptron (MLP) as a universal function approximator that takes
spatio-temporal coordinates (x, t) as input and outputs the corresponding solution u(x, t).
The network is trained by minimizing a loss function composed of the PDE residuals, initial
conditions, and boundary conditions, which are calculated using automatic differentiation.
Its primary limitation, which motivates our work, is its point-wise prediction mechanism,
which neglects temporal dependencies and often fails to propagate initial conditions accu-
rately, leading to ”failure modes” where the model converges to overly smooth or incorrect
solutions.

• QRes & FLS: These models represent architectural improvements over the standard MLP.
QRes (Quadratic Residual Networks) introduces quadratic residual connections to en-
hance the model’s capacity for solving complex physics problems (Bu & Karpatne, 2021).
FLS (First-Layer Sine) networks use a sinusoidal activation function in the first layer
(Wong et al., 2022). This provides a strong inductive bias for learning periodic or high-
frequency patterns, though its effectiveness can be limited to problems where such prior
knowledge of the solution’s behavior is applicable.

• RoPINN (Region Optimized PINN): This framework addresses a fundamental deficiency
in the standard PINN training paradigm (Wu et al., 2024). Instead of optimizing the loss on
a finite set of scattered points, RoPINN extends the optimization to the continuous neigh-
borhood regions around these points. This is achieved efficiently through a Monte Carlo
sampling method within a ”trust region” that is adaptively calibrated during training. This
approach is designed to reduce generalization error and better satisfy high-order PDE con-
straints without requiring additional, costly gradient calculations.

• KAN (Kolmogorov-Arnold Networks): Representing a recent breakthrough in neural net-
work architecture, KANs are included as an advanced physics-informed backbone (Liu
et al., 2025). They offer a powerful alternative to traditional MLPs and have demonstrated
strong performance in several scientific machine learning tasks.

• Sequential, Non-Autoregressive Models: To highlight the specific advantage of PIANO’s
autoregressive nature, we compare against the most advanced sequential models.

– PINNsFormer is a Transformer-based framework designed specifically to capture
temporal dependencies (Zhao et al., 2024). Its key mechanism is the ”Pseudo Se-
quence Generator,” which transforms a point-wise input (x, t) into a short temporal
sequence, {[x, t], [x, t + ∆t], ...}, which is then processed by a multi-head attention
mechanism. While it processes information sequentially, its predictions at each time
step are made independently of the model’s own previous predictions, distinguishing
it from PIANO’s true autoregressive approach.

– PINNMamba utilizes a State Space Model (SSM) to serve as a “continuous-discrete
articulation,” aiming to resolve the mismatch between continuous PDEs and discrete
training points (Xu et al., 2025). It employs “sub-sequence modeling” and a con-
trastive alignment loss to combat the simplicity bias of neural networks and propagate
initial conditions. Like PINNsFormer, it is a sequential model, but it is not autoregres-
sive in the way PIANO is.

C.3 COMPLEXITY ANALYSIS

We provide a complexity analysis to position PIANO relative to its baselines in terms of compu-
tational and memory overhead, with model details summarized in Table 3. Standard MLP-based
PINNs serve as an efficient baseline, requiring approximately 1311 MiB of GPU memory. In con-
trast, advanced sequential models designed to capture temporal dependencies incur significantly
greater costs. PINNsFormer, based on a Transformer architecture, exhibits quadratic computational

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

and memory complexity with respect to sequence length M , i.e., O(M2), due to its self-attention
mechanism. This makes it inherently inefficient for long sequences and results in a memory foot-
print of around 2827 MiB, more than twice that of a standard PINN, along with nearly three times
the computational cost. Similarly, PINNMamba adopts a state-space architecture that theoretically
scales linearly as O(M), but in practice incurs a very high memory footprint of approximately
7899 MiB and nearly seven times the time per iteration of a standard PINN. This overhead stems
from its reliance on short sub-sequences (e.g., k = 7) and a complex sub-sequence contrastive
alignment loss. PIANO, while also a sequential model, is explicitly designed for efficient long-
range modeling. Like PINNMamba, it scales linearly with M in theory. However, it avoids the need
for sub-sequence processing and specialized losses. Instead, it processes the entire temporal rollout
as a single long sequence (e.g., M = 200 in our experiments) using a streamlined autoregressive
architecture. As shown in Table 3, this results in a substantially lower memory usage of approxi-
mately 800 MiB, which is lower than both PINNMamba and even the MLP-based PINN baseline.
While PIANO’s autoregressive nature introduces a modest increase in computational cost per it-
eration compared to MLPs, it remains comparable to other sequential baselines without incurring
their prohibitive memory overhead. Overall, PIANO achieves an effective balance between expres-
sive power, scalability, and resource efficiency, making it well suited for simulating long-horizon
dynamical systems.

C.4 HYPERPARAMETERS AND EXPERIMENTAL DETAILS

To ensure full reproducibility of our results, this section provides comprehensive information on the
evaluation metrices, experimental setup, training configurations, and specific hyperparameters used
for both our proposed model, PIANO, and all baseline models.

