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Abstract

We present a general framework for transfer learn-
ing that is flexible enough to capture transfer in
supervised, reinforcement, and imitation learn-
ing. Our framework enables new insights into
the fundamental question of when we can suc-
cessfully transfer learned information across prob-
lems. We model the learner as interacting with a
sequence of problem instances, or environments,
each of which is generated from a common struc-
tural causal model (SCM) by choosing the SCM’s
parameters from restricted sets. We derive a pro-
cedure that can propagate restrictions on SCM
parameters through the SCM’s graph structure to
other parameters that we are trying to learn. The
propagated restrictions then enable more efficient
learning (i.e., transfer). By analyzing the proce-
dure, we are able to challenge widely-held beliefs
about transfer learning. First, we show that hav-
ing sparse changes across environments is neither
necessary nor sufficient for transfer. Second, we
show an example where the common heuristic of
freezing a layer in a network causes poor transfer
performance. We then use our procedure to select
a more refined set of parameters to freeze, leading
to successful transfer learning.

1. Introduction
Transfer learning is a well-studied problem with many vari-
ations such as covariate shift, representation learning, im-
itation learning, and finding invariant predictors. In this
work, we present a framework that unifies multiple transfer
learning problems, and can be used broadly for analyz-
ing transfer learning problems. As a result, we challenge
commonly-held assumptions about transfer, such as when
sparse mechanism shift and layer freezing can be helpful.
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Our framework also helps us design models and decide
which components to transfer.

We model the transfer learning problem by viewing the
world as a structural causal model (SCM, Pearl et al., 2000)
with unknown constraints on its parameters. Learning about
these constraints is what enables transfer. Within a world,
the learner interacts with a sequence of environments. In
each environment, the parameters of the SCM are chosen
from the constrained domains, and the data is generated
from the SCM with the chosen parameters. That is, each en-
vironment can be seen as a conditional intervention on a base
SCM that represents the world. From each environment’s
data, we learn its parameters, and thus gain information
about the unknown constraints. This view can be used to
describe covariate shift, representation learning, and transfer
learning in supervised learning, reinforcement learning, and
imitation learning (see Section 3).

Therefore the environments’ generation from the world fol-
lows the Independent Causal Mechanisms (ICM) Principle
(Schölkopf et al., 2021), where the model is composed of in-
dependent modules. Within each module, we can have con-
straints on its parameters (called local constraints). We show
how constraints on parameters across the model (called
global constraints) can be computed from local constraints,
allowing us to learn faster in new environments.

Contributions. In this work, we make the following con-
tributions. First, we present a novel formalism for transfer
learning that helps unify previously distinct areas of re-
search, including covariate shift, representation, few-shot
learning, and zero-shot learning, in which environments
are generated from worlds by choosing local parameters
of an SCM from constrained domains (Section 3). Second,
we show how the constraints of global distributions can be
computed from the constraints of local distributions, which
enables us to analyze if transfer is feasible and derive a
meta-algorithm to perform transfer (Section 4). Finally, we
present case studies to illustrate how our work may be used
to analyze and even challenge widely-held beliefs about
transfer learning. We show that sparse mechanism shifts are
neither necessary nor sufficient for transfer, and we show
that freezing a layer of a network may either succeed or fail
at transfer (Section 5).
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Figure 1. Relationships among problems in Section 3.1. We focus
on transfer learning through the world update problem.

2. Motivation
Transfer learning means using knowledge from previous
environments to speed up learning in a similar but differ-
ent environment. For example, an agent can be trained to
classify cows using photos where cows are often associated
with pasture, and tested on photos where cows are often
associated with sand (Beery et al., 2018). A robot may be
trained to walk on Earth, then asked to perform on Mars
where the gravity constant is different. Using our formalism,
a world can consist of a set of possible associations between
cows and the background, or a set of possible gravity con-
stants, and environments correspond to specific values of
the association or the gravity constant. Parameters learnt
from previous environments can therefore be used as data
points to learn about the constrained domain specified by
the world. We call this the world update problem (Figure 1)
and provide more details in Section 3.1. Formally, we define
our transfer learning problem as the study of speedups we
can get by learning constraints from previous environments
to reduce the hypothesis class in the current environment —
ruling out out possible parameter values, so that we need
less data or less computation for learning.

3. Problem Formalism
To that end, define a world as an SCM with a set of con-
strained domains for its parameters. We generate an envi-
ronment from the world by choosing parameters from their
domains. The learner starts out with some but not all in-
formation about the world: it might know something about
the structure and/or the constraints. It then sees data from
a sequence of environments. Parameters learnt in these en-
vironments become data points to estimate the domains, so
that we can speed up learning in new environments.

For one example, the learner might know that some parame-
ters of a model are constant in all environments but might
not know their shared value. After seeing enough data in
one environment, the learner can transfer these parameters
to the next (parameter freezing). In this example, the trans-
fer strategy is clear. It is not obvious in general how to learn
unknown constraints for transfer; we discuss this question
in App. A, and give a more complex example next.

X1 X2 X3

w∗
2 w∗

3

Figure 2. Causal graph for Example 3.1

Example 3.1. In the SCM of Figure 2, X3 = w∗
3X2 ∈

R1, X2 = w∗
2X1 ∈ R2, and X1 ∈ R3 is drawn from

a Gaussian distribution with mean w∗
1 . In each environ-

ment, the parameters w∗
1 , w

∗
2 , and w∗

3 are selected from sets
W∗

1 ,W∗
2 ,, and W∗

3 . Here, W∗
1 is the set of all 2×1 matrices,

W∗
2 = {[1, 2, 3; 4, 5, 6]} is a singleton 2×3 matrix (same in

all environments), and W∗
1 is R3. Suppose the learner aims

to predict X3 from X1 when X2 is unobserved; it knows w∗
2

is constant in all environments but doesn’t know its value.
Starting from a conditional linear model, X3 = w3|1X1,
the optimal (unknown) parameter value is w3|1 = w∗

3w
∗
2 in

each environment. Since w∗
2 is the same in all environments,

w3|1 is always in the row space of w∗
2 . Using examples

of w3|1 learnt from previous environments, the learner can
discover this row space, then use it as the hypothesis class
for w3|1 in new environments to expedite learning.

We now present the formal definition of worlds and environ-
ments, extending Buesing et al. (2019). Upper-case letters
denote random variables, lower-case letters their values, and
bold-faced letters denote tuples.

Definition 3.1 (World). Let X = (X1, . . . , Xn) ∈ Ω1 ×
· · ·×Ωn be n variables where Ωi denotes the domain of Xi.
Let O ⊆ X denote the observable variables and Z ⊆ X
denotes the unobservable ones. Let U = (U1, . . . , Un)
where Ui is a vector of di independent uniform noise vari-
ables.1 Let fw be a parameterized function class and
Pi ⊆ {X1, . . . , Xi−1} be the set of possible causal par-
ents of Xi, so that Xi = fw∗

i
(Pi, Ui), 1 ≤ i ≤ n. (We call

w∗
i an atomic parameter, to distinguish from aggregated pa-

rameters like w3|1 in Ex. 3.1.) Let D∗
i be the unconstrained

domain of w∗
i and W∗

i ⊆ D∗
i be the constrained domain

of values for w∗
i . (When relevant, we call these atomic

domains.) The world is the set of all possible SCMs ob-
tained by selecting atomic parameters from their constrained
domains: w∗

i ∈ W∗
i , ∀i, 1 ≤ i ≤ n.

The learner sees a sequence of k environments {Ee}ke=1.

Definition 3.2 (Environment). To make an environment Ee,
we divide the observable variables O into ones the learner
cannot intervene on (states) Se ⊆ O and ones the learner
can intervene on (actions) Ae ⊆ O. We then select the
parameter w∗e

i from W∗
i for all i (1 ≤ i ≤ n).2

1Ui provides randomness for Xi. Using inverse CDF transform
sampling, joint distributions can be expressed as SCMs (Buesing
et al., 2019).

2This can be interpreted as conditional interventions, described
in (Correa & Bareinboim, 2020).
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In each environment, the learner learns about conditional
distributions in order to make predictions. We leave the
exact prediction task unspecified; instead we focus on the
conditionals, and assume that discovering these will lead
to task success. We represent conditional with parameter
vectors:

Definition 3.3 (Description). Let I and K be tuples of in-
dices, and write XI and XK for the corresponding tuples
of variables. The learner represents the conditional distribu-
tion of XI given XK, P I|K

wI|K(·), using a vector of parameters
wI|K.3 Many parameter vectors might be equivalent in a
given environment Ee, either because they yield identical
conditional distributions, or because Ee’s distribution over
XK puts no weight on places where they differ (see Exam-
ple 3.2 below). We write P

I|K
w ≃ P

I|K
w′ , and we say that all

of these vectors are descriptions of the same conditional
distribution in Ee. We use a bar to denote a set of equiva-
lent descriptions: e.g., w is the set of descriptions that are
equivalent to w. If the conditional is for a single variable
Xi given its parents, we call it an atomic description. For
brevity, we sometimes write the conditional distribution as
XI|XK or I|K, leaving the parameters implicit.

After learning descriptions of some conditional distributions,
the learner can update its estimates of the corresponding con-
strained domains. It can use these estimates to try to transfer
to future environments. We discuss this process in more
detail below (Sec. 4); there we address issues like how to
reconcile descriptions learnt in different environments, and
how to reason about the way different constrained domains
relate to one another. To this end, we will give a toolbox of
basic operations that can combine descriptions to build new
ones step by step. These operations let us compute general
domains from atomic ones: that is, wI|K lies in a domain
WI|K ⊆ DI|K that we can compute from the domains W∗

i .

As mentioned above, whether two conditional distributions
for XI|XK are distinct can depend on the domain of XK.
The following example illustrates this:

Example 3.2 (Covariate Shift). We consider the SCM
X2 = w∗

2X1 where w∗
2 = (1, 1). Let D∗

1 , the unrestricted
domain of w∗

1 , be {u, v}. If w∗
1 = u, X∗

1 is uniformly dis-
tributed on the line segment from (0, 0) to (1, 2), and if
w∗

1 = v, X∗
1 is normally distributed on R2. Therefore in

Environment 1 when w∗
1 = u, w∗

2 = {w | w(1, 2)T = 3}
and in Environment 2 when w∗

1 = v, w∗
2 = {(1, 1)}. Note

that w∗
2 depends on w∗

1 even when w∗
2 is chosen indepen-

dently from w∗
1 . From Environment 1, the agent might learn

ŵ∗
2 = (2, 0.5), which is a description of w∗

2 and incorrectly
transfers it to the next environment.

3For example, with discrete variables, wI|K could be the condi-
tional probability table; or with Gaussian variables, wI|K could be
the best linear predictor.

In Section 3.2 and Section 4.3, for simplicity, we assume that
each w results in a unique distribution (Assumption 3.4);
for example, this happens when the joint distribution is
Gaussian. We discuss the case when the assumption does
not hold in Section 4.4.

Assumption 3.4 (Unique Description). For any
w∗

1 , . . . , w
∗
n ∈ D∗

1 , . . . ,D∗
n, for any two sets of dis-

joint indexes I,K, ∀w′, w ∈ DI|K, if P
I|K
w (.) ≃ P

I|K
w′ (.)

then w = w′.

3.1. Landscape around Transfer Learning

In this section, we differentiate transfer learning from related
problems (Figure 1) and discuss how it relates to common
concepts. Let XQ be some query variables that we wish to
estimate: for example, the label in supervised learning or
the expected return (Q function) in reinforcement learning.
To help predict XQ, the learner can solve several problems:

Causal discovery: Learn the graphical structure of the un-
derlying SCM.

Predictor selection: Choose evidence variables XE to esti-
mate XQ|XE.4

Parameter learning: Given a hypothesis set ŴQ|E, learn
we

Q|E ∈ ŴQ|E.

