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ABSTRACT

A fundamental dichotomy between the discounted and average return has long
existed in the field of deep reinforcement learning (DRL). Algorithms based on
the average return assume the existence of stationary state distribution and often
struggle in non-stationary or episodic settings. In contrast, algorithms optimizing
the discounted return are well-suited for non-stationary tasks but may learn subop-
timal policies in long-term stationary settings due to the inherent bias introduced
by the discount factor. This forces practitioners to select an objective based on the
specific environment, thereby limiting the development of general and robust DRL
algorithms. We introduce the k-sliding-window return, a novel objective that
bridges these two criteria. We instantiate this concept with a practical on-policy
algorithm, k-sliding-window PPO (ESW-PPO). Besides, we provide theoretical
analysis showing that the loss of our objective converges to that of the average
return while maintaining a bounded bias relative to the discounted return. We vali-
date our claims through experiments on a suite of MuJoCo continuous control tasks.
The results demonstrate that kKSW-PPO achieves performance competitive with
average-return PPO in stationary environments, while matching the performance
of its discounted-return counterpart in non-stationary settings. Our results establish
the k-sliding-window return as a unified objective that eliminates the need for an a
priori choice between discounting and averaging, which we hope to inspire the de-
velopment of more robust and general-purpose DRL algorithms. Code is available
athttps://anonymous.4open.science/r/kSW-PPO-1E7Cl

1 INTRODUCTION

Deep Reinforcement Learning (DRL) has achieved remarkable success in a wide range of applications,
such as gaming (Perolat et al.| (2022)); Q1 et al.| (2023)); L1 et al.| (2025)), combinatorial optimization
(Berto et al.[(2025); Kallestad et al.|(2023))), recommendation systems (Zhao et al.|(2021)); |Afsar et al.
(2022)), and robotics (Franceschetti et al.| (2021); |[Raffin et al.| (2022))). In these applications, the
environment is typically modeled as a Markov Decision Process (MDP), where the goal is to find
an optimal policy that maximizes the total return. However, to ensure training stability, surrogate
objectives are commonly employed instead of directly optimizing the total return. The most prevalent
objectives are the discounted return Bellman| (1966) and the average return [Blackwell| (1962).

However, these two objectives each possess distinct strengths and weaknesses, which leads to a
fundamental performance dichotomy. On one hand, the discounted return is widely applicable
because its well-definedness does not rely on any special assumptions about the environment. Yet, the
introduction of the discount factor y inherently biases the objective towards short-term performance,
which can result in suboptimal policies for long-term stationary tasks (Zhang & Ross|(2021)). On the
other hand, the average return is specifically designed for long-term settings. A critical limitation,
however, is its theoretical reliance on the existence of a stationary state distribution induced by a
policy. This assumption is often violated in practical scenarios, such as episodic tasks or environments
without a strong mixing property, which leads to poor algorithmic performance.

We empirically illustrate this dichotomy and trace its root cause to the underlying environment
structure. Figures[I[(a) analyzes the state visitation patterns of a near-optimal policy in two MuJoCo
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Figure 1: Performance dichotomy between average and discounted return. Each plot in (a) shows the
Euclidean distance from the initial state, ||s; — So||, as a function of the time step ¢ within a trajectory
sampled from a near-optimal policy. Plots in (b) confirm the performance dichotomy.

environments: Swimmer and Reacher. The clear periodicity in Swimmer indicates a stationary
state distribution, while the aperiodic, divergent pattern in Reacher signifies a non-stationary one.
As a direct consequence, Figure[I[b) confirms that the performance of the two objectives diverges
based on this structure: average-return PPO excels in the stationary Swimmer environment, whereas
discounted-return PPO is superior in the non-stationary Reacher.

Consequently, practitioners face a difficult choice: the best objective depends on the environment,
which is often unknown a priori. This requirement for environment-specific tuning limits the
robustness and generality of DRL algorithms. This motivates our central research question:

Is it possible to design a single unified objective that consistently delivers strong performance in
both stationary and non-stationary environments?

To address this question, we propose the k-sliding-window return, a unified objective that synthesizes
the advantages of both objectives. It is defined as the undiscounted sum of rewards within a k-
step window that slides along a potentially infinite-horizon trajectory. This design offers a distinct
advantage: unlike the discounted return, its lack of discounting prevents the introduction of bias in
stationary tasks; unlike the average return, it does not rely on the existence of a stationary distribution.
We theoretically validate these benefits. First, we establish an upper bound on the loss difference
relative to the discounted return. We show this bound is minimized when & is set to 1/(1—+). Second,
we prove that the loss difference relative to the average return shrinks as the policy converges. These
theoretical strengths translate into practice: experiments on MuJoCo show that our single objective is
robust and performs competitively across both stationary and non-stationary environments, which
demonstrates its superiority as a general-purpose objective.

Our work makes the following key contributions:

(1) We introduce the k-sliding-window return, a novel and unified objective that bridges the gap
between discounted and average return in on-policy RL. Based on this, we develop kKSW-PPO, a
practical algorithm that is simple to implement yet effectively adaptable to diverse environments.

(2) We establish a firm theoretical foundation, which proves that the loss derived from our objective
converges to that of the average return as the policy improves, while simultaneously maintaining
a bounded difference from the discounted return. This provides the theoretical justification for a
single objective that performs robustly in both stationary and non-stationary regimes.

(3) We demonstrate empirically that kSW-PPO effectively unifies performance across environments.
It seamlessly combines the strengths of both approaches: it achieves state-of-the-art performance
comparable to average-return PPO in stationary environments, while simultaneously maintaining
robust performance rivaling discounted-return PPO in non-stationary environments.

2 RELATED WORKS

The optimization objective is a cornerstone of RL, fundamentally shaping an agent’s behavior. In
infinite-horizon settings, the total return is an ideal but often intractable objective. Consequently,
the field has largely converged on two surrogate objectives: the discounted return and the average
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return. The relationship between these objectives, their theoretical properties, and their empirical
performance have been subjects of enduring research interest.

The discounted return remains the most widely adopted objective, prized for its mathematical
tractability and general applicability. A substantial body of work is dedicated to understanding the
empirical impact of the discount factor, ~. It has been shown to act as a form of Lo regularization
on the value function (Amit et al.| (2020)), and smaller values of « can lead to better policies on
smaller datasets in offline RL (Hu et al.|(2022))). A second thread of research seeks to understand
and overcome the training instability that arises as v — 1. The fragmentation of the policy’s loss
landscape (Wang et al.|(2023)) and the existence of state cycles in the environment (Gao et al.| (2022))
have been identified as significant sources of this optimization difficulty. Several approaches have
been proposed to mitigate this instability. For instance, Grand-Clément & Petrik|(2023)) leverage
the Blackwell optimality criterion to theoretically derive an optimal range for . Kim et al.|(2022)
propose a novel method that adjusts v based on environmental uncertainty to improve robustness.
Other techniques designed for on-policy algorithm include using Taylor expansions to approximate
the value function for a target + from a smaller one (Tang et al.|(2021))) and redefining the value
function to excise problematic state cycles, thereby increasing training stability (Gao et al.|(2022)).

The average return was developed as an alternative to eliminate the reliance on 7 and its associated
bias. Research in this area spans both theoretical and practical developments. On the theoretical side,
a key focus has been to formalize the connection between the average and discounted returns. Kakade
(2001)) established performance bounds for policies optimized under the discounted criterion but
evaluated under the average criterion. Subsequent analyses demonstrated the asymptotic convergence
between the discounted and average value functions under specific conditions, such as for linear
models (Tsitsiklis & Van Roy|(2002)) or in the limit of the horizon length (Hutter| (2006)). More
recently, [Siddique et al| (2020) extended the work of [Kakade| (2001) to the non-linear function
approximation setting. On the practical side, replacing the discounted return with the average return
has inspired numerous variants of popular DRL algorithms, such as APO (Ma et al.| (2021)), based
on PPO (Schulman et al.|(2017))), ATRPO (Zhang & Ross|(2021)), based on TRPO (Schulman et al.
(2015))), ARO-DDPG (Saxena et al.|(2023), based on DDPG (Lillicrap et al. (2016))), and RVI-SAC
(Hisaki & Ono| (2024)), based on SAC (Haarnoja et al.|(2018)))). These algorithms have consistently
shown superior performance compared to their discounted-return counterparts in long-term stationary
tasks.

While the existing literature provides a comprehensive analysis of the algorithmic and theoretical
trade-offs between these two objectives, a systematic investigation into how the inherent properties of
the environment might dictate this trade-off is notably absent. Our work seeks to address this gap.

