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ABSTRACT

We initiate a systematic study of antithetic initial noise in diffusion models, dis-
covering that pairing each noise sample with its negation consistently produces
strong negative correlation. This universal phenomenon holds across datasets,
model architectures, conditional and unconditional sampling, and even other gen-
erative models such as VAEs and Normalizing Flows. To explain it, we combine
experiments and theory and propose a symmetry conjecture that the learned score
function is approximately affine antisymmetric (odd symmetry up to a constant
shift), supported by empirical evidence. This negative correlation leads to substan-
tially more reliable uncertainty quantification with up to 90% narrower confidence
intervals. We demonstrate these gains on tasks including estimating pixel-wise
statistics and evaluating diffusion inverse solvers. We also provide extensions with
randomized quasi-Monte Carlo noise designs for uncertainty quantification, and
explore additional applications of the antithetic noise design to improve image edit-
ing and generation diversity. Our framework is training-free, model-agnostic, and
adds no runtime overhead. Code is available at https://anonymous.4open.
science/r/Antithetic-Noise-in-Diffusion-Models-8B54.

1 INTRODUCTION

Diffusion models have set the state of the art in photorealistic image synthesis, high-fidelity audio,
and video generation (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Kong et al.,
2021); they also power applications such as text-to-image generation (Rombach et al., 2022), image
editing and restoration (Meng et al., 2022), and inverse problem solving (Song et al., 2022).

For many pretrained diffusion models, sampling relies on three elements: the network weights,
the denoising schedule, and the initial Gaussian noise. Once these are fixed, sampling is often
deterministic: the sampler transforms the initial noise into an image via successive denoising passes.

Much of the literature improves the first two ingredients and clusters into two strands: (i) architectural
and training developments, which improve sample quality and scalability through backbone or
objective redesign (e.g., EDM (Karras et al., 2022), Latent Diffusion Models (Rombach et al., 2022),
DiT (Peebles & Xie, 2023)), (ii) accelerated sampling, which reduces the number of denoising steps
while retaining high-quality generation (e.g., DDIM (Song et al., 2021a), Consistency Models (Song
et al., 2023), DPM-Solver++ (Lu et al., 2023), and progressive distillation (Salimans & Ho, 2022)).

However, the third ingredient—the initial Gaussian noise—has received comparatively little attention.
Prior work has optimized initial noise for generation quality, editing, controllability, or inverse
problem solving (Guo et al., 2024; Qi et al., 2024; Zhou et al., 2024; Ban et al., 2025; Chen et al.,
2024a; Eyring et al., 2024; Song et al., 2025; Wang et al., 2024; Chihaoui et al., 2024). However, most
of these efforts are task-specific. A systematic understanding of how noise itself shapes diffusion
model outputs is still missing.

Our perspective is orthogonal to prior work. Our central discovery is both simple and universal:
pairing every Gaussian noise z with its negation −z—known as antithetic sampling (Owen, 2013)—
consistently produces samples that are strongly negatively correlated. This phenomenon holds
regardless of architecture, dataset, sampling schedule, and both conditional and unconditional
sampling. It further extends to other generative models such as VAEs and Normalizing Flows. We
explain this phenomenon through both experiments and theory. This leads to a symmetry conjecture
that the score function is approximately affine antisymmetric, providing a new structural insight
supported by empirical evidence.
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Figure 1: Use antithetic noise −z and z (with condition c) to generate visually “opposite” images.

This universal property has direct impact on uncertainty quantification and also enables additional
applications:

(i) Sharper uncertainty quantification. Antithetic pairs naturally act as control variates, enabling
significant variance reduction and thus sharper uncertainty quantification. Our antithetic estimator
delivers up to 90% tighter confidence intervals and cuts computation cost by more than 100 times. The
efficiency gain immediately leads to huge cost savings in a variety of tasks, including bias detection
in generation and diffusion inverse solver evaluation, as we demonstrate in later experiments.

(ii) Other applications. Because each antithetic noise pair drives reverse-diffusion trajectories
toward distant regions of the data manifold (see Figure 1), the paired-sampling scheme increases
diversity “for free” while preserving high image quality, as confirmed by SSIM and LPIPS in our
experiments. Moreover, algorithms that rely on intermediate sampling or approximation steps also
benefit from the improved reliability provided by antithetic noise. As an illustration, we present an
image editing example in C.2 and show that our antithetic design serves as a plug-and-play tool to
improve performance at no additional cost.

Building on the antithetic pairs, we generalize the idea to apply quasi-Monte Carlo (QMC) and
randomized QMC (RQMC). The resulting RQMC estimator often delivers further variance reduction.
Although QMC has been widely used in computer graphics (Keller, 1995; Waechter & Keller, 2011),
quantitative finance (Joy et al., 1996; L’Ecuyer, 2009), and Bayesian inference (Buchholz et al., 2018;
Liu & Owen, 2021), this is, to our knowledge, its first application to diffusion models.

In summary, we discover a universal property of initial noise, reveal a new symmetry in score
networks, and demonstrate concrete benefits in various practical applications. This positions initial
noise manipulations as a simple, training-free tool for advancing generative modeling.

The remainder of the paper is organized as follows. Section 2 defines the problem and outlines
our motivation. Section 3 presents our central finding that antithetic noise pairs produce strongly
negatively correlated outputs. We offer both theoretical and empirical explanations for this phe-
nomenon, and present the symmetry conjecture in Section 3.2. Section 4 develops estimators and their
confidence intervals via antithetic sampling, and extends the approach to QMC. Section 5 reports
experiments on the aforementioned applications. Section 6 discusses our method and outlines future
directions. Appendix B, C, and D include proofs, additional experiments and detailed setups, and
supplemental visualizations, respectively.

2 SETUP, MOTIVATION, AND RELATED WORKS

Unconditional diffusion model: A diffusion model aims to generate samples from an unknown
data distribution p0. It first noises data towards a standard Gaussian progressively, then learns to
reverse the process so that Gaussian noise can be denoised step-by-step back into target samples.
The forward process simulates a stochastic differential equation (SDE): dxt = µ(xt, t)dt+ σtdwt,
where {wt}Tt=0 denotes the standard Brownian motion, and µ(x, t), σt are chosen by the users. Let
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pt denote the distribution of xt. Song et al. (2021b) states that if we sample yT ∼ pT and simulate
the probability-flow ordinary differential equation (PF-ODE) backward from time T to 0 as

dyt =

(
−µ(yt, t)−

1

2
σ2
t∇ log p(yt, t)

)
dt, (1)

then for every time t the marginal distribution of yt coincides with pt. Thus, in an idealized world,
one can perfectly sample from p0 by simulating the PF-ODE (1).

In practice, the score function ∇ log pt(x, t) is unavailable, and a neural network ϵ
(t)
θ (x) is trained

to approximate it, where θ denotes its weights. Therefore, one can generate new samples from p0
by first sampling a Gaussian noise and simulating the PF-ODE (1) through a numerical integrator
from T to 0. For example, DDIM (Song et al., 2021a) has the (discretized) forward process as
xk | xk−1 ∼ N(√αkxk−1, (1− αk)I) for k = 0, . . . , T − 1, and backward sampling process as

yT ∼ N(0, I), yt−1 =
√
αt−1

(
yt −

√
1− αt ϵ

(t)
θ (yt)√

αt

)
+
√
1− αt−1 ϵ

(t)
θ (yt). (2)

Once θ is fixed, the randomness in DDIM sampling comes solely from the initial Gaussian noise.

We remark that samples from p0 can also be drawn by simulating the backward SDE with randomness
at each step, as in the DDPM sampler (Ho et al., 2020; Song et al., 2021b). Throughout the main text,
we focus on deterministic samplers such as DDIM to explain our idea. In Appendix C.4, we present
additional experiments showing that our findings also extend to stochastic samplers like DDPM.

Text–conditioned latent diffusion: In Stable Diffusion and its successors SDXL and SDXL Turbo
(Podell et al., 2024; Sauer et al., 2024), a pretrained VAE first compresses each image to a latent
tensor z. A text encoder embeds the prompt as c ∈ Rm. During training, the network ϵ

(t)
θ receives

(zt, c) and learns ∇zt log pt(zt | c). At generation time we draw latent noise zT ∼ N(0, I) and run
the reverse diffusion from t = T to 0, yielding a denoised latent z0, which the decoder maps back to
pixels. Given a prompt c and an initial Gaussian noise, the sampler produces an image from p0(· | c).
Diffusion posterior sampling: Diffusion model can also be used as a prior in inverse problems.
Suppose we observe only a partial or corrupted measurement yobs = A(x) + noise from an unknown
signal x. Diffusion posterior sampling aims to sample from the posterior distribution p(x | yobs) ∝
p(yobs | x) p(x), where p(x) is given by a pretrained diffusion model. Given initial noise z and
observed yobs, diffusion posterior samplers apply a sequence of denoising steps from T to 0, each
step resembling (2) but incorporating yobs (Chung et al., 2023a; Song et al., 2022; 2024).