World update: Ŵ0
Q|E is the initial knowledge of the learner

about wQ|E before any environment. Given estimated val-
ues of w1

Q|E, . . . , w
e
Q|E learnt from previous environments

E1, . . . , Ee, compute Ŵe
Q|E as an estimate of WQ|E to be

used in parameter learning.

In this work, we focus on the world update problem, but
the other problems are also important. The causal discovery
problem is widely studied in the causal inference literature.
Predictor selection is studied by works that focus on finding
the invariant predictor (Zhang et al., 2020; Peters et al.,
2015; Arjovsky et al., 2019). (Note that our framework is
applicable even when there is no invariant predictor (see
the Complex Colored MNIST example in Section 5.2.2).)
Supervised learning and reinforcement learning methods
focus on parameter learning.

Independent Causal Mechanism (ICM) principle and Sparse
Mechanism Shift (SMS) hypothesis. The ICM princi-
ple (Schölkopf et al., 2021) states that the causal generative
model consists of modules that do not inform or influence
each other. The SMS hypothesis (Schölkopf et al., 2021)
states that changes affect the causal factorization locally in-

4Evidence variables can be chosen to be either effects or causes
of the query variables Q. For example, medical tests (which mea-
sure effects) are often performed to diagnose an illness (the cause).
We discuss in Example 5.3 how choosing the evidence variables
can be a trade-off between complexity and achievable accuracy.
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stead of affecting all factors simultaneously. Our framework
follows the ICM principle, but does not assume the SMS
hypothesis. In Section 5.1 we show that the SMS hypothesis
is not enough to guarantee transfer.

Few-shot and Zero-shot Learning. Zero-shot learning hap-
pens when the constrained domain learnt from previous
environments contains only one point (or a small neigh-
borhood), and therefore can be used directly in the new
environment. Few-shot learning happens when the learnt
domain has low complexity, and therefore it takes a small
number of samples to learn the parameter.

Covariate Shift. This is a special case of our setting where
the model is X → Y and the conditional distribution P (Y |
X) is the same in all environments. In equations, Y =
fw∗

Y
(X,UY );X = fw∗

X
(UX), where w∗

Y is the same in all
environments and w∗

X changes in different environments.

Representation Learning. Representation learning is a spe-
cial case of our setting where X is the evidence and there
exists a representation variable Z. Either Z = fw∗

Z
(X,UZ)

and w∗
Z is the same in all environments or X = fw∗

X
(Z,UX)

where w∗
X is the same in all environments.

Transfer in Supervised Learning. There is no action variable.

Time series. We have an SCM that consists of repeated
copies of a base structure, one per time step; parameters and
their domains are often shared across time steps. Examples
include hidden Markov models and dynamic Bayes nets.

Transfer in Reinforcement Learning. There are action
variables. There may be multiple time steps. The set-
ting includes Markov decision processes (MDPs, Puterman,
1990) when there are no hidden variables. When there are
hidden variables the setting includes partially-observable
MDPs (POMDPs, Kaelbling et al., 1998).

Imitation Learning. Action variables change from non-
intervenable in a previous environment to intervenable in
the current environment.

3.2. Feasibility of Transfer Learning

In order for transfer to be feasible, our world updates must
somehow reduce the difficulty of learning in new environ-
ments. Depending on the setting, we can measure this dif-
ficulty in different ways: e.g., estimates of the number of
samples needed or of the computational resources required.
For example, it is common to bound the required number
of samples in terms of a complexity measure such as VC
dimension in supervised learning (Vapnik et al., 1994) or
Bellman-Eluder dimension in reinforcement learning (Jin
et al., 2021). Transfer is feasible when our updated domain
Ŵe

Q|E improves on the original one Ŵ0
Q|E according to the

appropriate complexity measure.

We formalize this idea below. For simplicity, we assume
unique generators (Assumption 3.4), and we assume real-
izability, i.e., WQ|E⊆Ŵ0

Q|E. We believe these assumptions
can be lifted, but we leave this direction to future work.

Definition 3.5 (Transfer feasibility of the world). Given
a complexity measure comp : 2DQ|E → R we say that the
world is transfer feasible if comp(WQ|E) < comp(Ŵ0

Q|E).

In a transfer-feasible world, our initial knowledge of the
domains is meaningfully weaker than what we might eventu-
ally learn. This doesn’t guarantee that learning will actually
happen; for that, we need a transfer algorithm.

Definition 3.6 (Transfer feasibility of an algorithm). Let
Ŵe

I|K ⊆ DQ|E be the estimate of WQ|E after environments
E1, . . . , Ee output by algorithm A. Given a complexity
measure comp : 2DQ|E → R, if WQ|E ⊆ Ŵe

Q|E and

comp(Ŵe
Q|E) < comp(Ŵ0

Q|E) then A is called transfer fea-
sible after e environments.

Zero-shot and few-shot learning are examples of transfer
feasibility: they happen when Ŵe

Q|E is extremely simple, so
that parameter learning is unnecessary (zero-shot) or takes
only a small number of samples (few-shot).

4. Main Results
Following the ICM principle, the generator w∗e

i ’s are cho-
sen independently from their domains W∗

i . In this section
we show that the generator of interest, we

Q|E, is also chosen
from a constrained domain WQ|E which can be computed
from W∗

i . We present a procedure to describe how to com-
pute the constrained domain WQ|E from atomic constrained
domains W∗

i (Sections 4.1 to 4.3). Therefore, given some
knowledge about the atomic constrained domains W∗

i ’s,
we present a meta-algorithm to compute the constrained
domain WQ|E (Section 4.4) for the world update problem.
The meta-algorithm helps to design the architecture of the
model and identify the component to transfer, which we
demonstrate in Section 5.

4.1. Operations and Generators

In this section we define operations to compute a description
of the distribution Q|E from the atomic parameters w∗

i of
the SCM. Using the operations, we define the computation
procedure in Section 4.2.

First, we assume there exist operations to compute the prod-
uct, sum-out and conditional ⊗, ⊕J and ⊘J on the descrip-
tions of the distributions. Using these operations, we show
in Theorem 4.2 that we can compute a description of Q|E
from descriptions of Xi given its parents. Second, we show
a description of Xi given its parents that only depends on
w∗

i . Therefore, we can compute a description of Q|E from
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the atomic parameters w∗
i . In Section 4.3 we show how

to use this computation to compute the constraint on this
description of Q|E from the atomic constraints W∗

i .

First we define the description of the distribution of Xi

given its parents that only depends on w∗
i . We call this the

generator.
Definition 4.1 (Generator). Let Ωi and Ωp

i denote the do-
mains of Xi and Pi (the parents of Xi) defined by the
world. We assume that there exists a function P i∗

w (., .) :
Ωi × Ωp

i → R parameterized by w such that for any
p ∈ Ωp

i , Pw(.,p) : Ωi → R represents the distribution
of Xi = fw(p, Ui).5 Then P i∗

w∗
i
(.,p) : Ωi → R represents

the distribution of Xi = fw∗
i
(p, Ui) defined by the SCM.

We call P i∗

w∗
i
(., .) the canonical (atomic) conditional distribu-

tion of Xi given its parents, and w∗
i its (atomic) generator.

Operation Explanation

w︸︷︷︸
I,J|K

= u︸︷︷︸
I|J,K

⊗ v︸︷︷︸
J|K

Computing the product (I, J|K)

w︸︷︷︸
I|K

= ⊕J u︸︷︷︸
I,J|K

Summing out J

w︸︷︷︸
I|J,K

= ⊘J u︸︷︷︸
I,J|K

Conditioning on J

w︸︷︷︸
I|K

= u︸︷︷︸
I|J,K

⊙ v︸︷︷︸
J|K

Computing I|K from I|J,K and J|K

Table 1. Operations. w︸︷︷︸
I|K

is equivalent to (w; I|K).

Let the expression (u; I|K), where u ∈ DI|K, denote that u
is a description of I | K, and return u.

• Given (u; I|J,K) where u ∈ DI|J,K and (v; J|K) where
v ∈ DJ|K, ⊗ returns (w; I, J|K) where I, J|K specifies
the distribution ⊗ computes. Assuming that u is a
description of the distribution I|J,K and v is a descrip-
tion of the distribution J|K, ⊗ returns a description
w of I, J|K. If u is the generator of I|J,K and v is
the generator of J|K then we call w the generator of
I, J|K.

• Given (u, I, J|K) where u ∈ DI,J|K , ⊕J returns
(w, I|K) where I|K specifies the distribution ⊕J com-
putes. Assuming that u is a description of the distribu-
tion I, J|K , ⊕J returns a description of w of I|K. If u
is the generator of I, J|K then we call w the generator
of I|K.

Example: If wI,J|K is a probability table then ⊕J cre-
ates the probability table wI|K by summing over the

5For example, with a linear-Gaussian SCM, P i∗
w (.,p) could be

the Gaussian pdf and w could be the linear coefficient.

X7

X5 X2 X1 X0

X4 X6 X3

w∗
7

w∗
5 w∗

2 w∗
1

w∗
7 w∗

6 w∗
6

Figure 3. The causal graph and the scope of w7|6,2 in yellow. The
formula for w7|6,2 only uses w∗

i of variables in the scope.

appropriate entries in wI,J|K.

• Given (u, I, J|K) where u ∈ DI,J|K , ⊘J returns
(w, I|J,K) where I|J,K specifies the distribution ⊘J
computes. Assuming that u is a description of the
distribution I, J|K , ⊘J returns a description of w of
I|J,K. If u is the generator of I, J|K then we call w
the generator of I|J,K.

Example: Let (X,Y ) ∼ Norm(µX,Y ,ΣX,Y ) where

µX,Y =
µX

µY
and ΣX,Y =

ΛXX ΛXY

ΛY X ΛY Y

−1

.

Then wX,Y = (µX,Y ,ΣX,Y ) and wY |X =

⊘XwY,X =
(
µY − Λ−1

Y Y ΛY X(x− µX),Λ−1
Y Y

)
(Bishop, 2006).

For convenience, we define the operation ⊙ from ⊗ and ⊕:

(u; I|J,K)⊙ (v; J|K) := ⊕J((u; I|J,K)⊗ (v; J|K)) (1)
= (w; I|K). (2)

Given (u; I|J,K) where u ∈ DI|J,K and (v; J|K) where
v ∈ DJ|K, ⊙ returns (w; I|K) where I|K specifies the distri-
bution ⊙ computes. Assuming that u is a description of the
distribution I|J,K and v is a description of the distribution
J|K, ⊙ returns a description w of I|K. If u is the generator
of I|J,K and v is the generator of J|K then we call w the
generator of I|K.

We summarize the operations in Table 1. To simplify nota-
tions, we omit the indexes I, J and K from the formula and
write u⊗ v instead of (u; I|J,K)⊗ (v; J|K) whenever the
context is clear. Similarly we write ⊕Ju, ⊘Ju and u ⊙ v
without the indexes. We reuse wI|K from Definition 3.3 to
denote the generator of I|K6.

4.2. Scopes and Computation Trees

The result in this section does not depend on whether As-
sumption 3.4 holds. We present a theorem to compute the
generator wQ|E from atomic generators w∗

i ’s using the de-
fined operations. Using the computation procedure, we can
compute the constraint of this description of Q|E from the
constraints W∗

i of the atomic parameters in Section 4.3.

6Note that w∗
i denotes the generator of Xi given its parents

while wi denotes the generator marginal of Xi.
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Naively we can compute wQ|E from the joint distribution
wQ,E, which could be calculated from the set of all w∗

i using
variable elimination. However we derive a smaller set of
variables w∗

i from which wQ|E can be computed, called the
scope of wQ|E and denoted Scope(Q|E). We illustrate the
scope in Figure 3 and Figure 4. Our method recursively
computes wQ|E by building a computation tree top-down.
It starts with wQ|E as the root, recursively chooses a node
in the tree and decomposes it into its children using the
operations until all of the leaf nodes are of the form w∗

i . Let
w∗

Scope(Q|E) := {w∗
i |i ∈ Scope(Q|E)}.