C.4.1 EXPERIMENTAL SETUP

All experiments were conducted on a workstation equipped with NVIDIA A100 GPUs with GPU
memory usage of ∼800MiB. Our codebase is implemented in PyTorch. For the PDE benchmark
tasks, we trained all models on a discretized spatio-temporal grid of 200 × 200 collocation points.
For evaluation and visualization, a distinct grid of 198 × 198 points was used. Although PIANO
does not involve significant sources of randomness that affect performance, experiments are repeated
with seeds 0 through 9 for multiple-run evaluations. For single-run experiments, seed 0 is used. We
provide the source code in the attached zip file with software libraries and their versions in the .toml
file. The source code will also be made public upon acceptance.

C.4.2 TRAINING CONFIGURATION

PIANO was trained for 100K iterations using the AdamW optimizer with a learning rate of 3×10−4

and a weight decay of 10−4. A cosine annealing learning rate scheduler was employed to gradually
reduce the learning rate over the course of training. To stabilize optimization, gradient norms were
clipped to a maximum of 1.0. Model weights were initialized using the Xavier uniform initialization
strategy, and the best-performing model (based on training loss) was checkpointed and used for
final evaluation. Throughout training, intermediate predictions were saved at regular intervals to
support qualitative analysis. All spatial and temporal derivatives required for the PDE loss were
approximated using second-order finite difference schemes applied to the model’s predicted solution
grid. When enabled, Weights & Biases (WandB) was used to log training losses, runtime, and
gradient diagnostics. All models were trained on a uniform spatiotemporal grid, with analytically
defined initial conditions specific to each PDE benchmark.

C.4.3 MODEL ARCHITECTURE DETAILS

Our proposed model, PIANO, is implemented as a State-Space Model (SSM) architecture. The key
components and hyperparameters are detailed below, followed by those of the primary baselines.

• PIANO (Ours): Our model, referred to as ‘ssm‘ in our experiments, is an autoregressive
state-space model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 3: Architectural hyperparameters for PIANO and baseline models used in the PDE bench-
marks.

Model Hyperparameter Value

PINN / FLS
Hidden Layers 4
Hidden Size 512
Total Parameters ∼527k
GPU Memory ∼1311MiB

QRes
Hidden Layers 4
Hidden Size 256
Total Parameters ∼397k

PINNsFormer

Sequence Length (k) 5
Time Step (∆t) 10−4

Number of Encoders/Decoders 1
Embedding Size 32
Attention Heads 2
Hidden Size 512
Total Parameters ∼454k
GPU Memory ∼2827MiB

PINNMamba

Sequence Length (k) 7
Time Step (∆t) 10−2

Number of Encoders 1
Embedding Size 32
Total Parameters ∼286k
GPU Memory ∼7899MiB

PIANO (Ours)
State Dimension (k) 256
Total Parameters ∼330k
GPU Memory ∼800MiB

– Input: At each time step t, the input vector is a concatenation of the spatial coordinate
xt, the temporal coordinate tt, and the model’s own prediction from the previous step,
ut−1.

– Embedding Network: A linear layer maps the concatenated input vector to a hidden
state dimension of 256.

– State Transition Network: The core of our model consists of learnable matrices (A,
B, C, D) that govern the state-space dynamics. The hidden state dimension is 256, and
we use a SiLU (silu) activation function with Layer Normalization for stability.

– PDE Probe: A 2-layer MLP with a hidden dimension of 256 and a SiLU activation
decodes the hidden state into the final solution at each time step.

Table 3 summarizes the architectural hyperparameters for PIANO and the primary baseline models
to ensure a fair comparison in terms of model capacity. We aimed to keep the total number of
trainable parameters roughly comparable across the different architectures.

C.4.4 EVALUATION METRICS

To quantitatively assess the accuracy of our model and the baselines, we employ two primary evalu-
ation metrics: the relative Mean Absolute Error (rMAE) and the relative Root Mean Squared Error
(rRMSE). These metrics are standard and widely adopted throughout the PINN research literature,
ensuring our results are comparable with prior and future work (Xu et al., 2025; Wu et al., 2024;
Zhao et al., 2024).

We use relative error metrics instead of absolute ones (e.g., MAE or RMSE) because they provide
a scale-invariant measure of performance. Absolute errors are dependent on the magnitude of the
PDE’s solution; a physically correct model for a high-magnitude field (like pressure) could have
a large absolute error, while a poor model for a normalized field (like concentration) could have

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 4: Mean ± standard deviation of rMAE over 10 runs of PIANO and the second-best baseline
for each PDE. PIANO consistently achieves both lower error and lower variance.

Model Wave Reaction Convection Heat

Second best 0.0452± 0.0045 0.0183± 0.0016 0.0395± 0.0032 0.0821± 0.0061
PIANO (ours) 0.0057± 0.0004 0.0001± 0.0000 0.0032± 0.0003 0.0000± 0.0000

Table 5: Mean± standard deviation of rRMSE over 10 runs of PIANO and the second-best baseline
for each PDE. PIANO consistently achieves both lower error and lower variance.