2.1 MOTIVATION

Beyond examining how variations in the initial noise affect the outputs, several technical considera-
tions motivate our focus on the antithetic noise pair (z,−z) for diffusion models. Let DM denote
certain diffusion model’s mapping from an initial noise vector to a generated image sample.

• Preserving quality: Since z ∼ N(0, I) implies −z ∼ N(0, I), the initial noises z and −z share
the same marginal distribution. Consequently, DM(z)

d
= DM(−z), so all per-sample statistics

remain unchanged. In other words, negating the initial noise does not degrade generation quality.

• Maximal separation in the noise space: High-dimensional Gaussians concentrate on the sphere
of radius

√
dimension (Vershynin, 2018), so any draw z and its negation −z lie at opposite poles

of that hypersphere. This antipodal pairing represents the maximum possible perturbation in noise
space, making it a natural extreme test of the sampler’s behavior.

• Measuring (non-)linearity: Recent work has examined how closely score networks approximate
linear operators. Empirical studies across various diffusion settings show that these networks
behave as locally linear maps; this behavior forms the basis for new controllable sampling schemes
(Chen et al., 2024b; Li et al., 2024b; Song et al., 2025). Correlation is a natural choice to measure
linearity: if a score network were exactly linear, feeding it with noises z and −z would yield
a correlation of −1 between DM(z) and DM(−z). Thus, the difference between the observed
correlation and −1 provides a direct measure of the network’s departure from linearity.
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3 NEGATIVE CORRELATION FROM ANTITHETIC NOISE

3.1 PIXEL-WISE CORRELATIONS: ANTITHETIC VS. INDEPENDENT NOISE

We compare the similarity between paired images generated under two sampling schemes: PN
(positive vs. negative, z vs. −z) and RR (random vs. random, z1 vs. z2) under three settings: (1)
unconditional diffusion models, (2) class- or prompt-based conditional diffusion models, and (3)
generative models beyond diffusion.

For diffusion models, we evaluate both unconditional and conditional cases using publicly available
pre-trained checkpoints, with implementation details described in Section 5.1. Notably, we include
both traditional U-Net architecture and transformer-based DiT (Peebles & Xie, 2023). For generative
models beyond diffusion, we select two representative baselines: an unconditional VAE on MNIST
and a conditional Glow model (Kingma & Dhariwal, 2018) on CIFAR-10. The experimental details
for VAE and Glow are provided in Appendix C.1.

To quantify similarity, we use two metrics: the standard Pearson correlation and a centralized Pearson
correlation. Let xi,1 and xi,2 denote the flattened pixel values of the two images in the i-th generated
pair. The standard Pearson correlation is computed directly between xi,1 and xi,2. To correct for
dataset-level or class-level bias, we also define a centralized correlation. For a dataset, prompt, or
class with K pairs generated, we compute the mean µc =

∑K
i=1(xi,1 + xi,2)/2K. The centralized

correlation of the i-th pair is defined as the standard Pearson correlation between the centralized
images xi,1 − µc and xi,2 − µc. For each comparison, t-test is conducted to assess statistical
significance. In all experiments, the resulting p-values are negligible (< 10−10), which confirms
significance; hence, they are omitted from the presentation.

Additional metrics such as the Wasserstein distance are presented in Appendix C.4.

Results: Table 1 summarizes the statistics in all classes of models. PN pairs consistently show
significantly stronger negative correlations than RR pairs, with this contrast also visually evident in
their histograms (Figure 2). In addition, centralization strengthens the negative correlation, since it
removes shared patterns. For example, in CelebA-HQ, centralization removes global facial structure,
while in DiT and Glow, it removes class-specific patterns.

The same behavior appears in both DDPM models and diffusion posterior samplers, which we report
in Appendix C.4. These results demonstrate that the negative correlation resulting from antithetic
sampling is a universal phenomenon across diverse architectures and conditioning schemes.

Table 1: Correlation results across different models and datasets, shown are means (SD).
Model Standard Correlation Centralized Correlation

PN RR PN RR
LSUN-Church -0.62 (0.11) 0.08 (0.17) -0.77 (0.07) 0.00 (0.17)
CIFAR-10 -0.76 (0.13) 0.05 (0.24) -0.86 (0.07) 0.00 (0.23)
CelebA-HQ -0.34 (0.19) 0.25 (0.20) -0.78 (0.06) -0.01 (0.20)

SD 1.5 -0.47 (0.05) 0.05 (0.04) -0.54 (0.08) 0.00 (0.01)
DiT -0.07 (0.27) 0.26 (0.18) -0.45 (0.08) 0.00 (0.03)

VAE 0.21 (0.12) 0.42 (0.17) -0.41 (0.12) -0.00 (0.24)
Glow -0.52 (0.02) 0.08 (0.05) -0.57 (0.02) -0.01 (0.02)

3.2 EXPLANATORY EXPERIMENTS: TEMPORAL CORRELATIONS & SYMMETRY CONJECTURE

We aim to explain the strong negative correlation between DM(Z) and DM(−Z) for Z ∼ N(0, I).
Because DM performs iterative denoising through the score network ϵ

(t)
θ (see (2)), we visualize how

these correlations evolve over diffusion time-steps in Figure 3.

Throughout the transition from noises to samples, the PN correlation of ϵ(t)θ —indicated by the orange,
blue, and green dashed lines in Figure 3—starts at –1, stays strongly negative, and only climbs slightly
in the final steps. This nearly −1 correlation is remarkable, as it suggests that the score network ϵθ
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(a) CelebA-HQ (b) DiT (class 919) (c) Glow (class 0)

Figure 2: Histograms of standard and centralized Pearson correlation coefficients for CelebA-HQ,
and DiT class and Glow in single class. Dashed lines indicate the average.

learns an approximately affine antisymmetric function. To explain, we first state the following results
which shows −1 correlation is equivalent to affine antisymmetric, with proof in Appendix B.1.

Lemma 1. Let Z ∼ N(0, Id), suppose a map f : Rd → R satisfies Corr(f(Z), f(−Z)) = −1, then
f must be affine antisymmetric at (0, c) for some c, i.e., f(x) + f(−x) = 2c for every x.

Figure 3: Correlation of xt (solid) and
ϵ
(t)
θ (dash) between antithetic (PN) pairs.

Step 50 is the initial noise and Step 0
is the generated image. Shaded bands
show ±1 std. dev.

Lemma 1 and Figure 3 leads us to the following conjecture:

Conjecture For each time step t, the score network ϵ
(t)
θ

is approximately affine antisymmetric at (0, ct), i.e.,

ϵ
(t)
θ (x) + ϵ

(t)
θ (−x) ≈ 2ct

for some fixed vector ct that depends on t.

The conjecture implies that the score network has learned
an “almost odd” function up to an additive shift. This is
consistent with both theory and observations for large t,
where pt(x) is close to standard Gaussian, thus the score
function is almost linear in x. Nonetheless, our conjecture
is far more general: it applies to every timestep t and can
accommodate genuinely nonlinear odd behaviors (for example, functions like sinx).

Figure 4: First-coordinate output of the pretrained score
network on CIFAR10 as a function of the interpolation
scalar c for a 50-step DDIM at t = 1, 3, . . . , 19.

This conjecture combined with the
DDIM update rule (2) immediately ex-
plains the negative correlation: The one
step iteration of Ft in (2) can be writ-
ten as a linear combination between x
and the output of the score network:
Ft(x) = atx+btϵ

(t)
θ (x). Given the con-

jecture, Ft(−x) ≈ −atx− btϵ
(t)
θ (x) +

2btct = −Ft(x) + 2btct, so the one-
step DDIM update is affine antisymmet-
ric at (0, btct). Thus, beginning with a
strongly negatively correlated pair, each
DDIM update preserves that strong neg-
ative correlation all the way through to
the final output.

To (partly) validate our conjecture, we perform the following experiment. Using a pretrained CIFAR-
10 score network with a 50-step DDIM sampler, we picked time steps t = 1, 3, . . . , 19 (where smaller
t is closer to the image and larger t is closer to pure noise). For each t, we sample x ∼ N(0, Id),
evaluated the first coordinate of ϵ(t)θ (cx) as c varied from −1 to 1 (interpolating from −x to x), and
plotted the result in Figure 4. We exclude t ≥ 20, where the curve is very close to a straight line.