3 PRELIMINARIES

A MDP is defined by the tuple (S, A, P,r,~). S is the state set, with each s € S representing a
state. A is the action set, with each a € A representing an action. P : S x A — P(s) is the Markov
transition kernel and P(+|s, a) is the probability for next state. r : S X A — [Ruin, Rmax] is the
reward function. A policy 7 : S — P(A) maps any s € S to a probability distribution 7 (-|s) over A.
Without loss of generality, this work regards S and A as countable sets.

The transition kernel under a policy 7 is denoted as P™ : S — P(S), where P(S) is the probability
defined on S and P™(s'|s) = > . 4 m(a|s)P(s'|s, a) da. The t-step transition probability from s to
s" is defined as P[(s'|s) = >, Pi—1(s"|s)P(s'|s") and PT(s'|s) = P™(s'|s).

Throughout our analysis, the distance between two distributions p and v over S is measured by the
total variation (TV) distance, Drv (u(+), v(-)) := 3 >, lu(s) — v(s)].

3.1 DISCOUNTED RETURN

Given discount factor v € (0, 1), the corresponding discounted state value V.7 (-), the discounted

state-action value Q7 (-, -) and the discounted advantage A7 (-, -), are defined as:

o e}
VI(s) =Eqp Z’ytr(st,at) S0 = s] , Q5 (s,a) =E; p Zwtr(st,at) S0 = 8,a0 = a] ,
t=0 t=0
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and A7 (s,a) = Q7 (s,a) — VI (s) = r(s,a) + Egyup(fs,a) [V5 ()] = VI (s).

The probability distribution d7 (-) is defined as d7 (s") = (1 — ) >_peo V' PT(s']5).

3.2 AVERAGE RETURN

Assumption 1 (Ergodic(Meyn & Tweedie| (2012))). Suppose for every stationary policy T, the
induced Markov chain with transition probability P™ is reducible and aperiodic.

Assumption |l|ensures that the Markov chain induced by any policy 7 is ergodic. This guarantees the
existence and uniqueness of a stationary distribution d” (-) over the state space (Meyn & Tweedie
(2012))). This ergodicity is a standard condition for the average return to be well-defined. The gain (or
average reward) for policy 7 is then defined as the expected reward under this stationary distribution,
which is p™ = E,gr qr(.|s) [7(5,a)]. Then all the value functions for a policy 7 are defined as:

SOZS‘|,

SOZS,GOZG],

oo

V™(s) =E.p lZ(T(St»at) —p")

t=0

Qﬂ(sv a) = IE71',P

Z(T(smat) —p")
t=0

and A" (s,a) = Q" (s,a) — V™ (s) =r(s,a) — p" + Egp(s,a) [V (s)] = V7 (s).

4 k-SLIDING-WINDOW RETURN

In this section, we formally introduce the k-sliding-window return, a novel objective designed to
deliver strong performance in both stationary and non-stationary environments for on-policy DRL.
The core idea is to define the objective as the undiscounted sum of rewards within a k-step window
that slides along a potentially infinite-horizon trajectory.

Specifically, for any state s encountered along the trajectory, its state value function under policy 7 is
defined as the expected sum of the next k rewards:
So = S‘| s

k—1
Vii(s) =Epx
The state-action value function is defined as Q7 (s,a) = Ep » {Zf;ol (s, at)|so = s,a0 = a} and

Zr(st,at)

t=0

the advantage function is

AR (s,a) = Qf(s,a) = ViT(s) = 7(s,a) + Egwp(s,a) [Vil1(s))] = Vi ().
A key feature of the k-sliding-window return is that while defined over a finite step k, it is applied
to continuing (infinite-horizon) tasks. This induces a value function that naturally “rolls” with the

trajectory. This stands in stark contrast to the total return in episodic MDPs, where value functions
are computed backward from a fixed termination point.

4.1 k-SLIDING-WINDOW PROXIMAL POLICY OPTIMIZATION

Based on the value functions defined above, we introduce our novel on-policy algorithm, namely kSW-
PPO (k-sliding-window PPO). To analyze its theoretical properties, we first introduce a performance
difference lemma. This lemma allows us to establish a critical connection between the policy gradient
loss of kSW-PPO and the resulting difference in policy performance. Central to this analysis is the
state visitation distribution over a k-step horizon. We formally define this distribution for a policy 7

starting from state s as: dff (s) = . f;ol T ($]s).

Lemma 1 (Performance difference). For any two policies ™ and 7', and any initial state s, the
following holds:

Vir(s) — Vkﬂ/(s) =k- Es’wdgws,arww [A};/(s’, a)] + A(s).

where A(s) = Ex p | S5 B plr(sess1, arsk—1)]si]|s0 = s] ~E.p [vkil(sk)|so - 5}

4
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The performance difference lemma for k-sliding-window return contains an extra term A(s) compared
to its counterparts for the discounted (Kakade & Langford|(2002)) and average return (Zhang &
Ross| (2021)), yet A(s) is controlled by the distance between 7 and 7’ for any s (by Lemma [6]
in the Appendix). Thus we can still construct the loss for k-sliding-window return by advantage
function, and the difference between loss optimization and policy improvement is still controlled by
the distance between two policies.
Theorem 1 (Relation between loss and performance difference). For a policy wy and a previous
policy Ty, define the loss as:
molals’) m .,

- 714 old A

ooy 0 g, [Wg(),d(a|s’) ALY

The relationship between policy improvement and this loss is bounded by:

Li(m9, 70,5 8) =

o

V72 () = V™ (5) — k- Lo, ma,005)| < R(k—1) DI 1) (4 DI (i, [70) Run).
where D3> (g, || 7o) = maxs Dy (g, (-|s), ma(+|s)) and a = max, 4 AZH"’” (s,a) ‘

By applying Pinsker’s inequality (Tsybakov| (2008)), the total variation distance in the bound of
Theorem [I] can be replaced with the KL divergence, aligning our bound with the standard format of
TRPO/PPO. The core implication of Theorem [I]is that for any state s € S, the policy improvement is
well-approximated by the loss:
Vkﬂe (5) - Vkﬂecld (S) ~ k- ‘Ck(ﬂ-@’ To1a» 3)7

provided that the distance between the new policy 7y and the old policy 7y, is small. This confirms
that maximizing the loss promotes policy improvement. Building upon this loss, we introduce the
k-sliding-window PPO (kSW-PPO) algorithm, which is detailed in Algorithm I}

Algorithm 1: KSW-PPO

Input: initial policy 7, initial value function V;, window size k, training episode numer 7'
Output: learned policy 7
1fort=1,...,T do

2 Sample a trajectory {sg, @, ..., Sn—1, Gn—1, S } USING T_1.
3 | Calculate k-sliding-window return G&, = Z;Jj_l r(s4,a;).
4 Calculate advantage A;_1(s;,a;) = Gi — Vi_1(s;).
5 Policy Improvement: Define I} ;| = % and learn a new policy through

1 n—1

T = arg max — Z min (It[lAt,l(si, a;), Clip(I;_1,1 — €, 14+ €)Ai_1(s4, ai)).
™ n
i=0
6 Policy Evaluation: Learn a new value function through
1= 2
V= in — Vi(si)—Gj) .
i = argmin — Z; (V(si) = Gy)

7 end

4.2 COMPARISON WITH THE LOSS OF DISCOUNTED RETURN

We now quantify the relationship between our objective and the discounted return, showing their
corresponding loss functions are maximally similar when £ is chosen to be 1/(1 — ). To analyze the
relationship, we formally define the loss for the discounted return (Schulman et al.|(2015)) as:

mo(als’)

ORI T AT 0o (!
S/Nd:%ldﬂ“’ﬂeold T01q (a|SI)AV O (S ’a) '

‘C’Y(ﬂ'é’a TOota » 5) =
where d7 (s") = (1—7) Yo, 7 PF(s'|s) denotes the discounted state visitation distribution, starting
from state s and following policy 7. The following theorem provides an upper bound on the difference
between the two losses.
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Theorem 2 (Difference between L., (mg, mg,,, $) and Ly (g, g, 8)). For a -y such that yﬁ > %
(e.g., v > 0.85), any two policies 1y, Tg, and any state s, we have:

k
O<’y >7 fOrlSkSL,
1—7 1

€0, T, 5) = Li(0, Ta,5)| < L

Remark 1. The function f(vy) = ’yﬁ is an increasing function for v € (0,1).

The bound presented in Theorem [2|reveals a key insight: the upper bound is minimized at k = ﬁ,

indicating maximal similarity between the two losses at this value. This minimum arises because
k . .
forl<k< ﬁ, the bound term © (%) decreases as k increases, while for k > ﬁ, the bound

term O(k(1 —v)(k — 1) + k) increases with k. This finding formally supports the conventional view
that ﬁ acts as the “effective horizon” for the discounted return (Schulman (2016)); [Sutton & Barto
(2018)). Besides, this theorem provides a guideline for choosing k in non-stationary environment.