Model Wave Reaction Convection Heat

Second best 0.0487± 0.0048 0.0246± 0.0021 0.0432± 0.0035 0.0894± 0.0065
PIANO (ours) 0.0059± 0.0005 0.0008± 0.0001 0.0104± 0.0007 0.0002± 0.0000

a small one. Relative errors normalize the error by the magnitude of the true solution, providing
a dimensionless percentage that is directly comparable across different PDEs, scales, and physical
units. This is essential for a robust and generalizable evaluation.

Given a set of N test points, the model’s prediction û(xn, tn), and the ground truth analytical solu-
tion u(xn, tn), the metrics are formulated as follows:

rMAE =

∑N
n=1 |û(xn, tn)− u(xn, tn)|∑N

n=1 |u(xn, tn)|
(23)

rRMSE =

√√√√∑N
n=1 |û(xn, tn)− u(xn, tn)|2∑N

n=1 |u(xn, tn)|2
(24)

C.5 SIGNIFICANCE ANALYSIS

Tables 4 and 5 present the mean and standard deviation of relative errors across 10 independent
runs on the PDE benchmark. In both rMAE and rRMSE, PIANO consistently achieves substantially
lower error and variance compared to the second-best baseline. A two-tailed t-test with p < 0.05
confirms that the improvements are statistically significant across all PDEs, establishing PIANO as
both more accurate and more stable.

C.6 ADDITIONAL QUALITATIVE RESULTS

C.6.1 TRAINING DYNAMICS

To provide further insight into the autoregressive behavior of PIANO, we visualize its training dy-
namics across different PDEs. Figures 7–10 show spacetime predictions u(x, t) at various stages of
training (5%, 25%, 50%, and 100%), illustrating how the solution progressively improves. These
visualizations highlight how the model gradually reconstructs the full trajectory by propagating the
known initial condition forward in time using its own predictions.

For the transport-dominated problems like the Convection equation (main paper Figure 3) highlight
PIANO’s ability to preserve sharp wavefronts over long horizons. This demonstrates the model’s
robustness in avoiding numerical diffusion, an issue that often affects other PINN-based methods.

The Wave equation (Figure 7) requires learning second-order oscillatory dynamics, making conver-
gence more gradual. Early in training, the model underfits both amplitude and phase. However,
by the end of training, PIANO successfully recovers the full oscillatory structure, without suffering
from phase drift or artificial dispersion. The solution is slowly and correctly propagated from the
initial stages to the later.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

For the Heat equation (Figure 9), PIANO converges extremely rapidly. As a diffusion-dominated
PDE, the solution is smooth and stable, allowing the model to reach near-zero error by 50% of
training.

The Reaction equation, shown in Figures 8 and 10, provides a particularly informative case for
analyzing autoregressive propagation. Although convergence is still relatively fast, we include an
extended grid of training snapshots to illustrate how the model handles the nonlinearity and ex-
ponential growth in the solution. Early predictions accurately reconstruct the region near t = 0,
where the initial condition serves as an anchor. As training progresses, the predicted solution propa-
gates deeper into the temporal domain, revealing how PIANO gradually builds up the full dynamics
through stable, recursive conditioning. This dense visualization helps expose the internal mechanics
of the autoregressive learning process.

Overall, these qualitative results confirm that PIANO maintains stable and physically consistent
rollout behavior across a wide range of PDE types, from diffusive to oscillatory, and from linear to
nonlinear dynamics.

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

x

5% Training Progress
rRMSE: 0.452

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

25% Training Progress
rRMSE: 0.253

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

50% Training Progress
rRMSE: 0.029

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

100% Training Progress
rRMSE: 0.005

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0
Exact Solution u(x,t)

1.0

0.5

0.0

0.5

1.0

Figure 7: Training progression of PIANO on the wave equation. Each subplot shows the pre-
dicted spacetime solution u(x, t) at different training stages, with the exact solution on the far right.
The model progressively learns the oscillatory structure of the solution, despite the complexity of
second-order dynamics. Accurate predictions emerge early near the initial condition and gradually
propagate forward in time through the autoregressive rollout. By 100% progress (rRMSE: 0.005),
the model closely matches the exact solution across the domain.

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

x

5% Training Progress
rRMSE: 0.108

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

25% Training Progress
rRMSE: 0.023

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

50% Training Progress
rRMSE: 0.005

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6

100% Training Progress
rRMSE: 0.001

0.0 0.2 0.4 0.6 0.8 1.0
t

0

2

4

6
Exact Solution u(x,t)

0.2

0.4

0.6

0.8

Figure 8: Training progression of PIANO on a reaction equation. Each subplot shows the predicted
spacetime solution u(x, t) at different training stages, with the exact solution on the far right. At
5% progress, the model captures the coarse global structure but underestimates the peak and shows
boundary errors. As training proceeds, accurate predictions emerge first near the initial state and
gradually propagate forward in time through the autoregressive rollout. By 100% progress (rRMSE:
0.0008), the model closely matches the exact solution. Extended dynamics are shown in Figure 10.

