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ABSTRACT

Do Large Vision Models (LVMs) extract medically and semantically relevant
features similar to those identified by human experts? Currently, only biased,
qualitative approaches with limited, small-scale expert evaluations are available
to answer this question. In this study, we propose the Boltzmann Semantic Score
(BSS), a novel method inspired by state space modeling, to evaluate the encoding
space of LVMs from medical images using the encoding space of Large Language
Models (LLMs) from medical reports. Through extensive experimentation on
32 datasets from The Cancer Genome Atlas collection using five state-of-the-art
LLMs, we first establish a baseline of LLMs’ performance in digital pathology
and show that LLMs’ encoding can be linked to patient outcomes. Then, we
compared seven LVMs with BSS and showed that LVMs suffer from poor semantic
capability when compared with encoded expert knowledge from pathology reports.
We also found statistically significant correlations between BSS (as a measure
of structural similarity) and performance in two downstream tasks: information
retrieval and survival prediction tasks. Our study also investigates the consensus
among LLMs in evaluating LVMs using BSS, indicating that LLMs generally reach
substantial consensus in rating LVMs, with some variation dependant on the cancer
type. We believe the BSS metric proposed here holds significant potential for
application in other domains with similar contexts. Data and code can be found in
https://github.com/AIMLab-UBC/Boltzmann

1 INTRODUCTION

To even a casual observer, Large Vision Models (LVMs), and Large Language Models (LLMs) seem
poised to revolutionize medicine. However, despite their rapid adoption in other domains, they have
yet to make a substantial impact within the medical field (Omiye et al., 2024). Currently, they are
notably absent from any direct clinical applications. This is due to a variety of distinct challenges
inherent to medical data: privacy, lack of large and diverse datasets, ethical considerations, licensing,
and the inherent complexity of the domain (Bouderhem, 2024; Jiang et al., 2021). This complexity
makes interpreting the results of large models incredibly challenging, with researchers often resorting
to qualitative assessment of the model’s response to specific and limited inputs.

The standard method used in research studies is to recruit medical experts to examine the model’s
attention maps or activation layers as a way to determine if they are capturing clinically relevant
information. However, this approach has inherent variation due to the limited number of medical
experts, and inter-/intra-observer variability. When using these approaches, evaluations can also
be biased as studies are often limited to small sample sizes. Variability can also originate from
the medical expert’s training, specialty, and experience. Additionally, the diagnostic guidelines for
various diseases that medical experts rely on are constantly being updated (Alonso-Coello et al.,
2011). These changes can impact the relevancy of older models that were trained on labels produced
using older guidelines, and evaluated using those same guidelines.

In standard medical practice, imaging data is typically analyzed by a single specialist, except in rare
cases that require a collective assessment. In the field of pathology, experts examine the tumor tissue
under the microscope or their corresponding images and document their observations in text-based
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pathology reports.These pathology reports serve as concise summaries of the most significant findings.
Clinicians routinely consult these reports to review a patient’s history or diagnosis, especially when
investigating rare cases, where one might be interested in identifying historical patients with similar
profiles to inform care for the patient in hand(Borowsky & et al., 2020; Evans & et al., 2022; Farooq
& et al., 2021).
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Figure 1: The UMAP plot of the encodings of Command-R, an open-source
LLM, from roughly 9,500 patients’ pathology reports over 32 different datasets
in The Cancer Genome Atlas. Clusters indicate clear differentiation between
cancer types in the encoding space of Command-R, showing the representation
capability of LLMs.

With the recent rise in popularity of LVMs
in digital pathology, an important question
arises: do LVMs extract medically and se-
mantically relevant features similar to those
identified by human experts? This question
remains largely unanswered. However, the
rapid advancement of large language mod-
els (LLMs) has made it feasible to repre-
sent long and complex contexts, such as
detailed pathology reports as illustrated in
Figure 1 using UMAPs (McInnes et al.,
2018). This opens up the possibility of cre-
ating a large database of medical reports,
encoding them with LLMs, and develop-
ing a comprehensive resource of encoded
medical information. By leveraging this re-
source, we can address the question posed earlier. Evaluating LVMs on this extensive set can mitigate
biases inherent in smaller sample sizes and incorporate input from multiple observers (pathologists),
thereby reducing observer variability.

To this end, our primary contribution is to propose a systematic methodology, independent of the
choice of LLM or LVM, to evaluate LVMs from a medically semantic perspective. Our methodology
leverages LLMs and a large and collective database of medical reports across more than 30 cancer
types that represent more than 9,500 patients. We also establish a baseline of LLMs’ performance in
two large-scale digital pathology tasks.

2 BACKGROUND & RELATED WORKS

The term foundation model was first coined by Bommasani et al (Bommasani et al., 2021) to describe
models trained on huge and broad datasets that can be easily adapted to a variety of downstream tasks.
Since then, multiple foundational models have been introduced for a variety of domains. For text,
GPT-3 (Brown et al., 2020), Jamba (Lieber et al., 2024), Gemma-7b (Team et al., 2024), Llama3-
8b (Touvron et al., 2023; AI@Meta, 2024), Bio-Llama3-8b (Ankit Pal, 2024), and Command-R
(CohereForAI, 2024) are a few examples to name. Within computer vision and vision-language,
general examples include CLIP (Radford et al., 2021) and VL-BERT (Su et al., 2019). However,
in recent years, beyond generic models such as ViT (Dosovitskiy et al., 2020) and Swin (Liu et al.,
2021), a wave of domain-specific vision LVMs have been introduced. Within the medical field and
more specifically in the histopathology imaging space, examples of LVMs include CTransPath (Wang
et al., 2022), PLIP (Huang et al., 2023), Phikon (Filiot et al., 2023), UNI (Chen et al., 2023), and
Virchow (Vorontsov et al., 2023).

To evaluate the performance of these models, they are often scored on an ensemble of downstream
medical tasks. Common examples of these tasks include tumor grading, tumor subtype classification,
image segmentation, and disease classification. While the performance of a model on these tasks
can give us an idea of how it performs in comparison to other machine learning models, it falls short
of being conclusive evidence that the model will achieve similar performance in a clinical setting.
Thus, in order to offer further insight into how the model is ’thinking’, researchers will use qualitative
techniques such as attention-mapping (Bahdanau et al., 2014) or GradCAM (Selvaraju et al., 2017) to
highlight which sections of the input data the model finds most important for the relevant task. From
there, one can attempt to draw direct comparisons to how a clinician will parse the same data, which
is subject to bias.

In the context of medicine, where reports are typically written according to specific clinical guidelines,
variability persists due to diverse writing styles, training backgrounds, professional experiences, and
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institution-specific protocols. However, LLMs, owing to their exposure to diverse training text data,
are adept at tackling these variabilities (Singhal et al., 2023; Ankit Pal, 2024; Luo et al., 2022;
Achiam et al., 2023; Lieber et al., 2024). As a result, LLMs demonstrate the potential to encode
medical information effectively, providing nuanced representations that encapsulate expert knowledge.
Consequently, the encoded medical report representations generated by LLMs serve as a valuable
source of medical assessments for each paired image.

Accordingly, we propose the Boltzmann Semantic Score (BSS) where we utilize LLMs to encode
medical reports accompanying digital images and then pair the feature spaces of LLM and LVM
to measure the similarity of visual representations to the textual representations. This similarity
indicates a patient-to-patient relationship, where we expect the same relationship between patients
captured by experts (through medical reports) to be captured by LVMs.