4.3 COMPARISON WITH THE LOSS OF AVERAGE RETURN

We now establish the connection to the average return. We show that the difference between the
two loss functions vanishes as the policy converges. Our analysis is grounded in the stationary
state distribution d” induced by a policy m. We begin by defining the overall performance metric as
Ji(m) = Egar [V, (s)] and proceed by establishing a performance difference lemma for this metric.

Lemma 2 (Performance difference under stationary state distribution). Suppose Assumption|[I|holds.
For any two policies , ', the performance difference is given by

Te(m) = k() = b Borsir anr [AF (5,0)| + D7 (47(5) = 7' () V7' (5) + Eomar [A(5)]

where A(s) = Erx p { o B plr(Sen—ts arrn—1)]5e] |50 = 8} —E-p [Vk’ill(Sk)’So = S}

Lemma [2| reveals that the performance difference is driven by the expected advantage and the
mismatch between stationary state distributions (notably, by Lemma[10]in the Appendix, E.q~ [A(s)]
is also controlled by this distribution mismatch). To bound this mismatch, we must first quantify the
distance between stationary distributions. This requires the following definition and assumption.

Definition 1 (Dobrushin ergodicity coefficient (Rhodius| (1997))). For any given policy w, the
Dobrushin ergodicity coefficient is defined as 5(m) = maxs, s,es Drv(P™(|s1), P (:]s2)).

Assumption 2 (Dobrushin ergodicity coefficient bound). We assume that for any policy , its
Dobrushin ergodicity coefficient is bounded as 0 < (7)) < 1.

Assumption 2]ensures that the policy-induced transition operator P™ is a contraction operator, which
is a common assumption for bounding the distance between stationary distributions (Meyn & Tweedie
(2012)). This leads to the following result:

Lemma 3 (Distance between d™ and d™ ). Suppose Assumptionand hold. For two policies m and

7' with corresponding stationary distributions d™ and d™, the total variation distance is bounded by:

max, Dy (7'(¢|s), 7(-|s))

DTV(dW(')vdﬂ/(')) < 1— B(ﬂ./)

Leveraging this bound, we can formulate the loss and connect its optimization to policy improvement.

Theorem 3 (Relation between the loss and performance difference under stationary state distribution).
Suppose Assumptions[I|and 2| hold. For a policy mg and a previous policy my,,, define the loss as:

molals) gy o]

E — E A old
k(ﬂ.97 7T9(,14) ” ﬂ_go[d (a|5) Lk (87 a

s~vd " bold ar~g
o
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The relationship between policy improvement and this loss is bounded by:

DEF (7o, || ax
() = Je(m,) = b Lo, mo, )| < 4k 0] (0 D) + R
1- ﬁ(ﬂ-ﬁ’am)
where D> (g, || o) = maxs Dy (g, (+|s), mo(+|s)) and o = max; , AZQ(”" (s, a)‘.

Theorem 3| thus confirms that the approximation Jy,(mg) — Ji(7g,,) ~ k - L (79, 7g,,,) holds when
the policy update step is small. Next, we establish the connection between our loss Ly (g, 7g,,) and
the loss for the average return, £(7g, mg,, ). We first define L(mg, mp,,,) (Zhang & Ross|(2021)) and
mixing time, which is essential for bridging the finite-step sum and the stationary expectation

mo(als)
,C(ﬂ',g, Wgold) = ESNC{”“M@N"T%M |:

T4 ((L|S)

Definition 2 (Mixing time (Levin & Peres|(2017))). For an MDP with transition operator P™ under
policy 7, the mixing time Tr,ix (€) for a given precision 0 < &, < 1 is defined as:

Thnie(¢) = min {¢ € N* [ max Doy (P7 ([s), d"(s)) < € .

A0 (s, a)} .

This allows us to bound the difference between the two losses.

Theorem 4 (Difference between Ly (g, mp,,) and L(mg, 7, ). Suppose Assumptions|I|and 2| hold.
Given k and 0 < &, < 1 suchthat k — 1 > Ty (&x), the difference between the losses for policies

g and Ty ,, is bounded by:
D%%X(WGOM 7T9) ' §k>
1-5 (7T9”Id) ’

old

|E(7T977T9nm) - ﬁk(ﬂ@vﬂ-@om” <0 (
where DiNj(m,,||mg) = max; Drv (ma,,(+s), ma(:|s)).

Theorem 4] establishes that £y, (79, 7,,,) approximates £(7g, 7, ). The quality of this approximation
improves as the magnitude of the policy update, i.e., DF* (g, || 79 ), diminishes and as the horizon
k increases, which yields a smaller &;. This suggests that even though our objective only considers a
finite horizon k, its unbiased nature is beneficial for performance in long-term stationary tasks.

In summary, our analysis reveals that the k-sliding-window return exhibits a dual character. It shares
structural similarities with the discounted return, yet its corresponding loss, Ly (g, 7g,, ), formally
converges to the average-return objective L(mg, g, )-

Besides, there is a fundamental trade-off in the choice of k: On the one hand, a large k aligns the loss
for the k-sliding-window return more closely with those for the discounted and average return (as
shown in Theorems [2]and[d). However, this comes at the cost of weakening the policy improvement
guarantee provided by Theorems [1| and [3] On the other hand, a small k ensures a tighter policy
improvement bound, but introduces a larger deviation between our loss and the losses of discounted
return and average return. We investigate this trade-off empirically in Section [3]

5 EXPERIMENT

5.1 IMPLEMENTATION DETAIL

In the experiment, we adopt the GAE framework (Schulman et al.| (2015)) to estimate the advantage
function for the k-sliding-window return. A straightforward application of GAE over the finite k-step
window is defined as:
k—1
GAE()\7 k,t) = Z )\ifstﬂ', where 8y = 7(5144, at+i)+Vkﬂ(5t+i+1)_r<5t+k+i; at+k+i)—vkw(3t)~
i=0
However, directly summing these TD-residuals can introduce high variance because of the term
7(St4k-ris Qtt+k+i) in Oy4. To strike a better bias-variance trade-off, we propose a modified estimator:

k—1
GAE()\, k, t) = Z )\i5t+i - )\kfle”(stJrk), where 6t+i = T(St+i, at+i) + Vkﬂ— (3t+i+1) - Vkﬂ— (St).
=0



Under review as a conference paper at ICLR 2026

While this formulation introduces a bias for A # 1, it exhibits a lower variance in practice, which
results in more stable training. Notably, when A\ = 1, the bias vanishes and our estimator correctly
recovers the advantage function:

k—1
E[GAE(L,k,t)] = E [cTA\E(L k,t)} =E | (serir avai) |se.ac | — Vi (s0).
=0

This indicates that the estimator’s bias is well-controlled by selecting A close to 1.

For the value function update, we employ the smooth L' loss, which is more robust to outlier value
estimates than the standard L2 loss. For continuous control tasks, we model the policy using a Beta
distribution. This approach is chosen over the common Tanh-squashed Gaussian policy to improve
numerical stability.

5.2 MAIN RESULT

We evaluate the performance of the proposed kSW-PPO algorithm against two baselines: the
discounted-return PPO and an average-return PPO. The comparison is conducted on a suite of
MuJoCo continuous control tasks, categorized into stationary environments (Hopper, Walker2d,
HalfCheetah, Swimmer) and non-stationary environments (Reacher, Pusher). Their state visitation
patterns are given in Appendix [Hl While we discussed several enhancements to discounted return
methods in the related work, we use the vanilla PPO (Schulman et al.|(2017)) as our discounted-return
baseline for a fair comparison. This is because the method by [Tang et al.| (2021) lacks a public
implementation, and the approach by |Gao et al.|(2022)) is designed to prevent periodic behaviors,
making it unsuitable for stationary environments where such periodicity is desirable.

—— k-Sliding-Window Average ~ —— Discounted(y = 0.97) —— Discounted(y = 0.99) —— Discounted(y = 0.999)
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Figure 2: Performance comparison of kSW-PPO, average-return PPO, and discounted-return PPO.
The learning curves show the average episodic return throughout training, evaluated across 5 random
seeds. Solid lines indicate the mean return smoothed over a 100-episode window, and the shaded
regions represent the standard deviation.

Experimental setup details are provided in Appendix[[} For our method, the window size k was set to
50 for Swimmer, Walker2d, and Hopper; 30 for HalfCheetah; and 10 for Reacher and Pusher.

