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Abstract

Vision-language models (VLMs) have made great
strides in addressing temporal understanding
tasks, which involve characterizing visual changes
across a sequence of images. However, recent
works have suggested that when making predic-
tions, VLMs may rely on static feature biases,
such as background or object features, rather than
dynamic visual changes. Static feature biases are
a type of shortcut and can contribute to systematic
prediction errors on downstream tasks; as a re-
sult, identifying and characterizing error-inducing
static feature biases is critical prior to real-world
model deployment. Existing approaches for iden-
tifying such systematic failure modes in trained
models (i) are typically designed for non-temporal
settings and (ii) are challenging to evaluate in
temporal settings due to the lack of quantitative
evaluation frameworks. In this work, we address
these challenges by introducing TROVE, an au-
tomated approach for discovering error-inducing
static feature biases learned by temporal VLMs.
Given a trained VLM and an annotated validation
dataset associated with a downstream classifica-
tion task, TROVE extracts candidate static fea-
tures from the dataset and scores each feature by
(i) the effect of the feature on classification errors
as well as (ii) the extent to which the VLM relies
on the feature when making predictions. In order
to quantitatively evaluate TROVE, we introduce
an evaluation framework consisting of 101 trained
temporal VLMs paired with ground-truth annota-
tions for learned static feature biases. We use this
framework to demonstrate that TROVE can accu-
rately identify error-inducing static feature biases
in VLMs, achieving a 28.6% improvement over
the closest baseline. Finally, we apply TROVE to
7 off-the-shelf VLMs and 2 temporal understand-
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ing tasks, surfacing previously-unknown static
feature biases and demonstrating that knowledge
of learned biases can aid in improving model per-
formance at test time.

1. Introduction
Vision-language models (VLMs) capable of jointly process-
ing visual and textual data have been shown to possess
state-of-the-art reasoning abilities (Radford et al., 2021; Jia
et al., 2021; Zhang et al., 2023b; Varma et al., 2023; Li
et al., 2022; Liu et al., 2023; Wang et al., 2024b; Jia et al.,
2021). In particular, given an input sequence with multiple
images collected across varying timepoints, temporal VLMs
can effectively characterize visual changes over time, a ca-
pability known as temporal understanding (Bannur et al.,
2023; Chen et al., 2024; Bannur et al., 2024; Wang et al.,
2025; 2024a; 2023; Zhang et al., 2023a; Li et al., 2024).
For example, temporal VLMs can recognize human actions
given a sequence of video frames (Wang et al., 2025; 2024a;
2023) and characterize disease progression given medical
images collected from multiple timepoints (Bannur et al.,
2023; Chen et al., 2024; Bannur et al., 2024).

Models designed to perform temporal understanding tasks
often demonstrate high overall performance; however, re-
cent works have demonstrated that such models may be af-
fected by static feature biases, a phenomenon where models
utilize static patterns (e.g. image background or a particular
object in the scene) as shortcuts when making predictions
rather than analyzing dynamic visual changes occurring
across the image sequence (Li et al., 2023; Buch et al.,
2022; Wang et al., 2021; Ding et al., 2022; Lei et al., 2023).
As an illustrative example, consider videos from an activ-
ity recognition dataset with the class label “climbing
tree”, which depict people climbing up or down trees
(Figure 1). An activity recognition VLM is tasked with
accepting video (formatted as a sequence of frames) as in-
put and then classifying the action being performed by the
person in the scene. In this scenario, a VLM that relies on
static feature biases may base predictions for the class label
“climbing tree” solely on the presence of trees and
foliage, rather than analyzing the true motion patterns asso-
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Figure 1. Temporal models often rely on the presence of static
feature biases, such as background features or objects in the scene,
when making predictions. In this example, the VideoCLIP-XL
model (Wang et al., 2024a) makes systematic prediction errors on
the class swinging on something when trees are present.

ciated with a person climbing a tree. At inference time, the
performance of this VLM will depend heavily on whether
the static feature is present; consequently, as illustrated in
Figure 1, the VLM is likely to make systematic predic-
tion errors when classifying videos from other classes (e.g.
“swinging on something”) with prominently visible
trees.

Identifying learned static feature biases that contribute to
systematic prediction errors is critical prior to real-world
model deployment (Oakden-Rayner et al., 2019). Tradi-
tional approaches for detecting such failure modes, which
typically involve a combination of manual analysis and
pixel-wise interpretability algorithms (e.g. GradCAM), re-
quire extensive human effort and are time-consuming to
implement at scale, particularly as the length of the in-
put sequence increases (Selvaraju et al., 2019; Zeiler &
Fergus, 2013). This suggests the need for automated ap-
proaches; however, performing automated identification
of error-inducing static feature biases is challenging for
the following two reasons. First, existing automated ap-
proaches for discovering systematic errors are designed for
non-temporal (e.g. single image) settings (Eyuboglu et al.,
2022; Jain et al., 2023; Sohoni et al., 2020; Varma et al.,
2024). Such approaches, which typically operate by an-
alyzing model predictions on a labeled validation dataset
and surfacing coherent groups of misclassified samples, are
not adequate for discovering static feature biases in settings
where each data sample consists of a sequence of multiple,
temporally-linked images. Second, performing quantitative
evaluations of automated approaches in the temporal setting
is complicated by the fact that the ground-truth static feature
biases of pretrained models are typically unknown; as a

result, it is difficult to ascertain whether biases extracted by
automated methods are indeed accurate.

In this work, we address these challenges by introducing
TROVE, an automated approach for improving Temporal
Robustness of Vision-Language models. Given a pretrained
VLM, our goal is to discover learned static feature biases
that contribute to systematic prediction errors on down-
stream temporal understanding tasks. Knowledge of such
static feature biases (e.g. trees in the previously-discussed
example) can enable a developer to better understand and ad-
dress model failure models prior to real-world deployment.
To this end, TROVE operates on a labeled validation dataset
by first decomposing each input multi-image sequence into
constituent images and grouping visually-similar images
into clusters. Here, each cluster represents a particular fea-
ture occurring consistently throughout the dataset. We then
introduce a scoring function that ranks each feature by (i)
the effect of the feature on classification errors as well as (ii)
the extent to which the VLM relies on the feature when mak-
ing predictions. As output, TROVE yields a list of identified
static feature biases paired with affected class labels.

In order to assess the utility of our approach, we design an
evaluation framework consisting of 101 temporal VLMs
trained on synthetic data. We pair each VLM with annota-
tions for ground-truth error-inducing static feature biases,
enabling rigorous quantitative analyses. Across this suite of
models, TROVE accurately discovers error-inducing static
feature biases, achieving a 28.6% improvement over the
closest baseline. We find that TROVE operates effectively
across a range of static feature bias types (background bi-
ases, object biases, and attribute biases) and input sequence
lengths.

Given the strong performance of TROVE on synthetic exper-
imental settings, we then extend TROVE to real-world tem-
poral VLMs. Across a suite of seven state-of-the-art VLMs
and two temporal understanding tasks (activity recognition
in videos and disease progression classification in medical
images), TROVE accurately surfaces previously-unknown
static feature biases. We further demonstrate that knowledge
of TROVE-discovered features can aid in improving test-
time VLM performance; we present an approach for mitigat-
ing prediction errors without the need for data augmentation
or VLM retraining, yielding performance improvements on
an activity recognition task of up to 111% on sequences
containing static features.

Ultimately, TROVE demonstrates strong practical utility and
can serve as an effective tool for evaluating and improving
robustness of temporal VLMs.
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2. Related Work
Discovering systematic errors in non-temporal settings:
Since subgroup labels are typically unavailable in datasets,
identifying and understanding critical failure modes of mod-
els can be challenging. Early approaches paired visualiza-
tion techniques with humans in the loop to identify model
failures (Feichtenhofer et al., 2020; Selvaraju et al., 2019);
however, this approach is time-consuming and difficult to
scale effectively across large numbers of models and tasks.
To address this challenge, a recent line of work has proposed
automated approaches for the task of identifying systematic
prediction errors made by models; notable methods in this
domain include Domino (Eyuboglu et al., 2022), Distilling
Failures (Jain et al., 2023), and George (Sohoni et al., 2020),
among others (Kim et al., 2024; R Menon & Srivastava,
2024; d’Eon et al., 2021). Such methods typically analyze
model predictions on a labeled validation set and identify
features in the data (e.g. a specific visual cue in image set-
tings) that systematically contribute to mispredicted labels.
Model developers can then use these identified error patterns
to update models prior to deployment (Johnson et al., 2023).

