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Abstract

Sparse coding is a pillar of computational neuroscience, learning filters that well-
describe the sensitivities of mammalian simple cell receptive fields (SCRFs) in a
least-squares sense. The overall distribution of SCRFs of purely sparse models,
however, fail to match those found experimentally. A number of subsequent updates
to overcome this problem limit the types of sparsity or else disregard the dictionary
learning framework entirely. We propose a weighted ℓ1 penalty (WL) that maintains
a qualitatively new form of sparsity, one that produces receptive field profiles
that match those found in primate data by more explicitly encouraging artificial
neurons to use a similar subset of dictionary basis functions. The mathematical
interpretation of the penalty as a Laplacian smoothness constraint implies an early-
stage form of clustering in primary cortex, suggesting how the brain may exploit
manifold geometry while balancing sparse and efficient representations.

1 Introduction

Overcomplete sparse coding as a model of the primary visual cortex (V1) is a pillar of computa-
tional neuroscience (Olshausen & Field, 1997). Training on natural image patches1 via a Hebbian
learning rule produces filters that are spatially localized, bandpass, and oriented to a select range of
rotation angles. These filters are similar to those observed in the mammalian cortex (Jones & Palmer,
1987), which are well-described by two-dimensional Gabor functions. However, the properties of
sets of Gabor filters fitted to the simple cell receptive field (SCRF) estimates produced by sparse
coding have been shown to misalign with filters fitted to rhesus macaque responses to drifting sinu-
soidal gratings (Ringach, 2002) as a distribution (rather than an individual, least-squares sense). In
particular, the original sparse coding (SC) model overpredicts and underpredicts the frequency of
well-tuned and broadly-tuned cells, respectively. Well-tuned cells maintain several (more elongated)
subfields than the “blob-like” broadly tuned cells, as shown in Figure 1. An animal with such a set of
computationally-learned filters might not be able to detect certain edges or shapes, and might use
more filters to represent what could otherwise be represented with fewer given a larger diversity of
SCRF shapes.

A number of models have been subsequently proposed as a result. Of particular interest, (Rehn
1http://www.rctn.org/bruno/sparsenet/IMAGES.mat

4th Workshop on Shared Visual Representations in Human and Machine Visual Intelligence (SVRHM) at the
Neural Information Processing Systems (NeurIPS) conference 2022. New Orleans.



& Sommer, 2007) limits the number of active neurons rather than the average neural activity, which
significantly improves diversity of shapes. (Zylberberg et al., 2011) develops a spiking network based
on synaptically local information to overcome this discrepancy.

Hypothesizing that explicit image reconstruction is not a biologically relevant task, (Yerxa &
Simoncelli, 2022) proposes a novel contrastive objective, Local Low Dimensionality (LLD), that
minimizes the dimensionality of encodings of spatially local image patches relative to their global
dimensionality.

Figure 1: Broadly-tuned (left),
well-tuned (right) macaque SCRFs
Ringach (2002)

While LLD diversifies SCRF shapes compared to sparse
coding, (Shen et al., 2019) uses deep methods to reconstruct
the brain’s perceptions of images from functional magnetic
resonance imaging data, showing the relevance of reconstruc-
tive models of the visual cortex. We also maintain that while
reconstructive frameworks may not be exactly the objective
function of the brain, they may be computational stand-ins for
artificial systems rather than one-to-one recreations (e.g. back-
propagation). In addition to past success of the reconstructive
framework updates, we therefore investigate a deep recurrent autoencoder architecture with addi-
tional regularization constraint to enforce a similar flavor of locality: namely, a weighted-ℓ1 penalty
(WL) that encourages latent representations to use a specialized set of local neurons. While the
hierarchical setting is left to future work by LLD, this architecture naturally learns a hierarchy of
representational units when trained with an additional discriminative loss term (Rolfe & LeCunn,
2013). The reported findings motivate the need for spatial regularization of neurons and necessitate
more precise arguments against reconstructive frameworks like sparse coding.

2 Previous Work

(a) WL (b) SC

Figure 2: The weighted-ℓ1 penalty begets more of the
“blob-like” SCRFs that are missing from the original
model.

The general neural coding framework can
be formulated as:

L(A,X) =
1

2
||Y −AX||2F + Sλ(X)

(1)

where Y ∈ Rd×n is a set of n stimuli of
dimension d, A ∈ Rd×m is a learned set
of m basis functions, X ∈ Rm×n is a set
of n latent representations of inputs, and
Sλ(X) is a regularization penalty. (Rozell
et al., 2007), among other advances, asso-
ciates sparse coding with Sλ(X) = ||X||1
(columnwise). However, while neurons fire
sparsely, they are also specialized to certain

types of visual stimuli in the input space. As formulated, (1) makes no explicit assumptions about the
structure of this sparsity in neural latent space.