Figure 4 confirms that, at every step t, the first coordinate of the score network is indeed overall
affine antisymmetric. Although the curves display nonlinear oscillations at small t, the deviations on
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either side are approximately mirror images, and for larger t the mapping is almost a straight line.
The symmetry center ct usually lies near zero, but not always—for instance, at t = 11, ct ≈ 0.05
even though the function spans from −0.05 to 0.15. In Appendix C.5, we present further validation
experiments using alternative coordinates, datasets, and a quantitative metric called the antisymmetry
score. Despite the distinct function shapes across coordinates, the conjectured symmetry still persists.

We further evaluate the antisymmetry conjecture across additional coordinates and datasets. On
CIFAR-10 and Church, we assess how closely one-dimensional slices of the network outputs behave
like affine-antisymmetric functions. To this end, we introduce the affine antisymmetry score, which
quantifies the degree of antisymmetry. Across datasets, the resulting antisymmetry scores are
consistently high (mean values above 0.99 and even the lower quantiles still near 0.9). These results
provide strong empirical support for the conjecture; full experimental details and plots are given in
Appendix C.5.

Finally, by applying existing results on the Ornstein–Uhlenbeck process, we provide a theoretical
confirmation of our conjecture in Appendix B.2 for the regime of large t.

Both the conjecture and its empirical support could be of independent interest. They imply that the
score network learns a function with strong symmetry, even though that symmetry is not explicitly
enforced. The conjecture matches the Gaussian linear score approximation in the high-noise regime,
which has proven effective (Wang & Vastola, 2024). In the intermediate-to-low noise regime, a single
Gaussian approximation performs poorly—this is clear in Figure 4 for t = 3, 7, 11, where the score
is strongly nonlinear—yet our conjectured approximate symmetry still holds.

Besides explaining the source of negative correlation, we believe this result provides new insight into
the structure of diffusion models, which are often treated as black-box functions. Leveraging this
finding for algorithms and applications is an important direction for future work.

For readers interested in a supplementary theoretical perspective, we also provide an expository
discussion in Appendix B.4 that connects negative correlation to the FKG inequality.

4 UNCERTAINTY QUANTIFICATION

In uncertainty quantification for a diffusion model DM, the goal is typically to estimate expectations
of the form Ez∼N(0,I)

[
S
(
DM(z)

)]
, where S is a statistic of user’s interest. Our goal is to leverage

negative correlation to design an estimator with higher accuracy at fixed computation cost of inference.

Standard Monte Carlo: To approximate this expectation, the simplest approach is to draw N
independent noises z1, . . . , zN ∼ N(0, I), calculate Si = S

(
DM(zi)

)
for each i and form the

standard Monte Carlo (MC) estimator µ̂MC
N :=

∑N
i=1 Si/N by taking their average. A (1 − α)

confidence interval, denoted as CIMC
N (1− α) is then µ̂MC

N ± z1−α/2

√
(σ̂MC

N )2/N, where σ̂2
N is the

sample variance of S1, S2, . . . , SN and z1−α/2 is the (1− α/2)-quantile of the standard normal. A
formal guarantee of the above construction is given in Proposition 1 in Appendix B.3.

Antithetic Monte Carlo: The observed negative correlation motivates an improved estimator. Let
N = 2K be even, users can generate K pairs of antithetic noise (z1,−z1), . . . , (zK ,−zK). Define
S+
i = S(DM(zi)), S−

i = S(DM(−zi)), and let S̄i = 0.5(S+
i +S−

i ) be their average. Our Antithetic
Monte Carlo (AMC) estimator is µ̂AMC

N :=
∑K

i=1 S̄i/K, and confidence interval CIAMC
N (1 − α) is

µ̂AMC
N ± z1−α/2

√
2(σ̂AMC

N )2/N, where (σ̂AMC
N )2 is the sample variance of S̄1, . . . , S̄K .

The intuition is simple: if the pair (S+
i , S−

i ) remains negatively correlated, then averaging antithetic
pairs can reduce variance by partially canceling out opposing errors—since negative correlation
suggests that when one estimate exceeds the true value, the other is likely to fall below it.

The AMC estimator is unbiased, and CIAMC
N (1 − α) achieves correct coverage as the sample size

increases. Let ρ := Corr(S+
i , S−

i ). We can prove that AMC’s standard error and its confidence-
interval width are each equal to the Monte Carlo counterparts multiplied by the factor

√
1 + ρ. Thus,

when ρ < 0, AMC produces provably lower variance and tighter confidence intervals than MC,
with greater gains as ρ becomes more negative. See Appendix B.3 for a formal statement and proof.
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Since both methods have the same computational cost, the variance reduction from negative correla-
tion and the antithetic design yields a direct and cost-free improvement.

Quasi-Monte Carlo: The idea of using negatively correlated samples has been widely adopted in
Monte Carlo methods (Craiu & Meng, 2005) and statistical risk estimation (Liu et al., 2024) for
improved performance. This principle of variance reduction can be further extended to QMC methods.
As an alternative to Monte Carlo, QMC constructs a deterministic set of N samples that have negative
correlation and provide a more balanced coverage of the sample space. QMC samples can also be
randomized, resulting in RQMC methods. RQMC maintains the marginal distribution of each sample
while preserving the low-discrepancy properties of QMC. Importantly, repeated randomizations allow
for empirical error estimation and confidence intervals (L’Ecuyer et al., 2023).

Under regularity conditions (Niederreiter, 1992), QMC and RQMC can improve the error convergence
rate from O(N−1/2) to O(N−1+ϵ) for any ϵ > 0, albeit ϵ may absorb a dimension-dependent factor
(logN)d. For sufficiently smooth functions, RQMC can achieve rates as fast as O(N−3/2+ϵ) (Owen,
1997b;a). Moreover, the space-filling property of QMC may also promote greater sample diversity.

Although the dimension of the Gaussian noise is higher than the typical regime where QMC is
expected to be most effective, RQMC still further shrinks our confidence intervals by several-fold
compared with standard MC. This hints that the image generator’s effective dimension is much lower
than its ambient one, allowing QMC methods to stay useful. Similar gains arise when QMC methods
deliberately exploit low-dimensional structure in practical problems (Wang & Fang, 2003; Xiao &
Wang, 2019; Liu & Owen, 2023). Developing ways to identify and leverage this structure more
systematically is an appealing avenue for future work.

5 EXPERIMENT

Sections 5.1 and 5.2 present two uncertainty quantification applications: estimating pixel-wise
statistics and evaluating diffusion inverse problem solvers. The latter considers two popular algorithms
across a range of tasks and datasets. For each task, we apply MC, AMC, and, when applicable, QMC
estimators as described in Section 4. For each estimator, we report the 95% confidence interval (CI)
width and its relative efficiency. The relative efficiency of a new estimator (AMC or QMC) is defined
as the squared ratio of the MC CI width to that of the estimator, (CIMC/CInew estimator)

2
. It reflects

how many times more MC samples are required to achieve the same accuracy as our new estimator.
Section 5.3 shows that antithetic noise produces more diverse images than independent noise while
preserving quality, and Appendix C.2 explores an image editing example.

5.1 PIXEL-WISE STATISTICS

We begin by evaluating four pixel-level statistics. These include the (i) pixel value mean, (ii)
perceived brightness, (iii) contrast, and (iv) the image centroid, with definitions in Appendix C.6.
These statistics are actively used in diffusion workflows for diagnosing artifacts and assessing
reliability, with applications in detecting signal leakage (Lin et al., 2024; Everaert et al., 2024),
out-of-distribution detection (Le Bellier & Audebert, 2024), identifying artifact-prone regions (Kou
et al., 2024), and improving the reliability of weather prediction (Li et al., 2024a).

Setup: We study both unconditional and conditional diffusion models; details are in Appendix C.3:

For unconditional diffusion models, we evaluate pre-trained models on CIFAR-10 (Krizhevsky et al.,
2009), CelebA-HQ (Xia et al., 2021), and LSUN-Church (Yu et al., 2015). For each dataset, 1,600
image pairs are generated under both PN and RR noise sampling with 50 DDIM steps.

For conditional diffusion models, we evaluate Stable Diffusion 1.5 on 200 prompts from the Pick-a-Pic
(Kirstain et al., 2023) and DrawBench (Saharia et al., 2022), and DiT (Peebles & Xie, 2023) on 32
ImageNet classes. For each class or prompt, 100 PN and RR pairs are generated with 20 DDIM steps.