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

x

5% Training Progress
rRMSE: 0.023

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

25% Training Progress
rRMSE: 0.006

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

50% Training Progress
rRMSE: 0.001

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0

100% Training Progress
rRMSE: 0.000

0.00 0.25 0.50 0.75 1.00
t

0.0

0.2

0.4

0.6

0.8

1.0
Exact Solution u(x,t)

0.0

0.2

0.4

0.6

0.8

Figure 9: Training progression of PIANO on the heat equation. Each subplot shows the predicted
spacetime solution u(x, t) at different training stages, with the exact solution on the far right. Due
to the diffusive nature of the equation, the model converges rapidly, capturing the correct solution
structure early in training. Accurate dynamics propagate smoothly from the initial condition, with
near-perfect agreement reached by 50% progress (rRMSE: 0.001).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6
x

0.0% Training Progress
rRMSE: 0.468

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

0.3% Training Progress
rRMSE: 0.329

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

0.3% Training Progress
rRMSE: 0.340

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

0.4% Training Progress
rRMSE: 0.358

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

0.6% Training Progress
rRMSE: 0.385

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

8.0% Training Progress
rRMSE: 0.108

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

20.0% Training Progress
rRMSE: 0.049

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

46.0% Training Progress
rRMSE: 0.013

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

74.0% Training Progress
rRMSE: 0.002

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

100.0% Training Progress
rRMSE: 0.001

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

Best Model
rRMSE: 0.001

0.00 0.25 0.50 0.75 1.00
t

0

2

4

6

x

Exact Solution u(x,t)

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Figure 10: Extended training dynamics of PIANO on the reaction equation. This snapshot grid
shows how accurate solution structures first emerge near the initial condition and progressively
propagate forward in time as training advances. The gradual refinement across training stages il-
lustrates the model’s ability to learn stable temporal evolution through its autoregressive rollout.

C.6.2 TEMPORAL PROFILE

To further analyze the temporal behavior learned by PIANO, we visualize in Figures 11 and 12 the
predicted time profiles u(xi, t) across several fixed spatial locations xi, at different stages of train-
ing for the Wave and Convection equations, respectively. Each subplot corresponds to a particular
training progress percentage, with colored curves representing different spatial points.

For the Wave equation, the model initially struggles to capture the high-frequency oscillations, ex-
hibiting distorted amplitudes and poor phase alignment. As training progresses, PIANO gradually
learns to reconstruct both the amplitude and frequency content of the wave. Notably, improvements

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

emerge near the initial time and propagate forward, consistent with PIANO’s autoregressive rollout
structure. This recursive conditioning enables the model to build the solution step by step, avoid-
ing phase drift and dispersion commonly seen in non-autoregressive methods. By 100% training,
the predicted oscillations closely match the ground truth in amplitude, frequency, and phase across
all xi, indicating that PIANO has successfully learned the global wave dynamics in a stable and
physically consistent manner.

The Convection equation presents a different challenge due to its transport-dominated nature. In
the early stages of training, predictions are only accurate near the initial time, while further regions
suffer from amplitude decay and misaligned phase. However, as training advances, PIANO progres-
sively learns to propagate the sharp waveform forward in time. By conditioning each step on its own
prior predictions, the model gradually sharpens the solution and aligns the oscillatory phase across
all spatial locations. By the final stages of training, PIANO maintains the structure and timing of the
waveform without numerical diffusion, demonstrating its robustness in capturing transport dynamics
through stable temporal propagation.

These visualizations confirm that PIANO not only handles oscillatory PDEs like the Wave equation
but also excels in transport-heavy regimes like Convection, leveraging its autoregressive architecture
to deliver stable and accurate long-term predictions.

0.0 0.5 1.0
t

0.0

0.5

1.0

u(
x,

 t)

Progress: 0.33%
x=0.000
x=0.005
x=0.010
x=0.015

0.0 0.5 1.0
t

0.5

0.0

0.5

1.0

u(
x,

 t)

Progress: 0.67%

0.0 0.5 1.0
t

0.5

0.0

0.5

1.0

u(
x,

 t)

Progress: 2.00%

0.0 0.5 1.0
t

0

1

u(
x,

 t)

Progress: 20.00%

0.0 0.5 1.0
t

0

1

u(
x,

 t)

Progress: 26.67%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 33.33%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 60.00%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 93.33%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 100.00%

Figure 11: Temporal profile of the Wave equation at various training stages. Each subplot shows
the predicted time evolution u(xi, t) for multiple spatial points xi, plotted as separate curves. Early
in training (top row), the model captures only coarse low-frequency behavior and underestimates
amplitude. As training progresses, PIANO improves its ability to preserve the phase and frequency
content of oscillations across all spatial locations. This gradual sharpening of periodic structure
demonstrates the autoregressive nature of the model: accurate dynamics emerge near the initial
time and propagate forward as the model recursively builds on its own predictions. By the final
stages, the predicted waveforms closely match in both phase and amplitude across the entire domain,
confirming stable temporal learning.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0.0 0.5 1.0
t

0.0

0.5

1.0

u(
x,

 t)