The results in Figure [2| validate our central claim: kSW-PPO serves as a robust and unified objective,
which performs competitively across both stationary and non-stationary environments. In the sta-
tionary tasks, kSW-PPO consistently performs on par with the specialized average-return PPO. In
Swimmer and Walker2d, both methods outperform the discounted-return PPO. In HalfCheetah and
Hopper, their performance is competitive with the best-performing discounted baseline (y = 0.999).
Conversely, in the non-stationary tasks, kKSW-PPO’s performance aligns with that of the discounted-
return PPO. In Reacher, both substantially outperform the failing average-return PPO. While in
Pusher, kSW-PPO does not fully match the top performance of its discounted counterpart, it still
maintains a considerable performance margin over the average-return variant, which struggles in this
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setting. Collectively, these results demonstrate that kSW-PPO successfully inherits the strengths of
both criteria, eliminating the need for an a priori choice of objective.

5.3 ABLATION STUDY

The window size, k, is a key hyperparameter that governs the behavior of kSW-PPO. As established
in our theoretical analysis (Sectionf)), its choice embodies a fundamental trade-off. This sensitivity
to a core hyperparameter is not a drawback but is analogous to the critical role of the discount factor.

— k=10 k=30 —— k=50 —— k=70 — k=90
1e2 Swimmer-v5 (stationary) 1e3 Walker2d-v5 (stationary) 1e3  HalfCheetah-v5 (stationary)
7.5
g £4 g
D Z 250
4 o~ -4
3 F2 E
=2 s 225
& & &
0 0 0.0
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Episode x10° Episode x10° Episode x10°
1e3 Hopper-v5 (stationary) lel Pusher-v5 (non-stationary) lel  Reacher-v5 (non-stationary)
0
-4
=1 = s
E E 2
&2 26 w2
3 e e
=] =] =3
= A Ly
0
0.0 0.5 1.0 L5 2.0 0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0
Episode x10° Episode x10° Episode x10°

Figure 3: Performance comparison between different window size, k, for kcSW-PPO. The learning
curves show the average episodic return throughout training, evaluated across 5 random seeds. Solid
lines indicate the mean return smoothed over a 100-episode window, and the shaded regions represent
the standard deviation.

To empirically investigate this trade-off and the sensitivity to k, we conducted an ablation study across
our suite of MuJoCo environments. The performance for a range of & values, {10, 30, 50, 70,90}, is
presented in Figure[3] While performance is indeed sensitive to k, the results reveal a remarkable
consistency across environments. Notably, & = 50 yields optimal or near-optimal performance
in all stationary environments. Similarly, a smaller £ = 10 is preferred for both non-stationary
environments. This finding is of significant practical value. It suggests that the optimal choice of k is
not arbitrarily specific to each task but exhibits cross-environment consistency. This underscores the
inherent robustness and generality of the k-sliding-window return itself.

6 CONCLUSION

In this work, we addressed the long-standing dichotomy between discounted and average returns that
has constrained the generality of DRL algorithms. We introduced the k-sliding-window return, a
novel objective designed to bridge these two criteria. This concept was instantiated through a practical
on-policy algorithm, KSW-PPO. Our theoretical analysis reveals the dual nature of this objective:
we proved that the loss of kSW-PPO converges to that of the average-return, while also showing it
maintains a bounded bias relative to the loss of the discounted-return. Our claims were validated
through a series of experiments on MuJoCo continuous control tasks, where kSW-PPO demonstrated
its robustness. It performed competitively with average-return PPO in stationary settings and matched
the performance of discounted-return PPO in non-stationary ones. Ultimately, our results establish
the k-sliding-window return as a unified objective. This eliminates the need for practitioners to make
an a priori choice between the two criteria, effectively addressing the initial problem.
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REPRODUCIBILITY STATEMENT

We provide the source code and configuration for the key experiments including instructions on
how to generate data and train the models in link https://anonymous.4open.science/r/
kSW-PPO-1E7C, We thoroughly checked the implementation. All proofs are stated in the appendix
with explanations and underlying assumptions.

ETHICS STATEMENT

The authors of this paper have read and agree to adhere to the ICLR Code of Ethics.

Our work is theoretical and algorithmic, introducing a new objective for RL and a corresponding
on-policy algorithm. The experiments are conducted in standard simulated environments commonly
used for RL research (i.e., MuJoCo), and do not involve any human subjects or personally identifiable
or sensitive data.

However, we acknowledge that as with any advancement in RL, there are potential downstream
societal impacts to consider. The behavior of an RL agent is fundamentally shaped by its reward
function and training environment. If our algorithm were to be deployed in real-world applications, it
could be susceptible to learning unintended or biased behaviors if the reward signal is not carefully
designed. Furthermore, RL as a field has dual-use potential; powerful decision-making agents could
be applied to applications with negative consequences if not developed and deployed with care.

While our foundational contribution does not in itself introduce new ethical risks, we urge practitioners
who build upon our work to consider the specific context of their application, to rigorously audit for
potential biases, and to ensure that reward functions align with safe and socially beneficial outcomes.
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A PROOF OF LEMMA[T]

Lemma 1 (Performance difference). For any two policies m and w', and any initial state s, the
following holds:

Vir(s) — ka/(s) =k- Es’~d2,s’a~” [A;cr/(sl’ “)} + A(s).
where A(s) =Er p Zf;ll Er plr(strr—1, at+k_1)|st}|so = s] —E:p [Vk’r_ll(sk)|so = s}

Proof. From the definition of V,"(s), we have

Vir(s) = Vi (s)

k-1
=E, p r(sg,at)|so =s| — Vk”/(s)
t=0
k1
“Enp [ (r(sean) + Vi (s0) =V () [s0 = 5| = Vi (9)
P
k-1
=E, p (T<St, ar) + Vili(st) + Exr p [1(St4k—1, Grr—1)]5e] — Vi© (st)>
=1
+ (n(s0,@0) + Vi (50) = Vi¥'(50)) [s0 = 5| = i (s)
o k—1
=Erp (T(St, ar) + Vi1 (se41) = Vi (St))
P
k-1
+ ( Er p[r(St4r—1, Gt4ru—1)|5¢] — Vkﬂ1(5k)> + VT (s0)[s0 = s| — Vi© (s)
P
=E~p (T(St, at) + Eg, i~ P(]st,a0) [ka_1(8t+1)} -V (St)> so=s| +A(s)
=0
=k- Es/ng)s,aNﬂ' [AZ/(S/, a)} + A(S)a
where we define
k-1
A(s) =Erp | Y B plr(sipk-1,arsn-1)lse)|so = s| —Exp [Vkﬂ(sk)‘s() = 8} :
=1

The equation () is constructed through rearrange the terms and add V;™ , (s;) — VJ™_;(s). The
equation (xx) holds because of the tower property of expectation. The proof is complete. O

B PROOF OF THEOREM 1]

The proof of Theorem [I]proceeds in several steps. The core of the argument is to bound the difference
between the k-step state visitation distributions, dff .(-) and d] ,(-). To achieve this, we first need a
bound on the distance between their respective ¢-step transition probabilities, which is established in
Lemma [

Lemma 4 (Total variation distance between FP;* and Pt’rl). Given a transition probability P, two

policies w and 7', and a step size t > 1, the total variation distance between P and Pt”/ is bounded
as

Drv(Pf(s), BT (1)) < tmax Dy (m(-|s), 7'(s)).
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Proof. From the definition of Dy (P7(:|s), PF (-|s)), we have

D (7 (), P (1)) = 5 3 [PF(s'ls) = P (19)]

s’/

Then for the difference between two distribution probability under policy 7, 7/, we have

Pr(sls) = PE(/)s)|

ZPtF . // P7\' |S” ZPtﬁ ) // PTI' ( /|s//)

s s’

<Y P (") P(s']s") =PIy (")) P (s']s”)

s

=3 |Pr(s"]s) P (s'|s") — PF 4 (s"|s) P™(s']s")

s

+ Py (") PT(s']s") — Py ("[s) P (]s")
=3 (Prats”ls) = PEA(19)) P7(s')s") + P (5"1s) (P7(/1s") = P (']s"))|

<0 |PIA(s19) = PG 19)] PRSI 4+ 3 P (s"9) | P(s'1s) = P (/15"
Because for any s/, >, P7(s'|s"”) = 1, we can have the following recursion inequality

> [Prs1s) - B (1) < > |PA(s"]s) = P (19)| +

Zth ) // Z ’Pw( /‘SH) _ Prr’(slls//> )

s’ s/

Expend the first term in the RHS of the above inequality based on ¢, we have

Z‘th(sl|5)_P ( ZZP” | Z‘P’f (s']s") — P™ (s/|s")] .

=0 s’

The absolute term in the RHS of the above inequality can be bounded as

= 2P a)ir(als) = ol
= ZZP (s'|s"”,a)|x'(a|s") — 7(als")|
= Z |7’ (a]s") — m(als")]

= 2Dry(n'(-|s"), 7 (-]s")).