Here, we argue that BSS is a measure of the structural similarity between the visual embedding space
and the text embedding space, where the text embedding space represents medical semantics as the
reference. It can be interpreted as a measure of semantic similarity for LVMs within the broader
medical domain.

3 METHOD

This section begins by introducing the intuition behind our work, followed by the problem formulation,
and then expands the theory behind the Boltzmann Semantic Score.

3.1 INTUITION

We start with an example to illustrate the intuition behind our method: consider only three cases—A,
B, and C—each comprising paired text and image data in our dataset. Expert annotations through
an LLM indicate that case A is semantically closer to B than to C, reflecting a stronger clinical
correspondence between A and B, with a weaker but non-negligible similarity between A and C.

An ideal LVM should reflect these relationships by embedding A closer to B than to C within
its latent space. When this alignment is achieved, the semantic similarity for A (BA) reaches its
maximum value (BA = 1), signifying strong semantic agreement with expert-provided annotations.
Conversely, if the LVM incorrectly positions A closer to C than to B, the semantic score for A should
decrease. Importantly, due to inherent baseline similarities among cases, the score should not sharply
drop to zero but rather be proportional to their energy distribution. With this mechanism, by averaging
the semantic score values across the entire dataset, we obtain an overall score that quantifies the
LVM’s alignment with the reference LLM. Using an LLM as the fixed reference, the semantic score
obtained allows us to compare different LVMs, highlighting which model best aligns its latent space
with the semantic structure of the LLM and most effectively preserves semantic information.

3.2 PROBLEM FORMULATION
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Figure 2: The state space representation of the k–nearest neigh-
bors in (left) text space (L) and in (right) the vision space (V).
The observer is estimating states that matches to reference.

For a paired set of n texts and images in a dataset,
we can represent the set of the text data as T =
{Tt | t is an integer, 1 ≤ t ≤ n}, and the set of the
image data as I = {Ir | r is an integer, 1 ≤ r ≤
n}, where Tt and Ir are the matching pairs for any
given t = r. With this definition, let’s denote any
given LLM as Λ(Tt) representing a function of input
text Tt, and any given LVM as Φ(Ir) representing a
function of input image Ir. Therefore, Λ and Φ are
defined as,

Λ : T −→ L ⊆ Rd1×1

Φ : I −→ V ⊆ Rd2×1
(1)

where L and V are the set of dense representations of the input text and image tensors, re-
spectively. Similar to T , L = {Lt | t is an integer, 1 ≤ t ≤ n}; and similar to I, V =
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{Vr | r is an integer, 1 ≤ r ≤ n}. Rd1×1 and Rd2×1 are the set of d1– and d2–dimensional
vector space, respectively. And, d1 and d2 are the number of features of the dense representation of Λ
and Φ, respectively. Note that most often d1 ̸= d2.

The end goal here is to find a function F such that assigns a relative semantic score to Φ using Λ
on the paired dataset premised upon their dense representations. Given an instance of query q, we
expect Bq = F(Vq ; L), where Bq is the desired score measuring the semantic worth of information
extracted from the query image using Φ compared to the query medical text written by human experts
embedded by Λ.

3.3 BOLTZMANN SEMANTIC SCORE

To come up with score function F , for the query q, we define the set of the k-nearest neighbors
of Lq as near(Lq, k) = {LNi

| 1 ≤ Ni ≤ k}, and the set of the k–nearest neighbors of Vq as
near(Vq, k) = {VN ′

i
| 1 ≤ N ′

i ≤ k}. Hereafter, for the sake of simplicity in our notation, we refer
to LNi

as Li (the i–th nearest neighbor to Lq in L), and to VN ′
i

as Vj (the j–th nearest neighbor to
Vq in V).

Now, we can define two Star graphs corresponding to each query node in the text and vision spaces:
Reference and Observer. For the text, which is the reference, GL,q is defined with the central node
of Lq where the leaves are members of near(Lq, k). Similarly, the vision space, which is the
observer, GV,q is defined with a central node of Vq and leaves as members of near(Vq, k). It is
worth mentioning that the k–neighbors of query q in the text and vision spaces are not essentially
equal as they are calculated using different text and vision encoders. Example graphs are illustrated
in Figure 2.

Here, GL,q is a state graph representing the relationship between the text encodings written by human
experts after visually inspecting the corresponding images. The individual nodes can be viewed as a
quantum state that ties in medical semantics; thus, it is expected that Λ can properly encode them.
That is to say, GL,q represents the relationship between states sharing common information. Thus, if
two states/nodes are in close proximity in the state space compared to other states/nodes, the semantic
similarity between the two states/nodes is more meaningful than the others. Here, GL,q represents
this for the k–nearest states/nodes in the text state space as the reference.

On the other hand, GV,q is a state graph representing the relationship between the encoding
of images produced by Φ. If we expect an LVM to perform equivalently to human experts, it
should ideally match GL,q. In other words, the same relationship between states/nodes captured
in GL,q should be captured by Φ in GV,q, meaning that the observer aligns with the reference.
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Figure 3: The Second-order Boltzmann Factor elucidates the resemblance
between states i and q by incorporating the stochastic displacement of states j
from i. Essentially, pi

pj
serves as a metric indicating the degree of similarity

in energy between these states, thereby causing the model Φ to displace them
accordingly.

In statistical mechanics, the quantity repre-
senting the variety of states associated with
a specific energy level is termed the degree
of degeneracy, often referred to simply as
the level’s degeneracy (Shankar, 1994). Us-
ing this concept, we want to compare GV,q

to GL,q as well as measure their similarity.
When comparing these state spaces, if there
is a matching state, we consider that as one
degree of degeneracy. However, if there is
no matching state (a state is in GV,q that is
not present in GL,q) we need to have two
degrees of degeneracy to model that. To
clarify, let’s say Lj is a non-matching state
in GL,q, corresponding with Vj , where Li

is the true matching state in GL,q. Thus,
there should be a mechanism to incorporate
the randomness between the states Li and
Lj when measuring the total similarity of the two state spaces, as shown in Figure 3.
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Having introduced the concept above, we model the distribution of the states with Boltzmann
Distribution in the reference state space GL,q , which dates back to the famous Boltzmann’s paper in
1877 (Boltzmann, 1877) with a simplified derivation introduced in (Müller, 2014). This expresses that
fractions of energy are distributed over the discrete energy levels of an assembly of states. Therefore,
for the central state/node Lq and a given neighbor Li in GL,q, the Boltzmann Factor indicates the
similarity of the states (in terms of energy) within the state space. As the Boltzmann factor is solely
dependent on the energy difference between states, we can formulate and adopt it for our problem as
follows,

Boltzmann Factor:
pi
pq

= exp

(
−∆E
kT

)
= exp

(
−∥Li − Lq∥2√

d1

)
(2)

where pi is the probability of state/node Li, and pq is the probability of state/node Lq . For the energy
level, ∆E = ∥Li − Lq∥2 represents the energy difference of the two states/nodes, and

√
d1 is a

constant equivalent to kT in the original formula, where d1, as previously introduced, is the reference
space dimensionality.

To clarify this concept of modeling, when pi

pq
approaches 1, it means the two states have similar

energy levels and can appear in place of each other in the state space. For the reference state space,
which is the textual representation, it means that the texts for two patients are characteristically
similar. Conversely, when pi

pq
approaches 0, it indicates that the two states are not characteristically

similar.