Variable elimination is a special case of our method if we
perform wQ|E = ⊘EwQ,E in the first step and then compute
the joint wQ,E from the atomic generators using ⊕ and ⊗ in
the remaining steps. We compare our method with variable
elimination in Figure 4 and Appendix E.

Theorem 4.2 (Top-down computation tree, informal). wQ|E
can be calculated from w∗

i ’s in the scope of wQ|E using
⊕,⊗ and ⊘ so that each w∗

i appear at most once in re-
verse topological order. We denote the resulting formula
gQ|E(w

∗
Scope(Q|E)), also called a computation tree of wQ|E

7.

For clarity, we show some examples of the computation
trees in Figure 4. We also show other examples (including
the computation tree for Q-learning) in App. E.

4.3. Computing Global Constraints from Local
Constraints

Given the computation tree, we can compute the set WQ|E
that wQ|E is chosen from. Let W∗

Scope(Q|E) = {W∗
i | w∗

i ∈
w∗

Scope(Q|E)} be the corresponding constrained domain of
w∗

Scope(Q|E). From Theorem 4.2, wQ|E is computed by select-
ing w∗

Scope(Q|E) and computing gQ|E(w
∗
Scope(Q|E)). There-

fore WQ|E is the set of all possible wQ|E computed by se-
lecting w∗

Scope(Q|E) from W∗
Scope(Q|E) and then applying the

computation tree.

We define a notation for the set of function values over a set
of inputs: for any set S and a function f such that S is in
the domain of f , f(S) := {f(s)|s ∈ S}. Another approach
to compute gQ|E(W∗

Scope(Q|E)) in the case of supervised
learning is discussed in Appendix E.4.

Corollary 4.3. WQ|E can be computed from W∗
Scope(Q|E) ⊆

{W∗
1 , . . . ,W∗

n}: WQ|E = gQ|E(W∗
Scope(Q|E)). Therefore

the transfer feasibility of the world can be determined from
W∗

1 , . . . ,W∗
n by computing comp(WQ|E)

8.

When the learner does not know the exact formula, we in-
7There can be multiple computation trees depending on the

choice the learner made.
8The second statement of Collorary 4.3 assumes Assump-

tion 3.4 holds while the first statement does not depend on As-
sumption 3.4.

troduce the following properties to analyze how the local
constraints can propagate throughout the network. We illus-
trate in Sec. 5 how to use the properties to derive constraints
on the quantity we would like to estimate.

Property 4.3.1 (Propagatable). Let D1,D2, and D1◦2 be the
unconstrained domain of w1, w2, and w1 ◦ w2 respectively
where ◦ : D1◦D2 → D1◦2 be an operation. We define how a
constraint can propagate to the left and to the right. Let F ⊆
D2 ∪ D1◦2. An operation ◦ is called F-left-propagatable if
for any w2 ∈ F , w1 ◦ w2 ∈ F . Now, let F ⊆ D1 ∪ D1◦2.
An operation ◦ is called F-right-propagatable if for any
w1 ∈ F , w1 ◦ w2 ∈ F .

4.4. Transfer Process

Now we are equipped to derive a process to learn Ŵe
Q|E

from ŵ1
Q|E, . . . , ŵ

e
Q|E learnt from multiple environments

E1, . . . , Ee. Let Ŵ∗
i ’s for some i, 1 ≤ i ≤ n be some local

information the learner knows about W∗
i (if the learner does

not know anything about W∗
i it can assume Ŵ∗

i = D∗
i ).

Let Ŝcope(Q|E) be an estimation of Scope(Q|E) such
that Scope(Q|E) ⊆ Ŝcope(Q|E). Without any knowledge
we can set Ŝcope(Q|E) to be all variables. Let ĝQ|E be
an approximation of gQ|E obtained by knowledge or by
the propagation properties such that gQ|E(WScope(Q|E)) ⊆
ĝQ|E(W Ŝcope(Q|E)) for any input W . For example, if all
operations are F-right propagatable and the left-most term
is in F , ĝQ|E can output F . We call a set W parameterized
by a parameter θ if W is determined by θ. For example,
if W is the set of all w such that fθ(w) = 0 for a known
class of function fθ, then W is parameterized by θ. Algo-
rithm 1 captures our procedure to compute Ŵe

Q|E. In App. A,
we describe an algorithm to learn the constraint from the
approximations of the parameters in previous environments.

If Assumption 3.4 does not hold, Algorithm 1 needs to
be modified. Consider the case in Example 3.2, when
w∗

2 = (1, 1) but w∗
2 = {w : wT (1, 2) = 3}, and w∗

2 is
the same in all environments. From Environment 1, the
agent might learn ŵ∗

2 = (2, 0.5), which is a description
of w∗

2 and incorrectly transfers it to the next environment.
Instead, for all environments e, the agents need to learn
the set of all possible descriptions in Ŵe

Q|E, therefore in
this case ŵi

Q|E does not denote just a point but a set of all
possible, equivalent descriptions. In Example 3.2, it would
be equivalent to learn w∗

2 from Environment 1. The learner
than uses the set of all possible descriptions ŵi

Q|E learned
from previous environment to learn the set Θ of θ such that
∀θ ∈ Θ: ∀i = 1, · · · , e, ∃wi ∈ ŵi

Q|E such that fθ(wi) = 0.

Let Ŵe
Q|E = ∪θ∈Θ{w : fθ(w) = 0}. Then the agent will

learn the set of all possible descriptions ŵe+1
Q|E in Ŵe

Q|E.
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Figure 4. Causal graph and the computation trees for w3|0,2. For clarity, we do not draw the uniform noise variables. (Left): Causal
graph and the scope of w3|2,0 in yellow. (Middle) A computation tree of w3|2,0 constructed from Thm. 4.2, which is equivalent
to calculating p(X3|X2, X0) =

∑
x1

p(X3|X0, X1 = x1)p(X1 = x1|X2, X0); p(X1 = x1|X2, X0) = p(X1=x1,X2|X0)∑
x′
1
p(X1=x′

1,X2|X0)
and

p(X1 = x1, X2|X0) = p(X2|X0, x1)p(x1|X0) for discrete distributions. Variable elimination cannot construct this computation tree
because conditioning (⊘) is performed to compute p(X1 = x1|X2, X0) before sum-out and product (⊙). w∗

3 goes through only 1
operation. (Right) A computation tree of w3|2,0 constructed by naive variable elimination on the joint distribution w0,2,3. Each leaf goes
through at least 2 operations (at least one to construct the joint distribution and then the conditional ⊘).

Algorithm 1 Meta-Algorithm for Transfer

Input: Estimated constrained domain Ŵ∗
1 , . . . , Ŵ∗

n;
parameters learnt from previous environments
ŵ1

Q|E, . . . , ŵ
e
Q|E; estimated Ŝcope(Q|E); estimated

computation tree ĝQ|E to compute wQ|E from w∗
i ’s

Output: Ŵe
Q|E, an estimation of WQ|E

Calculate Ŵe
Q|E = ĝQ|E(W∗

Ŝcope(Q|E)) parameterized by
unknown parameter θ;
Learn θ using ŵ1

Q|E, . . . , ŵ
e
Q|E and compute Ŵe

Q|E from
θ.

5. Case Studies
We now demonstrate how our framework can be used to
analyze widely-held beliefs about transfer learning.

5.1. Sparse Mechanism Shift

The Sparse Mechanism Shift (SMS) Hypothesis states
that changes are often sparse and local in a causal graph
(Schölkopf et al., 2021; Lopez et al., 2023; Lachapelle et al.,
2022; Bereket & Karaletsos, 2024). We demonstrate that
SMS does not always imply transfer feasibility and vice
versa.

Example 5.1 (The Chain Problem). Assume X0 is normally
distributed on R2. For i = 1, . . . , 100, Xi = fw∗

i
(Xi−1).

X1, . . . , X99 are unobserved. Consider the linear model
where fw∗

i
(Xi−1) = w∗

iXi−1. The learner observes X =
X0 and Y = X100 and would like to predict Y from X .

The learner fits a linear model Y = wX to predict Y from
X , where w is any 2 × 2 matrix, making Ŵ0

100|0 the set
of all 2 × 2 matrices. The complexity measure comp is
the number of parameters that need to be learned, with
comp(Ŵ0

100|0) = 4. App. F shows that if w∗
i (∀2 ≤ i ≤ 99)

is the same in all environments (sparse changes), transfer
learning may not be feasible. However, if only w∗

1 is the
same in all environments (non-sparse changes), transfer may
be feasible, reducing comp(Ŵ1

100|0) — the dimension of
the hypothesis class after environment 1 — to 2.

5.2. Freezing Layers of Neural Networks

Freezing a layer of a neural network learnt from previous
environments is standard in transfer learning (Yosinski et al.,
2014; Long et al., 2015; Kirichenko et al., 2023; Tajbakhsh
et al., 2016; Guo et al., 2019). Our framework helps to
explain when this practice works (Section 5.2.1). In the next
few subsections, we show that this standard practice may
be ill-advised: performance can depend strongly on exactly
which parameters we freeze.

5.2.1. THE CHAIN PROBLEMS

We sketch an example where freezing layers of a NN is
correct for transfer learning – see Appendix F for more
details. We use the result in (Rolnick & Kording, 2020),
where it was shown that if the Linear Region Assumption is
satisfied, ReLU networks can be identified up to permutation
and scaling.
Example 5.2 (Freezing layers for neural networks). Modify
the SCM in Example 5.1 so that fw∗

i
is a single ReLU

layer with weights w∗
i . Assume that in all environments

Ee, the Linear Region Assumption (Rolnick & Kording,
2020) is satisfied and that X0’s distribution satisfies that the
description set of we

100|0 consists of only equivalent neural
networks up to permutation and scaling. ⊙ is stacking
layers: for i > j > k, wi|k = wi|j ⊙ wj|k = (wi|j , wj|k).
Therefore the generator w100|0 = (w∗

100, . . . , w
∗
1). For any

i, if w∗
i is the same in all environments, W100|0 is the set of

(w∗
100, . . . , w

∗
1) up to permutation and scaling with the same

w∗
i in all environments. Thus, we can learn layer w∗

i from
the first environment and freeze it in later environments.

7
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We show in App. F.2 that even with slight modifications
from the above example, θ no longer corresponds to an
entire layer, and therefore freezing a layer results in poor
performance. In the next section, we present a more complex
example to explore this phenomenon.

5.2.2. THE COMPLEX COLORED MNIST PROBLEM

We now show when freezing an entire layer of the network
leads to poor transfer, while freezing a subset of the layer
leads to successful transfer. This example also demonstrates
our approach where we treat transfer learning as a new prob-
lem separated from finding an invariant predictor which are
often pursued in previous works (Zhang et al., 2020; Peters
et al., 2015; Arjovsky et al., 2019). It also demonstrates a
case of representation learning, where the distribution of
the image X given its parents is assumed to be the same in
all environments.

Example 5.3 (Complex Colored MNIST). This binary classi-
fication problem is based on MNIST: instances are colorized
images of digits, and the colors are spuriously correlated
with labels. In the original dataset (Arjovsky et al., 2020),
binary labels are based on the digit with probability 0.25
and flipped otherwise. In 2 environments, the image is col-
ored with a color that correlated with the binary label with
probability 0.1 and 0.9 respectively. We modify the envi-
ronments to make it more difficult. In E1, the correlation
between digit identity and label is 0.1, and the correlation
between color and label is 0.2. In E2, the correlation is 1
between digit and label, and 0.4 between color and label.