‘Pﬂ' /|8//) P7T |S//

So we can have

>

7 (']s) - \<2ZZP” 1) Dy (' (15"), (")

s/ — 6//
<2 Z > P (s"]s) max Dy (x'(-]s), 7' (-]s))
=0 s’/

= 2tmax Dry (7' (¢|s), 7(-]s)).
So, finally we have
Dy (PF(s), P (+|s) < tmax Dy (w'(]s), 7(-|s)),

which completes the proof.
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Lemma 5] gives a basic property of the TV distance.

Lemma 5 (Non-expansion property of total variation distance). Given a transition probability P
corresponding to policy T with step size t > 1, and two probability distribution p and v, there is

Doy (P (), Prv()) < Drv(u(-),v())-

Proof. From the definition, we have

Dy (P u(), Ffv(-) = Z
1
22
% DD PE(s) |uls) = v(s)]

% (Z Pt”(s’|s)> Z lu(s) —
:72“,[/ |—DTV( () ())

= Fr(s|s)u(s)

- V(S))|

IN

The proof is completed. O

By combining Lemma 4] with a fundamental non-expansion property of the TV distance, we are able
to prove Lemmal6] which bounds the extra term A, and Lemma([7] which provides the required bound
on the difference between the state visitation distributions.

Lemma 6 (Bound of A). Given two policy © and 7', and a initial state s, define A as

k-1
A(s) =Enp | Y B plr(sion—1,apb-1)|se]|s0 = 5| —Exp [Vkﬂil(skﬂso = S} ;
t=1
there are

A(s) < k(k — 1)| Rmax| mngTv(w(-\s), 7' (-]s)).

Proof. From the definition, we can have

2k—2

’
E; p [Vk’il(sk)’so:s} ZPk (sklso) Z ZPh & (Sh|sk) Z’]T (alsp)r(sn,a)
h=k shn
2k—2

= Z ZZPk (sk|so0) Ph & (sn|sk) Z’ﬂ' (alsp)r(sn,a),

h=k sn Sk

and
k-1
E; p ZEn’,P[T(St—&-k—lyat—i—k—l)‘st]
=1
2%h—2
=33 Plpa(snonialso) D P (shlsn- k+1)z ' (alsp)r(sn. a).
h=k Sh Sh—k+1 Sh
So we have
2%—2
! !
A=>"3"1 > Py (shors1ls0)PEy (snlsn—ks1) — > PF (skls0) Pi_g(snlsk)
h=k shn Sh—k+1 Sk
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X (Z 7r’(a|sh)r(sh,a)>
2k—2

<SS YD P (snokralso) PRy (snlsnorir) — Y PF (skls0) Py, (snlsk) | | Rmaxl-

h=k Sh |Sh—k+1 Sk

Given any k < h < 2k — 2, we define ¢ = h — k, then we have

SIS P (snoksals0)PE i (snlsn—kr1) = Y PF(sklso) Pi_(snlse)

Sh |Sh—k+1 Sk

= Z Pl 31+1|50)Pk 1(Sktilsi+1) Zpk (sklso) P, (5k+2|3k)

Sk+4i |Si+1

=313 Pralsialso) Yo (Pl i (snlsien) = PEioa(selsinn) ) P (svalsi)

Sk+i |Si+1 Sk
7\'/ 7T 7\'/
<Y Phasialso) » (PEica(sulsien) = P (sklsion)) P (svilsn)
Sk+i Si+1
=3 PraCsiralso) 30150 (PELca(swlsien) = P (swlsien)) P (skrilsi)
Sit1 Sk+i | Sk

(%) /
< D" Plalsinlso) (Z P (selsisn) - P,zm(susm)\)
Sk

Sit1
()

<> Pra(sialso) (206 = i = 1) max Drv (' (-]s), 7(-]5)) )

Si+1

22(145 — 17— 1) msaX DTV(W,('|S)7 7T(|3))a

where inequality (x) holds because of Jenson’s inequality, inequality (x*) holds because of the non-
expansion property of total variation distance from Lemma' 5} and inequality (x * *) holds because of
Lemma[l So we now have

A < |Rpax| Y 2(k—i—1) max Dry (7' (-]s), 7(-[s))
=0
= k(k — 1)| Rmax| max Dy (7' (+s), 7(+|s)).

This completes the proof. O

Lemma 7 (leference between two distribution of policies). Given two distribution dk o dgls respect
to two policies w, 7' and initial state s, the total variation distance between two distribution satisfies

Yo |dR () = di () < (k= 1)max Dy (x'([s), 7(-]s)).

s/

Proof. From the definition of df  (s), we have

Sz o) — ] = 1 33 (Pr(s'ls) — P 19))
s’ s’ |[t=0
1 k—1 ,
DI MACIDES R Eb] ()
s’ t=0
2 :
= 23" Drv(PrCls), B (1s))
t=0
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Using Lemmafd] we further have

> ldg (s — di (5] <

= (k— 1) max Dry(x'(s), 7( |s)).

>
|
—

tmase Drv (' (1s). 7(|5)

El NN
o
I
o

The proof is complete. O

Finally, armed with the results from Lemma [f]and Lemma([7] the proof of Theorem|[I]is completed.

Theorem 1 (Relation between loss and performance difference). For a policy mg and a previous
policy my ., define the loss as:

old’

_ mo(als’) o,
Ly (7o, 7,5 8) = E, Iy g, [WMAIC (s',a)] .

The relationship between policy improvement and this loss is bounded by:

VI (s) = Vi " (s) = k - Lu(m0, o, 5)‘ < k(k=1) D3 (0,70 ) (4D (o, | 7o)+ Rmax] ),

where D3> (g, || o) = maxs Doy (g, (-|s), ma(-|s)) and a = max, 4 A;g"’” (s,a) ‘

Proof. For the convenience of discussion, we define
mo(als’) o, 4
A old , — E N et |:A old :| .
pulals) ) = By [ 40

Because Eqr, (-|s) [A™ (s, a)] = 0, then [{(s")] satisfies

Z To(a ‘S old Z Ty, a|s Oold ( a)

Y (molals’) —mo,(als) AL (', a)

a

5(8/) = E"’N”%m("s,) |:

[€(s")| =

< 2max Dy (7, (+|s), 7o (-|5)) max [ A" (s, a) .
From Lemmal[I] we can have
VIO (s) — Vi 4 (s) = k - Eswdzf’s €N+ A, Li(mg;mo,,s) =E, e[ [€(s")].
Combining with Lemmal[6]and Lemma([7} we can have

[ViTo(s) = Vi () = k- La (o, o0, 5)|

Z (dz,es(sl) - dzz’“ (s/)) £(s") + A’

ry

<k
-

<dak(k — 1) (DY (Ta,,]170))* + k(k — 1) DI (w0, 1 70) | Rinax|
:k(k - 1)Dmax(7r90m||7r9)(4aDmax(7T90m”7r9) + |Rmax|)7

dity(s) = 2 ()| |€(sH] + 14|

AP (s, a)‘ This com-
pletes the proof. O

where D (mg,, ||me) = maxs Dy (my, (+|s), mo(+|s)) and o = max, 4
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C PROOF OF THEOREM

Theorem 2 (Difference between L., (mg, mg,,, s) and Ly (g, Ta,,, 8)). For a -y such that VT > 3
(e.g., v > 0.85), any two policies my,,, T, and any state s, we have:

k
O(V ) forl<hk<—_
11—~ 11—+’

|£ (7T977T€um> ) ﬁk(ﬂ'g,ﬂgom, )| <

Ok(l—=~)(k—1)+k), fork> %

Proof. The difference between two losss is
L (7T97 T Oo1a> S ) Ly (7(97 T o145 3)

mo(als') o s we<a|s'> o !
o mod 0ol . |:7r0 (a |S,) A (s a) | — Es’wdﬂs“]d,awﬂ'g o | 7o (a|s )Ak: (s',a)

_ Z d;rgold Z o a|5 old Z d old Z o a|5 o1 ( a)
:Z (d;"@old(sl) - old ) Zﬂ.e ‘S old( )
+ Z " ( Z mo(als’) ( (s a) — Ap(s a)) )

For the first term in the RHS of the equation (2))

Z (d?"‘“ (s") "‘“ ) Z mo(als’)A "“‘( a)

S

D () — i (1)

s/

=E

@

2| Rmax|
1—v

max
s,a

AT (s,0)| <

’;Gom (s') _ d’kW;m (S/)

<

s/

We further have

by

s/

d;reold (S/) _ d;:gold (S/)

yS

k—1
1 7T
E ’YtP old )_EE Pt eold(slls)
t=0

= o T0<t<k)\ jron, s
tz; ((1 Bl ) P4 (s']s)