However, the Boltzmann Factor in 2 only represents one degree of degeneracy/similarity between
two states. Thus, we add the second order of degeneracy for the states that are in near(Vq, k) but not
present in near(Lq, k). In other words, those states that the observer mistakenly estimated that are
present in reference. Therefore, for a given state j such that Vj ∈ near(Vq, k) but Lj ̸∈ near(Lq, k),
and the true matching state is Li in the reference, we define the second order Boltzmann Factor as
follows,

Second-order Boltzmann Factor: bi;j|q :=
pi
pj
· pi
pq

(3)

where pi

pj
shows the similarity between the two state Li and Lj ; and pi

pq
shows the the degener-

acy/similarity between the two state Li and Lq . Consequently, bi;j|q includes the degeneracy between
Li and Lj when comparing Li with Lq .

Now, since only the presence of states and their energy matters for modeling the energy distributions
of the states, we ignore the orders of the states between the two state spaces if their presence correctly
is estimated by the observer. Hence, we define A as the set of all the matching states in GL,q and
GV,q here:

A = {(i, j) | ∀ Vj ∈ near(Vq, k) & Lj ∈ near(Lq, k), ∃i : Li ∈ near(Lq, k) & Li = Lj} (4)

Nevertheless, we define the set of the non-matching states between GL,q and GV,q as D:

D = {(i, j) | ∀ Vj ∈ near(Vq, k) & Lj ̸∈ near(Lq, k), ∃i : Vi ̸∈ near(Vq, k) & Li ∈ near(Lq, k)}
(5)

For any (i, j) ∈ A, essentially Li = Lj , so the second order Boltzmann Factors is bi;j|q = pi

pj
· pi

pq
=

1 · pi

pq
= pi

pq
, which means that there is only degeneracy between states i and q. On the other hand, for

any (i, j) ∈ D, we see bi;j|q = pi

pj
· pi

pq
which is showing the stochasticity between states i and j can

affect the presence of the states i in proximity to q. With this concept, we introduce the normalized
Boltzmann Semantic Score Bq for the query q as follows,

Bq =

∑
(i,j)∈A

bi;j|q∑
(i,j)∈A∪D

bi;j|q
=

∑
(i,j)∈A∪D

bi;j|q −
∑

(i,j)∈D
bi;j|q∑

(i,j)∈A∪D
bi;j|q

= 1−

∑
(i,j)∈D

bi;j|q∑
(i,j)∈A∪D

bi;j|q
(6)

Finally, the average Boltzmann Semantic Score is calculated as,

B =
1

|L|
·
∑
q∈L
Bq (7)
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where |L| is the cardinality of L, and B denotes the average Boltzmann Semantic Score on the entire
set. With the formulation above, we expect that B not only represents the semantic capability of Φ
using Λ, but also presents a predictive capability for downstream tasks that uses visual encodings.

4 EXPERIMENTS

4.1 DATASET & COMPUTE

The largest publicly available pathology archive of datasets, The Cancer Genome Atlas Project
(TCGA)(Weinstein et al., 2013), was utilized in this study. TCGA archives include 32 different cancer
datasets and roughly 12, 000 patients across more than 160 different centers, including matched
Whole Slide Images (WSIs) and pathology reports. For pathology reports, we used the cleaned
TCGA-Reports dataset (Kefeli & Tatonetti, 2024), which is the largest publicly available dataset of
cleaned pathology reports to date (more details in section D in Appendix). All experiments were
performed on 14 nodes of Intel Xeon E5-4640 with 503GB RAM.

4.2 EVALUATION METRICS

For the evaluation metrics, we followed the standard metrics used in (Chen et al., 2022; Kalra et al.,
2020; Wang et al., 2023), including top-1, top-3, and top-5 majority vote accuracy, top-1, top-3, and
top-5 F1 Score, as well as top-1, top-3, and top-5 Average Precision (AP@k) for the retrieval tasks.
Additionally, we employed the concordance index (C-index) to assess performance on the survival
prediction task.

4.3 LLM REPRESENTATIONS

Recent studies have highlighted the promise of LLMs in various pathology tasks (Wiest et al., 2024;
Lammert et al., 2024; Huang et al., 2024). Building on these insights and the findings from the original
work on the TCGA reports on the quality of parsed pathology reports and the high performance of
language models (Kefeli & Tatonetti, 2024), we have designed two additional large-scale experiments
focused on content-based information retrieval and survival prediction using only textual data.

In this regard, we first encode the original text reports without any perturbation and conduct a
retrieval test on them within the database. Next, we perturb the input text reports by removing
essential keywords, such as cancer names or subtypes, and then encode the perturbed reports with
Λ and conduct the same retrieval test. By comparing the results of these two experiments, we can
determine whether LLMs are capable of properly encoding the medical text reports, focusing on the
ability to capture the overall context, not just specific keywords. Finally, to assess whether the LLM
representations contain clinically relevant features, we evaluated the original text representations on a
survival prediction task and studied if they can be linked to patient outcomes.

4.3.1 INFORMATION RETRIEVAL

TCGA-ACC

TCGA-BLCA

TCGA-BRCA

TCGA-CESC

TCGA-CHOL

TCGA-CRC

TCGA-DLBC

TCGA-ESCA

TCGA-GBM

TCGA-HNSC

TCGA-KICH

TCGA-KIRC

TCGA-KIRP

TCGA-LGG

TCGA-LIHC

TCGA-LUAD

TCGA-LUSC

TCGA-MESO

TCGA-OV

TCGA-PAAD

TCGA-PCPG

TCGA-PRAD

TCGA-SARC

TCGA-SKCM

TCGA-STAD

TCGA-STES

TCGA-TGCT

TCGA-THCA

TCGA-THYM

TCGA-UCEC

TCGA-UCS

TCGA-UVM

Dataset

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

Command-R: Average Top 3 Metrics for 32 Datasets of TCGA Accuracy
AP@k
F1 Score

Figure 4: Performance comparison of Command-R, the best-performing LLM, in the organ-independent setting for content-based information
retrieval using the original text reports.

In this experiment, we used the LLM representations to conduct a retrieval test. The search was
conducted in two settings: organ-specific search and organ-independent search.

In the organ-specific search, we used the cancer type as the query, searching among all cancer types
associated with the organ related to the query’s cancer type. In the organ-independent search, the
cancer type was used as the query across all cancer types in the database (The detailed information
on the different cancers and their organ allocations is provided in Table 4 and section D in the
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Table 1: Information Retrieval with 5 LLMs over 32 Datasets of TCGA
(a) Average Performance of Organ-Specific Search with Original Text Reports

LLM Accuracy F1 Score AP@k
top 1 top 3 top 5 top 1 top 3 top 5 top 1 top 3 top 5

Jamba 0.838±0.17 0.823±0.20 0.811±0.22 0.900±0.12 0.886±0.16 0.874±0.19 0.838±0.17 0.813±0.19 0.795±0.20
Gemma-7b 0.782±0.19 0.750±0.22 0.722±0.25 0.863±0.14 0.835±0.19 0.809±0.22 0.782±0.19 0.738±0.20 0.708±0.21
Llama3-8b 0.852±0.16 0.844±0.17 0.829±0.21 0.911±0.11 0.904±0.12 0.888±0.18 0.852±0.16 0.827±0.17 0.809±0.18

Bio-Llama3-8b 0.860±0.15 0.850±0.17 0.810±0.20 0.917±0.10 0.909±0.12 0.893±0.16 0.860±0.15 0.839±0.17 0.819±0.19
Command-R 0.871±0.15 0.868±0.17 0.859±0.18 0.923±0.10 0.919±0.12 0.912±0.13 0.871±0.15 0.851±0.17 0.835±0.18