Progress: 0.50%
x=0.00
x=0.03
x=0.06
x=0.09

0.0 0.5 1.0
t

0.5

0.0

0.5

1.0

u(
x,

 t)

Progress: 1.50%

0.0 0.5 1.0
t

0.5

0.0

0.5

1.0

u(
x,

 t)

Progress: 15.00%

0.0 0.5 1.0
t

0

1

u(
x,

 t)

Progress: 20.00%

0.0 0.5 1.0
t

0

1

u(
x,

 t)

Progress: 25.00%

0.0 0.5 1.0
t

0

1

u(
x,

 t)

Progress: 45.00%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 70.00%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 75.00%

0.0 0.5 1.0
t

1

0

1

u(
x,

 t)

Progress: 100.00%

Figure 12: Temporal profiles of the Convection equation at different training stages. Each subplot
shows the predicted evolution u(xi, t) over time for several fixed spatial locations xi. Early predic-
tions are accurate only near the initial time, but fail to preserve the wave shape across the domain.
As training progresses, PIANO gradually learns to propagate the waveform forward in time, main-
taining sharpness and phase alignment. By 100% training progress, the model stably reproduces the
full dynamics, demonstrating robust temporal consistency under transport-dominated behavior.

C.7 GUIDANCE ON HYPERPARAMETERS AND ABLATION

Guidance on hyperparameters The architectural hyperparameters in PIANO, namely the state
dimension (k) and the number of temporal rollout steps (M), are standard and do not introduce novel
tuning complexities. The value for M is determined by the temporal resolution of the training grid
(e.g., for a 200× 200 spatio-temporal grid, M = 200). To provide clear guidance for practitioners,
we perform an empirical sensitivity analysis on these key parameters. We investigate the impact
of the state dimension and the training grid resolution on the model’s accuracy for the Reaction
equation.

The results are presented in Table 6 and Table 7. We observe two clear trends:

• Increasing the state dimension from 32 to 256 substantially reduces prediction error,
demonstrating the benefit of higher model capacity for capturing the underlying dynam-
ics of the PDE.

• Increasing the training grid resolution from 50×50 to 200×200 consistently improves per-
formance, as a denser sampling of collocation points provides stronger and more complete
physical constraints during training.

Based on these findings, we used a state dimension of k = 256 and a grid size of 200× 200 for our
main experiments to ensure the highest accuracy. We do not go further as the error is close to zero.

Ablation Studies We perform ablation studies on the 1D Reaction equation to evaluate the con-
tributions of PIANO’s two key components: its high-order finite difference scheme for computing

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Table 6: Sensitivity analysis of PIANO with respect to the state dimension (k) for the Reaction
equation. The model is trained on a 200×200 grid. Errors decrease as the state dimension increases.

State Dimension (k) rMAE (↓) rRMSE (↓)
32 0.0145 0.0284
64 0.0025 0.0047
128 0.0016 0.0038
256 0.0001 0.0008

Table 7: Sensitivity analysis of PIANO with respect to the training grid resolution for the Reaction
equation. The model uses a fixed state dimension of k = 256. Performance improves with a finer
grid.

Grid Size rMAE (↓) rRMSE (↓)
50× 50 0.0017 0.0047
100× 100 0.0005 0.0009
200× 200 0.0001 0.0008

derivatives and the autoregressive architecture. All reported results are averaged over ten indepen-
dent runs to ensure statistical reliability. Table 8 summarizes the findings.

C.7.1 FINITE DIFFERENCE SCHEME

PIANO employs finite differences (FD) instead of automatic differentiation (AD) to approximate
PDE derivatives. This choice provides stable gradients, lower memory requirements, and allows
training with modern first-order optimizers such as AdamW (Kingma & Ba, 2014). In contrast,
AD-based PINNs typically rely on quasi-second-order optimizers such as L-BFGS, which are less
scalable and poorly suited for stochastic mini-batch training.

To assess the importance of derivative precision, we compare a second-order FD scheme against a
first-order version. The second-order scheme achieves an rRMSE of 0.0008, while the first-order
scheme yields 0.0174. This difference is statistically significant (two-tailed t-test, p < 0.05), demon-
strating that higher-order derivative approximations are essential for accurate physics-informed
training. Notably, even the first-order version of PIANO performs better than most baselines in
Table 1, underscoring the robustness of the approach.

C.7.2 AUTOREGRESSIVE BACKBONE

Using the validated second-order FD scheme, we now examine PIANO’s autoregressive architec-
ture. A non-autoregressive baseline (“PIANO (Non-AR)”), which functions like a standard PINN,
performs poorly with an rRMSE of 0.8010, confirming that autoregressive formulation is critical. In-
troducing progressively stronger recurrent backbones significantly improves performance: an MLP-
based variant reaches 0.0502, a GRU-based model achieves 0.0061, and the full state-space archi-
tecture attains the lowest error of 0.0008. All improvements are statistically significant (p < 0.05).