= I0<t<k)| o

<O |a -y - TOEEE R proa )

s’ t=0

= (0<t<k: o s 1
=) |= - ——— ZP (s']s)

t=0
:i(l—y)yt—w

t=0

where I(0 < ¢ < k) is the indication function that when 0 < ¢ < k, I(¢t) = 1 and when ¢t < 0 or
k >k, I(t) = 0. Continue analyzing the above inequality

Sla- (1—~ 7—‘+Z1—
t=0 t= (3)

1
(1= - k‘ +7~.

o
—

2|

0
-1

t_I(0<t<k’

T

-
I
=)



Under review as a conference paper at ICLR 2026

The above inequality (3) has different upper bound when 1) 1 < k < == and 2) k > 1. We first

analyze the upper bound for (3) when 1 < k < ﬁ which indicating % =1—7v>(1—~v)y for

allt > 0:
k—1 k—1
DI 7—’=Z<— (1= ) =1= (=4 =~
t=0 t=

Sowhen1 <k < llw,wehave

e 2|Rmax| 47k‘Rmax|
90 0 0 k —_
Z(ds 4 (s 2 )ZWQ als') A" (s a)| < 297 - T, 14 4
. 1 . 1
Now we consider k > =t which means r<l-—n
k—1 1 k—1 1 k—1
> |- —k‘<zmaX<(1—7)vt,k><Z(1_7):’f(1—7)-
t=0 t=0 t=0
So when k > , we have
- 2| Rmax|
O / (2% 28 k max
Z(ds “(s') = dia( )Zm als) AT (',0)| < (K(1=7) +9%) S22 6)

Now we start to analyze the second term in the RHS of equation (2))

Zd o ( ng als’) ( (s a) — Ap (s, a))

For the RHS of the above inequality, we have

< max
s,a

Azg"‘d (s,a) — AZG"“ (s, a)’ .

AT (5, ) = AT (s,0)|
= [(@F" (s.0) ~ By, [QF™(s.0)]) = (@ (s.0) ~ Bny, [@" (s.0)] )|
= [ (@7 (5,0) = QP (5,0)) — Bry, [Q7(s5,0) - Q;ﬂ‘d(s,aﬂ\
<2max| Q)" (s,a) - Q" (s.a)] .
We further have
QT (s,0) — Q1 (s, a)|

E lz Vr(se, ar)
t=0
k—1 00
E [Z(Vt — Dr(s, a¢) + Z’YtT(Su at)
=0
k

Sop = S,ap = a

k—1
—E r(s¢, at)

t=0

SOZS,GOZG]

So = S,ap0 = a]
t=k
-1

SE[ (1= o] + 37 o)
k

SOZS,QQZQ]
t=0

—1 o)
g<z +z¢> R
t=0 t=k
k—1
*)
g( = ” ) Rl
t=0 -7
k(k—1) 7k
=((1—7) D )

19



Under review as a conference paper at ICLR 2026

The inequality (*) holds because ¢(1 — ) > (1 — «*) forall ¢ > 0. So we have

Zd foua ( Zﬂ'g als’) ( °‘d( )—Ak °‘d(s a))

k(k—1 k
sz((l—w ( 5 )+1”_W) | Rinax.

Forl < k < ﬁ, combining (), @) and (6), we have

AvF| Rnax E(k—1 k
1o (o a0 8) — L0, T )ISM+2((1—V) k-1, 7 7) R

1—~ 2 1—
6 k Rmax
= O Moesl Rk~ 1),

To analyze the dominance term in the above inequality, we further denote f (k) = % +(1—7)k(k—
1). We can easily verify that when v/ (=) > 1/3, f(k+1) — f(k) = 2k(1 —v) — 67* < 0 for all

k
1 <k < :=. So the term %ﬁ;"‘““ is the dominate term, then we have

k
‘E (779’7‘-901@ ) Ek(ﬂ-%ﬂ-%ldvsﬂ <0 <1’Y_,y> :
For k > =, combining (2), (5) and (), we have

|£ (7T977r901d? ) ‘Ck(ﬂ‘g?ﬂ-Hnld? )l

2 Runa| k(k—1) A
<(k(1 — ky  “2lt'max] 2 1— max
Sk=m)+a7) T+ (( N )R |
49*| Rmax
=2k| Rimax| + | Rmax|(1 = 7)k(k — 1) + 71|_7

To analyze the dominance term in the above inequality, we still define f(k) = 2k + % +(1-

v)k(k—1), itis easy to verify that f(k-+1) — f(k) = 2+2k(1 —v) —47* > Oforall k > 1/(1—~)
and the first two terms in the RHS of the above inequality is the dominance term. So we have

|£’Y(7r97ﬂ-901dv S) - Ek(ﬂ'evﬂ-@nw S)| < O(k + (1 - W)k(k - 1))
Combine the above two cases, we finish the proof. O

D PROOF OF LEMMA

Lemma 2 (Performance difference under stationary state distribution). Suppose Assumption|l|holds.
For any two policies , ', the performance difference is given by

Je(T) = T(7) = k- Bynar g [ AT (5,0)| + 3 (47(5) = 07 () Vi (5) + Bomar [A(5)],
where A(s) = Ep p | S5 Err p[r(Sesk—1, arri—1)]5:]]50 = s} —Erp [Vk”_'l(sk)!so = s}
Proof. From the definition of J, (), we have

Je(m) = Ji(7') = Bgme [VE ()] = By [V (5)]

= Eaar [V ()] = Eaar [V ()] + B [V ()] = Byor [V (5)]
= Eonar |VE(5) = Vi ()] + Eonar [V ()] = ()

OR, [k ‘Egndy amm [A;;’ (s, a)] + A] + Z (d“ - d”’(s)) Vi (s)

’

= kEydr amn [Ag’ (s, a)} 4 Eyogr [A(s)] + Z (d” ar )) Vi (s).

The equality (*) holds because of Lemma[l] This finish the proof. O

20



Under review as a conference paper at ICLR 2026

E PROOF OF LEMMA 3]

Our objective is to derive a bound on the TV distance between the stationary state distributions
induced by any two policies, m and 7’. The proof hinges on two key components.

First, we establish that the transition operator under policy 7, P7, acts as a contraction with respect
to the TV distance. This crucial contraction property is formalized in Lemma ]

Lemma 8 (Contraction property of total variation distance). Suppose Assumption[l|and[2|holds. For
two distribution 1, and v defined on the state space S, and a transition probability P™ with policy T,
we have

Drv(PTu(-), PTv()) < B(m) Drv (u(-), v ("))

Proof. From the definition of Dy (P™u(-), P™v(-)), we have

Dry(P™u(-), P™v Z

1
:5%:

Now we define two sets ST = {s € S|u(s) > v(s)} and S~ = {s € S|u(s) < v(s)}, and because
> (u(s) —v(s)) =0, we have

Do (uls) —v(s) == (uls) —v(s) = Y (v(s) = nls)).

seSt seES— seS—

So we have Dy (u(-), #()) = Y (1(5) — v(5)) = S oes- (v(5) — pa(s)) and

Y (uls) = v(s)) P7(s'|s)

S

= > (u(s1) = v(s1)) P7(s|s1) = Y (v(s2) — p(s2)) P™(s'|s2)

—ZP”(S’S v(s

—v(s)) PT(s']s)] -

@)

s1€S8T s2€S~
_ —v 51)) (v (32) - U(S2)) m(s'ls1) — P™(s'|s
_s§+ s; DTV( (), v(+) (P (lsn) = P7(s']s2)).

Combine the above relation with equation (7)), and using triangle inequality, we can have

Dy (P u(-), PTv(:))

1 D = v(50) ((52) — 1052) g 0

B ZZ;Z; Dov(a(o() e = P s2)
V(51)) (v(53) = 1052)) | o+ o

_QZ Z Z DTV( (),V()) |(P (5 ‘51)*P (S |52))|

s’ s1€StT 5,85~

-y v _D”le(if(f)ffi)){ e (;2<P”<s'|sl>—P”<s'|sz>>|>

s1ESt 5,685~ s’

_I/ 81)) (Z/(SQ _N . . s/s
Slezs+ szezs DTV(N(')?”(' ) (IS??;); Z| P ‘ 1 ( | 2))|>
= v(s1)) (v(s2
P Z; DTv<u<~>,u<-

=B(m) Dy (p(-), v ())-

The proof is completed. ]

IN
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Second, we need to quantify how the transition dynamics differ under the two policies, which

involves bounding the difference between their respective operators, P™ and P™ . This relationship
is established in Lemma[9]

Lemma 9 (Single step bias for two policies). Suppose Assumption|l| For a given distribution
defined on S and two policies 7, 7', we have

Dy (P u(-), P™ () < max Dry (x(-]s), 7' (s)).
Proof. From the definition of Dy (P™pu(-), P™ u(-)), we have
% Z Z P (s'|s)uls) — Z P (5'|s)u(s)
- fz = P (s'|s))uls)
<X <; [Pl - P”/<s'|s>]>
< Zu(s) (max \P” 5) = P”'<8’8>\>
=y 3 [Pl = 7).