Implementation: To ensure fair comparisons under equal sample budget:

For unconditional diffusion models: MC uses 3,200 independent samples, AMC uses 1,600 antithetic
pairs, and QMC employs a Sobol’ point set of size 64 with 50 independent randomizations. Due to
the dimensionality limits, QMC is restricted to CIFAR-10.
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For conditional diffusion models: for each class or prompt, MC uses 200 independent samples, AMC
uses 100 antithetic pairs, and QMC employs 8 Sobol’ points with 25 randomizations.

CIs for MC and AMC are constructed as described in Section 4. For QMC, we use a student-t interval
to ensure reliable coverage (L’Ecuyer et al., 2023), with details in Appendix C.6.

Results: Across all statistics, both AMC and QMC have much shorter CIs than MC, with relative
efficiencies ranging from 3.1 to 136. This strongly suggests our estimators can dramatically reduce
cost for uncertainty estimates. AMC and QMC estimators yield comparable results. The performance
of QMC depends on how the total budget is allocated between the size of the QMC point set and the
number of random replicates, a trade-off we explore in further details in Appendix C.6.

Table 2: CI lengths and efficiency (CIMC/CI)2 (in parentheses), using MC as baseline.
Dataset Brightness Pixel Mean Contrast Centroid

CIFAR10
MC 2.00 2.04 1.08 0.11
QMC 0.35 (32.05) 0.39 (26.94) 0.22 (23.43) 0.04 (7.35)
AMC 0.35 (32.66) 0.39 (27.12) 0.23 (22.05) 0.04 (6.96)

CelebA MC 1.77 1.76 0.60 0.60
AMC 0.26 (47.41) 0.31 (33.15) 0.19 (10.18) 0.20 (7.82)

Church MC 1.66 1.64 1.02 0.82
AMC 0.14 (134.13) 0.16 (103.80) 0.20 (27.16) 0.26 (9.84)

Stable Diff.
MC 3.86 3.95 2.18 4.03
QMC 1.36 (8.07) 1.43 (7.60) 1.03 (4.46) 1.88 (4.54)
AMC 0.90 (18.53) 1.00 (15.53) 0.89 (6.25) 1.62 (6.15)

DiT
MC 7.52 7.74 3.32 3.15
QMC 3.44 (4.78) 3.49 (4.91) 1.82 (3.31) 1.69 (3.46)
AMC 3.13 (5.79) 3.12 (6.16) 1.72 (3.74) 1.74 (3.30)

5.2 EVALUATING DIFFERENT DIFFUSION INVERSE PROBLEM SOLVERS

Bayesian inverse problems are important in medical imaging, remote sensing, and astronomy. Re-
cently, many methods have been proposed that leverage diffusion priors to solve inverse problems.
For instance, Zheng et al. (2025) surveys 14 such methods, yet this is still far from exhaustive. As a
result, comprehensive benchmarking is costly. Meanwhile, most existing works on new diffusion
inverse solvers (DIS) largely ignore uncertainty quantification, though it is critical for fair evaluation.
This raises a key challenge: how to efficiently evaluate posterior sampling algorithms with reliable
estimates of reconstruction quality and uncertainty. Our approach aims to efficiently address this gap.

We show that our antithetic estimator can save substantial computational cost for quantifying un-
certainty by requiring far fewer samples than standard estimators. We focus on two popular DISs,
Diffusion Posterior Sampling (DPS) (Chung et al., 2023a) and Decomposed Diffusion Sampler
(DDS) (Chung et al., 2023b), and evaluate them on a range of tasks described below.

5.2.1 HUMAN FACE RECONSTRUCTION

We evaluate DPS across three inverse problems: inpainting, Gaussian deblurring, and super-resolution.
Reconstruction error is measured using both PSNR and L1 distance relative to the ground truth image.
For all tasks, we use 200 human face images from the CelebA-HQ dataset. For each corrupted image,
we generate 50 DPS reconstructions using both PN and RR noise pairs to compare their estimators.
Operator-specific configurations (e.g., kernel sizes, mask ratios) are provided in Appendix C.6.

Results: As shown in Table 3, across all three tasks, AMC achieves substantially shorter confidence
intervals than standard MC. This implies AMC yields efficiency gains, ranging from 54% – 84% in
inpainting, 41% – 54% in super-resolution, and 34% – 56% in deblurring.

The reconstruction metrics (L1, PSNR) differ by less than 0.2% between the two estimators, showing
that they produce consistent results. Meanwhile, our method offers a clear advantage in efficiency.
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Table 3: Comparison of AMC vs. MC across tasks in DPS with efficiency (CIMC/CI)2 in parentheses
L1 PSNR

Task AMC CI MC CI AMC CI MC CI

Inpainting 0.83 (1.54) 1.03 0.23 (1.84) 0.31
Super-resolution 1.01 (1.41) 1.20 0.24 (1.54) 0.30
Gaussian Deblur 0.89 (1.34) 1.03 0.23 (1.56) 0.29

5.2.2 MEDICAL IMAGE RECONSTRUCTION

We use the DDS (Chung et al., 2023b) as the reconstruction backbone and apply our antithetic
noise initialization to estimate reconstruction confidence intervals. Given a single measurement, we
generate 100 reconstruction pairs using 50-step DDS sampling. Reconstruction quality is evaluated
against ground truth using L1 distance and PSNR. Dataset details can be found in Appendix C.6.4.

Results: Both MC and AMC estimators give consistent estimates, with estimated L1 error of 0.0194
and 0.0195, and PSNR values of 31.48 and 31.45, respectively. Similarly, we observe that AMC
produces much shorter confidence intervals. The CI lengths decrease with relative efficiency of 1.44
for L1 and 1.37 for PSNR. This shows that antithetic initialization consistently reduces estimator
variance with no extra cost without degrading reconstruction fidelity in large-scale inverse problems.

Conclusion: These two experiments show that a single antithetic estimator reduces evaluation costs
for diffusion inverse solvers by 34%–84%, a saving that becomes especially valuable given the large
number of solvers in the literature. This makes large-scale benchmarking far more practical.

5.3 DIVERSITY IMPROVEMENT

Many diffusion tools generate a few images from one prompt to let users select a preferred one.
However, these images may look similar with randomly sampled initial noise (Marwood et al., 2023;
Sadat et al., 2024). We show that antithetic noise produces more diverse images than independent
noise, without reducing image quality or increasing computational cost. Diversity is measured using
pairwise SSIM (lower = more diverse) and LPIPS (Zhang et al., 2018) (higher = more diverse).

We evaluate the diversity metrics for both unconditional and conditional diffusion on image pairs
generated following the same setup in Section 5.1. As shown in Table 4, antithetic noise pairs
consistently lead to higher diversity, as indicated by lower SSIM and higher LPIPS scores. Importantly,
image quality remains stable for both noise types. We expect our method can be easily integrated into
existing diversity optimization techniques to further improve their performance.

Table 4: Average percentage improvement of PN pairs over RR pairs on SSIM and LPIPS.
Metric Unconditional Diffusion Conditional Diffusion

CIFAR-10 LSUN-Church CelebA-HQ SD1.5 DiT

SSIM (%) 88.78 45.69 36.78 28.32 23.99
LPIPS (%) 6.69 3.54 15.14 5.78 10.62

6 DISCUSSION AND FUTURE DIRECTIONS

We find that antithetic initial noise yields negatively correlated samples. This is a robust property
that generalizes across every model that we have tested. The negative correlation is especially useful
for uncertainty quantification, where it brings huge variance reduction and cost savings. This makes
our approach highly effective for evaluation and benchmarking tasks. Meanwhile, this finding can
serve as a simple plug-in to improve related tasks, such as diversity improvement and image editing.
A limitation of our work is that while the symmetry conjecture is supported by both empirical
and theoretical evidence, it remains open in full generality. Looking forward, future directions
include systematically studying the symmetry conjecture; integrating antithetic noise with existing
noise-optimization methods; and further leveraging QMC to improve sampling and estimation.
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This work does not involve human subjects or personally identifiable data collected by the authors.
All datasets used are publicly available and distributed under licenses permitting academic research.

Our medical image reconstruction experiments rely on benchmark datasets that are fully de-identified
before release (e.g., publicly available MRI data). No new data collection was performed, and no
protected health information is included. The experiments are purely methodological, intended to
evaluate reconstruction fidelity and uncertainty quantification techniques, and make no clinical claims
or diagnostic recommendations.

Our contributions are methodological, focusing on sampling and uncertainty quantification in gen-
erative models. While such methods could be applied broadly, including in sensitive domains, we
emphasize that our work aims to improve reliability, transparency, and efficiency in evaluation.