Although such approaches have been shown to be effective,
these methods are predominantly designed for non-temporal
settings, where each input sample (e.g. image, text) can be
represented as a single entity. In contrast, input samples in
the temporal setting take the form of multi-image sequences,
and collapsing an entire sequence to a single entity provides
inadequate granularity for detecting errors resulting from
static feature biases. As we demonstrate in Section 4, naive
extensions of such methods to temporal settings fails to
work effectively, particularly when error-inducing features
are visible in only a subset of the sequence.

Our approach also builds upon recent fine-grained ap-
proaches in the image setting that leverage region-level
information for detecting systematic errors (Varma et al.,
2024; Yang et al., 2023). However, these approaches are de-
signed and evaluated solely on non-temporal, single-image
settings.

Discovering systematic errors in temporal settings: Prior
works have noted that temporal models often rely on static
feature biases as shortcuts when making predictions (Lei
et al., 2023; Liu et al., 2024; Fukuzawa et al., 2025; Chung
et al., 2022). In such settings, using just a single frame as
input to a model can result in high performance on multi-
image temporal understanding tasks (Buch et al., 2022; Lei
et al., 2023). A range of approaches have been proposed for
reducing model reliance on static feature biases, predomi-
nantly in the context of background biases in video-based
activity recognition tasks (Choi et al., 2019; Li et al., 2023;
Wang et al., 2021; Ding et al., 2022; Huang et al., 2018;
Yu et al., 2025); such approaches typically involve novel
optimization procedures or data augmentation strategies.

We draw a key distinction between these works and our
approach: whereas this line of work focuses explicitly on
mitigating the influence of static feature biases during the
model training procedure, our work instead aims to accu-
rately discover learned biases given a pretrained temporal
model. We also extend beyond the human activity recogni-
tion setting, including evaluations on both a synthetic task
as well as a medical imaging task.

3. Our Approach: TROVE

We now introduce TROVE, an approach for improving tem-
poral robustness of VLMs by discovering learned static
feature biases that contribute to systematic prediction errors.
In Section 3.1, we formally describe our problem setting.
We then present methodological details for TROVE in Sec-
tion 3.2. An overview of TROVE is provided in Figure
2.

3.1. Preliminaries

VLMs designed to perform temporal understanding tasks
are generally trained on large-scale datasets of the form
D = {(Si, Ti)}mi=1, where Si represents a multi-image se-
quence and Ti represents paired text in the form of a caption
or description. Each input sequence Si can be expressed
as Si = (I1i , I

2
i , ..., I

ni
i ), where each Ii represents a sin-

gle image and ni represents the total number of images in
sequence Si. At inference time, temporal VLMs are eval-
uated using downstream tasks that assess the ability of the
model to understand visual changes over time (e.g. activity
recognition, disease progression classification); by defini-
tion, an effective downstream temporal understanding task
will require the model to parse a multi-image sequence and
analyze dynamic visual patterns.

In this work, we focus explicitly on downstream tempo-
ral understanding tasks formulated as classification prob-
lems, where inference datasets are expressed as DV =
{(Si, yi)}pi=1 for sequences Si and class labels y ∈ Y . Here,
Y represents the ground-truth label set associated with the
task, and we assume that ni > 1 for all sequences Si ∈ DV .
Recent works have suggested that when making predictions
at inference time, models trained to perform temporal un-
derstanding tasks may rely heavily on static feature biases,
such as background features or objects in the scene, rather
than rely on the true dynamic visual changes (Li et al., 2023;
Liu et al., 2024). For example, as shown in Figure 1, the
recently-introduced VideoCLIP-XL model relies on the pres-
ence of trees, a static feature, when assigning predictions for
the class label y = climbing tree (Wang et al., 2024a).
Static feature biases are a type of shortcut and can ultimately
result in systematic prediction errors at inference time; in
Figure 1, this manifests as low performance on other classes
in Y \{y} when the static feature is present, such as the
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Figure 2. TROVE is an automated approach for discovering error-inducing static feature biases learned by temporal VLMs. In this
example, TROVE identifies a static feature bias associated with trees, which results in degraded performance on the class label swinging
on something (Kay et al., 2017).

class label swinging on something.

3.2. Discovering Static Feature Biases

Our key goal in this work is to discover static features that
meet the following two criteria. First, identified static fea-
tures should be error-inducing, meaning that the presence of
the feature within a sequence directly contributes to predic-
tion errors on the downstream temporal understanding task
of interest. Second, identified static features should reflect a
learned model bias, suggesting that the model relies on the
presence of the feature when making predictions. However,
designing an automated algorithm that satisfies these two
criteria is challenging, since image-level static features are
typically not annotated in temporal datasets and may only
occur in a subset of images within a sequence. For instance,
as shown in Figure 1, image-level annotations for trees are
not available, and trees are only visible in a portion of the
sequence; this complicates the process of discovering the as-
sociation between the static feature and observed prediction
errors.

We now introduce TROVE, which identifies static feature
biases learned by temporal VLMs. In line with the criteria
described above, TROVE aims to identify static features
that both contribute directly to downstream prediction er-
rors and represent learned model biases. Given a pretrained
VLM F and a validation dataset DV associated with a down-
stream temporal understanding task, TROVE operates by (1)
extracting candidate static features that occur consistently
throughout sequences in DV and (2) scoring each feature
by both its effect on prediction errors made by VLM F and
the extent to which the feature represents a learned bias by

VLM F . Importantly, our proposed approach does not re-
quire image-level static feature annotations and can operate
effectively even when static features occur in only a subset
of the sequence.

Extracting candidate static features. Given the labeled
validation dataset DV , the first step in our approach is to
extract candidate static features. To this end, we begin
by retrieving all multi-image sequences Si in DV . Since
our goal is to identify static feature biases that manifest
at the image level, we compute image-level embeddings
for each image Ii contained within input sequence Si =
(I1i , I

2
i , ..., I

ni
i ). To generate an image-level embedding

for Ii, we create a new static sequence consisting of the
single image Ii replicated ni times, effectively removing all
temporal variation; we then use the vision encoder of VLM
F to compute an embedding for this sequence.

In order to identify static features that occur consistently
within dataset DV , we cluster the computed image-level
embeddings using spherical K-means with cosine distance.
The optimal number of clusters is selected automatically by
sweeping across a range of potential values and selecting
the number that maximizes the Silhouette score. At the
end of this step, we obtain a collection of clusters C, where
each cluster C ∈ C represents a set of images with a shared
feature; for instance, in the example from Figure 2, one
cluster in C may consist of frames with prominently-visible
trees.

Discovering error-inducing static feature biases. The
second step in our approach is to determine the extent to
which a candidate feature represented by cluster C both (i)
contributes to prediction errors and (ii) represents a static
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bias learned by temporal VLM F . To this end, we introduce
a two-pronged scoring function designed to characterize
each of these factors. First, for a given cluster C, the error
contribution score (ECS) evaluates whether VLM F makes
systematic prediction errors on one or more classes when
static features associated with C are present. Second, the
static bias score (SBS) evaluates whether VLM F has
learned a bias associated with static features in C; this
involves determining the extent to which model F relies on
static features in C when making predictions. We discuss
these components in detail below.

For each cluster C ∈ C representing a candidate static
feature, we first identify all multi-image sequences Si ∈ DV

with at least one constituent image in cluster C. Let Yc

represent the set of ground-truth class labels associated with
these sequences. For cluster C and class label y ∈ Yc, we
compute the error contribution score ECSy

C as follows:

ECSy
C = accy¬C − accyC (1)

Here, accyC represents classification accuracy on all multi-
image sequences Si ∈ DV with at least one constituent
image in cluster C and ground-truth label y. Conversely,
accy¬C represents classification accuracy on all multi-image
sequences Si ∈ DV with no constituent images in cluster
c and ground-truth label y. The error contribution score
ECSy

C ranges between -1 and 1. Large positive values of
ECSy

C suggest that when static features associated with C
are present in a sequence, the VLM F is likely to demon-
strate degraded performance on class label y.