Drv(P™u(-), P™ ()

Furthermore, we also have

1 Yy Tr/
§Z’P (s']s) — P™ (s'|s) (s'|s,a)m ZP s, a)m

(s']s,a)((als )W’(GIS))|

als)

23
fZ
5 Z za:P(s'Ls, a)|m(als) — 7'(als)|
%Z ZP(S’|5,&) |m(als) — 7'(als)]
*Z'W ) = 7'(als)| = Dy (r(:|s), 7' (-]s)).

| /\

IN

Combine the above two inequalities, we have the final result. O

By combining the contraction property from Lemma [§] with the single-step policy difference from
Lemma [9] we can then derive the final bound on the TV distance between two stationary state
distributions with different policies.

Lemma 3 (Distance between d™ and d™ ). Suppose Assumptionand hold. For two policies m and
7' with corresponding stationary distributions d™ and d™', the total variation distance is bounded by:

maxs Dy (7' (-|s), 7(-|s))

1= B()
Proof. From the definition of stationary distribution, we have

Dry(d™(-),d" (-)) =Dav (PTd"(-), PTd™ ()

72 ZPW /| dw ZPW /| dw )

Dy (d™(-),d" (-)) <

22
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3 PR = 3P

+§p~<s )= 3P
P EI(e) - P )
%z 3P W) = 3P o

=Dry(P™d"(-), P™ d"(-)) + Dry(P™ d" (), P™ d" (-))
<max Dyy(n([s), 7' (:|s)) + B(x Dry(d(-),d™ (-)).

1
§5§

Rearrange the above inequality, we finally have

- max, Dpy (n(-|s), 7' (s))  max, Doy (x'(]s), 7(-|s))
Dry(d™(-),d"™ () < 1— B(x') B 1— () '

This complete the proof. O

F PROOF OF THEOREM [3]

The proof of Theorem [3|largely follows the structure of the proof for its non-stationary counterpart,
Theorem[11

The central step is to establish an appropriate bound on the expected of the extra term, Eg g [A(S)].
This bound is derived by combining the results of two preceding lemmas: Lemma|[3] which bounds the
distance between stationary distributions, and Lemma|8] which provides the contraction coefficient.

Lemma 10. Suppose Assumption and hold. Given two policy m and 7', and a initial state s,
define A(s) as

k—1

Z Er plr(sisr—1,tik—1)|St]
t=1

A(s)=E, p so=s| —Exp [Vkﬂil(skﬂso = 3} ,

there are /
maxg Dy (7(]s), 7'(]s))

1—p8(n")

E, - [A(s)] < 2k Rinax.

Proof. From the definition, we have

1
Esar lEﬂ,P lz Ew',P[T(SHk1,at+k1)|8t]H

t=1

k—2
=Y Esugr [Ex plr(sp—1,ax—1)|s0 = 5]
t=0
k-2
= "(s0) Y P4 (sk—1]s0) Zﬁ (alsk—1)r(sk-1,a),
t=0 Sk—1

and

Equr [Emp [Vk’f_'l(sk)|so - 3” = By [Vk’f_'l(s)}

k—2
=Y d7(s0) YD P (selso) Y ' (alse)r(se.a)

t=0 s
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_ZZdﬂ So ZP St|50 Zﬂ' a|3t Sta )

t=0 so
So we have

Esvar[A(s)]

<Z Zd“ S0) Z Pk 1(8k—1]%0) — Zd”(so)ZPf,(sﬂso) Riax

S0 Sk—1 S0 St

k—2

SZZ 50 Zpk 1 Sk 1|80 80 ZP St‘SO max
t=0 so Sk—1
k—2 )

=YD 1d(s0) D Pl y(skalso) — d™ (so) +d™ ( %me%mﬂ
t=0 so Sk—1
k—2 ) )

<> <Z d"(s0) Y Pi_1(s-1]s0) = d™ (s0)
t=0 S0 Sk—1

d™ (so) — d"(s0) Y PT" (st]so)

+>
50

From Lemmal(8] we have

>|Rmax|-

Y |d7(s0) Y Pila(si-1lso) = d™ (s0)| = (B(x)* " Doy (d"(-),d™ (-)),

So Sk—1

and

> = (B(x"))' Doy (d"(-),d™ ()

S0

d’r ™ (so ZP (s¢]so)

Combine the above inequities, we have

Esvar[A(s)] < [Rumax| Z (ﬁ(ﬂ'/))t) DTV(dW('>7dﬂ,('))
2 2k Dy (d7 (), d™ ()| Ruax|
9 _maxg Dy (7 (-]s), 7' (-]s))
= T )

The inequality (*) holds because of Assumption and the inequality (*x) holds because of Lemma
This completes the proof. ]

| Rinax|-

With this bound on the expected difference established (Lemma[I0]and Lemma3)), the remainder of
the proof proceeds analogously to that of Theorem [T} completing the argument.

Theorem 3 (Relation between the loss and performance difference under stationary state distribution).
Suppose Assumptionsm and |2| hold. For a policy mg and a previous policy g, define the loss as:

mo(als) | me

A old s

old | TG, (a|s) k ( ,CL):| ’
The relationship between policy improvement and this loss is bounded by:
Dy (76, 1|70)

1- 5(7(901(1)

where D™ (mg,, || o) = maxs Dy (mg,, (+|s), mo(+|s)) and o = max, 4

Ly, (797 ﬂ-‘gold) =E

swdﬂeuld ,an~Te

|Jk(m9) — Ji(Ta,,) — k- Li(mo, Ta,,)| < 4k (D (7o, 70) + [ Rmax|) ,

AT (5. a) \

24



Under review as a conference paper at ICLR 2026

Proof. Similar to the proof process in Theorem T] we define

Tola e e
&(s) := E“N”%ld('|5) {9((||))Ak90m (s, a)} = Eqmmo(1s) [Akeom(S7 a)] )

Because from the definition of A7 (-, -), we have E ., L(19) [Ak M (s, a)} = 0, for any s, we have

Zﬂ'a als)A " (s,a) — Zﬂgom(a\s)Azg"‘d (s,a)
a

(mo(als) — 7, (als)) Ag"™ (s, a)

1€(s)]

T
<> Imolals) = T (als) max | A7 (s, a)
a
= 2aDE[‘n{a/'X(7T9om”779)v

where DR (7, ||m0) = maxs Dy (moy, (|s), mo(+|s)) and o« = max; 4

A% (s,a) ‘ Combine
the above inequality with Lemma [3]and Lemma[T0] we have

|Jk (7T9) —Jk (We()ld) — k- Ly (7T9, 7T9<>m)‘

— kz d™ (s) — d™0u (s)) £(s) + Eyogre [V;"Md(s)} — Je(m0yy) + Esmaro [A(S)]

IN

Y (d™(s) — d™s (s +Z (d™ (5) — d™1 (5)) V" (8)| + [Esaro [A(s)]

+ [Esvame [A(s)]]

=D (@ (s) — d™wa(s)) (kE(s) + Vi, ()

<X | o) o ) k() + VT (0] + B [A(S)
<317 (5) — A (3)] [KE(s) + Vi7" (5)| + [Bomama [A(5)]]

<37 40 (5) ()] (HEE) + K ) + Evvas SO
DR o)

1-5 (ﬂ-eo]d)
This completes the proof. O

<4k (DI (Tog4]|70) + [ Rmax|) -

G PROOF OF THEOREM {4l

The Ji () has the following property.
Lemma 11 (State value with d™). Suppose Assumption[I|holds, there is

T () = Esar [Vi7 (8)] = k- o7

Proof. We first prove Esq~ [V7(s)] = k - p™. From the definition E,.4~ [V, (s)], we have

505]

k—1

7r _
Egnar [ViT ()] = ]ESONdﬂ-7atN7T("st)73t+1NP('|st7at [E :T (st ar)
t=0

k—1
= Z d”(s) Z Z Pr(s']s) Z m(als')r(s', a).

t=0 s’ a
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When ¢ = 0, from the definition of Py(s’|s), we have
> dm(s) Y Pi(s]s) > w(als Zd” Z als)r(s,a) = p".
For any 1 <t < k — 1, from the definition of stationary distribution, we further has the following
relation
Zdﬂ' P7r /| Zdﬂ' )ZPt_1(5/|SH)P(SN‘S)

722(1# Pt 1( /|5//)

= Zd’r (s"VP,_1(s'|s")

= Z d™(s)Pi_1(s'|s).