REPRODUCIBILITY STATEMENT

Full experimental details can be found in Section 5 and Appendix C.
The code is available at https://anonymous.4open.science/r/
Antithetic-Noise-in-Diffusion-Models-8B54.
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B PROOFS

B.1 PROOFS IN SECTION 3.2

Proof of Lemma 1. It suffices to show Var(f(Z) + f(−Z)) = 0. By definition:

Corr(f(−Z), f(Z)) =
Cov(f(−Z), f(Z))√
Var(f(Z))Var(f(−Z))

= −1.

Therefore

Var(f(Z) + f(−Z)) = Var(f(Z)) + Var(f(−Z)) + 2Cov(f(Z), f(−Z))

= Var(f(Z)) + Var(f(−Z))− 2
√
Var(f(Z))Var(f(−Z))

=
(√

Var(f(Z))−
√
Var(f(−Z))

)2
.

On the other hand, since −Z ∼ N(0, I) given Z ∼ N(0, 1), we have Var(f(Z)) = Var(f(−Z))
and then Var(f(Z) + f(−Z)) = 0, as claimed.
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B.2 THEORETICAL GUARANTEE OF THE SYMMETRY CONJECTURE FOR LARGE t

Background: The Ornstein–Uhlenbeck (OU) process. The OU process (Xt)t≥0 in Rd solves the
SDE

dXt = −Xt dt+
√
2 dBt, X0 ∼ µ0,

where (Bt) is standard Brownian motion in Rd. This is a Gaussian Markov process with stationary
distribution γ = N (0, Id) and generator

Lf(x) = ∆f(x)− x · ∇f(x).

For any initial law µ0, let µt denote the law of Xt. Then µt = µ0Pt, where (Pt)t≥0 is the OU
semigroup defined by

(Ptf)(x) = E[f(Xt) | X0 = x].

Write the score of µt as st(x) := ∇ log pt(x), where pt is Lebesgue density of µt, we have
Theorem 1 (Score converges to the Gaussian score). Under the setup above,

lim
t→∞

Eµt

[
∥st(Xt) +Xt∥2

]
= 0.

Moreover, the convergence is quantified by

Eµt

[
∥st(Xt) +Xt∥2

]
= I(µt | γ) ≤ e−2t I(µ0 | γ).

Proof. Recall the definition of relative Fisher information

I(µt | γ) := Eµt

[
∥∇ log(pt/γ)∥2

]
.

Since ∇γ(x) = −x, we have:

I(µt | γ) = Eµt

[
∥st(Xt) +Xt∥2

]
.

Moreover, it is well known (e.g. Chapter 5 of Bakry et al. (2013)) that I(µt | γ) ≤ exp(−2t)I(µ0 |
γ), this concludes our proof.

In variance-preserving diffusion models, the forward noising process is exactly the Orn-
stein–Uhlenbeck semigroup. Theorem 1 implies that the true score converges to the Gaussian score
−x. Consequently, one-dimensional slices of the score become asymptotically affine antisymmetric,
confirming our symmetry conjecture in the high-noise limit.

The next corollary shows, the 1-step DDIM update has nearly −1 correlation at large t.
Corollary 1 (Correlation of 1-step DDIM). With all the setup the same as above, assuming we
have a score network ϵ(t) approximating the score function. Let ηt := max{Ept

∥ϵ(t)(X) −
st(X)∥2,Ept

∥ϵ(t)(−X) − st(−X)∥2} be the expected (symmetrized) error. Consider one-step
DDIM update Ft(x) = atx+ bt ϵ

(t)
θ (x) := (Ft,1(x), . . . , Ft,d(x)) ∈ Rd as defined in (2). Let

vt,i := min{Varpt

(
Ft,i(X)

)
,Varpt

(
Ft,i(−X)

)
}.

Then ∣∣Corr(Ft,i(X), Ft,i(−X)
)
+ 1
∣∣ ≤ 2 |bt|√

vt,i

(√
ηt + e−t

√
I(µ0 | γ)

)
.

Proof. Theorem 1 shows I(µt | γ) ≤ exp(−2t)I(µ0 | γ). Write ϵ
(t)
θ = st + rt and st = −x+∆t,

so that Ept
∥rt(X)∥2 ≤ ηt and Ept

∥∆t(X)∥2 = I(µt | γ). Then

Ft(x) = (at − bt)x+ bt
(
∆t(x) + rt(x)

)
, Ft(−x) = −Ft(x) + Et(x),

with Et(x) := bt[∆t(−x) + ∆t(x) + rt(−x) + rt(x)]. By triangle inequality of L2(pt) norm,

∥Et∥L2(pt) ≤ |bt|
(
e−t
√
I(µ0 | γ) + e−t

√
I(µ0 | γ) + 2

√
ηt
)
.
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Using

Corr
(
Ft,i(X), Ft,i(−X)

)
= −1 +

Cov
(
Ft,i(X), Et,i(X)

)√
Var(Ft,i(X)) Var(Ft,i(−X))

and Cauchy–Schwarz with the variance lower bounds gives∣∣Corr(Ft(X), Ft(−X)
)
+ 1
∣∣ ≤

∥Et∥L2(pt)√
vt,i

≤ 2 |bt|√
vt,i

(√
ηt + e−t

√
I(µ0 | γ),

as claimed.

In practice, if vt,i > 0, the correlation is close to −1 for large t; its deviation from −1 is on the order
of the neural network approximation error plus an exponentially decaying term Ce−t.

B.3 PROOFS IN SECTION 4

B.3.1 MONTE CARLO ESTIMATOR:

Proposition 1. Denote Ez∼N(0,I)[S(DM(z))] by µ and Varz∼N(0,I)[S(DM(z))] by σ2. Assuming
σ2 < ∞, then we have:

• µ̂MC
N → µ and (σ̂MC

N )2 → σ2 almost surely, and P
(
µ ∈ CIMC

N (1− α)
)
→ 1− α, both as N → ∞.

• E[(µ̂MC
N − µ)2] = Var[µ̂MC

N ] = σ2/N .

In words, the above proposition shows: (i) Correctness: The standard Monte Carlo estimator µ̂MC
N

converges to the true value, and the coverage probability of CIMC
N (1− α) converges to the nominal

level (1 − α). (ii) Reliability: The expected squared error of µ̂MC
N equals the variance of a single

sample divided by sample size. The confidence interval has width approximately 2σz1−α/2/
√
N .

Proof of Proposition 1. Let Si := S
(
DM(zi)

)
for i = 1, . . . , N . Because the noises zi are drawn

independently from N(0, I), the random variables S1, S2, . . . are independent and identically dis-
tributed with mean µ and variance σ2 < ∞.

Consistency. By the strong law of large numbers,

µ̂MC
N =

1

N

N∑
i=1

Si
a.s.−−→ µ.

The sample variance estimator

(σ̂MC
N )2 =

1

N − 1

N∑
i=1

(
Si − µ̂MC

N

)2
=

1

N − 1

N∑
i=1

S2
i − N

N − 1
(σ̂MC

N )2.

The first term converges to E[S2
1 ] almost surely by the law of large numbers, the second term

converges to µ2 almost surely as shown above. Therefore (σ̂MC
N )2

a.s.−−→ σ2.

Asymptotic normality and coverage. The classical central limit theorem states that

√
N

µ̂MC
N − µ

σ

d−→ N(0, 1).

Replacing the unknown σ by the consistent estimator σ̂MC
N and applying Slutsky’s theorem yields

√
N

µ̂MC
N − µ

σ̂MC
N

d−→ N(0, 1).

Hence
P
(
µ ∈ CIMC

N (1− α)
)
= P
(∣∣√N(µ̂MC

N − µ)/σ̂MC
N

∣∣ ≤ z1−α/2

)
−→ 1− α.
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Mean-squared error. Because µ̂MC
N is the average of N i.i.d. variables,

Var
[
µ̂MC
N

]
=

σ2

N
.

Moreover, since µ̂MC
N is unbiased (E

[
µ̂MC
N

]
= µ), its mean-squared error

E
[
(µ̂MC

N − µ)2
]
= E

[
(µ̂MC

N − E[µ̂MC
N ])2

]
=

σ2

N
.

This completes the proof.

B.3.2 ANTITHETIC MONTE CARLO ESTIMATOR:

Proposition 2. Denote E[S(DM(z))] by µ, Var[S(DM(z))] by σ2, and Cov(S+
1 , S−

1 ) by ρ. Assuming
σ2 < ∞, then we have:

• µ̂AMC
N → µ and (σ̂AMC

N )2 → (1 + ρ)σ2/2 almost surely as N → ∞,

• E[(µAMC
N − µ)2] = Var[µAMC

N ] = σ2(1 + ρ)/N .