Next, for cluster C and class label y ∈ YC , we compute the
static bias score SBSy

C . Let ŷi refer to the predicted classifi-
cation label for a sequence Si ∈ DV . We first filter cluster C
to retain only images Ii where the corresponding sequence
Si is mispredicted by model F (i.e. ŷi ̸= yi); we refer to
this set as Cwrong ⊆ C. We then use VLM F to classify
each image Ii ∈ Cwrong using the label set Y; in order to
do so, we utilize the same procedure discussed previously,
where we provide a static sequence consisting of image Ii
repeated ni times as input to the vision encoder associated
with model F . Our insight here is that the downstream tem-
poral classification task, by definition, requires a dynamic
sequence with visual changes in order to be successfully
solved; as a result, a model that generates high-confidence
predictions when provided with only a static, unchanging
sequence as input is likely relying on a learned static bias.
Based on this insight, we compute the static bias score:

SBSy
C =

1

|Cwrong|
∑

Ii∈Cwrong

softmax(F ([Ii, Ii, ..., Ii]))ŷi

(2)

The static bias score ranges between 0 and 1, with large
values of SBSy

C suggesting that model F has learned to

rely on the static feature when making predictions. We also
calibrate model confidences via temperature scaling prior to
computing the static bias score (Guo et al., 2017).

Finally, for each cluster C and label y, we compute a sum
of the error contribution score and the static bias score as
follows: ECSy

C + SBSy
C . This quantity, which we refer to

as the TROVE score, can be used to measure the extent to
which each static feature (i) contributes to prediction errors
and (ii) represents a static bias learned by VLM F . An
ablation on the role of the two components of the TROVE
score is provided in Appendix B.

4. Evaluating TROVE in Synthetic Settings
Evaluating TROVE is complicated by the fact that ground-
truth biases learned by a VLM are typically unknown a
priori; thus, it is challenging to assess whether discovered
biases are indeed accurate. In order to address this chal-
lenge, we introduce a large-scale quantitative evaluation
framework that leverages synthetic data. Our approach is
motivated by prior works (Eyuboglu et al., 2022; Varma
et al., 2024; Liang & Zou, 2021) yet introduces a novel
setup that focuses on temporal settings with multi-image
sequence inputs. In Section 4.1, we discuss details related
to the construction of our evaluation framework. Then, in
Section 4.2, we demonstrate quantitatively that TROVE
can effectively surface error-inducing static feature biases
learned by VLMs, achieving a 28.6% improvement over the
closest baseline.

We emphasize here that the use of synthetic data provides
several key advantages, chief among them the ability to
perform large-scale evaluations (we consider 101 tempo-
ral VLMs in this analysis) as well as support for precisely
controlling key parameters of the input dataset. We follow
up our synthetic evaluations with additional analyses on
real-world settings in Section 5.

4.1. Designing an Evaluation Framework

In this section, we introduce our approach for quantitatively
evaluating TROVE. Our insight is to predefine a static fea-
ture b; then, we train a temporal VLM such that it learns
a bias with respect to b, resulting in classification errors at
inference time on class label ỹ. This approach allows us to
pair trained VLMs with ground-truth annotations for error-
inducing static feature biases b and associated class labels
ỹ. Consequently, we can evaluate TROVE by measuring
its ability to identify biases that align with the ground-truth
annotations. Given this setup, we design a suite of evalua-
tion configurations, with each configuration consisting of
the following components:

1. A vision-language training dataset with an injected
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Figure 3. Example five-image sequences with injected static visual features. Our evaluation framework considers three types of static
visual features - background, object, and attribute - that can contribute to biased model predictions on temporal understanding tasks.

predefined static feature bias. The vision-language
training dataset D = {(Si, Ti)}mi=1 consists of multi-
image sequences Si paired with textual captions Ti. We
construct sequences using synthetic images, where each
constituent image in Si depicts a blue circle placed on
a black background. The sequence is paired with a tex-
tual caption Ti, indicating the direction of movement of
the circle across the sequence; namely, the circle may
be “moving north”, “moving south”, “moving west”, or
“moving east”.

Given this setup for dataset D, we then select one of the
following static visual features: (i) background features,
where all pixels located outside the circle are colored red,
(ii) object features, where a red rectangle is inserted at a
random position in the image, and (iii) attribute features,
where the color of the circle is changed to red. We then
insert the selected static visual feature of interest into
dataset D such that the feature is highly prevalent in
sequences where the circle is “moving south” and low in
prevalence otherwise; this procedure injects a bias into
the training dataset, contributing to errors at inference
time when the static feature appears in sequences from
other classes. Examples of sequences with injected static
visual features are provided in Figure 3.

2. A temporal VLM trained on this dataset. We train a
temporal VLM F using training dataset D. Since the
dataset exhibits a strong bias with respect to the prede-
fined static feature, the model is likely to pick up on this
shortcut during training.

3. A downstream temporal understanding task. We es-
tablish a downstream temporal understanding task that
aligns closely with the training data; namely, given a
multi-image sequence depicting blue circles in each im-
age, the task involves classifying the motion of the circle
as one of four classes: moving north, moving south,
moving east, and moving west.

We create a large suite of evaluation configurations by vary-
ing the following hyperparameters: (i) the type of static
visual feature (background, object, or attribute), (ii) the se-
quence length ni, (iii) the prevalence of sequences in the
training dataset with the static feature, and (iv) the number

of images per sequence displaying the static feature. We
then verify the quality of each configuration by evaluating
(i) the suitability of the proposed task and (ii) the suitability
of the trained VLM. After the quality verification stage, our
framework yields a total of 101 temporal VLMs paired with
ground-truth annotations indicating the predefined static
feature bias b and the downstream class label ỹ on which
the bias induces errors. Additional details are provided in
Appendix A.

4.2. TROVE Accurately Discovers Error-Inducing
Biases in Synthetic Settings

We now evaluate TROVE using the framework from Section
4.1. We provide the trained VLM F and dataset DV as
input. Then, for each class label in DV , TROVE outputs a
list of image clusters ranked by TROVE scores; each cluster
represents an identified error-inducing static feature bias.

Recall from Section 4.1 that our framework annotates VLM
F with both the ground-truth static feature bias b (namely,
the red background, red rectangle, or red circle) and the
downstream class label ỹ on which the bias induces errors.
In order to score the output of TROVE, we compute Preci-
sion@K, defined as the proportion of the top-K images in
the generated ranked list for class ỹ that depict b. In line
with prior works on error discovery (Eyuboglu et al., 2022;
Varma et al., 2024), large Precision@K values suggest that
a human user can easily understand the TROVE-identified
bias by simply inspecting the top-K returned images.

We compare TROVE with five methods for systematic error
detection. Three state-of-the-art approaches for systematic
error discovery in non-temporal settings are considered:
Domino (Eyuboglu et al., 2022), George (Sohoni et al.,
2020), and Distilling Failures (Jain et al., 2023). Since these
methods were designed for non-temporal settings, each in-
put sequence is represented as a single unit; thus, these
methods generate ranked lists of sequences as output rather
than ranked lists of images. We naively adapt these meth-
ods to the temporal setting by first generating a ranking
of sequences and then sorting images from each sequence
in temporal order. In addition to these methods, we also
compare TROVE with a previously-developed temporal ap-
proach that we refer to as Confidence. Confidence, which
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Background Object Attribute
Method P@10 P@25 P@100 R-Prec P@10 P@25 P@100 R-Prec P@10 P@25 P@100 R-Prec

Random 20.7 19.6 18.8 18.3 14.3 15.0 16.3 16.2 16.2 19.1 19.4 18.8
Domino 48.6 47.0 32.4 19.7 52.2 47.1 34.8 23.1 63.1 57.8 35.1 19.1
George 45.5 44.7 42.0 35.6 45.0 41.1 44.8 35.7 46.2 46.8 44.4 38.9
Dist. Failures 62.9 62.0 59.9 49.0 60.4 58.3 55.9 49.9 69.2 68.0 66.4 62.3
Confidence 61.0 60.6 64.6 59.5 97.8 97.0 95.6 78.0 58.5 59.4 57.9 52.5
TROVE 100.0 100.0 100.0 95.0 97.8 97.8 97.8 92.8 100.0 100.0 99.3 89.3

Table 1. TROVE reliably demonstrates strong performance across all three feature categories.

is an application of the method proposed in Li et al. (2023),
ranks images from sequences in DV by their maximum
image-level prediction confidence. Finally, we consider a
random baseline, where we pool together images from all
sequences in DV and then generate a random ordering.