(b) Average Performance of Organ-Specific Search with Perturbed Text Reports

Cancer Accuracy F1 Score AP@k
top 1 top 3 top 5 top 1 top 3 top 5 top 1 top 3 top 5

Jamba 0.827±0.18 0.811±0.20 0.794±0.23 0.893±0.13 0.875±0.18 0.858±0.21 0.827±0.18 0.800±0.20 0.776±0.22
Gemma-7b 0.762±0.20 0.724±0.21 0.699±0.22 0.848±0.16 0.813±0.18 0.790±0.21 0.762±0.20 0.736±0.21 0.711±0.22
Llama3-8b 0.844±0.17 0.828±0.19 0.813±0.22 0.906±0.12 0.892±0.15 0.876±0.18 0.844±0.17 0.827±0.19 0.809±0.21

Bio-Llama3-8b 0.852±0.16 0.838±0.18 0.808±0.21 0.911±0.11 0.897±0.13 0.877±0.17 0.852±0.16 0.832±0.18 0.807±0.19
Command-R 0.848±0.17 0.846±0.19 0.815±0.21 0.908±0.11 0.905±0.14 0.883±0.19 0.848±0.17 0.830±0.19 0.804±0.20

(c) Average Performance of Organ-Independent Search with Original Text Reports

LLM Accuracy F1 Score AP@k
top 1 top 3 top 5 top 1 top 3 top 5 top 1 top 3 top 5

Jamba 0.830±0.18 0.782±0.23 0.773±0.24 0.895±0.13 0.855±0.18 0.847±0.20 0.830±0.19 0.788±0.20 0.762±0.21
Gemma-7b 0.731±0.19 0.637±0.23 0.611±0.24 0.829±0.15 0.750±0.21 0.726±0.22 0.731±0.20 0.655±0.20 0.613±0.21
Llama3-8b 0.810±0.20 0.786±0.22 0.766±0.24 0.880±0.15 0.859±0.18 0.842±0.20 0.810±0.21 0.778±0.21 0.755±0.21

Bio-Llama3-8b 0.815±0.19 0.792±0.21 0.778±0.23 0.884±0.19 0.865±0.21 0.853±0.23 0.815±0.19 0.783±0.21 0.759±0.21
Command-R 0.825±0.20 0.817±0.22 0.801±0.23 0.888±0.15 0.879±0.17 0.866±0.19 0.825±0.21 0.805±0.22 0.787±0.22

(d) Average Performance of Organ-Independent Search with Perturbed Text Reports

LLM Accuracy F1 Score AP@k
top 1 top 3 top 5 top 1 top 3 top 5 top 1 top 3 top 5

Jamba 0.778±0.21 0.752±0.23 0.729±0.25 0.857±0.16 0.834±0.19 0.812±0.23 0.778±0.21 0.748±0.21 0.721±0.22
Gemma-7b 0.638±0.20 0.575±0.22 0.515±0.24 0.760±0.17 0.703±0.20 0.642±0.25 0.638±0.20 0.579±0.20 0.534±0.20
Llama3-8b 0.792±0.20 0.769±0.22 0.736±0.25 0.868±0.15 0.849±0.18 0.820±0.20 0.801±0.21 0.775±0.21 0.755±0.22

Bio-Llama3-8b 0.791±0.20 0.767±0.22 0.744±0.24 0.867±0.16 0.846±0.19 0.827±0.20 0.790±0.20 0.757±0.21 0.731±0.21
Command-R 0.801±0.21 0.784±0.23 0.768±0.25 0.873±0.15 0.856±0.18 0.844±0.20 0.801±0.21 0.775±0.21 0.755±0.22

Appendix, respectively.). For both settings, we utilized both original and perturbed representations to
compare the contextual understanding capabilities of LLMs. We report the average results for both
organ-specific and organ-independent searches across 32 different datasets in Table 1. To illustrate
this further, Figure 4 highlights the performance of the best-performing LLM across various datasets
in the organ-independent setting, which is the harder task. The detailed cancer-by-cancer results for
all 5 LLMs across different settings are available in section M in the Appendix.

As Table 1a shows, LLMs perform well with Command-R achieving a Top-1 accuracy of 0.871 and
a Top-1 F1 Score of 0.919 on average across all the cancer datasets for organ-specific search. This
indicates that LLMs’ representations, although not perfect, can properly encode the text reports.
However, one might question if this is due to the presence of medical keywords providing ’hints’ to
the model. To evaluate this, we removed the technical keywords such as cancer names and subtypes
from the original text reports and then re-generated the representations with LLMs. The results can
be found in Table 1b. As shown, the performance remains within the range of the organ-specific
search. With this, we can empirically confirm that LLMs’ representation is not only a function of the
medical keywords but rather an encoding of the medical context. The same conclusion is held after
investigating the results from the organ-independent search in Table 1c and 1d. We can potentially
attribute this ability to the training scheme of language models as they are trained for next-token
prediction for language modeling (Gloeckle et al., 2024; Achiam et al., 2023), meaning that they are
not solely dependent on keywords or specific tokens in the text.

Furthermore, comparing 1a and Table 1c, we observe that LLMs maintain their performance when
transitioning from organ-specific to organ-independent searches. This suggests that they are capable
of encoding beyond specific information and semantically understanding the differences between
reports from various organs and body parts. Among the different LLMs, it is particularly noteworthy
that Bio-Llama3-8b almost always ranks among the top two best-performing models across various
metrics, despite being significantly smaller in size compared to Command-R and Jamba. This
highlights that smaller, bio-specific LLMs trained on medical data can encode pathology reports as
effectively as larger, general-purpose LLMs.

4.3.2 SURVIVAL PREDICTION

For survival prediction, we used an ensemble Random Survival Forest (RSF) based on the imple-
mentation by (Ishwaran et al., 2008). This decision was due to the relative ease of implementation
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Table 2: The C-Index of RSF for Survival Prediction on Eight Cancer Datasets using LLMs
LLM BRCA GBM KIRC KIRP LGG LUAD LUSC UCEC

Command-R 0.622±0.02 0.537±0.03 0.722±0.04 0.743±0.10 0.643±0.05 0.611±0.04 0.547±0.03 0.602±0.08
Gemma-7b 0.603±0.04 0.512±0.03 0.707±0.02 0.634±0.11 0.611±0.08 0.570±0.03 0.543±0.04 0.600±0.04

Jamba 0.625±0.05 0.501±0.02 0.689±0.06 0.745±0.09 0.639±0.06 0.595±0.06 0.545±0.01 0.617±0.07
Llama3-8b 0.629±0.05 0.521±0.04 0.713±0.03 0.759±0.07 0.607±0.07 0.585±0.07 0.520±0.06 0.580±0.08

Bio-Llama3-8b 0.627±0.07 0.537±0.03 0.709±0.05 0.726±0.08 0.587±0.07 0.583±0.03 0.548±0.04 0.621±0.04

Average 0.621±0.01 0.522±0.02 0.708±0.01 0.721±0.05 0.617±0.02 0.589±0.02 0.541±0.01 0.604±0.02

and training, as well as comparative robustness for higher input dimensionality. The RSF we used
was from the scikit-survival python package (Pölsterl, 2020) and initialized with 1000 estimators.
Afterward, it was trained using 5-fold cross-validation and 10 random seeds per fold. The evaluation
metric we used was the right-censored concordance index, also known as the C–index.