• P
(
µ ∈ CIAMC

N (1− α)
)
→ 1− α as N → ∞.

Proof. Let N = 2K and generate independent antithetic noise pairs
(
zi,−zi

)
for i = 1, . . . ,K.

Recall
S+
i = S

(
DM(zi)

)
, S−

i = S
(
DM(−zi)

)
, S̄i = 1

2

(
S+
i + S−

i

)
, i = 1, . . . ,K.

Because the pairs are independent and identically distributed (i.i.d.), the random variables S̄1, . . . , S̄K

are i.i.d. with
E[S̄1] = µ

and

Var[S̄1] = Var
[
1
2

(
S+
1 + S−

1

)]
(3)

=
(

1
2

)2
Var
[
S+
i + S−

i

]
(4)

=
1

4

(
Var[S+

i ] + Var[S−
i ] + 2 Cov(S+

i , S−
i )
)

(5)

=
1

4

(
σ2 + σ2 + 2ρσ2

)
(6)

=
1 + ρ

2
σ2. (7)

where we have written Cov(S+
i , S−

i ) = ρ σ2 as in the statement. Set µ̂AMC
N = K−1

∑K
i=1 S̄i and

let (σ̂AMC
N )2 be the sample variance of S̄1, . . . , S̄K . All three claims in Proposition 2 follow from

Proposition 1.

B.4 AN ALTERNATIVE EXPLANATION VIA THE FKG INEQUALITY

We also provide an expository discussion highlighting the FKG connection behind negative correlation.
Consider the univariate case where a scalar Gaussian z is fed through a sequence of one-dimensional
linear maps and ReLU activations. Let F be the resulting composite function. One can show that,
regardless of the number of layers or the linear coefficients used, Corr

(
F (z), F (−z)

)
≤ 0. The

proof relies on the univariate FKG inequality (Fortuin et al., 1971), a well-known result in statistical
physics and probability theory.

We generalize this result to higher dimensions via partial monotonicity, under which negative
correlation still holds.

We first formally state and prove the claim for the univariate case in Section B.4.
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Proposition 3 (Univariate case). Let z ∼ N(0, 1) and let F : R → R be the output of any
one–dimensional feed-forward network obtained by alternating scalar linear maps and ReLU
activations:

h0(z) = z, hℓ(z) = ReLU
(
wℓ hℓ−1(z) + bℓ

)
, ℓ = 1, . . . , L, F (z) = hL(z).

For all choices of depths L and coefficients {wℓ, bℓ}Lℓ=1,

Corr
(
F (z), F (−z)

)
≤ 0.

Proof. An important observation is that monotonicity is preserved under composition: combining
one monotonic function with another produces a function that remains monotonic.

Each scalar linear map x 7→ wℓx+ bℓ is monotone: it is non-decreasing if wℓ ≥ 0 and non-increasing
if wℓ < 0. The ReLU map x 7→ ReLU(x) = max{0, x} is non-decreasing. Hence the final function
F is monotone. Without loss of generality, we assume F is non-decreasing.

FKG inequality guarantees CovZ∼N(0,1)(f(Z), g(Z)) ≥ 0 provided that f, g are non-decreasing.
Therefore, CovZ∼N(0,1)(F (Z), F (−Z)) = −CovZ∼N(0,1)(F (Z),−F (−Z)) ≤ 0. Since

Corr
(
F (z), F (−z)

)
=

CovZ∼N(0,1)(F (Z), F (−Z))√
Var
(
F (z)

)
Var
(
F (−z)

) ,

we have Corr
(
F (z), F (−z)

)
≤ 0.

To generalize the result to higher dimension, we define a function f : Rm → R to be
partially monotone if for each coordinate j, holding all other inputs fixed, the map t 7→
f(x1, . . . , xj−1, t, xj+1, . . . , xm) is either non-decreasing or non-increasing. Mixed monotonic-
ity is allowed. For example, f(x, y) = x− y is non-decreasing in x and non-increasing in y, yet still
qualifies as partially monotone. We have the following result:
Proposition 4. For a diffusion model DM : Rd → Rm and a summary statistics S : Rm → R, if the
joint map is partially monotone, then Corr(S ◦ DM(Z)), S ◦ DM(−Z)) ≤ 0.

Now we prove the general case:

Proof of Proposition 4. Let G := S ◦ DM. For each coordinate j ∈ [d] fix a sign

sj =

{
+1, if G is non–decreasing in xj ,

−1, if G is non–increasing in xj .

Write s = (s1, . . . , sd) ∈ {±1}d and define, for any z ∈ Rd,

G̃(z) = G̃(z1, . . . , zd) := G(s1z1, . . . , sdzd).

Similarly, define
H̃(z) := G̃(−z) = G(−s1z1, . . . ,−sdzd).

By construction, G̃ is coordinate-wise non–decreasing and H̃ is coordinate-wise non–increasing.

Because each coordinate of Z ∼ N(0, Id) is symmetric, the random vectors (s1Z1, . . . , sdZd) and
(Z1, . . . , Zd) have the same distribution. Hence

Cov
(
G(Z), G(−Z)

)
= Cov

(
G̃(Z), H̃(Z)

)
.

The multivariate FKG inequality (Fortuin et al., 1971) for product Gaussian measures states that,
when U and V are coordinate-wise non–decreasing, Cov

(
U(Z), V (Z)

)
≥ 0. Apply it to the pair(

G̃,−H̃
)
: both components are non–decreasing, so

Cov
(
G̃(Z),−H̃(Z)

)
≥ 0 =⇒ Cov

(
G̃(Z), H̃(Z)

)
≤ 0 ⇔ Cov

(
G(Z), G(−Z)

)
≤ 0.

Therefore Corr
(
G(Z), G(−Z)

)
≤ 0, as claimed.
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Proposition 4 relies on checking partial-monotonicity. If S is partially monotone (including any linear
statistic), then the conditions of Proposition 4 are satisfied by, e.g., Neural Additive Models (Agarwal
et al., 2021) and Deep Lattice Networks (You et al., 2017). Unfortunately, partial-monotonicity is in
general hard to verify.

While popular diffusion architectures like DiT and U-Net lack partial monotonicity, we include
Proposition 4 as an expository attempt to highlight the FKG connection behind negative correlation.

C ADDITIONAL EXPERIMENTS

C.1 GENERATIVE MODELS BEYOND DIFFUSION

A mentioned in Section 3, we evaluate correlation on a VAE and flow-based models. Unlike the
diffusion models, which we use public pre-trained checkpoints, both of these models required explicit
training before evaluation. Here we describe the training setup and generation procedure.

VAE: We train the unconditional VAE on MNIST following the publicly available implementation
provided in . The VAE consists of a simple convolutional encoder–decoder architecture with a
Gaussian latent prior. After training, we generate 1,600 paired samples under PN and RR schemes,
respectively.

Glow: We train the class-conditional Glow model (Kingma & Dhariwal, 2018) on CIFAR-10 using
the normflows library. The architecture follows a multiscale normalizing flow design and Glow
blocks. After training, we generated 100 PN and 100 RR pairs per class.

C.2 IMAGE EDITING

We apply our antithetic initial noise strategy to the image editing algorithm FlowEdit (Kulikov et al.,
2024), which edits images toward a target text prompt using pre-trained flow models.

In Algorithm 1 of FlowEdit, at each timestep, the algorithm samples navg random noises Z ∼ N (0, 1)
to create noisy versions of the source image, computes velocity differences between source and target
conditions, and averages these directions to drive the editing process.

In the navg = 2 setting, we replace the two independent random samples with antithetic noises: for
each Z ∼ N (0, I) we also use −Z and average the two velocity updates.

We compare on 76 prompts provided in FlowEdit’s official GitHub repository. For each prompt,
we generate 10 images using both PN and RR. All other parameters follow the repository defaults.
We evaluate performance using CLIP(semantic text–image alignment; higher is better) and LPIPS
(perceptual distance to the source; lower is better), which jointly measure text adherence and structure
preservation.

As a result, PN improves the mean CLIP score, winning in 56.59% of all pairwise comparisons. It
also reduces LPIPS, winning in 81.58% of all pairwise comparisons.