Results are summarized in Table 1, where we report Preci-
sion@K for K = 10, 25, 100 as well as R-precision, a vari-
ant of Precision@K where K is equal to the total number
of images in DV annotated with the ground-truth static bias.
We demonstrate that TROVE outperforms all other evalu-
ated methods, achieving a 28.6% improvement over the clos-
est baseline (namely, confidence). Existing non-temporal
systematic error detection methods (Domino, George, and
Distilling Failures) demonstrate low performance when di-
rectly extended to the temporal setting due to their inability
to retrieve the specific images containing the static feature
from a sequence. Across all three static feature categories ex-
plored in our framework (background, object, and attribute),
TROVE demonstrates superior performance compared to
the other methods. We note that whereas baselines exhibit
significant variations in performance across the three static
feature categories, TROVE consistently achieves strong per-
formance. Extended results and ablations are provided in
Appendix B.

5. Evaluating TROVE in Real-World Settings
Given the strong performance of TROVE on our synthetic
experimental settings, we now utilize TROVE to discover
error-inducing static feature biases learned by real-world
temporal VLMs. As discussed in Section 4, evaluating
the accuracy of discovered biases in real-world settings is
challenging. Consequently, we validate TROVE-identified
biases in two ways. First, in Section 5.1, we utilize image-
level pseudolabels to verify that static feature biases sur-
faced by TROVE exhibit desired properties. Second, in
Section 5.2, we demonstrate that knowledge of TROVE-
discovered features can aid with mitigating prediction errors
at test time, yielding substantial performance improvements
without significant model training or data augmentation. Ex-
tended implementation details and results are in Appendix
C and D.

5.1. TROVE Accurately Discovers Error-Inducing
Biases in Real-World Settings

Analyzing Pretrained VLMs with TROVE: We analyze
a suite of pretrained contrastive VLMs with temporal un-
derstanding capabilities (Wang et al., 2024a; 2025; Bannur
et al., 2023; Ni et al., 2022) across two temporal understand-
ing tasks - 400-class activity recognition on Kinetics400 and
2-class pneumonia progression classification on MS-CXR-T
(Kay et al., 2017; Bannur et al., 2023). For the six pretrained
VLMs evaluated on activity recognition, TROVE identifies
between 36 and 116 learned static feature biases per model.
For the one pretrained VLM evaluated on pneumonia pro-
gression classification, TROVE identifies 4 learned static
feature biases.

In Figure 4 (left panel), we provide examples of static fea-
ture biases and associated class labels surfaced by TROVE.
For the VideoCLIP-XL model, TROVE surfaces a feature
cluster consisting of babies; this suggests that when static
features associated with babies are present in a sequence,
VideoCLIP-XL is likely to exhibit degraded performance
on the class sticking tongue out. Similarly, on a
pneumonia disease progression classification task, TROVE
discovers a cluster of chest X-rays depicting features such as
bilateral opacities, medical devices, and low lung volumes,
which are indicative of severe pneumonia. This suggests
that when a chest X-ray in a multi-image sequence depicts
such features, BioViL-T is likely to exhibit degraded per-
formance on the class improving due to a learned static
feature bias. We provide additional qualitative examples in
Figure 8.

Validating Discovered Biases: In Figure 4 (right panel),
we validate the accuracy of biases discovered by TROVE.
For the activity recognition task, we utilize an open-
vocabulary object detector (Minderer et al., 2024) to an-
notate the presence of babies in all constituent images for se-
quences with class label sticking tongue out. We
find that (i) classification accuracy of VideoCLIP-XL is sig-
nificantly lower on this class label (by 15.4 points) when ba-
bies are present, and (ii) VideoCLIP-XL demonstrates high
prediction confidence when classifying static sequences
with babies, suggesting a learned bias. Predicted labels for
incorrectly-classified sequences in this class include baby
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Figure 4. [Left Panel] Qualitative examples of static feature biases discovered by TROVE across various temporal VLMs and downstream
tasks. [Right Panel] We demonstrate that TROVE-discovered biases satisfy desired properties.

waking up and carrying baby, further corroborat-
ing our finding that the model is focusing on the presence of
the baby rather than the true dynamic visual changes associ-
ated with the action sticking tongue out. Similarly,
for the pneumonia progression classification task, we utilize
radiology reports as well as a domain-specific entity extrac-
tion tool (Delbrouck et al., 2024) in order to annotate each
image with the presence of markers associated with severe
pneumonia (i.e. bilateral lung involvement, devices, and
low lung volumes). We find that (i) classification accuracy
of BioViL-T is lower (by 16.7 points) when these markers
are present, and (ii) BioViL-T demonstrates high predic-
tion confidence when classifying static sequences with these
markers. Additional validation is provided in Appendix D.

Comparing Temporal and Non-Temporal VLMs: Non-
temporal VLMs (e.g. CLIP (Radford et al., 2021)) can be
applied to temporal tasks by encoding each sequence as
the mean of its constituent image-level embeddings. Intu-
itively, since non-temporal VLMs are trained only on static
image-level features, we should expect to see high rates of
static feature biases. Indeed, we find that this intuition holds.
Across four non-temporal VLMs (Radford et al., 2021; Zhai
et al., 2023) evaluated on activity recognition, TROVE dis-
covers an average of 134.5± 38.8 static feature biases per
model. This is considerably larger than the six temporal
VLMs (Wang et al., 2024a; 2025; Ni et al., 2022), which
exhibit an average of 84.5 ± 27.3 static feature biases per
model.

5.2. TROVE Improves Downstream VLM Classification
Performance

We now demonstrate that knowledge of TROVE-identified
static feature biases can aid with mitigating prediction errors
on downstream tasks. We specifically consider contrastive
temporal VLMs as a case study, which have demonstrated
state-of-the-art performance on many temporal understand-
ing tasks (Wang et al., 2024a; 2025).

We first run TROVE on a validation dataset DV , which
generates as output a ranked list of image clusters (repre-
senting learned static feature biases) and associated class
labels (on which the presence of the static feature induces
errors). Let C represent an identified image cluster, such as
the cluster of trees in Figure 2, and let ỹ represent the asso-
ciated error-prone class label, such as the label swinging
on something in Figure 2. Due to the learned bias,
sequences with the static feature represented by C are par-
ticularly difficult for the VLM to correctly classify.

Prior works in non-temporal settings have suggested that
VLM classification accuracy can be improved by injecting
text prompts with additional fine-grained detail in order to
maximize class-level separation (Menon & Vondrick, 2022;
Pratt et al., 2023). We aim to improve VLM performance on
sequences with feature C by leveraging CoOp, an approach
for automatically learning effective prompts (Zhou et al.,
2022). We use CoOp to learn prompts that achieve the best
possible classification accuracy among sequences in DV

with at least one image in cluster C. All parameters in the
VLM are frozen, avoiding significant training costs. At
test time, given an input sequence with an unknown label,
we first use the trained clustering model from Section 3 to
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Model Label ỹ Overall

VideoCLIP-XL 51.7 82.2
+ TROVE 94.4 86.7

ViCLIP-B 45.3 73.4
+ TROVE 95.8 77.7

ViCLIP-L 71.4 77.1
+ TROVE 96.9 80.7

Table 2. We show that classification accuracy of VLMs can be
improved given knowledge of TROVE-identified static feature
biases. This table reports performance (Accuracy@5) on a subset
of videos in Kinetics400 (Kay et al., 2017) containing the top 20
static features identified by TROVE.

determine if the sequence contains at least one image in
cluster C. If so, we use the learned prompts to perform
classification; otherwise, we use default prompts.