We used the pathology report encodings generated by LLMs to train Random Survival Forests
(RSFs) and report the C-index in Table 2. This clinically relevant task helps assess whether the LLM
encodings capture features pertinent to patient outcomes. From a clinical perspective, cancer stage can
help identify low- and high-risk patients for certain cancers. However, pathology reports contain far
more detailed information, and this experiment demonstrates that LLMs are able to encode clinically
relevant information in cancers such as BRCA, KIRC, KIRP, and UCEC, linking the encoded features
to patient outcomes. To the best of our knowledge, this is the first time such a phenomenon has been
observed. We have also compared LLMs with LVMs in this task in section H in Appendix.
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Figure 5: BSS comparison of seven LVMs using the average BSS across five LLMs on eight cancer datasets, with unsupervised pooling method,
applied to all the cases in the dataset.
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Figure 6: Average BSS comparison of seven LVMs using the average BSS across five LLMs on eight cancer datasets, with AbMIL as the
supervised pooling method, applied to the cases in the held-out test set.

4.4 BOLTZMANN SEMANTIC SCORE

We have established a baseline for the current performance of LLMs in two tasks: information
retrieval and survival prediction. Now, we experimentally evaluate and compare LVMs using the
BSS, which leverages LLMs. In this study, we employ two widely used settings in digital pathology:
unsupervised pooling and supervised pooling. For unsupervised pooling, we use mean pooling to
represent each WSI based on its patches, while for supervised pooling, we trained a Multiple Instance
Learning (MIL) model, specifically AbMIL (Ilse et al., 2018), following a 3-fold cross-validation
scheme to represent the WSIs. We report the average BSS for k = 5 across five LLMs on eight
TCGA datasets for both settings in Figure 5 and Figure 6. When comparing the two settings, we
observe that supervised pooling improves the semantic quality of the features to some extent, but
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it remains below 0.4 for the majority of cancer datasets. More details regarding each setting are
provided in section J.2 in Appendix.

Furthermore, LVMs achieve a fairly low BSS which indicates their encoding space may not be
reflective of the information within a pathology report. The LVMs used were generally trained
in a self-supervised manner. This means non-medically relevant features may be extracted, and
contrastively clinically relevant features may be missed. Among pathology-pretrained models, UNI
has not seen TCGA data, yet it outperforms the majority of the TCGA-pretrained LVMs. As UNI
has been trained on 100,000 WSIs, compared to the TCGA-pretrained model with 12,000 WSIs, our
observation suggests that models trained on more data may perform better semantically. As expected,
ViT, which was trained on the non-medical ImageNet dataset, performed the worst overall. More
details are provided in section D.3 and J in Appendix.

4.4.1 CORRELATION WITH DOWNSTREAM TASKS

Table 3: Two-sided Pearson Correlation Test between BSS and downstream task metrics
(a) Correlation between BSS and top-1 Accuracy in Information Retrieval

LLM GBM KIRC KIRP LGG LUAD LUSC
r p-value r p-value r p-value r p-value r p-value r p-value

Command-R 0.335 4.6e−03 0.605 2.9e−08 0.267 2.5e−02 0.274 2.2e−02 0.830 6.4e−19 0.557 5.4e−07

Gemma-7b 0.386 9.6e−04 0.483 2.3e−05 0.475 3.3e−05 0.309 9.2e−03 0.879 1.4e−23 0.459 6.4e−05

Jamba 0.302 1.1e−02 0.583 1.2e−07 0.247 4.0e−02 0.259 3.0e−02 0.838 1.5e−19 0.517 4.6e−06

Llama3-8b 0.293 1.4e−02 0.550 8.2e−07 0.326 5.9e−03 0.227 5.9e−02 0.807 3.3e−17 0.540 1.4e−06

Bio-Llama3-8b 0.355 2.6e−03 0.572 2.4e−07 0.323 6.5e−03 0.231 5.5e−02 0.834 2.9e−19 0.575 1.9e−07

(b) Correlation between BSS and C–index in Survival Prediction

LLM BRCA GBM KIRC KIRP LGG LUAD LUSC UCEC
r p-value r p-value r p-value r p-value r p-value r p-value r p-value r p-value

Command-R 0.344 1.9e−11 −0.093 9.6e−01 0.273 1.1e−07 0.150 2.4e−03 −0.027 6.9e−01 0.233 5.4e−06 0.099 3.2e−02 0.367 6.6e−13

Gemma-7b 0.307 2.3e−09 −0.030 7.1e−01 0.245 1.8e−06 0.202 7.1e−05 −0.017 6.2e−01 0.223 1.3e−05 0.081 6.6e−02 0.352 6.4e−12

Jamba 0.344 2.0e−11 −0.080 9.3e−01 0.257 5.7e−07 0.144 3.4e−03 −0.031 7.2e−01 0.209 3.9e−05 0.089 4.8e−02 0.352 5.7e−12

Llama3-8b 0.350 7.8e−12 −0.085 9.4e−01 0.272 1.1e−07 0.151 2.4e−03 −0.036 7.5e−01 0.218 1.9e−05 0.096 3.6e−02 0.370 4.4e−13

Bio-Llama3-8b 0.347 1.2e−11 −0.087 9.5e−01 0.287 2.3e−08 0.131 7.1e−03 −0.034 7.4e−01 0.224 1.1e−05 0.112 1.8e−02 0.373 2.9e−13

Beyond the average BSS and the insights it provides into understanding semantic capability, we
also explored whether the score correlates with other metrics in downstream vision tasks, such as
information retrieval and survival prediction.

Table 3a and 3b present the results of our hypothesis testing for the correlation between top-1 accuracy
in information retrieval and BSS, as well as between the C-index for survival prediction and BSS. As
shown, the correlation in information retrieval is higher than that in survival prediction. We attribute
this to the fact that, in information retrieval, the representations remain unaltered for the task, whereas
in survival prediction, the representations undergo RSF-supervised training, which adapts them to the
task (in this case, patient risk), emphasizing certain features. Our findings show that, in certain cancer
types, there are significant correlations between BSS and performance in both survival prediction
and information retrieval. To the best of our knowledge, this is the first time it has been observed
that structural similarity in one modality is correlated with the performance of a downstream task in
another modality. For further explanations, please refer to section K in the Appendix.

4.4.2 CONSENSUS
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Figure 7: The average pairwise Cohen’s Kappa Score
between two LLMs on different cancer types in TCGA.

One may argue that LLMs may not rank different LVMs
similarly. However, to inspect this and measure agreement
among various LLMs in ranking different LVMs based on
BSS, Cohen’s Kappa Score is utilized for pairwise com-
parison of rankings. According to this metric, a score
ranging from 0.21 to 0.40 is considered fair, 0.41 to 0.60
is moderate, 0.61 to 0.80 is substantial, and 0.81 to 1.00
represents almost perfect agreement. In this test, LVM
rankings produced by any LLM are compared across the
10 different configurations employed for the information
retrieval task. As depicted in Figure 7, on average, a sig-
nificant agreement is observed between Command-R and
LLama3-8b; Command-R and Bio-Llama3-8b, Llama3-
8b, and Jamba; and Llams3-8b and Bio-Llama3-8b, despite their complete independence and training
on distinct data sources.
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It is worth mentioning that moderate agreement, when present, depends on the dataset. For instance,
on datasets such as GBM, we observe moderate agreement between LLMs, while on datasets such
as KIRC and BRCA, there is significant agreement among the majority of LLMs. We attribute this
inter-LLM variability on some datasets to the training data sources of these models. The pairwise
Kappa matrix plots for each dataset are available in section N in the Appendix.