Nonetheless, the filters learned on natural image patches are quantitatively well-described (in a
least-squares sense) by two-dimensional Gabor functions for (x, y) ∈ R2, where:

G(x′, y′) = K exp

−
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√
2σ2

x′

)2

−
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y′√
2σ2

y′

)2
 cos (2πfx′ + ϕ) (2)

and (x′, y′) are obtained from a rotation of angle θ and translation (x0, y0).
In our experiments, these eight parameters are fit through a gradient descent scheme that alternates
over the parameters while holding the others fixed. The filters are fit on N = 100, 000 randomly
extracted patches (of varying sizes, as explored in the Appendix) on the original Sparsenet data
(Olshausen & Field, 1997). We also began to fit on the CIFAR10 dataset (Krizhevsky et al., 2010)
in anticipation of future discriminative tasks. While the sparse coding filters are well-described by
Gabor filters in a least-square error sense, the learned Gabor parameters misalign with primate data
as shown in Figure (3).

As discussed in the introduction, many different approaches can be taken to address this problem.
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Specifically, we focus on local computation enforced via the objective function. LLD discards
the reconstruction loss and encodes natural image stimuli to local ensembles of image patches
{(x(1)

1 , . . . ,x
(1)
n ), . . . , (x

(B)
1 , . . . ,x

(B)
n )}, with superscipts denoting local ensembles and subscripts

denoting ensemble members. LLD is a shallow network where s
(j)
i = ReLU(Wx

(j)
i + b). A

covariance matrix Σ
(j)
l = Cov

(
[s

(j)
1 , . . . , s

(j)
n ]
)

is formed on the jth ensemble. The LLD loss is
formulated as:

L(W,b) =
Ej [tr(Σ

(j)
l )]

tr (Σg)
(3)

where Σg is the response covariance to all patches in the batch. The model is able to better replicate
the diversity of SCRF shapes, which exhibit a phase symmetry in rhesus macaque data.

(a) Neural Data (b) LLD (c) SC

Figure 3: Gabor spatial phases of rhesus macaques are largely bimodal, but SC phases are highly
skewed due to the absence of “blob-like” fields in Figures 1 and 2.

3 Locality-Constrained Reconstructive Frameworks

Can additional structure be incorporated into the reconstructive framework to better match the
experimental data? This question may be addressed through additional regularization to encourage
local representation, taking inspiration from concepts of locality used in manifold learning, especially
spectral methods and locally linear embedding (Roweis & Saul, 2000). The weighted-ℓ1 constraint
penalizes neural encoding activity based on the distance between the natural image stimuli and the
basis functions aj , where:

SWL
λ (X) = Ei∈[n]

 m∑
j=1

xj ||yi − aj ||22

 (4)

Here, neurons are specialized to certain types of input as large neural energy requirements
will limit the strength of the firing rate xj . In contrast to the original sparse coding alternating
minimization scheme, this objective is solved through algorithm unrolling (Monga et al., 2020) into
a deep recurrent autoencoder, which projects the encodings onto the probability simplex through a
nonlinearity PS described below.

Mathematically, one might recognize the weighted-ℓ1 penalty as a Laplacian quadratic form
of a graph. Which Laplacian and graph, specifically? This can be formulated as a bipartite graph
Laplacian on the m+ n basis functions and inputs (vertices), whose edge weights between the ythi
and athj vertices are xij , and 0 otherwise (i.e. no self-loops). Thus, the stimuli can be easily clustered
by performing an eigendecomposition on this constructed Laplacian. In a discriminative classification
task, this will allow for a more rigorous analysis of a given neuron’s sensitivity to various class types.

One potential criticism of the autoencoder architecture used here (and deep learning in general)
is the lack of plausibility for the back-propagation algorithm being implemented by the brain (Bengio
et al., 2016). While this criticism is fair, the presented results do not attempt to form a one-to-one
map with computation in V1, but rather attempt to rectify a non-plausible learning mechanism with
geometric regularization and a procedure that learns hierarchical representations. Shallow networks
have long been commensurate with local, Hebbian update rules, while the expressivity associated
with depth is indeed one of the more enigmatic features of modern neural networks and their high
performance on many different tasks. However, while most deep architectures are “information soups”
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where the parameters do not necessarily maintain any particular meaning, the weights of the unrolled
network correspond exactly with A and X, lending an interpretability aspect to the architecture not
present for most of the top-performing networks today.

Figure 4: The unrolled architecture that learns A and X, where PS = ReLU (x+ b (x) · 1) and
Q (y) =

∑
j∈[m] ||y − aj ||2 is a quadratic neuron. See appendix for details (Tasissa et al., 2021).

We have also explored an iterative Laplacian scheme (Kodirov et al., 2015) where:

SLAP
λ (X) = tr(XGXT) (5)

for a pre-constructed (or iteratively updated) graph Laplacian G. The penalty (5) is typically used
in addition to an ℓ1 penalty. Here, however, G is built on the stimuli space to preserve local
pairwise distances in latent space, whereas the weighted-ℓ1 penalty essentially interpolates the
manifold in Rd with the set aj∈[m] and then uses as few basis functions as possible. The Lapla-
cians are fundamentally different. Thus SLAP

λ only constrains firing rates, while SWL
λ constrains

both the firing rates and the learned basis functions, which we refer to as “spatial regularization.”