We apply our mitigation approach to improve the perfor-
mance of three contrastive temporal VLMs on an activity
recognition task (Kinetics400 (Kay et al., 2017)). In Table 2,
we report classification performance (Accuracy@5) across
test set sequences with at least one image assigned to the
top-20 TROVE-identified static feature clusters. Across this
set (denoted as “Overall” in Table 2), we observe strong
performance improvements when applying our mitigation
approach. Notably, on sequences in this set with ground-
truth labels ỹ that are particularly impacted by static feature
biases (denoted as “Label ỹ” in Table 2), we observe per-
formance improvements of up to 111%. We note that the
“Label ỹ” and “Overall” categories in Table 2 are analo-
gous to worst-group and average analyses performed in
robustness literature. Our results show that knowledge of
TROVE-identified biases can aid in improving test-time
VLM performance by correcting errors induced by learned
static feature biases.

6. Conclusion
In this work, we introduced TROVE, an automated approach
for improving robustness of temporal VLMs. Given a tem-
poral VLM, TROVE discovers learned static feature biases
that contribute to prediction errors on downstream tasks.
Ultimately, our work can help enable users to discover and
mitigate important failure modes in temporal VLMs prior
to deployment in real-world settings.

Impact Statement
In this work, we demonstrate that static feature biases are
a critical issue for temporal VLMs. Static feature biases
are a type of spurious correlation and can contribute to pre-

diction errors on downstream prediction tasks. We hope
that our proposed approach can be utilized to detect and
mitigate errors resulting from static feature biases prior to
real-world deployment. Such an approach has the poten-
tial to improve robustness of temporal VLMs. This can
be particularly advantageous in safety-critical settings like
healthcare, where models capable of processing medical
images across multiple timepoints are gaining increasing
popularity.
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A. Implementation Details for Synthetic Evaluations
In this section, we expand on Section 4.1 by providing additional implementation details for our evaluation framework.

Implementation details for vision-language training datasets with injected predefined static feature biases: Se-
quences in the vision-language training dataset D are composed of synthetic images, where each image depicts a blue circle
placed on a black background. To generate images, we first create an empty image of size 60 pixels × 60 pixels. We then
place a blue circle with a diameter of 10 pixels in a random location on the image. The position of the blue circle will vary
across the sequence; specifically, the circle will be ”moving north” (towards the upper border of the image), ”moving south”
(towards the lower border of the image), ”moving west” (towards the left border of the image), or ”moving east” (towards
the right border of the image). Textual captions paired with each sequence indicate the direction of the circle’s movement.

As stated in Section 4.1, we create a large suite of evaluation configurations by varying several hyperparameters associated
with the training dataset. We define each configuration by selecting a single value for each hyperparameter. Hyperparameters
and possible values are described in detail below:

• Type of static visual feature. Motivated by the types of static feature biases that emerge in real-world settings (Li et al.,
2023), we consider three categories of static features: (i) background features, where all pixels outside the circle are
colored red, (ii) object features, where a red rectangle with dimensions 15 pixels × 15 pixels is inserted in a random
location, and (iii) attribute features, where the color of the circle is changed to red. For object features, we ensure that the
red rectangle does not overlap with the blue circle when placed in the image. By design, these three categories of static
features vary in visual subtlety, with background features resulting in the most pixel-level changes and attribute features
the least.

• Sequence length. We consider four options for the sequence length ni: 2 images, 3 images, 5 images, and 10 images.

• Prevalence of sequences in the training set with the static feature. In line with prior work (Yao et al., 2022), we use the
Cramer’s V metric to ensure that the presence of the static feature in the training set is strongly associated with the group
of sequences in which the circle is ”moving south”. We consider the following values of Cramer’s V: 0.7, 0.8, 0.9, and
0.95.

• Number of images per sequence displaying the static feature. We select a nonzero integer value vi less than or equal to the
value of ni. When injecting the static feature into a selected sequence in D, we randomly select a contiguous subsequence
of vi images to depict the feature. For example, in Figure 3, vi = 2 and ni = 5.

Implementation details for trained temporal VLMs: As part of our evaluation framework, we train a temporal VLM
F using training dataset D. Model F is implemented in the form of a simple contrastive VLM where the vision and text
encoders are based on the CLIP ViT-L/14 architecture. For each input sequence Si, constituent images are passed through
the vision encoder followed by a trainable projection head consisting of two linear layers interspersed with a ReLU activation.
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Our architecture includes a total of ni projection heads, and the appropriate projection head for each image is selected
based on its position in the sequence. We assume that ni remains constant for all sequences in the dataset. The resulting
embeddings for constituent images are concatenated together (in order to preserve temporal information) and then passed
through a projection head consisting of three linear layers interspersed with ReLU activations. The output of this projection
head is a single embedding characterizing the sequence.

Training is performed on a single NVIDIA V100 GPU using a batch size of 256, an initial learning rate of 1e-4, and a
total of 100 epochs with early stopping based on validation set performance. All parameters associated with the vision
and text encoder remain frozen, whereas parameters associated with the projection heads are learnable. At inference time,
classification is performed by computing the cosine similarity between the sequence-level embedding and text embeddings
associated with each class; the class with the highest cosine similarity is selected as the prediction.

Implementation details for downstream temporal understanding tasks: The downstream temporal understanding task
takes the form of a classification task in which the motion of the circle must be classified in one of four categories: moving
north, moving south, moving east, and moving east. In order to reflect real-world settings, we assume that the dataset DV

used in the downstream task is drawn from the same distribution as the training dataset, where the injected static feature is
highly prevalent for the class “moving south” and less prevalent on other classes. For each evaluation configuration in our
suite, we use the same instantiations of hyperparameters for both the training dataset and the downstream task dataset.

Quality verification: We verify the quality of each evaluation configuration across two axes: (i) the suitability of the
proposed task and (ii) the suitability of the trained VLM.

First, in order to evaluate the suitability of the proposed task, we train a temporal VLM on a version of the training dataset
with no inserted static feature, and we verify that the downstream inference task can be successfully solved by this model.
We also train a standard, non-temporal VLM on this dataset to perform the task using only a single selected image per
sequence, and we verify that the downstream task cannot be solved by this model; here, we adopt the approach introduced
by Buch et al. (2022). In combination, this analysis confirms that in an unbiased setting, the task can only be addressed by a
temporal VLM capable of parsing visual changes across multiple images. In practice, we retain evaluation configurations
where the temporal, unbiased VLM exhibits at least a 20 point improvement over the non-temporal, unbiased VLM; the
remainder are filtered out.

Second, in order to evaluate the suitability of the trained VLM, we verify that (i) the VLM has learned the predefined static
feature bias and (ii) the presence of the static feature contributes to mispredictions. To evaluate whether the VLM has
learned the predefined static feature bias, we compute the difference in image-level classification performance between
images without the predefined static feature and images with the predefined static feature. We retain evaluation settings
where the gap in performance is greater than 20 points on at least one class ỹ; the remainder are filtered out. To evaluate
whether the presence of the static feature bias contributes to mispredictions, we compute the difference in sequence-level
classification performance between sequences without the predefined static feature and sequences with the predefined static
feature. Again, we retain all evaluation configurations where the gap in performance is greater than 20 points on class ỹ. In
combination, this analysis confirms that the trained VLM has learned the static feature bias of interest and that the static
feature bias contributes to errors on at least one class associated with the downstream task.

Summary statistics: After the quality verification stage, our framework yields a total of 101 valid evaluation configurations,
each consisting of a temporal VLM paired with ground-truth annotations indicating the learned static feature bias b and the
downstream class label ỹ on which the bias induces errors. Below, we provide a breakdown of these configurations across
various factors:

• Downstream class label ỹ: Out of the 101 valid evaluation configurations, the value of ỹ equals moving north for 17
configurations, moving west for 36 configurations, and moving east for 48 configurations.

• Type of static visual feature: Out of the 101 valid evaluation configurations, 42 exhibit a background static feature bias, 46
exhibit an object static feature bias, and 13 exhibit an attribute static feature bias.

• Sequence length: Out of the 101 valid evaluation configurations, 13 have sequences consisting of 2 images, 17 have
sequences consisting of 3 images, 34 have sequences consisting of 5 images, and 37 have sequences consisting of 10
images.
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• Prevalence of sequences in the training set with the static feature: Out of the 101 valid evaluation configurations, 1 has a
Cramer’s V score of 0.7, 12 have a Cramer’s V score of 0.8, 38 have a Cramer’s V score of 0.9, and 50 have a Cramer’s V
score of 0.95.