As a result, we observe a substantial overall agreement between LLMs, which we attribute to their use
of a large dataset of reports in calculating the BSS, leading to greater consistency. Moreover, unlike
qualitative approaches where agreement is difficult to measure, we can quantify it by comparing
different LLMs and assessing the reliability of various sources. With the introduction of domain-
specific LLMs, inter-LLM agreement has the potential to increase further, and BSS can provide a
deeper and more specialized semantic measure.

5 DISCUSSION

The goal of this research was to introduce a systematic approach to measuring the semantic capability
of LVMs. To achieve this, we first demonstrated the capability of LLMs in two key tasks in digital
pathology: information retrieval and survival prediction. We then proposed the Boltzmann Semantic
Score (BSS), a metric that measures structural similarity between two modalities, where we leverage
LLMs to evaluate the semantic capability of LVMs. This metric provides quantifiable and collectively
derived evidence of an LVM’s performance, offering a more objective alternative to traditional
small-scale qualitative assessments.

For the information retrieval task, we found that all LLMs achieved notable Top-1 performance, with
Command-R attaining an average accuracy of 0.871 and an F1 score of 0.919 across all 32 pathology
cancer datasets, encompassing 9, 523 patients. The results for the survival prediction task were more
varied, with performance depending largely on the datasets and the clinical manifestations of the
diseases. However, the C-index remained relatively consistent across the LLMs, with Command-R
again showing the best average C-index of 0.628. Overall, we demonstrated, for the first time in the
field, that LLM-derived features can be linked to patient outcomes, an area ripe for further exploration
in future research.

Our next step was to assess the feasibility of the proposed Boltzmann Semantic Score for evaluating
LVM performance. We observed that supervised pooling outperforms unsupervised pooling in WSI
representation, largely due to the training step involved in supervised approaches. However, the
semantic score for LVMs across different cancer datasets remains relatively low, suggesting there is
considerable room for improvement in this area. We found that the BSS mostly correlated with the
downstream task’s performance metric, more so with retrieval than survival prediction. We attribute
this difference to the methodological difference in the two tasks. In information retrieval, we use the
exact same visual representations used for calculating BSS that were used for the task. However, in
survival prediction, the visual representations undergo a regression step in the training phase that
manipulates the representations, so more variations between BSS and C–index were expected.

We also conducted an experiment to investigate the consensus in LLMs when reporting their BSS for
each LVM. We show that, first, LLMs are substantially in agreement on ranking the LVMs. Second,
unlike qualitative approaches where agreement is not easily measurable; we can quantify it here by
comparing different LLMs. With this, we expect with the rise of domain-specific LLMs, inter-LLM
agreement even increases more.

6 CONCLUSION

Inspired by state space modeling, we have introduced the Boltzmann Semantic Score (BSS) as a
novel method for leveraging the encoding space of LLMs to evaluate the encoding space of LVMs.
We first evaluated five state-of-art LLMs in clinically inspired digital pathology tasks and showed (for
the first time) their capability in predicting patient outcomes. We then measured the BSS associated
with seven LVMs using each of the five LLMs and a large collective database of pathology reports.
Overall, LVMs showed poor BSS, highlighting their low semantic capability. We also found that
the BSS for the seven evaluated LVMs is highly correlated with performance in two clinical tasks:
information retrieval and survival prediction.
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Table 4: 32 TCGA cancer datasets with their full names and number of cases used in our study
Abbreviation Full Name Number of Patients
ACC Adrenocortical Carcinoma 90
BLCA Bladder Urothelial Carcinoma 379
BRCA Breast Invasive Carcinoma 1034
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 289
CHOL Cholangiocarcinoma 43
COADREAD Colon Adenocarcinoma/Rectum Adenocarcinoma 580
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 47
ESCA Esophageal Carcinoma 105
GBM Glioblastoma Multiforme 293
HNSC Head and Neck Squamous Cell Carcinoma 520
KICH Kidney Chromophobe 112
KIRC Kidney Renal Clear Cell Carcinoma 525
KIRP Kidney Renal Papillary Cell Carcinoma 280
LGG Brain Lower Grade Glioma 575
LIHC Liver Hepatocellular Carcinoma 341
LUAD Lung Adenocarcinoma 353
LUSC Lung Squamous Cell Carcinoma 318
MESO Mesothelioma 79
OV Ovarian Serous Cystadenocarcinoma 371
PAAD Pancreatic Adenocarcinoma 176
PCPG Pheochromocytoma and Paraganglioma 174
PRAD Prostate Adenocarcinoma 446
SARC Sarcoma 249
SKCM Skin Cutaneous Melanoma 102
STAD Stomach Adenocarcinoma 319
STES Stomach and Esophageal Carcinoma 83
TGCT Testicular Germ Cell Tumors 87
THCA Thyroid Carcinoma 487
THYM Thymoma 114
UCEC Uterine Corpus Endometrial Carcinoma 546
UCS Uterine Carcinosarcoma 56
UVM Uveal Melanoma 65

Sum 9,238

A STATEMENT ON LIMITATIONS

Bias can be carried over both from text and image in the dataset, this can be variations within text
reports originating from different hospitals, doctors, and cohorts or on WSIs from using different
staining protocols, hospitals, and cohorts. As BSS relies on LLMs for representing text reports,
based on their capability to extract information from textual data, we expect some robustness to
dataset-originating biases. However, this needs to be further evaluated and also with newer LLMs, it
can be improved if it is proved to be biased. Therefore, other bias metrics should complement BSS
for a more comprehensive assessment of dataset-originating biases.

Our experiments have been limited to two specific tasks: information retrieval and survival prediction.
Therefore, further studies are necessary to evaluate the generalizability of our approach to other
medically relevant tasks.

B STATEMENT ON GENERALIZATION

BSS generalization in the medical domain depends on the nature of the task. For tasks directly
linked to textual information, such as disease classification or subtype detection, we expect strong
generalization as TCGA is made up of data from multiple clinical sites, which may have different
reporting standards and procedures for what information is included in the pathology reports. For
complex tasks like survival or treatment prediction, where insights are not explicitly available in
reports, generalization may vary depending on the data as well as the patient cohorts, necessitating
further experimentation. Additionally, tasks like segmentation, with limited text-image linkage, are
less likely to generalize and depend on specific data context, which can vary by cancer type. In
addition, while our study focuses on text and image modalities, the BSS framework can extend to
other modality pairs (e.g., genomics and imaging), using genomics as a reference for biological
semantics. We anticipate that BSS may generalize to other fields beyond medicine, though further
validation is needed.
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C STATEMENT ON FUTURE DIRECTIONS

We believe it is essential to develop approaches that incorporate semantic representation at a higher
level. While current vision-language models focus primarily on patch-level representations, there is a
need for slide-level semantic representation approaches to advance the field. In terms of optimization,
BSS offers a promising avenue as it is differentiable and can be leveraged as a loss function to
transfer semantic knowledge from text to vision models. By integrating BSS into training pipelines,
vision models can better align with the semantic structures inherent in textual data. Additionally,
this concept can be combined with contrastive learning, where positive and negative samples are
defined based on BSS. Such a combination could refine model training by encouraging the alignment
of semantically similar pairs while distinguishing dissimilar ones. This approach could help bridge
the gap between text and vision modalities, leading to more robust and semantically-aware models
for tasks requiring holistic understanding at the slide level.