We illustrate the trade-off between achievable accuracy and
sample complexity for choosing different predictors (Sec-
tion 3.1) using the original Colored MNIST problem. Pre-
dicting the label using the digit in Environment 1 allows
zero-shot learning in Environment 2 with a maximum accu-
racy of 0.75. Predicting the label using the color in Environ-
ment 2 requires samples from Environment 2 but enables a
maximum theoretical accuracy of 0.9. Therefore, predictor
choice affects the achievable accuracy and sample complex-
ity in the new environment. In the Complex Colored MNIST
problem, the label distribution given the digit changes across
environments, making previous methods (Zhang et al., 2020;
Peters et al., 2015; Arjovsky et al., 2019) that identify the
invariant predictors for zero-shot learning ineffective.

Transfer Algorithm. Let υ(X) denote the flattened vector
of X . We first derive the model for Ŵ1

Y |X . We assume
that (1) the parents PX of the image X are discrete ran-
dom variables (2) conditioning on PX = p, υ(X) is in the
exponential family p(x|p) = 1

sh
(
1
sx

)
g(λp) exp

(
1
sλ

T
p x

)
where the scale parameter s does not depend on p (Section
4 in (Bishop, 2006)); (3) X is d-separated from Y given
PX , (4) the distribution X|PX is unchanged in all environ-

ments.9

Via Theorem 4.2 we compute P (Y |X) (Appendix F.3):

P (Y |X) (3)

=

∑
p exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p, Y )

)∑
y

∑
p exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p, y)

)
where

∑
p denotes the summation over all possible values

p of the parents of X . The blue terms are affected by w∗
X

while the black terms are not. Eq. 3 can be implemented as a
1-layer network, but in this implementation, freezing a layer
is the same as freezing the entire model. This would lead
to poor performance because the label in Environment 2 is
almost the opposite of Environment 1. So, to allow more
flexibility in freezing and give the competing model where
the entire layer is frozen a better advantage, we derive a
2-layer implementation of Eq. 3. Rearranging the terms we
get the following 2-layer network: the first layer implements

P (p|X) =
exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p)

)∑
p exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p)

) ,
and the second layer implements

P (Y |X) =
∑

p P (p|X) logP (Y |p).

To learn, we make two additional assumptions: (5) for any
choice of the parameters in the constrained domain, the de-
scription set of the any network in the constrained domain
is the set of all equivalent weights in which the linear coeffi-
cients differ only by permutation (the biases could differ by
other means) and (6) the optima of the loss function are in
the description set.

Given these assumptions, our method recommends transfer-
ring by freezing the linear coefficient in the first layer: from
(6), minimizing the loss will result in a description. From
(5), similar to the discussion in Section F.2, we can freeze
the first layer’s linear coefficient to transfer. This reflects the
fact that the linear coefficient represents P (X|PX), which
is the same in all environments. We compare to other trans-
fer strategies that might seem reasonable without our deriva-
tions, such as freezing the entire first layer.

Transfer Feasibility of the Algorithm. Let the complexity
measure comp be the number of parameters to be learned.
Assuming that np = 20, without transfer learning, comp =
47040 + 20 + 40; with transfer learning, comp = 20 + 40.
The details are provided in Appendix F.3.

Experiment. Fig. 5 compares transfer performance of
several methods: learning the model in the new environment
without transfer, freezing the first layer of the two-layer

9As an example, a detailed hypothetical model that satisfies our
assumptions is given in Appendix F.3.
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Figure 5. The Complex Colored MNIST problem, Ex. 5.3. (Left): Zero-shot transfer performance of model trained in Env. 1. Accuracy in
Env. 2 is poor because the labels in Env. 1 and Env. 2 are very different. (Right) Performance of various transfer methods as they train
on Env. 2. Transferring the first layer’s linear coefficient results in the best performance.

model, and freezing just the linear coefficient of the first
layer. App. F.3 gives implementation details using Ray Tune
(Liaw et al., 2018). We show that the strategy recommended
by our derivation (freezing just the linear coefficient of the
first layer) performs best. We also compare to a random
“transfer” strategy (freezing the first layer’s linear coefficient
to a random value instead of a learned one) to provide a
baseline. Note that when the sample size available in Env.
2 grows larger than in the plot (5000) it might be possible
that the model without transfer might outperform the model
that transfers layer 1’s coefficient due to limited samples in
the first environment, failure of the model to find the true
coefficient in the first environment or other factors.

5.3. Reinforcement Learning

We now illustrate how our framework applies to reinforce-
ment learning with a simple example. Suppose the dynamics
P (st+1|st, at) remain constant across environments, and
the expected reward is E[Rt|st, at] = wTϕ(st, at), where
ϕ is constant across environments and w varies (Barreto
et al., 2017). Suppose that states and actions are discrete, so
that the dynamics are a table of size ns × nsna and ϕ is a
table of size d× nsna, where ns, na and d are the number
of states, actions and dimension of ϕ. Observe that the Q
function of any policy in any environment can be written as
Qπ(s, a) = E[Ri|s, a] + γE[V (st+1|s, a)]. Considered as
a vector of length nsna indexed by (s, a), the first term on
the RHS is in the row space of the ϕ table, and the second
term is in the row space of the dynamics table. So Qπ is in
the span of these two row spaces.

Suppose there are na = 4 actions and ns = 5 states, and
ϕ has dimension d = 2. Then Qπ (of dimension 20) is in
a subspace of dimension ns + d = 7. Once we evaluate

enough policies in different environments, we can a basis
for this subspace. In a new environment, we can constrain
Q(s, a) to be in this subspace, potentially saving both data
and computation: e.g., we can estimate the environment’s w
from observations (saving data compared to estimating the
vector E[R(s, a)]), then run value iteration or Q iteration
entirely in the subspace (saving data by not estimating the
dynamics, and computation by working in the subspace).
Barreto et al. (2017) compute an improved policy but not
the optimal policy in the new environment. Brantley et al.
(2021) compute the optimal policy, but do not address learn-
ing.

6. Conclusion
Our paper provides a framework for transfer learning that
can guide how to perform transfer and analyze if common
heuristics such as freezing a layer may or may not succeed.
Our framework can be used to model a wide range of transfer
scenarios including those in supervised learning, imitation
learning and reinforcement learning. It can also help users
design models that enable transfer or select components to
transfer.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9



When is Transfer Learning Possible?

References
Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz,

D. Invariant risk minimization, 2019. URL https:
//arxiv.org/abs/1907.02893.

Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz, D.
Invariant risk minimization, 2020.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul,
T., van Hasselt, H., and Silver, D. Successor features
for transfer in reinforcement learning. In Proceedings
of the 31st International Conference on Neural Informa-
tion Processing Systems, NIPS’17, pp. 4058–4068, Red
Hook, NY, USA, 2017. Curran Associates Inc. ISBN
9781510860964.

Beery, S., Van Horn, G., and Perona, P. Recognition in terra
incognita. In Proceedings of the European Conference
on Computer Vision (ECCV), September 2018.

Bereket, M. and Karaletsos, T. Modelling cellular perturba-
tions with the sparse additive mechanism shift variational
autoencoder. Advances in Neural Information Processing
Systems, 36, 2024.

Bishop, C. M. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer-Verlag,
Berlin, Heidelberg, 2006. ISBN 0387310738.

Brantley, K., Mehri, S., and Gordon, G. J. Successor feature
sets: Generalizing successor representations across poli-
cies. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 11774–11781, 2021.

Buesing, L., Weber, T., Zwols, Y., Heess, N., Racaniere,
S., Guez, A., and Lespiau, J.-B. Woulda, coulda,
shoulda: Counterfactually-guided policy search. In In-
ternational Conference on Learning Representations,
2019. URL https://openreview.net/forum?
id=BJG0voC9YQ.
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Peters, J., Bühlmann, P., and Meinshausen, N. Causal infer-
ence using invariant prediction: identification and confi-
dence intervals, 2015.

Puterman, M. L. Markov decision processes. Handbooks in
operations research and management science, 2:331–434,
1990.

Rolnick, D. and Kording, K. Reverse-engineering deep
ReLU networks. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8178–8187. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/rolnick20a.html.

Saengkyongam, S., Thams, N., Peters, J., and Pfister, N.
Invariant policy learning: A causal perspective. CoRR,
abs/2106.00808, 2021. URL https://arxiv.org/
abs/2106.00808.

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalch-
brenner, N., Goyal, A., and Bengio, Y. Toward causal
representation learning. Proceedings of the IEEE, 109(5):
612–634, 2021.

Shen, K., Jones, R., Kumar, A., Xie, S. M., HaoChen, J. Z.,
Ma, T., and Liang, P. Connect, not collapse: Explaining
contrastive learning for unsupervised domain adaptation,
2022.

Sohn, K., Berthelot, D., Li, C.-L., Zhang, Z., Carlini, N.,
Cubuk, E. D., Kurakin, A., Zhang, H., and Raffel, C.
Fixmatch: Simplifying semi-supervised learning with
consistency and confidence, 2020.

Tajbakhsh, N., Shin, J. Y., Gurudu, S. R., Hurst, R. T.,
Kendall, C. B., Gotway, M. B., and Liang, J. Convolu-
tional neural networks for medical image analysis: Full
training or fine tuning? IEEE Transactions on Medical
Imaging, 35:1299–1312, 2016. URL https://api.
semanticscholar.org/CorpusID:32710.

Vapnik, V., Levin, E., and Le Cun, Y. Measuring the vc-
dimension of a learning machine. Neural computation, 6
(5):851–876, 1994.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. How trans-
ferable are features in deep neural networks? In Ghahra-
mani, Z., Welling, M., Cortes, C., Lawrence, N., and
Weinberger, K. (eds.), Advances in Neural Information
Processing Systems, volume 27. Curran Associates, Inc.,
2014. URL https://proceedings.neurips.
cc/paper_files/paper/2014/file/
375c71349b295fbe2dcdca9206f20a06-Paper.
pdf.

Zhang, A., Lyle, C., Sodhani, S., Filos, A., Kwiatkowska,
M., Pineau, J., Gal, Y., and Precup, D. Invariant causal
prediction for block MDPs. In III, H. D. and Singh, A.
(eds.), Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pp. 11214–11224. PMLR,
13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/zhang20t.html.

11

https://openreview.net/forum?id=IOWJsPJ2xGd
https://openreview.net/forum?id=IOWJsPJ2xGd
http://arxiv.org/abs/1707.06422
http://arxiv.org/abs/1707.06422
https://proceedings.mlr.press/v162/myung22a.html
https://proceedings.mlr.press/v162/myung22a.html
https://proceedings.mlr.press/v119/rolnick20a.html
https://proceedings.mlr.press/v119/rolnick20a.html
https://arxiv.org/abs/2106.00808
https://arxiv.org/abs/2106.00808
https://api.semanticscholar.org/CorpusID:32710
https://api.semanticscholar.org/CorpusID:32710
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.mlr.press/v119/zhang20t.html
https://proceedings.mlr.press/v119/zhang20t.html


When is Transfer Learning Possible?

All possible 
parameter values W

 from w1 ℰ1

 from w2 ℰ2

 from w3 ℰ3
fθ3(w) = 0

fθ1(w) = 0

fθ2(w) = 0

fθ0(w) = 0

Figure 6. Constraint learning problem without noise. Each marker ◦ represents a possible environment parameter (a value of w), and each
teal curve represents a possible constraint (a value of θ).

Supplementary Material:
When is Transfer Learning Possible?

In Section A we describe an algorithm to learn the constraint using we’s from previous environment. In Section B we
discuss related works. In Section C we discuss future works. In Section D we discuss more details of the setting related to
reinforcement learning. In Section E we provide details for Section 4 including the proof of Theorem 4.2 and more examples
of computation trees including Q-Learning. In Section F we provide details for the case studies (Section 5) including the
details of the Colored MNIST experiments. In Section G we discuss the limitation of our paper.