C.3 IMPLEMENTATION DETAIL

We use pretrained models from Hugging Face’s Diffusers library (von Platen et al., 2022):
google/ddpm-church-256, google/ddpm-cifar10-32, and google/ddpm-celebahq-256 for uncondi-
tional diffusion; Stable Diffusion v1.5 for text-to-image; and the original repository from (Chung
et al., 2023a) for guided generation. Experiments were run on eight NVIDIA L40 GPUs. The most
intensive setup—Stable Diffusion—takes about five minutes to generate 100 images for a single
prompt.
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C.4 ADDITIONAL EXPERIMENTS ON PIXEL-WISE SIMILARITY

C.4.1 DDPM

Antithetic sampling setup: Unlike DDIM, where the sampling trajectory is deterministic once the
initial noise is fixed, DDPM adds a random Gaussian noise at every timestep. The update function in
DDPM is

xt−1 =
1

√
αt

(xt −
1− αt√
1− αt

ϵθ(xt, t)) + σtzt

and zt ∼ N(0, 1) if t > 1, else z = 0. Therefore, in DDPM, antithetic sampling requires not only
negating the initial noise but also negating every noise zt added at each iteration.

Table 5 and table 6 report the standard Pearson correlations and centralized correlation between
pixel values of image pairs produced using the same pre-trained models under PN and RR noise
schemes using DDPM (default 1000 steps) across CIFAR10, CelebA-HQ, and LSUN-Church. For
each dataset, we follow the same setup explained in Section 3. We calculate the pixelwise correction
with 1600 antithetic noise pairs and 1600 independent noises.

Consistent with the behavior observed in DDIM, PN pairs in DDPM samples also exhibit negative
correlation. Using the standard Pearson correlation, the mean correlation for PN pairs is strongly
negative in all datasets—CIFAR10 (−0.73), Church (−0.45), and in the more identity-consistent
CelebA (−0.18).

The centralized correlation analysis further sharpens this contrast: mean PN correlations are sub-
stantially lower (CIFAR10 −0.80, CelebA −0.67, Church −0.65). These results confirm again that
PN noise pairs consistently introduce strong negative dependence, while RR pairs remain close to
uncorrelated or weakly positive.

Table 5: DDPM standard Pearson correlation coefficients for PN and RR pairs
Statistic CIFAR10 CelebA Church

PN RR PN RR PN RR

Mean -0.73 0.04 -0.18 0.29 -0.45 0.11
Min -0.95 -0.61 -0.80 -0.50 -0.90 -0.60
25th percentile -0.81 -0.12 -0.31 0.16 -0.55 -0.02
75th percentile -0.66 0.20 -0.05 0.44 -0.36 0.23
Max -0.21 0.80 0.44 0.78 0.07 0.80

Table 6: DDPM centralized Pearson correlation coefficients for PN and RR pairs
Statistic CIFAR10 CelebA Church

PN RR PN RR PN RR

Mean -0.80 0.01 -0.67 -0.00 -0.65 -0.00
Min -0.96 -0.61 -0.89 -0.60 -0.93 -0.56
25th percentile -0.87 -0.15 -0.73 -0.15 -0.72 -0.12
75th percentile -0.75 0.16 -0.62 0.15 -0.60 0.11
Max -0.23 0.76 0.14 0.64 -0.32 0.72

C.4.2 DIFFUSION POSTERIOR SAMPLING (DPS)

The same pattern persists in the setting of using the diffusion model as a prior for posterior sampling,
too, which has been utilized to solve various inverse problems, such as inpainting, super-resolution,
and Gaussian deblurring.

Since there is a ground truth image available in the image restoration task, the standard pixel-wise
correlation is calculated using the difference between reconstructed images and the corresponding
ground truth, and the centralized correlation is calculated using the same definition described in 3.
Although the overall standard correlation values are shifted up, due to the deterministic conditioning,
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(a) CIFAR10 (b) LSUN-Church (c) CelebA-HQ

Figure 5: Pearson Correlation histograms for PN and RR pairs across three datasets using DDPM.
Dashed lines indicate the mean Pearson correlation for each group.

the posterior nature of sampling—PN pairs still shows significantly lower correlations than RR pairs
across all tasks.

For the standard Pearson correlation, the mean PN correlations range from 0.20 to 0.27, while RR
correlations consistently lie above 0.50. For the centralized correlation, PN correlations are strongly
negative across all tasks (means around −0.72). In contrast, RR pairs remain centered near zero
(mean correlations around −0.01 to −0.02).

Table 7: DPS Pearson correlation coefficients for PN and RR pairs
Statistic Inpainting Gaussian Deblur Super-resolution

PN RR PN RR PN RR

Mean 0.28 0.57 0.27 0.57 0.20 0.53

Min -0.14 0.05 -0.22 0.13 -0.34 0.01
25th percentile 0.19 0.52 0.17 0.51 0.10 0.47
75th percentile 0.36 0.63 0.36 0.63 0.30 0.60
Max 0.66 0.83 0.62 0.83 0.64 0.81

Table 8: DPS centralized correlation coefficients for PN and RR pairs
Statistic Inpainting Gaussian Blur Super-resolution

PN RR PN RR PN RR

Mean -0.72 -0.02 -0.71 -0.01 -0.72 -0.01

Min -0.86 -0.43 -0.84 -0.36 -0.87 -0.35
25th percentile -0.76 -0.07 -0.75 -0.07 -0.76 -0.08
75th percentile -0.69 0.04 -0.67 0.05 -0.69 0.05
Max -0.14 0.47 0.01 0.48 -0.14 0.43

(a) Inpainting (b) Super-resolution (c) Gaussian Deblur

Figure 6: Pearson Correlation histograms for PN and RR pairs across three tasks in DPS. Dashed
lines indicate the mean Pearson correlation for each group.
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C.4.3 WASSERSTEIN DISTANCE

To complement the correlation-based analyses in the main text, we also evaluate similarity using
the Wasserstein distance, a measure of distributional discrepancy. It quantifies the minimal “effort”
required to transform one probability distribution into another, which means lower Wasserstein
values indicate closer alignment between the two distributions, while higher values indicate larger
differences.

To calculate Wasserstein distances, we treat each generated image pair as a sample from a distribution
under the sampling scheme, PN or RR. As shown in Table 9, PN consistently exhibits larger
Wasserstein distances than RR across nearly all models, and the differences are statistically significant
at all p < 10−10. This implies that antithetic initial noises lead to more divergent distributions than
random sampling and confirms our results from the correlation analysis.

Table 9: Wasserstein Distance, shown are means (SD) with corresponding t-statistics and p-values.
Model Wasserstein Distance t-stats (p)

PN RR
LSUN-Church 0.16 (0.10) 0.12 (0.07) t = 12.09, p = 0
CIFAR-10 0.19 (0.14) 0.15 (0.09) t = 8.30, p = 0
CelebA-HQ 0.17 (0.11) 0.12 (0.07) t = 14.50, p = 0

SD 1.5 0.10 (0.06) 0.09 (0.04) t = 33.11, p = 0
DiT 0.19 (0.15) 0.14 (0.12) t = 14.17, p = 0

VAE 0.07 (0.05) 0.05 (0.03) t = 13.24, p = 0
Glow 0.15 (0.09) 0.12 (0.08) t = 7.92, p = 0

C.5 ADDITIONAL EXPERIMENTS ON THE SYMMETRY CONJECTURE

We run additional experiments to validate the conjecture in Section 3.2. Using a pretrained score
network and a 50-step DDIM sampler, we evaluated both CIFAR-10 and Church. For each dataset,
we selected five random coordinates in the C ×H ×W tensor (channel, height, width). At every
chosen coordinate we examined the network output at time steps t = 1, . . . , 20 (small t is close
to the final image, large t is close to pure noise). For each t we drew a standard Gaussian sample
x ∼ N(0, Id) and computed the value of ϵ(t)θ (cx) at the selected coordinate. The resulting plots
appear in Figures 7–16.

To measure how much a one–dimensional function resembles an antisymmetric shape, we introduce
the affine antisymmetry score

AS(f) := 1−
∫ 1

−1
(0.5f(−x) + 0.5f(x)− f̄)2∫ 1

−1
(f(x)− f̄)2

where f̄ :=
∫ 1

−1
fdx/2 is the average value of f on [−1, 1].

The integral’s numerator is the squared average distance between the antithetic mean 0.5 f(−x) +
0.5 f(x) and the overall mean f̄ , while the denominator is the full variance of f over the interval.

The antisymmetry score is well-defined for every non-constant function f ; it takes values in the range
[0, 1] and represents the fraction of the original variance that is eliminated by antithetic averaging.
The score attains AS(f) = 1 exactly when the antithetic sum f(x)+ f(−x) is constant, that is, when
f is perfectly affine-antisymmetric. Conversely, AS(f) = 0 if and only if f(−x) = f(x) + c for
some constant c, meaning f is affine-symmetric.