Figure 5: Spatial phases of the weighted-ℓ1 (WL) autoen-
coder. Locality-regularization is able to shift the original
sparse code distribution of spatial phases

In our experiments, we find that
the additional weighted-ℓ1 regulariza-
tion technique shifts the spatial phase
distribution to a more diverse range
and vastly improves symmetry. The
weighted-ℓ1 penalty makes the gen-
eral sparse coding framework com-
petitive with other local frameworks
like LLD in terms of symmetry while
maintaining the core ideas of the orig-
inal model.

4 Conclusion

The improved spatial symmetry
warrants further exploration into deep
recurrent autoencoders (with varying

flavors of locality constraints) as a model of the primary visual cortex. Is explicit image reconstruction
biologically plausible? This assumption may be loosened in future work by considering a distribution
of codes instead of a point estimate (Park & Pillow, 2020). However, given previous work
showing the intrinsic hierarchical structure of discriminative recurrent sparse autoencoders (Rolfe &
LeCunn, 2013), the findings presented here offer a potential path towards rigorously describing the
differentiation of receptive fields that match experimental data.
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A Appendix: Unrolled Network and Training

The spatial phase plots are obtained through a three-step process:

1. Train the (unrolled) network on the original Sparsenet data (Olshausen & Field, 1997) image
patches

2. Using the learned basis functions, obtain the simple cell receptive field estimates through
spike-triggered averaging

3. Fit the 2D-Gabors to the the receptive field estimates

For step (1):

Encoder:

Let A(0)
ij ∼ N (0, 1) and x(0) = x̃(0) = 0

Then, given A and y, we solve for x∗ ∈ argminxL(A,y,x) by projected gradient descent:

x(t+1) = PS

(
x̃(t) − α∇xL(A,y, x̃(t))

)
(6)

x̃(t+1) = x(t+1) + γ(t)(x(t+1) − x(t)) (7)

for t ∈ [T ]. In the code, we run T = 15 iterations of projected gradient descent (similar to FISTA).
We have α = σmax(A)−2 and γ(t) is given by:

γ(t) =
η(t) − 1

η(t+1)
, η(t+1) =

1 +
√
1 + 4η(t)

2
, η(0) = 0 (8)

The gradient of the weighted-ℓ1 penalty is given by:

∇xLWL(A,y,x) = AT (Ax− y) + λ

m∑
i=1

||y − aj ||2ej (9)

We also explored a Laplacian penalty SLAP
λ (X) = tr(XGXT) to promote locality. The gradient of

this penalty is most clean when written in a batch setting:

∇X∈Rm×bLLAP (A,Y,X) = AT (AX−Y) + λ
(
Ib×b +X(GT + G)

)
(10)

where D −A = G ∈ Rb×b is a graph Laplacian built from a binary kNN graph on the inputs Yn×b;
that is, the edge weight between yi and yj is 1 if i, j are k-nearest neighbors and 0 otherwise. We
choose k = 4 in our experiments, though more rigorous analysis is required to determine the effect
of this hyperparameter.

Decoder:

The decoder is a simple linear readout, where given A and x, ŷ = Ax

Training details:

We used one GeForce GTX 1080 Ti GPU for training. However, the computational requirements are
fairly modest. All of the models can be ran without a GPU, even with a batch size of 16− 32 with
several hundred filters in at most in 1− 2 hours on a 2.6 GHz 6-Core Intel Core i7 PC with 32GB of
RAM.

Because we use the same dataset, we also used the same variance normalization procedure described
in the original paper (Olshausen & Field, 1997) to tune λ, which is easily the most important
hyperparameter. In our experiments, we found that the weighted-ℓ1 network was fairly robust to
changes in λ even over several orders of magnitude, while the original Sparsenet algorithm only
produces Gabor-like filters over a small neighborhood around λ ≈ 0.01. Below, for example, we
show filters for λ = 0.001 where each model is ran until convergence. The unrolled network looks
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far more like the results in Figure 2 (where λ = 0.01) while Sparsenet is not able to learn its classic
filters (holding all else constant).

Figure 6: The Sparsenet algorithm (left) seems less robust to changes in λ compared to the unrolled
network (right).
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B Appendix: Discriminative Task on Whole Images

Much to our surprise, the weighted-ℓ1 loss and unrolled architecture also seems to learn Gabor-
like filters even on whole (albeit small) images in addition to random image patches. Below, we
include a set of filters learned on CIFAR10, for example. Although these filters are less clean than
those learned on the original Sparsenet data (Olshausen & Field, 1997), this offers a path to training
an end-to-end discriminative classification task in the spirit of (Rolfe & LeCunn, 2013). How do the
categorical and part of units of that paper align with the well-tuned and broadly-tuned cells of the
visual cortex, if at all?

Figure 7: Learned filters for λ = 0.01 when training the weighted-ℓ1 loss on CIFAR10. While these
images are 32× 32, the receptive fields still appear to be quite localized in their sensitivity.

Figure 8: As λ → ∞, the filters essentially become mean-prototypes of the various classes in CIFAR,
showing that the unrolled weighted-ℓ1 can be interpreted as a soft k-means objective as well.
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