A. Constraint Learning
In this section we describe a simple method for learning constraints from examples. This is an important prerequisite
for transfer learning: the tools we describe in the main paper can help us propagate constraints, so that we know how a
constraint on one parameter of our model might imply a constraint on other parameters, but we have to combine this sort of
propagation with a way to extract constraints from observed data.

There are many ways that one might hope to improve on the constraint learning method we describe here. The exact method
of constraint learning is not central to the current paper; all that is important here is that some learning algorithm proposes
constraints that fit into our tools for transfer. So, our intent is not to be state-of-the-art, but merely to demonstrate that this
kind of learning is possible. We leave it to future work to refine and optimize our learning method.

We have two main goals in designing our constraint learning method. First, we’d like to be agnostic to how the environments
are generated: for example, we don’t want to assume that they are sampled i.i.d. from a fixed distribution over the set
of allowed environments. Second, we’d like to maximize the benefits we see from transfer: we’d like to learn helpful
constraints that narrow down the set of parameters that we have to learn from, but we’d like to avoid costly mistakes where
incorrect constraints limit performance in new environments.

We’ll build up the constraint learning problem in several steps, introducing new issues at each step. The first version of our
learning problem is illustrated in Figure 6. We are trying to learn some parameter w that takes a different (unknown) value
wi in each new environment Ei. We assume a family of possible constraints that might apply to w: fθ(w) = 0, where θ is
an (unknown) parameter vector. If we want to enforce multiple constraints on w, we can have f return a vector; in this case
θ contains the parameters of all constraints, concatenated together.

As we gain experience in a sequence of environments E1, E2, . . ., we can hope to learn a constraint that describes the feasible
values of w1, w2, . . .. For example, after we see data from E1, we can learn an estimate of w1, which lets us narrow down
the possible values of θ. In the figure, θ0 is inconsistent with w1, since w1 does not lie on the curve fθ0(w) = 0. On the
other hand, θ1, θ2, and θ3 are all consistent with w1.
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All possible 
parameter values W

 from w1 ℰ1

 from w2 ℰ2

 from w3 ℰ3
fθ3(w) = 0

fθ1(w) = 0

fθ2(w) = 0

fθ0(w) = 0

Figure 7. Constraint learning problem with noise.

As we see additional environments, we continue to narrow down the possible values of θ. If we next learn w2 by seeing
data from environment E2, we can rule out θ1: the constraint fθ1(w) = 0 passes through w1 but not w2. If we then learn
w3 by visiting environment E3, we rule out θ2, leaving fθ3(w) = 0 as the only one of the illustrated constraints that is still
consistent. If we assume that θ3 is the correct constraint, then in E4 we can use this information to learn w4 faster: the set
fθ3(w) = 0 has lower dimension than the full parameter space W , so we will need fewer samples to distinguish the value of
w4 that is the best fit within the constraint.

If we leave aside computational considerations, we can write a very simple algorithm that learns the correct constraint in our
setup so far: we just keep track of which values of θ are still consistent after seeing w1, w2, . . .. When only a single value of
θ remains consistent, we are done.

Of course, this algorithm will not work very well in practice, since we have ignored an important aspect of constraint
learning: due to estimation error, we will not get a perfect estimate of wi from any finite amount of data in Ei. So, the picture
will look more like Figure 7: the true constraint fθ3(w) = 0 will not pass exactly through our estimates w1, w2, w3, but will
only pass close to them.

To handle estimation errors like this, we propose a simple no-regret algorithm. We start from a set Θ of possible constraint
parameters. Before seeing each environment Ei, we propose a hypothesis θi ∈ Θ as described below. Then we find out wi,
and we get a penalty

Pi(θi) = ∥fθi(wi)∥2

This penalty is zero if and only if w satisfies the constraint fθ(wi) = 0. If we fail to satisfy the constraint, then Pi(θ) is
strictly positive, with a larger value if we are farther from satisfying the constraint.

Our goal is to get a small total penalty P (θ) =
∑

i Pi(θ). To accomplish this, we can choose θi using any no-regret
algorithm — that is, any algorithm where the regret

regret = max
θ∈Θ

[∑
i

Pi(θi)− P (θ)

]

grows sublinearly in T .

Depending on the sort of guarantees we want, we can pick our no-regret algorithm one of two ways. The first possibility is a
learner like online gradient descent. Depending on the form of fθ, OGD gives us different guarantees: if we have linear
constraints, then Pi(θ) will be convex, and we can get convergence to the regret of the global optimum. On the other hand,
for general fθ, the functions Pi(θ) may not be convex, in which case we might get stuck in local optima. Either way, OGD
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True constraint 
fθ(w) ≤ 0

Confidence set 
 from C1 ℰ1

Confidence set 
 from C2 ℰ2

 from C3 ℰ3
 from C5 ℰ5

 from C4 ℰ4
All possible 

parameter values W

Figure 8. Constraint learning problem with inequality constraints and confidence sets.

is computationally cheap: the main cost is computing the gradient or subgradient of the penalty Pi(θ).

The second possibility is to choose a no-regret algorithm that has strong guarantees in the face of non-convex learning
problems. One such approach is to tile the space of constraints Θ with an ϵ-net, and run a no-regret method such as
multiplicative weights to pick among all of the points in the net. The size of the ϵ-net will be exponential in the dimension of
Θ, so this approach will typically only be computationally feasible for low-dimensional constraint sets.10 On the other hand,
we will get a much stronger guarantee: for MW, after T environments, we will propose at least one parameter θi whose
penalty is at most

P (θi) ≤ P (θ) +O(
√
T ln | Θ |)

where θ is the best (post-hoc) parameter value in Θ. Therefore, the average penalty P (θi)/T for the best proposal will
approach the optimal value P (θ)/T as T → ∞.

No matter how we choose our no-regret learner, as our estimate θi improves, we become more and more likely to see a
benefit from transfer. But early in the learning process we may see negative transfer: if we enforce a poorly-estimated
constraint, it can reduce our performance at estimating wi in some environment Ei. To guard against negative transfer, we can
calculate both the best constrained wi (the one that minimizes loss subject to fθi(wi) = 0) as well as the best unconstrained
wi (the one that minimizes loss over the entire parameter space W ). We can then choose between the constrained and
unconstrained estimates: e.g., we can run an additional no-regret learner inside each new environment to predict wi nearly
as well as the better of the two estimates.

At this point we have a constraint learning method that can work well in practice. But, there are two additional wrinkles that
can affect performance. So, for the final version of our constraint learning problem, we’ll make two changes to our setup.

First, instead of just equality constraints of the form fθ(w) = 0, we’ll allow inequality constraints like fθ(w) ≤ 0. This
makes it easier for us to represent a wider variety of constraint shapes. Second, we will let our learning algorithm give us
more information: instead of just a point estimate wi, we will let it return a confidence set Ci, with the intention that Ci

covers the correct value of wi with high probability. (We can still handle point estimates by treating them as singleton sets.)

With these changes, the picture looks like Figure 8. The biggest change here is that there is a more complicated relationship
between the confidence sets and the constraint set. First, there will likely be parameter values in Ci that don’t satisfy the
constraint, due to limited data in environment Ei. And second, there will likely be parameter values that satisfy the constraint
but fall outside of Ci, since the constraint describes possible parameter values for all environments, not just Ei.

To handle this situation, we can make some simple changes to our no-regret algorithm. First, the penalty for proposing θi

10If there is structure that we can take advantage of in the set of constraints Θ, we might be able to get the best of both worlds:
computational efficiency and strong guarantees. We leave this sort of potential extension to future work.
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becomes the penalty for the best value of w that falls within Ci. For an equality constraint, this is

Pi(θ) = min
w∈Ci

∥fθ(w)∥2

Second, if some coordinates of fθ correspond to inequality constraints, we threshold so that negative values of fθ are not
penalized. If we write σ for the thresholding function, so that

σj(z) =

{
zj if zj ≥ 0 or coordinate j is an equality constraint
0 otherwise

then the penalty is

Pi(θ) = min
w∈Ci

∥σ(fθ(w))∥2

Finally, inequality constraints require a bit of additional care: different inequalities can be stronger or weaker, and therefore
more or less desirable to learn. If we ignore this issue, we will tend to learn very weak constraints: in the limit, the trivial
constraint that allows all of W will get zero penalty no matter what Ci is. (This issue is also present with some kinds of
equality constraints, since we can equivalently incorporate σ into fθ and treat every constraint as an equality; but essentially
every family of inequality constraints needs to take account of this problem.)

Ideally we would directly measure the strength of transfer that each constraint provides: tighter constraints will get higher
Pi(θ) but have the potential for stronger transfer. Unfortunately, this sort of measurement could be expensive; so, we leave it
to future work to explore this avenue. Instead, here we suggest modifying Pi(θ) by adding an extra penalty that measures
the weakness of the constraint that corresponds to θ: e.g., we could use a penalty proportional to the volume covered by the
constraint. The scaling of such a penalty adds a hyperparameter; we hope that future work might show a way to eliminate
the need for such a hyperparameter, or at least tune it at low cost.

To summarize, our final learning method is to run a no-regret algorithm over the set Θ of possible constraint parameters.
For each environment Ei, this outer-loop algorithm predicts a constraint θi. Given θi, we run two learners for wi: one
that enforces the predicted constraint, and one that is unconstrained. We switch between the two estimates of wi using an
inner-loop no-regret algorithm. We then use the unconstrained estimate of wi to find a confidence set Ci, and pass this
confidence set back to our outer-loop no-regret algorithm. To calculate this algorithm’s loss, we find the most favorable
value of w within Ci: the value that minimizes the penalty ∥σ(fθi(w))∥2. Optionally, if different values of θ correspond to
tighter or looser constraints, we add an additional penalty to the outer algorithm’s loss, in order to favor tighter constraints.

B. Related Works
There are a number of previous works that implicitly follow a special case of our setting and that approach our problem
differently (e.g., with qualitatively different assumptions or goals). Huang et al. (2021) is a special case of our setting. This
work assumes that a small set of variables is intervened on and therefore represents the changes in different environments.
Therefore, they freeze the rest of the model learnt from previous environments, and only learn the changes in the new
environment. Li et al. (2018); Myung et al. (2022) consider the case where there is limited data in the target domain but
ample data in the source domain. Both papers assume we know what to transfer across environments, while our framework
allows us to explicitly determine that from expert knowledge or the data.

MaxQ (Dietterich, 1999) approaches transfer differently: it is concerned with both computational and statistical benefits.
Their setting for statistical benefits is reminiscent of ours: they propose a way to constrain the parameters of a policy in a
new environment by freezing part of a “MAXQ hierarchy.” This same strategy also provides computational benefits, since
decision-theoretic planning can be extremely expensive if we have to start from scratch. Our setup could address this benefit
if we had a practical measure of the computational complexity of RL in different hypothesis classes, but such a measure is a
subject for future research.

Deep Learning Heuristics for Transfer. Several heuristics for learning representations for domain adaptation have been
proposed in the literature, including adversarial training (Ganin et al., 2016), self-supervised techniques (Sohn et al., 2020),
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and contrastive learning (Shen et al., 2022). In contrast to these works, we focus on devising a framework via a causal
perspective. However, it would be very interesting to apply our framework to these ideas.

Learning Invariant Features. Various works have explored the idea of learning “invariant” representations that use
information available in all environments with the hope that this will lead to better transfer to downstream tasks (Arjovsky
et al., 2020; Peters et al., 2015; Saengkyongam et al., 2021; Zhang et al., 2020; Magliacane et al., 2017). In our framework,
taking advantage of an invariance is similar to choosing predictors E such that WQ|E contains only one point, thus allowing
zero-shot learning. As we discuss in Section 3.1 and Section 5.3, we consider the world update problem, which is different
from choosing predictors.