The last equality holds by replacing the variable from s” to s. Repeat the above process ¢ — 1 times,

we will then have
Z dﬂ' PT{' Z dﬂ' P7r _ dw( )

So we have
Zdﬂs)ZPf(sﬂs)Z (a|s")r Zd” Z (a|s)r(s',a) = p™.
s s’/ a a
Sum all the above result, we finish the proof. O

Then we represent the state value for k-sliding-window return as

ViIi(s) =k p" +V7™(s) +ei(s), where e} (s

P> (" —r(s,a )] ®

t=k

This bridge the gap between the state value function based on k-sliding-window return and average
return. Besides, because E, 4~ (V7 (s)] = k - p7, we have E,;q~[€] (s)] = 0. Using the above
relationship, we can have Theorem E}

Theorem 4 (Difference between L (g, mg,,) and L(mg, 7, ))- Suppose Assumptions and (2| hold.
Given k and 0 < &, < 1 such that k — 1 > Tyix(&x), the difference between the losses for policies
g and my,,, is bounded by:

max
D TV (7T9:1Id

|E(’/T97'/T00,,1) - Ek(’]T977T9(,,(1)| S o < 1-— ﬁ(ﬂ'eald)) . é‘k) 5

where Dy (m,,,|[76) = maxs Dy (m,, (), mo(+]s)).

Proof. From the definition of Ly (7g; g, ), and the new definition of V;™(s) in equation |8} we have
Li(m0, 7,)

=E

7r
s~od " %old aroy

[ mo(als)  me
A old
i oa

[ mo(als ©
:ESNd«901d7aN7T901d ﬂ (Qk old (S a) Vk Bold (S)ﬂ

L T6o1a (CL|S)

_ [ 7T9((1|s) Oold T 0o1d
fESNdweomyawﬂeom _m ( (5,0) + Egwp(s,a) [V (s )} -V (s))

oy [ 220

6,
s~d old7aN71-901d ( |
old

™ ™
+ Eswdﬂecld ,a~mg,s' ~P(:|s,a) |:Vrk—901ld (S/)] - Eswdﬂgold [Vk Yo (S)]
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- [ mo(als)
=" —cT)

-
Id
srvd ™ol janmg

r(s, a)_

=+ EsNd"%m,a~7r9,s'~P(.|s,a) [(k — 1) - p™u + Vi (s") 4 gk om( NN = k- poou
_ | mo(als) ]
=K. 4 60u Ao, _m’r(s, a)_

+E, ™00 areme s P(-|5.a) [V”%w( )+€k o ()| — pouu.

Additionally, because E__ o, [V ™ (s)] = 0 and from the definition of the optimization objective
of average reward, we have

‘C_(WG » MO0l )

_ [ mo(als) £
*]ESNdWBOId ,anTo _7T0°ld (a‘s ATr!"Jnld (S’ a):|
[ mo(als) 5 5
ZESNd"Bold Jar~moy, 7"001,1( ‘S) (7“(57 CL) - p"'eold + ESINP(~|s,a) [V“eold (3/)] — V™1 (S))
[ mo(als)
=B, a0 amm,, (o ‘s)r(& a)}

+ Eswdﬂeold

=E

6
5 1d i
s~d Yol AT

Ja~tg,s' ~P(-|s,a) [V 901"( )] - Es,vd”"old [Vﬂemd (8)] - pﬂg"ld
[ 7Tf)(a’l ) Vaul / T
E = , X V ™ol — "l
7T00m( S)T(Sva)} + L, 4 %old ,aremy,s' ~P(:|5,a) [ (s )] P

where the last inequality holds because of E__ v, [V ™% (s)] = 0. So we have
‘E(ﬂ'g, 7r901d) — Ly (o, 7r9o]d)| = ‘Eswdweuld ,a~mg,s' ~P(-|s,a) {E;crejlf (S/)} ‘ :
Because from the definition E,4~[]_;(s)] = 0, so we further have

“C_(W% 7T‘90]d) — Ly (79’ 7T901d) ‘

= | By gmoua sarmg,s'~P(:|s,a) {Ek “ (s /)} — By amon [Eke 1 (Sl)]‘
=D dm(s ZP (5'|s, a)mg(als)eg ™ (s") = > d™w (s')e, ™4 () ©)
s’/ s s’
< Z d™a(s') — Z Z dou (s) Z P(s'|s,a)mg(als) max ‘Ek SACOIN
s’ s’/ s a
The difference between the distribution on the RHS can be bounded as
Z d™ou (s') — Z Z d"u (s) Z P(s'|s,a)mg(als)
s’ s’ s a
dﬂeold ZP ‘S a)me,, a| Zde’om )ZP(S/|S,G)7T9(CL|S)
S S a
<sz”%d ZP |5, a) [To,q(als) — mo(als)]
(10)

_> s ZZP 5,a) 7o,y (als) — mo(als)|
_ 5 o) S o) — el

=2E s dr [Drv (o, (]5), mo(-|5))]
<2 mSaXDTV(Weom( |s), mo(:|s))-
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From the definition of £, (s) and the fact that E__ s, [, ™ (5)] = 0, we have

ep(s) = Z ZPW%“ (s's) Zﬁeom als")(p™s — (s, a)) — B, _gmou (€125 (5)]
t=k—1 s’
)
= Z > P Zvrol,m als')(p™0 — (s, a))
t=k—1 s’
o0
=D Do dma(s Z% als')(p™ s — 1(s', a))
t=k—1 s’
= Z D (P (s |s) = d™ou () Y oy (als) (07 — (s, ),
t=k—1 s’ a

From the definition of P, (s'|s) and d™u (s'), we have

P (') — s (s') = 3 P (s/[s") P (") — 3 P (5|5 )" (7).

" "

S S

So from Lemmaand the assumption k — 1 > Tp,ix (&), we have

Dyv (P (), d™ () < B(ma,) Drv (P (-]s), d ™0 (),

76,

max Dy (B 7' (|s), d™04 (1)) < &

Because 0 < ((mg,,) < 1, so we can have

}: Ez(pt”om(s/‘ — d™a(s)) < E 2maXDTV(P P (-|s), d™0 (-))
t=k—1 s’ t=k—1
N 2¢,
<2 ) BTN (mp, )6 = ——.
Pt ( eld)gk 1— /B(ﬂ-eold)

So we finally have

28k /

g0 (5) < — =~ Imax (p™0u — r(s’,a))]. (11)
4 () € Tt [ma (77 = (<)
Combine (@), (I0) and (TT)), we finally have
_ 4 Dmax
|£(7T9’7T901d) - Ck(ﬂg77renld)| < gk (,/TGUMH 0) max (P Ot — r(s/,a)) y

1—- Oé( old) s'sa

where D& (mg,,||me) = maxs Dy (m,, (+|s), ma (-, 8)). This completes the proof. O

H STATE VISITATION PATTERNS

Figrue [4| visualizes the state visitation patterns corresponding to trajectories sampled using a near-
optimal policy in the test environments used in Section[5] The results reveal a distinct dichotomy: the
patterns for Swimmer, Walker2d, HalfCheetah, and Hopper are periodic, while those for Reacher and
Pusher are aperiodic. Consequently, we identify the first group of environments as stationary and the
second as non-stationary.

I EXPERIMENTAL SETUP
The hyperparameter configuration for the experiments in Section [5]is summarized in Table[T] Our
choices are grounded in established best practices and designed to ensure a fair comparison.

The common parameters, applied to all PPO variants, are detailed first. Both the policy and value
functions are parameterized by fully-connected networks. Following standard practice in on-policy
deep reinforcement learning, the policy network employs a Tanh activation function. In contrast,
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Figure 4: State visitation patterns for the environments in Section Each plot shows the Euclidean
distance from the initial state, ||s; — so||, as a function of the time step ¢ within a trajectory sampled

from a near-optimal policy.

the value network uses ReLU, a choice made to enhance training stability and prevent vanishing
gradients during value estimation.

For the average-return PPO baseline, we set the reset cost to zero. This decision is based on
the findings of [Zhang & Ross| (2021)), who demonstrated that the performance of average-return

PPO/TRPO is largely insensitive to this specific parameter. This allows for a simpler implementation
without sacrificing performance.

Table 1: Hyperparameter Setup

Hyperparameter Value
Common Parameters
No. of training episodes 2000
Sample trajectories per episode 5
Max steps per trajectory 1000
Training epochs per episode 10
Mini-batch size 256
GAE parameter () 0.95
PPO clipping ratio (¢) 0.2
Entropy coefficient 0.01
Gradient clip norm 0.5
Hidden layers (policy & value) 2
Hidden units 128
Policy network activation Tanh
Value network activation ReLU
Optimizer Adam
Learning rate (policy & value) 2 x 10~*
Average-Return PPO Specific
Gain p soft-update rate 0.1
Reset cost 0
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