For each dataset we have 100 (5 coordinates×20 time steps) scalar functions; the summary statistics
of their AS scores are listed in Table 10. Both datasets have very high AS scores: the means exceed
0.99 and the 10% quantiles are above 0.97, indicating that antithetic pairing eliminates nearly all
variance in most cases. Even the lowest scores (about 0.77) still remove more than three-quarters of
the variance.
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Figure 7: CIFAR10: Coordinate (0, 21, 0)

Figure 8: CIFAR10: Coordinate (1, 27, 15)
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Figure 9: CIFAR10: Coordinate (1, 27, 31)

Figure 10: CIFAR10: Coordinate (1, 29, 15)
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Figure 11: CIFAR10: Coordinate (2, 0, 6)

Figure 12: Church: Coordinate (2, 73, 76)
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Figure 13: CIFAR10: Coordinate (0, 117, 192)

Figure 14: Church: Coordinate (0, 54, 244)
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Figure 15: CIFAR10: Coordinate (0, 56, 219)

Figure 16: Church: Coordinate (1, 208, 237)
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Table 10: Affine antisymmetry score
Dataset CIFAR10 Church

Mean 0.9932 0.9909
Min 0.7733 0.7710
1% quantile 0.9104 0.8673
2% quantile 0.9444 0.8768
5% quantile 0.9690 0.9624
10% quantile 0.9865 0.9750
Median 0.9992 0.9995

C.6 ADDITIONAL EXPERIMENTS FOR UNCERTAINTY QUANTIFICATION

C.6.1 UNCERTAINTY QUANTIFICATION

The image metrics used in uncertainty quantification are used to capture different aspects of pixel
intensity, color distribution, and perceived brightness.

Mean pixel value is defined as the average of all pixel intensities across the image (including all
channels). Formally, for an image I ∈ RC×H×W , the mean is computed as

µ =
1

HWC

C∑
i=1

H∑
j=1

W∑
k=1

Ii,j,k.

Brightness is calculated using the standard CIE formula: 0.299 ·R+0.587 ·G+0.114 ·B to produce
a grayscale value at each pixel, where R,G,B is the red, green, and blue color value of the given
pixel. It is widely used in video and image compression, and approximates human visual sensitivity
to color. The brightness of an image is then the average of the grayscale value across all pixels.

Contrast is computed as the difference in average pixel intensity between the top and bottom halves of
an image. Let x ∈ [0, 1]C×H×W be the normalized image, we define contrast as 100 · (µtop −µbottom),
where µtop and µbottom are the average intensities over the top and bottom halves, respectively.

Centroid measures the coordinate of the brightness-weighted center of mass of the image. For scalar
comparison, we focus on the vertical component of the centroid to assess spatial uncertainty. After
converting to grayscale M ∈ RH×W by averaging across channels, we treat the image as a 2D
intensity distribution and compute the vertical centroid as

1∑H
i=1

∑W
j=1 Mi,j

H∑
i=1

W∑
j=1

i ·Mi,j ,

where i denotes the row index.

C.6.2 QMC EXPERIMENTS

RQMC confidence interval construction: For the RQMC experiments, we consider R inde-
pendent randomization of a Sobol’ point set of size n, with a fixed budget of N = Rn function
evaluations. Denote the RQMC point set in the r-th replicate as {ur,k}1≤k≤n ⊂ [0, 1]d, where
ur,k ∼ Unif([0, 1]d). Applying the Gaussian inverse cumulative distribution function Φ−1 to each
coordinate of ur,k transforms the uniform samples to standard normal samples. Consequently, the
estimate in each replicate is given by

µ̂QMC
r =

1

n

n∑
k=1

S
(
DM

(
Φ−1(ur,k)

))
, r = 1, . . . , R.
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The overall point estimate is their average

µ̂QMC
N =

1

R

R∑
r=1

µ̂QMC
r .

Let (σ̂QMC
R )2 be the sample variance of µ̂QMC

1 , . . . , µ̂QMC
R . The Student t confidence interval is given

by

CIQMC
N (1− α) = µ̂QMC

N ± tR−1, 1−α/2
σ̂QMC
R√
R

,

where tR−1, 1−α/2 is the (1− α/2)-quantile of the t-distribution with R− 1 degrees of freedom. If
the estimates µ̂QMC

r are normally distributed, this confidence interval has exact coverage probability
1 − α. In general, the validity of Student t confidence interval is justified by CLT. An extensive
numerical study by L’Ecuyer et al. (2023) demonstrates that Student t intervals achieve the desired
coverage empirically.

Exploring different configurations of R and n This experiment aims to understand how different
configurations of R, the number of replicates, and n, the size of the QMC point set, affect the CI
length of the RQMC method. The total budget of function evaluations is fixed at Rn = 3200, to be
consistent with the AMC and MC experiments. We consider the four image metrics used in Section 4
and one additional image metric, MUSIQ.

For RQMC, each configuration was repeated five times, and the results were averaged to ensure
stability. AMC and MC each consist of a single run over 3200 images. All experiments are conducted
using the CIFAR10 dataset.

The results are shown in Table 11 and underlined values indicate the best CI length among the three
QMC configurations, while bold values indicate the best CI length across all methods, including MC
and AMC. For the brightness and pixel mean metrics, the configuration with point set size n = 64 and
number of replicates R = 50 reduces CI length the most. In contrast and centroid, the configuration
with larger n has a better CI length. For MUSIQ, a more complex metric, changes in CI lengths
across configurations are subtle, and the configuration with the largest R has the shortest CI length.
While no single configuration consistently advantages, all RQMC and antithetic sampling methods
outperform plain MC.

Table 11: Average 95% CI length and relative efficiencies (vs MC baseline). The first three rows are
for RQMC methods, with the configuration of R× n indicated in the first column.

R× n Brightness Mean Contrast Centroid MUSIQ
CI Eff. CI Eff. CI Eff. CI Eff. CI Eff.

25 × 128 0.37 29.81 0.40 25.71 0.22 24.57 0.04 8.17 0.13 1.11
50 × 64 0.35 32.05 0.39 26.94 0.22 23.43 0.04 7.35 0.13 1.13
200 × 16 0.47 18.38 0.49 17.30 0.29 14.20 0.05 5.84 0.12 1.21
AMC 0.35 32.66 0.39 27.12 0.23 22.05 0.04 6.96 0.13 1.06
MC 2.00 - 2.04 - 1.08 - 0.11 - 0.13 -

C.6.3 DPS EXPERIMENT IMPLEMENTATION

We evaluate the confidence interval length reduction benefits of antithetic initial noise across three
common image inverse problems: super-resolution, Gaussian deblurring, and inpainting. For each
task, the forward measurement operator is applied to the true image, and noisy observations are
generated using Gaussian noise with σ = 0.05. We use the official implementation of DPS (Chung
et al., 2023a) with the following parameters:

• Super-resolution uses the super_resolution operator with an input shape of (1, 3, 256, 256) and an
upsampling scale factor of 2. This models the standard bicubic downsampling scenario followed
by Gaussian noise corruption.

• Gaussian deblurring employs the gaussian_blur operator, again with a kernel size of 61 but with
intensity set to 1, which is intended to test the variance reduction in a simpler inverse scenario.
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• Inpainting is set up using the inpainting operator with a random binary mask applied to the input
image. The missing pixel ratio is drawn from a uniform range between 30% and 70%, and the
image size is fixed at 256 × 256. A higher guidance scale (0.5) is used to compensate for the
sparsity of observed pixels.

As shown in Table 3, AMC consistently achieves shorter CI lengths than MC across all tasks and
metrics without sacrificing reconstruction quality, implied by the L1 and PSNR metrics to measure
the difference between reconstructed images and ground truth images.

C.6.4 DDS DATASET

Data used in the DDS experiment on uncertainty quantification (Section 4) were obtained from the
NYU fastMRI Initiative database (Knoll et al., 2020; Zbontar et al., 2018). A listing of NYU fastMRI
investigators, subject to updates, can be found at: fastmri.med.nyu.edu. The primary goal of
fastMRI is to test whether machine learning can aid in the reconstruction of medical images.
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D MORE VISUALIZATIONS

Figure 17: CelebA-HQ Image Generated
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Figure 18: CelebA-HQ Image Generated
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Figure 19: CelebA-HQ Image Generated
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Figure 20: DiT Class 974: geyser
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Figure 21: DiT Class 387: lesser panda, red panda
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Figure 22: DiT Clas 979: valley, vale
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Figure 23: DiT Class 388: giant panda, panda
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Figure 24: Prompt: “most expensive sports car”
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