Causal Transfer Learning. Our work builds on prior studies of transfer learning from a causal modeling perspective,
without assuming causal faithfulness or sufficiency. Unlike Chen & Bühlmann (2021), who assume a linear SCM setting,
our framework does not. Pearl & Bareinboim (2011) use selection variables S to model environmental differences, a special
case of our framework. They allow any distribution selection, not constraining the variable given its parents. Our framework
provides more details about when transfer learning is possible. Consider the causal graph among variables X,Y, Z, S with
edges Z → X,Z → Y,X → Y and S → Y . This example is a case of Figure 4(b) in Pearl & Bareinboim (2011) where it
was determined that transfer learning of P (Y |do(X)) is not possible (Example 6 in Pearl & Bareinboim (2011)). Variable
S here could be interpreted as determining the selection of the distribution of Y given its parents X and Z in different
environments. However if P (Y |X,Z) was selected from a constrained set, transfer learning of P (Y |do(X)) might still be
feasible, which can be analyzed in an extension of our framework.

C. Future Works
We describe a more general approach to learn WQ|E.

We assume that the agent might have some expert knowledge about some WI|K even though I or K might not be observed.
Thus, the agent wants to learn WQ|E from the set {WI|K} for some I,K where it has some knowledge about WI|K. In
this paper we only consider a special case where the agent has knowledge about some atomic domains {W∗

i }, and using
Algorithm 1 we express WQ|E as a formula of W∗

i . In the general case of learning WQ|E from the set {WI|K}, the problem
can be divided into 2 steps:

1. Choosing the terms. Choosing the sets of (I,K)’s to compute WQ|E from WI|K’s.

2. Calculation. Compute WQ|E from the set of chosen WI|K’s.

While it might be intuitive to always choose W∗
i ’s to compute WQ|E, we show an example where it is not the best way.

Consider the graph X → Y → Z where both Y | X and Z | Y are poorly conditioned and therefore estimating them yields
higher errors while Z | X is the identity. Therefore if the goal is to compute Z | X , it is better to compute it directly rather
than from Z | Y and Y | X .

Once the terms wI|K’s are chosen, there are possible different approaches to calculate the target wQ|E. One approach is
to break both wI|K’s and wQ|E into formulae of the atomic term w∗

i ’s using Theorem E.3 and then to reason about how
the constraint on WI|K’s implies constraint on the atomic W∗

i , and then how the constraint on the atomic W∗
i ’s implies

constraint on WQ|E, converting the problem to the special case we already addressed in this paper. Another approach is to
directly express wQ|E as a formula of the chosen term wI|K’s.

We leave the extension to the future works.

Model Selection. If the agent has no expert knowledge to select the hypothesis class of function gθ that describes WI|K, or
that the expert knowledge is not specific enough, selecting the hypothesis class of gθ using the expert knowledge can result
in a large over-estimate of WI|K. In this case the agent can employ model selection strategies to select the hypothesis class
from a nested set of hypothesis class using the incoming data we. If the agent first assumes that we is in a large set but later
notices that all incoming we’s lie in a small subset, the agent can narrow down the hypothesis class. The expert knowledge, if
exists, place an upper bound on the model selection strategy. For example, suppose that w100|0 = w∗

100 · · ·w∗
1 is unchanged

in all environments but the agent’s expert knowledge is only that w∗
1 is unchanged in all environments, using which it infers

that we
100|0 have the same row space in all environment. Then the agent can search through a nested hypothesis class for

W100|0 with the largest class being the set of matrices with the same row space with unknown bases and the smallest class
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being the set of an unknown single matrix. After the observing that all of the incoming data w1
100|0, · · · , w

e
100|0 are the same

matrix the agent can pick the smallest hypothesis class and learn the value of the unknown matrix. If the agent has no expert
knowledge at all, it has to search through a nested hypothesis class with the largest class being the set of all matrices and the
smallest class being the set of a single matrix.

We leave this extension to future works.

D. Details about Section 3
The SCM and the ordering λ generate a causal graph. Let T be the time horizon. Let λ be an ordering of the n variables X .
At time t = 0, each variable is initialized with an initial value X0. At time t, at step i, 1 ≤ i ≤ n, the SCM generates the
variables Xt

λ(i). Let P t−1,t
i ⊆ Xt−1 ∪Xt denote the set of parents of Xt

i . Then we have: Xt
i = fwt∗

i
(P t−1,t

i , U t
i ) where

wt∗
i = w∗

i .

For examples, consider the following SCM:

X1 = fw∗
1
(U1) (4)

X2 = fw∗
2
(X1, U2) (5)

If the ordering λ = (1, 2), then the parents of X1
2 is P t−1,t

2 = {X1
1} and X1

2 = fw1∗
2
(X0

1 , U
1
2 ) since X1

1 is generated before
X1

2 . If the ordering λ = (2, 1), then the parents of X1
2 is P t−1,t

2 = {X0
1} and X1

2 = fw1∗
2
(X0

1 , U
1
2 ) since X0

1 is generated
before and X1

1 is generated after X1
2 .

The SCM and the ordering λ induces a causal graph. The causal graph is defined such that there are directed edges from
each node in the set of parents P t−1,t

i of Xt
i to Xt

i (even when W∗
i contains the value of w∗

i such that Xt
i does not depend

on its parents). We provide an example of the graph for Q Learning in Figure 10b. The causal graph induces a partial order a
partial order ⪯ on the variables Xt

i ’s: for any A,B ∈ {Xt
i , 1 ≤ t ≤ T, 1 ≤ i ≤ n}, A ⪯ B if there exists a directed path

from A to B. To simplify the notations, in the main text we remove the superscript t by re-indexing the variables according
to ⪯ such that Xi ⪯ Xj if i ≤ j.

E. Details about Section 4
E.1. Computation Trees

In this section we provide the proof of Theorem 4.2, which is restated by Theorem E.3.

d-separation between variables (denotes ⊥d) and the partial order ⪯ is defined on the causal graph (Section D. For any 2
sets X and Y, X ⪯ Y if X ⪯ Y ∀X ∈ X, Y ∈ Y. For any two variables X ̸= Y , X is called an ancestor of Y and Y a
descendant of X if there is a directed path from X to Y in the causal graph. Let the ancestor set A(I) of I be the set of all
ancestors of variables in I, excluding variables in I. Let A′(I) := A(I) ∪ I. The parent set of I is the set of all parents of
variables in I, excluding variables in I.

A set J is called a sufficient ancestor set of a set I if J ⊆ A(I), J ⪯ I and I⊥dA(J) | J. The empty set is considered a
sufficient ancestor set of any other set. Conditioning on a sufficient ancestor set J of I, we can compute I from the atomic
parameters without needing the ancestors of J (Theorem E.3). Given I,K where I ∩K = ∅, a set J is called a sufficient
ancestor set of I | K if J ⊆ K and J is the sufficient ancestor set of I ∪ (K\J).

We show first that there is a maximal sufficient ancestor set of I | K.
Lemma E.1. There exists a maximal sufficient ancestor set J∗ of I | K such that J∗ is a sufficient ancestor set of I | K and
J∗ contains any other sufficient ancestor set of I | K.

Proof. We will show that if J1 and J2 are sufficient ancestor sets of I | K then J := J1 ∪ J2 is also a sufficient ancestor set
of I | K. Since J1 ⊆ K, J2 ⊆ K, we have J ⊆ K.

By definition, I ∪K\Ji is d-separated from A(Ji) given Ji for i = 1, 2. Therefore I ∪K\J is d-separated from A(Ji) given
J for i = 1, 2 by weak union by moving J1\J2 from I ∪ K\J2 to J2 (or J2\J1 from I ∪ K\J1 to J1). Therefore I ∪ K\J
is d-separated from A(J1) ∪ A(J2) given J by composition. Since A(J) = A(J1 ∪ J2) ⊆ A(J1) ∪ A(J2), I ∪ K\J is
d-separated from A(J) given J by decomposition. By definition, J is a sufficient ancestor set of I | K.
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Therefore the scope of I | K is defined by computing the scope of I ∪ (K\J) | J where J ⊆ K is the maximal sufficient
ancestor set of I | K.

Let K′ be an independent set of I | K if K′ ⊆ K and I⊥dK′ | K\K′. There exists a set K′ such that K′ is an independent set
of I | K and K′ contains any other independent set of I | K, called the maximal independent set of I | K. Such a maximal
set exists because of the intersection property of d-separation: If A⊥dB | C ∪D and A⊥dC | B ∪D then A⊥dB ∪ C | D.
Suppose there exist K1 ⊆ K and K2 ⊆ K such that I⊥dK1 | K\K1 and I⊥dK2 | K\K2. Then I⊥dK2\K1 | K\(K1 ∪K2)
by weak union.

Definition E.2 (Scope of wI|K). Let I and K be 2 disjoint sets. Let K′ ⊆ K be the maximal independent set of I | K. Let
J ⊆ K\K′ be the maximal sufficient ancestor set of I | K\K′. Let I′ := I∪(K\K′)\J. Then Scope(I | K) := A′(I′)\A′(J).

We show that wQ|E could be computed from variables in Scope(Q | E) using the operations ⊕,⊗, and ⊘, where wt∗
s ’s

appear in reverse topological order. Let w∗
Scope(Q|E) := {wt∗

i | (i, t) ∈ Scope(Q | E)} and W∗
Scope(Q|E) be the corresponding

constrained domain of w∗
Scope(Q|E).

Theorem E.3 (Top-down computation tree). Given Q ∩ E = ∅, we initiate the formula with wQ|E. For each term of the
form wI|K in the formula, the agent repeatedly performing the following steps. First it removes the maximal independent set
K′ of I | K from K. To make the notations simple, we re-use K afterwards to denote the set K\K′ after removing K′. The
agent then chooses one of the following computations.

• Choose J ⊊ I, s.t. J ⪯ I\J and J ∪K\J′ is a sufficient ancestor set of I\J where J′ is the set of variables d-separated
from I\J given (J ∪K)\J′. Then calculate the product:

wI|K = wI\J|(J∪K)\J′ ⊗ wJ|K. (6)

• Choose J ⊆ Scope(I | K) such that I ∩ J = ∅, K ∩ J = ∅ and sum out J from the joint distribution:

wI|K = ⊕JwI,J|K. (7)

• Let J ⊆ K be the maximal sufficient ancestor set of I | K. If J ̸= K, the learner then compute I | K from the joint
I,K\J | J by conditioning on K\J in addition to J:

wI|K = ⊘K\JwI,K\J|J (8)

These options are executed until no such non-empty J satisfying either condition exists.

All variables in the formula are wt∗
i ∈ Scope(Q | E) in reverse topological order and each wt∗

i appear at most once in the
formula. We denote the resulting formula gQ|E(w

∗
Scope(Q|E)), also called a computation tree11 of wQ|E.

Proof. We show that removing K′ ⊆ K from K if I⊥dK′ | K\K′ does not expand the scope, i.e. Scope(I | K\K′) ⊆
Scope(I | K). Let P ⊆ K and P′ ⊆ K\K′ be the maximal sufficient ancestor set of I | K and I | K\K′. Since
I ∪ (K\P)⊥dA(P) | P, we have I ∪ (K\K′\P)⊥dA(P) | P by decomposition. Therefore P is a sufficient ancestor set
of I | K\K′, and P ⊆ P′. Then we have A′(I ∪ (K\K′)\P′)\A′(P′)︸ ︷︷ ︸

Scope(I|K\K′)

⊆ A′(I ∪K\P)\A′(P)︸ ︷︷ ︸
Scope(I|K)

because I ∪ ((K\K′)\P′) ⊆

I ∪ (K\P) and P′ ⊇ P.