• Proportion of images per sequence displaying the static feature: Out of the 101 valid evaluation configurations, 25 have
between 20% and 49% of the frames per sequence depicting the static feature, 38 have between 50% and 79% of the
frames per sequence depicting the static feature, and 38 have between 80% and 100% of the frames per sequence depicting
the static feature.

B. Extended Results for Synthetic Evaluations
In this section, we extend the results provided in Section 4.2 with additional performance breakdowns. In Figure 5, we
provide a breakdown of TROVE performance by the number of images per sequence. As part of our suite of 101 trained
VLMs, we consider VLMs trained on datasets with varying numbers of images ni per sequence; in particular, we consider
ni ∈ {2, 3, 5, 10}. As shown in Figure 5, TROVE demonstrates strong performance across all four categories. On the
other hand, we see considerable declines in performance for the Confidence baseline as the number of images per sequence
increases.

In Figure 6, we analyze TROVE performance with respect to the proportion of images per sequence displaying the static
feature. As part of our suite of 101 trained VLMs, we consider VLMs trained on datasets with varying proportions of images
per sequence containing the static visual feature; for instance, in a sequence consisting of five images, a proportion of 0.4
indicates that two images in the sequence display the static feature, as depicted in Figure 3. TROVE demonstrates strong
performance across the spectrum, whereas baselines again show considerable variation. The ability of TROVE operate
effectively even when the static feature is only visible in a portion of the sequence is a key advantage over the non-temporal
systematic error detection methods (Domino, Distilling Failures, and George) evaluated in this work.

In Figure 7, we provide overall performance metrics across four evaluation metrics: Precision@10, Precision@25, Preci-
sion@100, and R-Precision. Across all metrics, TROVE demonstrates superior performance to baselines, demonstrating that
our approach is effective at generating accurate ranked lists of identified static feature biases.

In Table 3, we provide an ablation with respect to the two components that make up the TROVE score: the Static Bias Score
(SBS) and the Error Contribution Score (ECS). We demonstrate that using both components in tandem yields significantly
higher performance across our synthetic evaluations than using SBS alone. We do not perform an ablation with the ECS
alone, since using ECS alone will not specifically target static feature biases, which are the topic of this work.
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Figure 5. TROVE demonstrates strong performance across evaluation configurations with varying numbers of images per sequence.
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Table 3. Ablations with respect to the two components of the TROVE score.

Method P@10 P@25 P@100 RP

Static Bias Score (SBS) Only 76.2 76.2 75.9 78.2
Static Bias Score (SBS) & Error Contribution Score (ECS) 99.1 99.1 98.9 93.2

C. Implementation Details for Real-World Evaluations
In this section, we provide additional implementation details associated with the analysis in Section 5.

We utilize TROVE to analyze seven pretrained contrastive VLMs with temporal understanding capabilities using two temporal
understanding tasks: activity recognition on Kinetics400 (Kay et al., 2017) and pneumonia progression classification on
MS-CXR-T (Bannur et al., 2023).

Activity Recognition on Kinetics400: The activity recognition task on Kinetics400 involves classifying a video into one
of 400 possible classes that represent human actions, such as welding or climbing tree. The model is presented
with a sequence of video frames as input; for our analysis, we use 8 frames per video obtained via uniform sampling. We
split the validation set of Kinetics400 into a development set (used for the analysis in this section) and a test set (used for
the analysis in Section 5.2 where we mitigate biases). We compute logits and predictions for each model using a standard
zero-shot classification approach, performed by computing the cosine similarity between the sequence embedding and text
embeddings representing each class label. In line with prior work (Radford et al., 2021), we compute text embeddings by
ensembling the following prompt templates for each class label: {”a photo of [LABEL].”, ”a photo of a person [LABEL].”,
”a photo of a person using [LABEL].”, ”a photo of a person doing [LABEL].”, ”a photo of a person during [LABEL].”, ”a
photo of a person performing [LABEL].”, ”a photo of a person practicing [LABEL].”, ”a video of [LABEL].”, ”a video of a
person [LABEL].”, ”a video of a person using [LABEL].”, ”a video of a person doing [LABEL].”, ”a video of a person
during [LABEL].”, ”a video of a person performing [LABEL].”, ”a video of a person practicing [LABEL].”, ”a example of
[LABEL].”, ”a example of a person [LABEL].”, ”a example of a person using [LABEL].”, ”a example of a person doing
[LABEL].”, ”a example of a person during [LABEL].”, ”a example of a person performing [LABEL].”, ”a example of a
person practicing [LABEL].”, ”a demonstration of [LABEL].”, ”a demonstration of a person [LABEL].”, ”a demonstration of
a person using [LABEL].”, ”a demonstration of a person doing [LABEL].”, ”a demonstration of a person during [LABEL].”,
”a demonstration of a person performing [LABEL].”, ”a demonstration of a person practicing [LABEL].”}. Kinetics400 is
open-source.

We analyze six contrastive VLMs on the activity recognition task (VideoCLIP-XL (Wang et al., 2024a), ViCLIP-L (Wang
et al., 2025), ViCLIP-B (Wang et al., 2025), XCLIP-B/16 (Ni et al., 2022), XCLIP-B/32 (Ni et al., 2022), and XCLIP-L/14
(Ni et al., 2022)). As described in Section 3, TROVE includes a clustering stage. The optimal number of clusters is selected
automatically by sweeping across a range of potential values [|Y| ∗ 2, |Y| ∗ 6) at increments of 400; here, the bounds of the
range evaluate to [800, 2400), given the fact that |Y| = 400. We classify a prediction as correct if the ground-truth label
appears in the top-5 predicted classes (i.e. Accuracy@5). We exclude any identified static feature biases where (1) the error
contribution score is low (defined as below a predefined threshold of 0.1) and (2) the static bias score is less than or equal to
random chance (defined as 1/|Y| = 0.0025 in this case). VideoCLIP-XL is available under CC-By-NC-SA-4.0. ViCLIP
and XCLIP are available under MIT licenses.

Pneumonia Progression Classification on MS-CXR-T: The pneumonia progression classification task on MS-CXR-
T involves classifying a sequence of chest X-rays collected at varying timepoints into one of two possible categories:
improving, which suggests that pneumonia is improving over the course of the sequence, and worsening, which
suggests that pneumonia is worsening over the course of the sequence. Each sequence contains two chest X-rays. We
compute logits and predictions using a standard zero-shot classification approach. In line with prior work (Bannur et al.,
2023), we compute text embeddings by ensembling across prompt templates. For the class label improving, we utilize the
following prompts: {”pneumonia is better”, ”pneumonia is cleared”, ”pneumonia is decreased”, ”pneumonia is decreasing”,
”pneumonia is improved”, ”pneumonia is improving”, ”pneumonia is reduced”,”pneumonia is resolved”, ”pneumonia is
resolving”, ”pneumonia is smaller”}. For the class label worsening, we utilize the following prompts: {”pneumonia
is bigger”, ”pneumonia is developing”, ”pneumonia is enlarged”,”pneumonia is enlarging”, ”pneumonia is greater”,
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”pneumonia is growing”,”pneumonia is increased”, ”pneumonia is increasing”, ”pneumonia is larger”,”pneumonia is new”,
”pneumonia is progressing”, ”pneumonia is progressive”,”pneumonia is worse”, ”pneumonia is worsened”, ”pneumonia is
worsening”}. MS-CXR-T is available under PhysioNet Credentialed Health Data License 1.5.0.

We analyze one contrastive VLM on the pneumonia progression classification task (BioViL-T (Bannur et al., 2023)). As
described in Section 3, TROVE includes a clustering stage. The optimal number of clusters is selected automatically by
sweeping across a range of potential values [|Y| ∗ 2, |Y| ∗ 6) at increments of 1; here, the bounds of the range evaluate to
[4, 12), given the fact that |Y| = 2. We exclude any identified static feature biases where (1) the error contribution score is
low (defined as below a predefined threshold of 0.1) and (2) the static bias score is less than or equal to random chance
(defined as 1/|Y| = 0.5 in this case). BioViL-T is available under an MIT license.