These results demonstrate that PIANO’s autoregressive design is fundamental to its accuracy and
stability. Even a basic autoregressive MLP variant dramatically outperforms the non-autoregressive
baseline, and the full state-space backbone achieves near-zero error, validating its role as the most
effective temporal modeling choice.

D WEATHER FORECASTING

D.1 EXTENDED SETUP AND IMPLEMENTATION

Background Weather forecasting has traditionally been dominated by numerical simulations of
complex atmospheric physics. Although powerful, these methods are computationally demanding.
Recently, deep learning models have emerged as a promising alternative, yet they often function

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Table 8: Ablation study on the 1D Reaction equation (mean over ten runs). Results isolate the
contributions of PIANO’s autoregressive backbone and the precision of the finite difference scheme

Method rRMSE (↓)
Finite Difference Schemes

First Order Accurate 0.0174 ± 0.0195
Second Order Accurate 0.0008 ± 0.0001

Autoregressive Backbone
PIANO (Non-AR) 0.8010± 0.1293
PIANO (MLP) 0.0502 ± 0.0017
PIANO (GRU) 0.0061 ± 0.0009
PIANO (SSM) 0.0008 ± 0.0001

as a “black-box” that neglect the underlying physical principles. A more robust approach involves
integrating physical laws with deep learning approaches. ClimODE (Verma et al., 2024) is a recent
model that successfully applies the physics-informed strategy to weather forecasting. It is built on
a core principle from statistical mechanics: weather evolution can be described as a continuous-
time advection process, which models the spatial movement and redistribution of quantities like
temperature and pressure. By framing the problem as a neural Ordinary Differential Equation (ODE)
that adheres to the advection equation, ClimODE enforces value-conserving dynamics, a strong
inductive bias that leads to more stable and physically plausible forecasts. With PIANO, we build
on the ClimODE framework by introducing an autoregressive training scheme to further enhance
predictive accuracy.

Setup Weather forecasting involves predicting the evolution of key atmospheric variables such as
atmospheric temperature (t), surface temperature (t2m), horizontal wind components (u10, v10),
and geopotential (z). We adopt the physics-informed framework of ClimODE (Verma et al., 2024),
which models weather evolution as a continuous-time process governed by a system of neural ODEs.
This system jointly evolves the weather state, denoted by u(t), and a corresponding velocity field,
v(t).

The ODE system has two components. The first governs the rate of change of the weather state, u̇,
and is constrained by the physical advection equation, which ensures that quantities are transported
and conserved according to physical principles. The second component governs the rate of change
of the velocity field, v̇, which is learned by a neural network, fθ. This network takes as input the
current state u(τ), its spatial gradient ∇u(τ), the velocity v(τ), and spatiotemporal embeddings ψ
to determine the acceleration of the flow.

In PIANO, we use this same physics-informed ODE structure but introduce an autoregressive train-
ing strategy with teacher forcing to reduce error accumulation. Instead of forecasting the entire
trajectory in one step, the model is conditioned on the ground truth from the previous time point.
The revised forecast equation for a single time step from ti to tj is given by:[

û(tj)
v̂(tj)

]
=

[
yi
v(ti)

]
+

∫ tj

ti

[
−∇ · (û(τ)v̂(τ))

fθ(û(τ),∇û(τ), v̂(τ), ψ)

]
dτ,

where yi denotes the observed ground truth state at time ti, v(ti) is the inferred velocity at that time,
and ∇· is the spatial divergence operator.

We evaluate PIANO on the ERA5 dataset Rasp et al. (2020), a benchmark for global weather
forecasting providing 6-hourly reanalysis data at 5.625◦ resolution for five variables: t, t2m,
u10, v10, and z. We compare against several state-of-the-art baselines including Neural ODE
(NODE) Verma et al. (2024), FCN Pathak et al. (2022), ClimaX Nguyen et al. (2023), and the orig-
inal ClimODE Verma et al. (2024). As a reference, we also report results for the gold-standard Inte-
grated Forecasting System (IFS) ECMWF (2023) which is one of the most advanced global physics
simulation model and has high computational demands. Performance is evaluated using two stan-
dard metrics: root mean square error (RMSE) and anomaly correlation coefficient (ACC). RMSE
quantifies the absolute prediction error, while ACC measures the correlation between predicted and

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

observed anomalies, capturing the directional accuracy. Both metrics are latitude-weighted to reflect
the spherical geometry of the Earth.

Implementation Our experimental framework directly mirrors the setup used by ClimODE to
ensure a fair comparison. The primary task is forecasting future atmospheric states based on an
initial state, with lead times ranging from 6 to 36 hours. The model is implemented in PyTorch.
The underlying system of ODEs is solved using the Euler method with a time resolution of 1 hour,
managed by the ‘torchdiffeq‘ library. All experiments are conducted on a single NVIDIA A100
GPU with 40GB of memory. The model is trained for 300 epochs using a batch size of 8. The
learning rate is managed by a Cosine Annealing scheduler.

Evaluation Metrics We assess model performance using two standard meteorological metrics:
latitude-weighted Root Mean Squared Error (RMSE) and Anomaly Correlation Coefficient (ACC),
computed after de-normalizing the predictions.