We first show that if the agent terminates, then all the terms are in the form of wt∗
i in reverse topological order. Since the

agent cannot execute the ⊘ operations, the term wI|K satisfies the condition that K is a the maximal sufficient ancestor
set of I. Therefore Scope(I | K) = A′(I)\A′(K). Since the agent cannot execute ⊕, A′(I)\A′(K) = I, and therefore the
parent set of I is a subset of A′(K). Since K is a sufficient ancestor set of I and therefore I⊥dA(K) | K, the parent set
of I is a subset of K. If I has more than 1 element, the agent can choose J to be the smallest element topologically to
execute the ⊗ operation because J ∪K will contain the parent set of I\J and therefore J ∪K will d-separated I\J from
A(J ∪K). Therefore I has only one element denoted (i, t) and K contains all of its parents, and wI|K can be substituted by
wt∗

i . Since the ⊗ operation ensures that J ⪯ I\J, wt∗
i comes before wt′∗

j if (j, t′) ⪯ (i, t), and therefore the terms are in
reverse topological order.

11There can be multiple computation trees depending on the choice the learner made.

18



When is Transfer Learning Possible?

We show now that for all operations ⊗,⊕ and ⊘ the scopes of the terms on the right-handed side are subset of the scope of
the term on the left-hand side, and therefore all of the terms wt∗

i ’s in the formula are in the scope of wQ|E. We also show that
in the ⊗ operation the scopes of the 2 terms in the right-handed side are disjoint, and therefore each term wt∗

i appears at
most once.

• First, consider the case when wI|K = wI\J|J,K ⊗ wJ|K. Let P ⊆ K denote the maximal sufficient ancestor set of I | K
and P′ ⊆ K denote the maximal sufficient ancestor set of J | K. Since J ∪ (K\P)⊥dA(P) | P by decomposition, P is a
sufficient ancestor set of J | K. Therefore P ⊆ P′. We have A′(J ∪ (K\P′))\A′(P′)︸ ︷︷ ︸

Scope(J|K)

⊆ A′(I ∪ (K\P))\A′(P)︸ ︷︷ ︸
Scope(I|K)

.

We will now show that A′(I\J)\A′(J ∪K\J′)︸ ︷︷ ︸
Scope(I\J|J∪K\J′)

⊆ A′(I\J)\A′(J ∪ K). We will show that for any mutually disjoint

sets X,Y,Z, if X ⊆ A(Y) and Y⊥dZ | X then A′(Y)\A′(X) ⊆ A′(Y)\A′(X ∪ Z). To do so, we show that any node
N ∈ A′(Y)\A′(X) is not in A′(X∪Z). Since A′(X) ⊆ A′(Y) (because X ⊆ A(Y)) and N ∈ A′(Y)\A′(X), we have
N /∈ A′(X). Suppose N is in A′(X ∪ Z). Then there must exists Z ′ ∈ Z such that N ∈ A′(Z ′) and there is a directed
path from N to Z ′ not going through X. Since N ∈ A′(Y)\A′(X), there is a directed path from N to Y not going
through X. Therefore conditioning on X, there is a Bayes’ ball path from Y to Z ′ through N . This is a contradiction,
therefore N /∈ A′(X ∪ Z). We have A′(I\J)\A′(J ∪K)︸ ︷︷ ︸

A superset of Scope(I\J|J∪K\J′)

⊆ A′(I ∪ (K\P))\A′(P)︸ ︷︷ ︸
Scope(I|K)

because I\J ⊆ I ∪K\P and

J ∪K ⊇ P, and therefore Scope(I\J | J ∪K\J′) ⊆ Scope(I | K).

We also have Scope(I\J | J∪K\J′)∩Scope(J | K) = ∅ because A′(J∪K), a superset of the second scope, is removed
from the first scope. Therefore all leaves appear at most once in the formula.

• Second, consider the case when wI|K = ⊕JwI,J|K. Let P denote the maximal sufficient ancestor set of I | K. We will
first show that P is a sufficient ancestor set of I, J | K. Let I′ := I ∪ (K\P). By the definition of sufficient ancestor
set, I′ is d-separated from A(P) given P. Since J ⊆ A′(I′)\A′(P), there are directed paths from J to I′ not through P.
Suppose there are Bayes ball’s paths from A(P) to J given P. Then there are Bayes ball’s paths from A(P) to I given P
by combining the Bayes ball’s paths from A(P) to J given P and the directed path from J to I not through P. Therefore
A(P) is not d-separated from I given P, a contradiction. Therefore there is no Bayes’ ball path from A(P) to J given
P, so J is d-separated from A(P) given P. Therefore I′ ∪ J = I ∪ J ∪ (K\P) is also d-separated from A(P) given P,
which implies P is a sufficient ancestor set of I, J | K.

Let P′′ be the maximal sufficient ancestor set of I, J | K, then we have P ⊆ P′′. Therefore A′(I ∪ J ∪ (K\P′′)) ⊆
A′(I∪ J∪ (K\P)) = A′(I′ ∪ J). Since J ⊆ A′(I′), A′(I′ ∪ J) = A′(I′). Therefore A′(I∪ J∪ (K\P′′)) ⊆ A′(I′), and
we have A′(I ∪ J ∪ (K\P′′))\A′(P′′)︸ ︷︷ ︸

Scope(I,J|K)

⊆ A′(I′))\A′(P)︸ ︷︷ ︸
Scope(I|K)

.

• Finally, when wI|K = ⊘K\JwI,K\J|J, the scope of the term on the right-handed side is the scope of the term on the
left-handed side by definition.

Therefore all of the terms wt∗
i ’s in the formula are in the scope of wQ|E, and each term appear at most once.

E.2. Comparisons with Variable Elimination

There are several differences: (1) Variable elimination computes the tree from the bottom-up by starting with the leaves
w∗

i ’s and choosing several nodes to be combine to create their parent; (2) Variable elimination does not explicitly describe
the intermediate nodes; (3) Variable elimination does not describe a smaller scope and (4) In variable elimination, each
leaf goes through at least 2 operations: at least 1 to build the joint distribution and the conditional operation ⊘ while in our
method it is possible for a leaf to go through only one operation (w∗

3 in Figure 4), which could make it easier to analyze if
w∗

3 is the variable of interest.

E.3. Details about Examples in Section 4.1

We provide another example of causal graph, scope and computation tree in Figure 9, Example E.1 and Example E.2.
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X0

X1

X2

X3

(a) Causal graph with the scope of w3|0 in yellow.

⊙

⊙

w3|0

w2|0

w∗
3 w∗

1w∗
2

(b) A computation tree for w3|0.

Figure 9. Causal graphs and their computation trees. For clarity, we do not draw the uniform noise variables.

Example E.1 (Q Learning). Let At, St, Rt, and Gt denote the action, state, reward, and return at time t. The Q(s, a)
function is the expected return at time t given the state at t = 0 parameterized by wGt|S0,A0

. The SCM for Q-Learning is
the following:

A = fw∗
A
(UA) (9)

S = fw∗
S
(A,S, US) (10)

R = fw∗
R
(A,S, UR) (11)

G = fw∗
G
(R,G) (12)

and the ordering to generate the variables λ = (S,A,R,G).

At, St, Rt and Gt are interpreted as the action, state, reward and return at time t. The Q(s, a) function is the expected return
at time Gt given S0 and A0. The causal graph is shown in Figure 10a and the below computation tree for wG2|A0,S0

is
shown in Figure 10b. For any variable Xi, since wt∗

i = w∗
i for any t, we can compress all nodes wt∗

i into a single node w∗
i .

wG2|S0,A0
= wG2|G1,R1,A1,S1

⊙
[
wG1,R1,A1,S1|G0,R0,A0,S0

⊙ wG0,R0|S0,A0
)
]

(13)

= (w∗
G ⊙ (w∗

R ⊙ (w∗
S ⊗ w∗

A)))⊙
[
(w∗

G ⊗ (w∗
R ⊗ (w∗

S ⊗ w∗
A)))⊙ (w∗

G ⊗ w∗
R)

]
(14)

Example E.2 (Figure 3). Scope(7 | 6, 3) = {3, 4, 5, 6, 7}. We show below a computation tree with variables in the scope:

w7|6,2 = ⊘6w7,6|2 (15)
= ⊘6(w7,6|5,4,3,2 ⊙ w5,4,3|2) (16)
= ⊘6((w

∗
7 ⊗ w∗

6)⊙ (w∗
5 ⊗ w∗

4 ⊗ w∗
3)) (17)

E.4. Details about Section 4.3

If each atomic parameter w∗
i appear at most once after the substitution of wt∗

i by w∗
i as in the case of supervised learning,

the formula will be simple, and constrained domain can be computed iteratively: if wY |X = (w∗
3 ◦w∗

2) ◦w∗
1 where ◦ denote

some operations, then we can first compute the constrained domain W32 of w∗
3 ◦w∗

2 , and then compute WY |X = W32 ◦W∗
1

where W32 ◦W∗
1 is define to be the set {u ◦ v | u ∈ W32, v ∈ W∗

1} since W32 are independently chosen according to the
Independent Causal Mechanism. If wY |X = (w∗

1◦w∗
2)◦w∗

1 where w∗
1 appears twice, we cannot compute WY |X = W12◦W∗

1

because W12 and W1 are not chosen independently. Instead we need to define WY |X = {u ◦ v ◦ u | u ∈ W∗
1 , v ∈ W∗

2}.

F. Details about Section 5
F.1. Details about Example 5.1

Sparse mechanism shifts do not imply transfer feasibility. Consider the first scenario where ∀2 ≤ i ≤ 99, w∗
i is the same

matrix satisfying Π99
i=2w

∗
i has rank 2 in all environments, while w∗

1 and w∗
100 are re-selected from all possible 2× 2 matrices

in each new environment. Since only w∗
1 and w∗

100 change in different environments, the changes are sparse. We show below
that the constraints on w∗

2 , . . . , w
∗
99 do not result in any constraint on we

100|0 by showing the following property of ⊙.

Lemma F.1. Let Mm×n denote the set of all matrices with dimension m× n. Let w be a 2× 2 matrix of rank 2. Then:
{AwB | A ∈ M2×2, B ∈ M2×2} = M2×2.
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A0 S0 A1 S1 A2 S2

R0 R1 R2

G0 G1 G2

(a) The variables created by the SCM of Example E.1 described in Eq. 9 and the ordering λ = (S,A,R,G). Gt is the return at time t.
For clarity, we do not draw the uniform noise variables.

⊗

⊙

⊙

⊗

⊗

⊗

⊙ ⊙

w∗
G w∗

R w∗
Aw∗

S

(b) A computation graph of wG2|A0,S0
for Example E.1. For all variables X , we compress all nodes wt∗

X into a single node w∗
X .

Figure 10. The causal graph and a computation tree for Q-Learning in Example E.1.

Since w∗
99 · · ·w∗

2 has rank 2, {Aw∗
99 · · ·w∗

2B | A ∈ M2×2, B ∈ M2×2} = M2×2. The constraint that w∗
99, . . . , w

∗
2 is the

same matrix in all environments does not enforce any constraint on we
100|0.

Transfer feasibility does not imply sparse mechanism shifts. Consider the second scenario in Example 5.1 where in each
environment, ∀2 ≤ i ≤ 100, w∗

i is selected from the set of all 2× 2 matrices while w∗
1 is the same matrix of rank 1. Since

w∗
1 is the right-most term in the computation graph, we analyze the left-propagatable property for ⊙. Matrix multiplication

is F -left-propagatable where F is the set of all matrices with rows in the row space of the right term w∗
1 . Therefore, we

100|0
is in the set of all matrices with rows in the row space of w∗

1 . Since w∗
1 has rank 1, θ in Algorithm 1 is the 1× 2 basis vector

of the row space, which can be learnt from w1
100|1 of Environment 1.

Transfer feasibility of the algorithm. Without transfer learning, comp = 4 since the matrix w100| is 2× 2. With our transfer
learning procedure, the learner needs to learn a 2× 1 vector to compute w100|0 after knowing the 1× 2 basis θ of its row
space, therefore comp = 2.