D. Extended Results for Real-World Evaluations
D.1. Analysis of Pretrained Temporal VLMs

[A]

Discovered 
Static Feature 

Bias

pushing cart Class Label

Model: ViCLIP-B

Task: Activity Recognition TRoVe

[D]

Discovered 
Static Feature 

Bias

somersaultingClass Label

Model: ViCLIP-L

Task: Activity Recognition TRoVe

[B]

Discovered 
Static Feature 

Bias

swinging on somethingClass Label

Model: VideoCLIP-XL

Task: Activity Recognition TRoVe

[C]

Discovered 
Static Feature 

Bias

sticking tongue outClass Label

Model: ViCLIP-L

Task: Activity Recognition TRoVe

Samples with child and toy Samples without child and toy

Does the discovered feature 
contribute to prediction errors?

0 100Accuracy
1000

66.7

90.0

Does the discovered feature 
represent a learned static bias?

0 100Image-Level Prediction Confidence 1000

51.9

23.7

Analysis of Class Label ”pushing cart”

Overall Classification Accuracy: 62.5
Classification Accuracy where vals==1: 50.0
Classification Accuracy where vals==0: 66.667

Confidence where vals==1: 42.776 
Confidence where vals==0: 39.806

Overall Classification Accuracy: 76.0
Classification Accuracy where vals==1: 66.667
Classification Accuracy where vals==0: 90.0

Confidence where vals==1: 51.855 
Confidence where vals==0: 23.738

Overall Classification Accuracy: 56.0
Classification Accuracy where vals==1: 47.059
Classification Accuracy where vals==0: 75.0

Confidence where vals==1: 79.253 
Confidence where vals==0: 35.731

Analysis of Class Label ”swinging on something”

Samples with tree Samples without tree

Analysis of Class Label ”sticking tongue out”

Samples with baby Samples without baby

Does the discovered feature 
contribute to prediction errors?

0 100Accuracy
1000

50.0

66.7

Does the discovered feature 
represent a learned static bias?

0 100Image-Level Prediction Confidence 1000

42.8

39.8

Does the discovered feature 
contribute to prediction errors?

0 100Accuracy
1000

47.1

75.0

Does the discovered feature 
represent a learned static bias?

0 100Image-Level Prediction Confidence 1000

79.3

35.7

Analysis of Class Label ”somersaulting”

Samples with pool Samples without pool

Does the discovered feature 
contribute to prediction errors?

0 100Accuracy
1000

14.3
27.8

Does the discovered feature 
represent a learned static bias?

0 100Image-Level Prediction Confidence 1000

61.4

41.83

Overall Classification Accuracy: 24.0
Classification Accuracy where vals==1: 14.286
Classification Accuracy where vals==0: 27.778

Confidence where vals==1: 61.373 
Confidence where vals==0: 41.828

Figure 8. Additional qualitative examples of static feature biases discovered by TROVE across various temporal VLMs.
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On the activity recognition task, we identify 104 static feature biases for VideoCLIP-XL, 104 static feature biases for
ViCLIP-L, 116 static feature biases for ViCLIP-B, 66 static feature biases for XCLIP-B/16, 81 static feature biases for
XCLIP-B/32, and 36 static feature biases for XCLIP-L/14. On the pneumonia progression classification task, we identify 4
static feature biases for BioViL-T. We observe a general trend that as the size of the model increases across the same family
(for example, ViCLIP-B vs. ViCLIP-L and XCLIP-B/16 vs. XCLIP-L/14), the number of identified static feature biases
decreases, potentially suggesting that larger models are less reliant on static feature biases. This follows logically from
the fact that larger models also exhibit better overall performance with lower error rates on the activity recognition task,
suggesting that these models are more likely to have learned true dynamic patterns. We also note here that the number of
identified static feature biases is strongly correlated with the size of dataset and the number of classes; as a result, the smaller
number of identified static feature biases for pneumonia progression classification in comparison to activity recognition is
expected.

We validate the quality of each discovered bias by verifying whether the desired properties (namely, error-inducing and
learned model bias) are satisfied. Here, we provided extended details on our human-in-the-loop validation procedure
introduced in Section 5.1. First, given a TROVE-discovered cluster of images C and associated error-prone class label ỹ, a
human reader annotates the key feature shared among images in cluster C (e.g. ”baby” in the activity recognition example
provided in Figure 4). Then, for all sequences in the dataset with class label ỹ, we assign image-level pseudolabels indicating
whether the human-annotated feature (e.g. ”baby” in Figure 4) is present or absent. For the activity recognition task,
image-level pseudolabels are obtained by leveraging an off-the-shelf open-vocabulary object detector (OwlV2) (Minderer
et al., 2024), which is prompted to detect the presence of the human-annotated feature. The feature is considered to be
present in an image if the confidence of OwlV2 is at least 0.3. For the pneumonia progression classification task, we obtain
image-level pseudolabels by leveraging RadGraph-XL (Delbrouck et al., 2024), a domain-specific entity recognizer, to
annotate findings present in each image. Then, given image-level pseudolabels, we evaluate whether the TROVE-identified
bias satisfies the two desired properties:

• Does the discovered feature contribute to prediction errors? We compute classification accuracy on sequences from class
label ỹ with the human-annotated feature as well as sequences from class label ỹ without the human-annotated feature. If
the TROVE-discovered bias is accurate, then we would expect to see lower performance on class label ỹ when sequences
contain the human-annotated feature.

• Does the discovered feature represent a learned static bias? For each constituent image per incorrectly-classified sequence,
we construct a static sequence consisting of the single image repeated ni times. We then obtain softmax-normalized
prediction logits when performing classification with the static sequence, and we extract the maximum value across all
classes (i.e. the maximum prediction confidence). If the TROVE-discovered bias is accurate, then we would expect to see
large confidence values, suggesting that the model is able to make highly-confident predictions without the use of any
temporal information. In particular, we would expect to see confidence values significantly larger than the confidence
values that would be expected by random chance (i.e. 1/|Y|). In our plots in Figures 4 and 8, we provide a comparison of
the mean image-level maximum confidence values between images with the human-annotated feature and images without
the human-annotated feature.

Figure 8 provides additional qualitative examples of error-inducing static feature biases and associated class labels discovered
by TROVE, as well as associated validation results. Below, we analyze the results in each panel:

• [Panel A]: TROVE discovers a cluster of images depicting children and toy carts, suggesting that when features associated
with children and toy carts are present in a sequence, ViCLIP-B is likely to exhibit lower performance on the class
pushing cart. ViCLIP-B mispredicts these samples as crawling baby and crying baby, suggesting that the
model is relying on static features associated with children when making predictions. In order to validate this finding, we
use OwlV2 (Minderer et al., 2024) to annotate the presence of a ”child with toy” in all constituent images for sequences in
class pushing cart. We find that (i) classification accuracy of ViCLIP-B is significantly lower on this class label (23.3
points) when children and toys are present and (ii) ViCLIP-B demonstrates high prediction confidence when classifying
static sequences from this class label with children and toys.

• [Panel B]: TROVE discovers a cluster of images consisting of trees, suggesting that when static features associated
with trees are present in a sequence, VideoCLIP-XL is likely to exhibit lower performance on the class swinging on
something. VideoCLIP-XL mispredicts these samples as climbing tree, suggesting that the model is relying
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on static features associated with trees when making predictions. This example is highlighted in Figure 2. In order
to validate this finding, we use OwlV2 (Minderer et al., 2024) to annotate the presence of a ”tree” in all constituent
images for sequences in class swinging on something. We find that (i) classification accuracy of VideoCLIP-XL
is significantly lower on this class label (16.7 points) when trees are present and (ii) VideoCLIP-XL demonstrates high
prediction confidence when classifying static sequences from this class label with trees. We note that the difference in
mean image-level maximum confidence values between images with trees and images without trees is relatively small
in this example (3 points); regardless, the prediction confidence is substantially larger than what would be expected by
random chance (0.25 vs. 42.8), suggesting that the model is relying on a learned static bias.