D DATASET

We used preprocessed reports from (Kefeli & Tatonetti, 2024). Briefly, Kefeli et al. utilized OCR
to convert PDF reports to text. Additionally, identifiable information (e.g., patient IDs, hospital
names, pathologists) was removed by them, and the data was validated through a proof-of-principle
cancer-type classification task across 32 tissues, achieving an average AU-ROC of 0.992. Further
details can be found in (Kefeli & Tatonetti, 2024). Here, we list the cancer types we used for different
experiments in our work. The number of patients is the same as mentioned in (Kefeli & Tatonetti,
2024).

D.1 INFORMATION RETRIEVAL

For the information retrieval task, we used two settings. For the organ-independent search, we used
all the cancer types present in Table 4. In this setting, we query one of the cancer types among all the
32 cancer types.

For the organ-specific search, we distributed the cancer types as demonstrated in Table 5 into 9
different body organs. Then, when searching, we only queried among the cancer type associated with
the same body organ.

Table 5: Organs and their associated cancers for organ-specific search in TCGA
Organ Associated Cancers

Brain GBM, LGG
Endocrine ACC, PCPG, THCA
Gastro COADREAD, ESCA, STAD
Gynaeco CESC, OV, UCS, UCEC
Liver-Panc CHOL, LIHC, PAAD
Melanocytic SKCM, UVM
Prostate-Testis PRAD, TGCT
Pulmonary LUAD, LUSC, MESO, THYM
Urinary BLCA, KICH, KIRC, KIRP

D.2 SURVIVAL PREDICTION

For the survival prediction task, we used BRCA, GBM, KIRC, KIRP, LGG, LUAD, LUSC, and
UCEC datasets from TCGA.

D.3 BOLTZMANN SEMANTIC SCORE

For calculating the Boltzmann Semantic Score we used BRCA, GBM, KIRC, KIRP, LGG, LUAD,
LUSC, and UCEC from TCGA. However, for the correlation test with the information retrieval task,
we divided these eight cancers into groups associated with their organs for conducting the retrieval.
This is because, for a retrieval task, we at least need two classes to calculate accuracy, F1 score, and
mean average precision score. Therefore, the groups were as follows: GBM and LGG; KIRC and
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KIRP; and LUSC and LUAD. As BRCA and UCEC cannot be associated with another cancer in the
8 selected TCGA datasets, we put both aside for this task. For the correlation test with the survival
prediction task, we used the eight cancer sets individually and reported the results.

Along with the paper, we have uploaded the cancer by cancer Boltzmann Semantic Score for each
dataset for all the ks in {1, 3, 5, 20, 50} in the supplementary materials. Please note that the error
bars in the plots are the standard deviation of each LVM over all the patients present in that
cancer type. Thus, error bars are huge for small ks which shows the intense variability of LVMs.
However, as k increases, the average Boltzmann Semantic Score increases and the variability reduces,
which is due to the larger state spaces making it easier for the LVMs to find matches. We believe
k = 5 is a good choice that provides a larger state space without losing sensitivity.

Please note that the supplementary materials is organized in a way such that the directory names
are the cancer types, and the name of each ’.png’ file shows the name of the file with full details.
For example, ’/BRCA/top-1_Coral-Gemma-7b-Jamba-Llama3-8b-Bio-Llama3-8b.png’ shows that
it belongs to BRCA cancer, and top-1 shows that it is the average BSS calculated based on k = 1.
Please see ’Boltzmann Semantic Score.zip’ to download all related files.

E SOFTWARE AND PACKAGES

We utilized an array of different Python packages to conduct data processing and visualization tasks.
The data manipulation and analysis were facilitated using Pandas (version 1.5.3) and NumPy (version
1.23.5), while statistical computations were performed using SciPy (version 1.10.1). For machine
learning and deep learning models, we employed Scikit-Learn (version 1.2.1), OpenCV (cv2) (version
4.7.0), TorchVision (version 0.14.1), and PyTorch (version 2.2.1+cu121), respectively. Visualization
of data and results was achieved through Matplotlib (version 3.7.0) and Seaborn (version 0.12.2).
Additionally, we leveraged the Transformers library (version 4.31.0) for natural language processing
tasks and the Timm library (version 0.9.16) for working with some of the vision models.

F LLM REPRESENTATIONS

We use the Huggingface implementations of the LLMs and their default tokenizers to extract the
representations. For each LLM, the representations from the last hidden state were extracted and then
mean-pooled over all the tokens to obtain the report-level representation tensor for each report.

Table 6: Representation dimensions for different LLMs.

LLM Jamba Llama3-8b Bio-Llama3-8b Gemma-7b Command-R
d1 1024 4096 4096 3072 8192

G LVM REPRESENTATIONS

First, we tile the Whole Slide Images (WSIs) at 20x microscopic magnification into patches of size
224 × 224. These patches are then passed through the LVM to obtain patch-level representations.
Subsequently, all the patch-level representations are pooled by both supervised and unsupervised
pooling methods to obtain the WSI-level representation tensor. If a patient has more than one WSI,
we average the WSI-level representations to derive the patient-level representation.

Table 7: Representation dimensions for different LVMs.

LVM ViT SwinT PLIP CTransPath Lunit-Dino Phikon UNI
d2 768 1024 512 768 384 768 1024

H SURVIVAL PREDICTION EXPERIMENTS

H.1 A DISCUSSION ON TCGA-GBM SURVIVAL PREDICTION

In Table 2, the TCGA-GBM dataset showed the lowest average performance in the survival prediction
task on LLM features, with a C-index of 0.522. Biologically, this aligns with the aggressive and
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heterogeneous nature of glioblastoma multiforme, a class of highly malignant brain tumors. The
TCGA-GBM cohort has a median survival of only 12.23 months, with approximately half of the
patients either deceased or lost to follow-up within the first year. Glioblastomas are usually detected
in later stages and there is a lack of robust prognostic biomarkers in tissue images for patient risk
stratification. Moreover, two of the most informative prognostic factors—mutations in IDH and
MGMT genes —are genomic variables that may be inaccessible to LLMs through pathology reports,
potentially explaining the gap in performance.

H.2 LVM’S SURVIVAL PREDICTION

We used the pathology reports encodings of LLMs to train RSFs and report the C–index in Table 2.
This is a clinically relevant task to compare the LLMs and LVMs. As we are using zero-shot LLMs
here, Vit and SwinT are probably the best comparisons for a zero-shot image encoder, as they were
trained on natural, non-medical images. Overall, the RSF models trained on LLM representations
outperformed those trained on LVM features as shown in Table 2 and 8. It is worth noting that
CTransPath, Lunit-Dino, and Phikon were trained on TCGA data, and thus may be better able to
extract representative imaging features. However, for some cancers like GBM and LGG, pathology-
pretrained LVMs are performing better than LLMs. With that being said, LLMs’ performance on
average is better than LVMs even though they have not been trained on pathology data.