Representation Learning. The distribution of X1 | X0 where X0 is the predictor could be consider the representation.
In the second scenario, the representation is the same across the environments, and transfer feasibility is analyzed by the
left-propagatable property of the operation since the representation is the right-most term.

Proof of Lemma F.1. Given w ∈ M2×2 of rank 2, we will show that for any C ∈ M2×2, there exist A,B ∈ M2×2 such
that:

AwB = C. (18)

Let w = UΣV T and C = U ′Σ′V ′T be the SVD decompositions of w and C. Since rank(C) ≤ rank(w), there exists a
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diagonal matrix D such that Σ′ = ΣD. Let A = U ′UT and B = V DV ′T . Then:

AwB = (U ′UT )(UΣV T )(V DV ′T ) (19)

= U ′ΣDV ′T (20)

= U ′Σ′V ′T (21)
= C (22)

F.2. Details about Example 5.2

We derive a computation graph:

w100|0 = w∗
100 ⊙ w∗

99 ⊙ · · · ⊙ w∗
1 (23)

where the computations are performed from left to right.

For neural network. ⊙ is stacking layer: for i > j > k, the generator wi|k = wi|j ⊙ wj|k = (wi|j , wj|k). Therefore
w100|0 = (w∗

100, · · · , w∗
1)

(Rolnick & Kording, 2020) show that under the Linear Regions Assumption, except for a measure-zero set of networks,
ReLU networks can be recovered up to permutations and rescaling if the domain of the input is the entire multidimensional
real space. The description set w̄ can be obtained from w by replacing w

(.i)
k , w

(i.)
k+1 by cw

(.i)
k , 1

cw
(i.)
k+1 and replacing wk, wk+1

by a permutation σ of the rows of wk and the columns of wk+1. Under the Linear Region Assumption, in all environments,
from Eq. 23, the description set w100|0 = {((w∗

100, · · · , w∗
1), σ, c) | σ ∈ Σ100|0, c ∈ C100|0} where Σ100|0 and C100|0 are

sets of permutations and scaling applying to (w∗
100, · · · , w∗

1) to generate the descriptions.

For any i, 1 ≤ i ≤ 100, if w∗
i is the same in all environments, then for any description u = (u∗

1, · · · , u∗
100) of w100|0, u∗

i can
be obtained from w∗

i by permutation or rescaling, and therefore is layer i of a description of wk
100|0 in another environment

Ek. Therefore we can learn layer u∗
i of a description from the first environment and freeze it in later environments. We do

not use the exact algorithm described at the end of Section 4.4 (when Assumption 3.4 does not hold) because this discussion
is shorter, but in both the algorithm in Section 4.4 and this discussion, we still need to learn or infer all possible descriptions
from previous environments in order to transfer correctly.

We now show below that even with slight modifications from the above example, θ no longer corresponds to an entire layer,
and therefore freezing a layer learnt from previous environments lead to sub-optimal performance.
Example F.1. Consider the following SCM: X0, X1, X2 ∈ R2 and Xi = fw∗

i
(Xi−1) + ϵi, i ∈ {1, 2} where ϵi’s are

independent noise satisfying E[ϵi] = 0 and fw∗
i

is a 1-layer ReLU neural network where w∗
i denotes the weight. In all

environments, w∗
2 =

1 0
0 1

is the same and w∗
1 can be selected from all 2 × 2 matrices. Suppose the leaner wants to

transfer knowledge of w2|0, which is the weight of a 2-layer ReLU network, from Environment 1 to Environment 2. Consider
the following cases:

1. In environment E1, w∗1
1 =

1 0
0 0

and X0 ∈ R2 is a multivariate Gaussian on R2.

2. In environment E1, w∗1
1 =

1 0
0 1

and X0 ∈ R2 is a multivariate Gaussian on the line {[1, 1]T c|c ∈ R}.

In Case 1, in Environment 1, the following 2-layer weights are both descriptions of w2|0 = (w∗
1 , w

∗
2) :

(
1 0
0 0

,
1 0
0 1

)
and

(
1 0
0 0

,
1 0
0 6

)
. In Case 2, in Environment 1, the following 2-layer weights are both descriptions of w2|0 =

(w∗
2 , w

∗
1) on the domain of X0:

(
1 0
0 1

,
1 0
0 1

)
and

(
1 0
0 1

,
0.3 0.7
0.5 0.5

)
. Therefore in Case 1 and Case 2 the
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agent cannot freeze w∗
2 learnt from Environment 1 because it may freeze an incorrect value such as

1 0
0 6

in Case 1 and

0.3 0.7
0.5 0.5

in Case 2. This is because in Case 1 and Case 2, the constrained domain that can be learnt from Environment 1

is no longer the set of multi-layer networks with a common layer w∗
2 . Instead, the agent needs to learn the set of all possible

descriptions from Environment 1.

F.3. Details about Section 5.2.2

In this section we provide details for the case study of the Colored MNIST problem in Section 5.2.2.

F.3.1. DERIVATION OF THE ARCHITECTURE

We apply Theorem E.3 to derive the following architecture:

P (Y | X) =
P (X,Y )∑
y P (y,X)

(24)

=

∑
p P (X, p, Y )∑

y

∑
p P (X, p, y)

(25)

=

∑
p P (X | p)P (p, Y )∑

y

∑
p P (X | p)P (p, y)

(26)

=

∑
p exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p, Y )

)∑
y

∑
p exp

(
1
sλ

T
p υ(X) + log g(λp) + logP (p, y)

) (27)

F.3.2. DATA GENERATION

Dataset and the pre-processing code to generate multiple environments of colored images from the original MNIST dataset
from Gulrajani & Lopez-Paz (2020)12 were used with image size s = 28 and number of color channels k = 2. We add one
channel to make k = 3. Environment 1 and 2 has 60000 and 10000 samples respectively. We divide Environments 1 to train,
val and test set with ratio 0.8, 0.1, 0.1. In Environment 2, we use 5000 samples for training and validation and 5000 samples
for testing. Among the 5000 samples for training and validation, we gradually take the first 100, 200, 500, 1000, 2000 and
5000 samples as the number of samples available to the agent. For each available sample size 100, 200, 500, 1000, 2000 and
5000, we divide the train and val sets with ratio 7 : 3.

F.3.3. TRANSFER FEASIBILITY OF THE ALGORITHM

To learn Ŵ1
Y |X , we need to learn the linear coefficient θ of υ(x). There are np coefficients θ ∈ Rn·n·k for each value of p.

There are ny × np biases biasy,p ∈ R for each value of y and p. Since we do not know np, we use np = 20 as an upper
bound. The number of cells for θ is np ·n ·n · k = 20 · 28 · 28 · 3 = 47040. The number of cells for the bias of the first layer
is np = 20. The number of cells of the weight of the second layer is np · ny = 20 · 2 = 40. Let the complexity measure
comp be the dimension of the parameters needed to learn. Then, without transfer learning, comp = 47040 + 20 + 40; with
transfer learning, comp = 20 + 40.

F.3.4. IMPLEMENTATION

In all of our training procedures, we use stochastic gradient descent and the negative log likelihood loss. We repeat for 10
times the following procedure and plot the average and the standard deviation values in the plot. First we create Environments
1 and 2 as described above. We then train a model on the train set of Environment 1 and plot its accuracy the test set of
Environment 1 and Environment 2 in Figure 5. Next we perform transfer from Environment 1 to Environment 2 in Figure 5.
Each line is an average over 10 runs with the shaded region denoted the standard deviation. We plot the accuracy on the test
set of Env. 2.

The weight in the second layer is P (y | p) and therefore needs to satisfy
∑

y P (y | p) = 1. We satisfy this requirement by
placing a softmax function on the weight.

12URL: https://github.com/facebookresearch/DomainBed/blob/main/domainbed/datasets.py
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The linear coefficients of the first layer and second are initialized uniformly from (0, 1). The bias of the first layer is
initialized uniformly from (−

√
k,
√
k) where k is the number of incoming features.

F.3.5. HYPERPARAMETERS TUNING

We use Ray Tune to tune the hyperparameters. We sample the parameters from the configuration range in the table below,
run the training process until the number of epochs is 100 or the standard deviation of the validation loss of the last 10
epoch is at most 0.01. We select the hyperparameter with the lowest validation loss, and retrain the model with the selected
hyperparameter on the combined train and validation set for 100 epochs. We use the retrain model to predict the test set and
to transfer. Due to limited computation resource, we use less resource to tune our method by using a smaller hyperparameter
range (and therefore a smaller number of sampled hyperparameters) and use more resource to tune competing methods by
using a larger range and more samples.

Train in
Env. 1

Train in Env.3 (No
Transfer)

Transfer
Coeffi-
cient

Transfer Layer, Trans-
fer Random Coeffi-
cient

Learning rate loguniform(0.01, 5)
Momentum 0.9
Weight decay 0.0001 loguniform(0.00001,

0.01)
0.0001 loguniform(0.00001,

0.01)
np 20 20 or 50 uniformly
Batch size 512
Number of sampled
hyperparameters

8 100 8 50

F.3.6. PLOT LEGEND

Without transfer. The model is train from scratch in Env. 2 the available samples 100, 200, 500, 1000, 2000, 5000 succes-
sively.

Transfer coefficient. We freeze the first layer’s coefficient learnt from Env. 1 and retrain the first layer’s bias and the second
layer in Env. 2 with the available samples 0, 100, 200, 500, 1000, 2000, 5000 successively.

Transfer layer. We freeze the first layer’s coefficient and bias learnt from Env. 1 and retrain the second layer in Env. 2 with
the available samples 0, 100, 200, 500, 1000, 2000, 5000 successively.

Transfer random coefficient. We generate the first layer’s coefficient randomly, freeze it and retrain the first layer’s bias and
the second layer in Env. 2 with the available samples 0, 100, 200, 500, 1000, 2000, 5000 successively.

F.3.7. COMPUTE

The experiments that produce the figures in this paper were performed on a personal laptop.

F.3.8. HYPOTHETICAL MODEL SATISFYING THE ASSUMPTIONS

We present a hypothetical model that satisfies the 4 assumption stated in Section 5.2.2. Note that this model is only for
illustration and to show that the 4 assumptions could be reasonably satisfied. We did not use this model in our analysis or
experiment.

Example F.2 (A hypothetical model for Colored MNIST). We present a hypothetical generative model that satisfied all
of our assumptions (Figure 11). Let X ∈ Rs×s×k denote the image, D ∈ {0, . . . , 9} denote the digit, Y ∈ {0, 1} denote
the binary digit label, C ∈ {0, 1} denote the color, M ∈ Rs×s×n denote the digit matrix and N ∈ Rk×k denote the color
matrix. The binary digit Y is constructed by flipping D with probability 0.25. The color C is constructed by flipping Y
with probability 0.1, 0.2, and 0.9 respectively in environments 1, 2, and 3. Each image x is a s× s× k tensor where s is
the image size and k is the number of color channels. For each digit d, there is a digit matrix md ∈ Rs×s×k which draws
the digit in red while other color channels of md are 0. For each color c, there is an associated color matrix nc ∈ Rk×k.
The image x is constructed by first computing md ◦ nc where ◦ denotes multiplication where each s × k slice of md is
multiplied with nc. Then independent standard Gaussian noise is added to each cell.
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digit d

binary label y

color c digit matrix md

color matrix nc

image x

0.1,1

0.2,0.4

Figure 11. A hypothetical generative model of Complex Colored MNIST dataset. Ellipse variables are observable while square variables
are not observable.

G. Limitations
Our work assumes realizability, a common assumption which does not always hold in practice. Nevertheless, experiments
on the Colored MNIST example show that our method still works. Relaxation of the assumption is a topic for future works.

Our model does not include the case in reinforcement learning where the reward Rt at time t is a function of both the
previous state St−1 and the current state St.
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