RMSE =
1

N

N∑
t=1

[
1

HW

H∑
h=1

W∑
w=1

α(h)(ythw − uthw)2
]1/2

(25)

ACC =

∑
t,h,w α(h)ỹthwũthw√∑

t,h,w α(h)ỹ
2
thw

∑
t,h,w α(h)ũ

2
thw

(26)

Here, ythw and uthw denote the ground truth and model prediction at time t, latitude index h, and
longitude indexw, respectively. The term α(h) = cos(h)

/
1
H

∑
h′ cos(h′) represents the normalized

latitude weight, accounting for the area distortion in latitude-longitude grids due to Earth’s curvature.

The anomalies are computed by subtracting the empirical mean:
ỹthw = ythw − C, ũthw = uthw − C,

where C = 1
N

∑
t ythw.

ACC measures the correlation between predicted and true anomalies. Higher ACC indicates better
skill in capturing deviations from climatological means. Latitude-weighted RMSE evaluates the
spatial accuracy of forecasts while correcting for latitudinal area distortion. Lower RMSE and higher
ACC both indicate better forecasting performance.

Dataset and Preprocessing We use the ERA5 dataset, as preprocessed for the WeatherBench
benchmark. The data is provided at a 5.625° spatial resolution with a 6-hour time increment. Our
experiments focus on five key variables: 2-meter temperature (t2m), temperature at 850 hPa (t),
geopotential at 500 hPa (z), and the 10-meter U and V wind components (u10, v10). All variables
are normalized to a [0, 1] range using min-max scaling. The dataset is partitioned by year, with
2006-2015 used for training, 2016 for validation, and 2017-2018 for testing.

D.2 RESULTS

We evaluate PIANO’s ability to forecast global weather variables using the ERA5 dataset. Figure 13
provides a visual analysis of PIANO’s probabilistic predictions (extended from the ClimODE frame-
work) at a fixed forecast time (2017-01-01T12:00) across five key atmospheric variables: geopoten-
tial height at 500 hPa (z), temperature at 850 hPa (t), 2-meter surface temperature (t2m), and the
10-meter U and V wind components (u10, v10). Each row corresponds to a variable, while the
columns show the predicted mean (µ), upper bound (µ + σ), predicted standard deviation (σ), and
pointwise error. These results demonstrate that PIANO not only captures the spatial structure of each
variable, but also quantifies predictive uncertainty effectively, with visually low error and consistent
uncertainty estimates across regions.

All uncertainty visualizations (e.g., predicted σ maps) and uncertainty-based metrics (e.g., CRPS)
shown in this paper are taken from the ClimODE’s probabilistic emission model, specifically, the
Gaussian observation model

yk(x, t) ∼ N
(
uk(x, t) + µk(x, t), σ

2
k(x, t)

)
,

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 13: Visualization of PIANO’s forecasting capabilities for five atmospheric state variables on
2017-01-01 at 12:00. Each row corresponds to a different variable: geopotential (z), atmospheric
temperature (t), 2-meter surface temperature (t2m), and the 10-meter U-wind (u10) and V-wind
(v10) components. The columns show (from left to right): the predicted mean µ, upper bound µ+σ,
predicted standard deviation σ, and prediction error (difference from ground truth). PIANO captures
spatial structure and uncertainty across variables, with low errors. The errors are more pronounced
where PIANO already suggests uncertainty (σ).

with learnable bias µk and variance σ2
k trained via negative log-likelihood. As we extend ClimODE

with PIANO the probabilistic emission model is naturally extended.

Quantitative results are summarized in Table 9, where we report latitude-weighted RMSE and
Anomaly Correlation Coefficient (ACC) at multiple forecast lead times, comparing PIANO against
several strong neural and numerical baselines, including NODE, ClimaX, FCN, IFS, and ClimODE.
Across all variables and lead times, PIANO achieves state-of-the-art performance, often outperform-
ing neural baselines by a significant margin and in some cases approaching the accuracy of IFS. The
model shows particularly strong gains in mid-range horizons (12–24 hours), maintaining high cor-
relation and low error while producing calibrated uncertainty estimates. These results highlight
the benefit of PIANO’s autoregressive, physics-informed structure for long-range, high-resolution
weather modeling.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Table 9: Latitude weighted RMSE(↓) and Anomaly Correlation Coefficient (ACC(↑)) comparison
with baselines on global forecasting on the ERA5 dataset. PIANO generally outperforms all the
neural baselines.