• [Panel C]: TROVE discovers a cluster of images consisting of babies, suggesting that when static features associated
with babies are present in a sequence, ViCLIP-L is likely to exhibit lower performance on the class sticking tongue
out. ViCLIP-L mispredicts these samples as baby waking up, suggesting that the model is relying on static features
associated babies when making predictions. Interestingly, this example is similar to the example provided in Figure 4
(left panel), suggesting that ViCLIP-L and VideoCLIP-XL both learned a similar error-inducing static feature bias. In
order to validate this finding, we use OwlV2 (Minderer et al., 2024) to annotate the presence of a ”baby” in all constituent
images for sequences in the class sticking tongue out. We find that (i) classification accuracy of ViCLIP-L is
significantly lower on this class label (27.9 points) when babies are present and (ii) ViCLIP-L demonstrates high prediction
confidence when classifying static sequences from this class label with babies.

• [Panel D]: TROVE discovers a cluster of images consisting of divers with swimming pool backgrounds, suggesting
that when these static features are present in a sequence, ViCLIP-L is likely to exhibit lower performance on the
class somersaulting. Frequent mispredictions in this set of samples are the class labels springboard diving
and jumping into pool, suggesting that the model is relying on static features associated with the pool when
making predictions. Importantly, we note here that although these predictions do not align with the ground-truth label
(somersaulting), they are not necessarily incorrect in this setting; this raises the possibility of another potential use case for
TROVE in real-world settings: flagging potential labeling errors. To validate the discovered bias, we use OwlV2 (Minderer
et al., 2024) to annotate the presence of a ”pool” in all constituent images for sequences in the class somersaulting.
We find that (i) classification accuracy of ViCLIP-L is significantly lower on this class label (13.5 points) when pools are
present and (ii) ViCLIP-L demonstrates high prediction confidence when classifying static sequences from this class label
with pools.

For our analysis of non-temporal VLMs on the activity recognition task, we consider four models: CLIP-ViTB/32 (Radford
et al., 2021), CLIP-ViTL/14 (Radford et al., 2021), CLIP-RN50 (Radford et al., 2021), and SigLIP (Zhai et al., 2023). We
identify 195 static feature biases for CLIP-ViTB/32, 92 static feature biases for CLIP-ViTL/14, 111 static feature biases for
CLIP-RN50, and 140 static feature biases for SigLIP.

D.2. Improving Downstream Classification Performance

We implement CoOp (Zhou et al., 2022) using the default settings provided in the original implementation. For each
considered cluster C, we utilize an SGD optimizer with a learning rate of 0.002 and train for 20 epochs. In Table 2, we
reported mean classification accuracy across the test set sequences containing the top-20 TROVE-identified static features.
In Table 4, we extend these results by reporting mean classification performance (evaluated with Accuracy@5) across the
test set sequences containing the top-5 TROVE-identified static features and the top-10 TROVE-identified static features.
In Table 5, we report Accuracy@1 metrics. Table 6 lists the number of test set sequences considered under each category
when computing results in Tables 2, 4, and 5. Our mitigation approach leads to consistent performance improvements with
minimal computational cost, demonstrating the practical utility of TROVE-identified biases.

E. Additional Applications of TROVE

In this section, we highlight another potential use-case of TROVE in real-world settings: analyzing the composition of
temporal datasets. To analyze the composition of Kinetics400 (Kay et al., 2017), we construct an ensemble of six contrastive
temporal VLMs; then, for each model, we use TROVE to identify static feature biases and corresponding class labels on
which the bias induces errors. Our analysis finds that two classes in Kinetics400, namely sneezing and cracking
neck, are identified as error-prone classes by all six models; this finding suggests that these two classes are likely to
be consistently impacted by learned static feature biases. In contrast, 185 classes like training dog and dancing
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Table 4. We show that classification accuracy of VLMs can be improved given knowledge of TROVE-identified static feature biases. This
table reports performance (Accuracy@5) on a subset of videos in Kinetics400 (Kay et al., 2017) containing the top-5 TROVE-identified
static features, the top-10 TROVE-identified static features, and the top-20 TROVE-identified static features.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 47.1 84.1 63.0 82.3 51.7 82.2
+ TROVE 82.4 89.4 91.3 84.7 94.4 86.7

ViCLIP-B 21.1 69.5 22.7 69.0 45.3 73.4
+ TROVE 89.5 75.9 93.2 75.5 95.8 77.7

ViCLIP-L 58.6 69.9 64.3 75.7 71.4 77.1
+ TROVE 96.6 78.2 96.4 78.8 96.9 80.7

Table 5. We show that classification accuracy of VLMs can be improved given knowledge of TROVE-identified static feature biases. This
table reports performance (Accuracy@1) on a subset of videos in Kinetics400 (Kay et al., 2017) containing the top-5 TROVE-identified
static features, the top-10 TROVE-identified static features, and the top-20 TROVE-identified static features.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 17.6 48.3 21.7 52.7 18.0 55.0
+ TROVE 41.2 58.5 45.7 55.8 61.8 57.1

ViCLIP-B 5.3 34.2 6.8 37.7 24.2 43.1
+ TROVE 15.8 43.9 50.0 47.9 62.1 50.9

ViCLIP-L 3.4 35.2 16.1 40.9 23.5 45.6
+ TROVE 48.3 46.1 53.6 48.2 63.3 50.1

ballet are not affected by learned error-inducing static feature biases for any of the considered models.

In Figure 9, we we vary the models included in the ensemble. Figure 9 [Panel A] considers an ensemble of two ViCLIP
models (ViCLIP-B and ViCLIP-L) and identifies a total of 33 classes that are consistently impacted by learned static feature
biases across both models. The 33 identified classes (sorted by their mean TROVE scores) include: hockey stop, sticking
tongue out, sneezing, blowing nose, dining, ski jumping, shaking head, kicking field goal, blasting sand, texting, biking
through snow, passing American football (not in game), water sliding, waxing legs, slapping, tasting food, waxing chest,
skateboarding, eating burger, shining shoes, whistling, making tea, robot dancing, cracking neck, eating spaghetti, shuffling
cards, baking cookies, surfing crowd, egg hunting, bending back, opening bottle, tapping pen, and jumping into pool. Figure
9 [Panel B] considers an ensemble of three XCLIP models (XCLIP-B/16, XCLIP-B/32, and XCLIP-L/14) and identifies a
total of 4 classes that are consistently impacted by learned static feature biases across all three models. The 4 identified
classes include: making a cake, sneezing, eating chips, and cracking neck.

Ultimately, given a temporal dataset associated with a task of interest, TROVE can enable identification of challenging class
labels that are particularly susceptible to systematic errors from static feature biases, aiding with model development and
evaluation.

F. Extended Discussion
Limitations and Future Work: Our work aims to discover and mitigate error-inducing static feature biases learned by
temporal VLMs. We specifically focus on image sequences in this work, where each sequence represents a series of images
collected over time (e.g. video frame sequences, medical images collected at varying timepoints, etc.). However, temporal
data exists in many other modalities, such as audio and signals. Our work does not consider these settings, and determining
the role of static feature biases in inducing prediction errors across non-image modalities would be an interesting direction
for future work.
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Table 6. Here, we list the number of test set sequences considered under each category when computing results in Tables 2, 4, and 5. The
”Overall” column lists the number of test set sequences with at least one constituent image assigned to the top-K TROVE-identified static
feature clusters. The ”Label ỹ” column lists the number of test set sequences with ground-truth label ỹ and at least one constituent image
assigned to the top-K TROVE-identified static feature clusters.

Model Top 5 Identified Features Top 10 Identified Features Top 20 Identified Features
Label ỹ Overall Label ỹ Overall Label ỹ Overall

VideoCLIP-XL 17 207 46 419 89 669
ViCLIP-B 19 187 44 355 95 831
ViCLIP-L 29 193 56 452 98 866
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Figure 9. Several classes in Kinetics400 were found to be consistently impacted by learned static feature biases across multiple trained
VLMs. Panel [A] depicts Kinetics400 classes consistently impacted by static feature biases across ViCLIP-L and ViCLIP-B. Panel [B]
depicts Kinetics400 classes consistently impacted by static feature biases across XCLIP-B/16, XCLIP-B/32, and XCLIP-L/14.
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