RMSE(↓) ACC(↑)
Variable Lead-Time (hrs) NODE ClimaX FCN IFS ClimODE PIANO (Ours) NODE ClimaX FCN IFS ClimODE PIANO (Ours)

z

6 300.64 247.5 149.4 26.9 102.9± 9.3 69.07± 4.99 0.96 0.97 0.99 1.00 0.99 1.00
12 460.23 265.4 217.8 (N/A) 134.8± 12.3 109.07± 8.30 0.88 0.96 0.99 (N/A) 0.99 0.99
18 627.65 319.8 275.0 (N/A) 162.7± 14.4 145.99± 11.95 0.79 0.95 0.99 (N/A) 0.98 0.99
24 877.82 364.9 333.0 51.0 193.4± 16.3 185.22± 15.91 0.70 0.93 0.99 1.00 0.98 0.98
36 1028.20 455.0 449.0 (N/A) 259.6± 22.3 263.44± 22.96 0.55 0.89 0.99 (N/A) 0.96 0.97

t

6 1.82 1.64 1.18 0.69 1.16± 0.06 0.92± 0.04 0.94 0.94 0.99 0.99 0.97 0.98
12 2.32 1.77 1.47 (N/A) 1.32± 0.13 1.16± 0.05 0.85 0.93 0.99 (N/A) 0.96 0.97
18 2.93 1.93 1.65 (N/A) 1.47± 0.16 1.32± 0.06 0.77 0.92 0.99 (N/A) 0.96 0.96
24 3.35 2.17 1.83 0.87 1.55± 0.18 1.48± 0.07 0.72 0.90 0.99 0.99 0.95 0.96
36 4.13 2.49 2.21 (N/A) 1.75± 0.26 1.76± 0.09 0.58 0.86 0.99 (N/A) 0.94 0.94

t2m

6 2.72 2.02 1.28 0.97 1.21± 0.09 1.01± 0.05 0.82 0.92 0.99 0.99 0.97 0.98
12 3.16 2.26 1.48 (N/A) 1.45± 0.10 1.20± 0.09 0.68 0.90 0.99 (N/A) 0.96 0.97
18 3.45 2.45 1.61 (N/A) 1.43± 0.09 1.29± 0.08 0.69 0.88 0.99 (N/A) 0.96 0.97
24 3.86 2.37 1.68 1.02 1.40± 0.09 1.42± 0.10 0.79 0.89 0.99 0.99 0.96 0.96
36 4.17 2.87 1.90 (N/A) 1.70± 0.15 1.68± 0.15 0.49 0.83 0.99 (N/A) 0.94 0.94

u10

6 2.30 1.58 1.47 0.80 1.41± 0.07 1.24± 0.06 0.85 0.92 0.95 0.98 0.91 0.95
12 3.13 1.96 1.89 (N/A) 1.81± 0.09 1.53± 0.07 0.70 0.88 0.93 (N/A) 0.89 0.93
18 3.41 2.24 2.05 (N/A) 1.97± 0.11 1.74± 0.07 0.58 0.84 0.91 (N/A) 0.88 0.91
24 4.10 2.49 2.33 1.11 2.01± 0.10 1.96± 0.09 0.50 0.80 0.89 0.97 0.87 0.88
36 4.68 2.98 2.87 (N/A) 2.25± 0.18 2.35± 0.12 0.35 0.69 0.85 (N/A) 0.83 0.83

v10

6 2.58 1.60 1.54 0.94 1.53± 0.08 1.30± 0.06 0.81 0.92 0.94 0.98 0.92 0.95
12 3.19 1.97 1.81 (N/A) 1.81± 0.12 1.58± 0.07 0.61 0.88 0.91 (N/A) 0.89 0.92
18 3.58 2.26 2.11 (N/A) 1.96± 0.16 1.79± 0.08 0.46 0.83 0.86 (N/A) 0.88 0.90
24 4.07 2.48 2.39 1.33 2.04± 0.10 2.01± 0.09 0.35 0.80 0.83 0.97 0.86 0.88
36 4.52 2.98 2.95 (N/A) 2.29± 0.24 2.40± 0.13 0.29 0.69 0.75 (N/A) 0.83 0.82

E USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language model (LLM) services such as ChatGPT only to polish small parts of the
paper in terms of language and readability. LLMs were not used for research ideation, methodol-
ogy design, experimental implementation, data analysis, or the creation of figures and tables. All
technical content, results, and conclusions are solely the work of the authors. The authors take full
responsibility for the final manuscript.

30

	Introduction
	Related Work
	Theoretically Analyzing Temporal Instability in PINNs
	Preliminaries
	Uncontrolled Error Propagation in PINNs

	Methodology
	Architecture
	Physics-Informed Experience Learning

	Experiments
	PDE Benchmarks
	Global Weather Forecasting

	Conclusion
	Proofs and Extended Theoretical Analysis
	Proofs
	Existence, Uniqueness and Regularity of Solutions for Evolution Operators
	Semigroup Setup and Mild Solutions
	Regularity and Temporal Smoothness
	Evolution Operator Approximation

	Training Algorithm
	Additional Details on PDE Benchmark Experiment
	PDE Setup
	Baselines
	Complexity Analysis
	Hyperparameters and Experimental Details
	Experimental Setup
	Training Configuration
	Model Architecture Details
	Evaluation Metrics

	Significance Analysis
	Additional Qualitative Results
	Training Dynamics
	Temporal Profile

	Guidance on Hyperparameters and Ablation
	Finite Difference Scheme
	Autoregressive Backbone

	Weather Forecasting
	Extended Setup and Implementation
	Results

	Use of Large Language Models (LLMs)