Table 8: The C-Index of RSF on Eight Cancer Types using LVMs
LVM BRCA GBM KIRC KIRP LGG LUAD LUSC UCEC
ViT 0.579±0.05 0.587±0.02 0.655±0.05 0.624±0.12 0.698±0.06 0.567±0.02 0.572±0.05 0.628±0.11

SwinT 0.564±0.04 0.577±0.01 0.669±0.05 0.624±0.07 0.687±0.02 0.543±0.03 0.559±0.04 0.604±0.11
CTransPath 0.622±0.07 0.565±0.05 0.703±0.05 0.685±0.03 0.706±0.09 0.582±0.04 0.568±0.02 0.678±0.03
Lunit-Dino 0.589±0.04 0.563±0.03 0.682±0.02 0.742±0.07 0.708±0.07 0.587±0.04 0.574±0.04 0.661±0.06

PLIP 0.575±0.04 0.541±0.02 0.665±0.03 0.706±0.15 0.694±0.04 0.569±0.06 0.545±0.04 0.643±0.09
Phikon 0.626±0.03 0.582±0.04 0.711±0.05 0.736±0.04 0.684±0.04 0.593±0.03 0.545±0.03 0.696±0.06

UNI 0.634±0.05 0.590±0.03 0.715±0.03 0.771±0.06 0.729±0.04 0.564±0.04 0.582±0.05 0.697±0.05

Average 0.598±0.04 0.572±0.03 0.686±0.04 0.698±0.08 0.701±0.05 0.572±0.04 0.563±0.04 0.658±0.07

I ABLATION STUDY ON PATCHES
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Figure 8: The average BSS with k = 5 over different LLMs and
different cancer types in TCGA.

As an ablation study, we extracted a varying number
of patches, ranging from 150 to 1500, from WSIs
and mean-pooled them to obtain the slide-level rep-
resentations. Afterward, we calculated the average
BSS over each cancer dataset using different k’s in
{1, 3, 5, 20, 50}. Figure 8 depicts the average BSS on
the eight cancer datasets of TCGA and the five LLMs
for each vision model for k = 5. As can be seen,
the score is stable over different numbers of patches,
which means that more patches do not guarantee a
better semantic representation.

J BOLTZMANN SEMANTIC SCORE
ALGORITHM

We discussed the mathematical way of obtaining BSS, here we provide Algorithm 1 that demonstrates
the mechanism to calculate Bq for the query q. Please note that the BSS is the average of all Bq’s
over one cancer type or class.

J.1 COMPUTATIONAL COMPLEXITY

If we consider a database of size n, the order of complexity for KNN is O(nd + n log n), where
d is the feature size. In Algorithm 1, we rely on graphs with k neighbors obtained from KNN. To
calculate the second-order Boltzmann factor, the order of complexity is O(k2). Therefore, the total
order of complexity, including the KNN algorithm in our calculations, is O(nd + n log n + k2).
However, k is a constant that we chose to be k = 5. Hence, k2 is negligible compared to nd or
n log n from the KNN algorithm. Consequently, the order of complexity remains that of the KNN
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Algorithm 1 Boltzmann Semantic Score Algorithm

Require: reference_graph, observer_graph, d1
Ensure: score Bq

1: Initialize total_cost, non_matching_nodes_cost to 0
2: Initialize node index position counter
3: for each node in text_graph excluding the query node do
4: Calculate Boltzmann Factor from current node to reference node in reference_graph
5: if current node is not estimated by observer_graph then
6: Estimate corresponding node in observer_graph
7: Calculate the Second-order Boltzmann Factor from the current and estimated nodes
8: Update lost_nodes_cost with computed Second-order Boltzmann Factor
9: end if

10: Update total_cost with computed Boltzmann Factor or Second-order Boltzmann Factor
11: end for
12: Compute Bq by combining lost_nodes_cost and extra_nodes_cost
13: return Bq

algorithm, which is O(nd + n log n). We have explored this with k values ranging from 1 to 80,
without any computational difficulty on our low RAM CPUs.

J.2 BOLTZMANN SEMANTIC SCORE EXPERIMENTS

For the unsupervised pooling, since no training was required, we tested the model on the entire dataset
and reported the results. However, for the supervised pooling, we trained the AbMIL model on the
features extracted by each LVM. To ensure a robust evaluation, we employed a 3-fold cross-validation
scheme to train, validate, and test the model, leaving samples from one patient all on one set to
prevent data leakage. We repeated the experiments with 10 different random seeds and selected the
top-performing seed for the finalized model. Afterward, we calculated the BSS using the output of
the AbMIL model as the WSI representation. For training, we used an eight-class classifier over the
eight cancer datasets, with a learning rate of 0.001, weight decay of 0.01, and trained for 25 epochs.
Patches were extracted from 20× magnifications.

K CORRELATION WITH DOWNSTREAM TASKS

We use the two-sided Pearson correlation test, where the null hypothesis (H0) states that there is no
significant correlation between the variables, and the alternative hypothesis (H1) states that there is a
significant correlation. Here, we have two tasks: information retrieval and survival prediction.

A separate Random Survival Forest was trained on each of the visual embedding sets. Each forest was
built with 1000 estimators, and followed the algorithm (implemented using scikit-survival library) as
described in Ishwaran et al (Ishwaran et al., 2008). A 5-fold cross-validation strategy was used such
that for each fold a fifth of the data was held out as the test set. The remaining data was organized
into 10 random 80/20 splits of training and validation data. Thus for each dataset, we had a total of
10× 5 = 50 test C–index values. As such, we then had a total of 7× 50 = 350 C–index samples for
the 7 pathology datasets considered in this paper.

For each dataset, the Boltzmann Semantic Score (BSS) was calculated. We then used the two-sided
Pearson correlation test to find the correlation between the BSS values and the C–index samples
for each dataset. The p-value and correlation for each were reported in the body of this paper, with
a p–value < 0.05 considered significant. Algorithm 2 describes the correlation test with survival
prediction experiment accurately.

For each dataset, the Boltzmann Semantic Score (BSS) was calculated. We then used the Pearson
correlation test to find the correlation between the BSS values and the top-k accuracy samples for
each dataset. The p-value and correlation for each were reported in the body of this paper, with a
p–value < 0.05 considered significant.

We adopt the above sampling approach to gather enough random samples for the Pearson correlation
test so that the results of the test are reliable. Algorithm 3 describes the correlation test with
information retrieval experiment accurately.
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Algorithm 2 Correlation Test with Survival Prediction

Require: Visual embedding sets {LVM1, LVM2, . . . , LVM7} of a given dataset
1: Initialize number of estimators Nestimators ← 1000
2: Initialize number of folds T ← 5
3: Initialize number of random seeds Ns ← 10
4: for each visual embedding set LVMi do
5: for each random seed s ∈ {s1, . . . , sNs

} do
6: for each fold t ∈ {1, . . . , T} do
7: Split LVMi into test set Tt (20% of data) and remaining data Rk (80% of data)
8: Train Random Survival Forest
9: Evaluate model on Tt and obtain test C–index value Ci,t,s

10: Compute average Boltzmann Semantic Score (BSS) Bi,t,s

11: end for
12: end for
13: end for
14: Collect all the C–index samples in a list Collect all the BSS samples in a list
15: Calculate Pearson correlation between BSS list and C–index list
16: Perform two-sided Pearson correlation test and obtain p-value
17: if p-value < 0.05 then
18: Report correlation and p-value as significant
19: else
20: Report correlation and p-value as not significant
21: end if
22: Report correlations and p-values for the dataset

K.1 INTERPRETATION OF HYPOTHESIS TESTING

The hypotheses defined in this study provide statistical proof and evidence that the Boltzmann
Semantic Score (BSS) is predictive for downstream tasks. Ideally, if an LVM captures a high semantic
score, it is likely to perform well on downstream tasks, though the relationship is not completely
linear. Therefore, we assert that when BSS is significantly correlated with Accuracy and/or the
C–index in information retrieval and/or survival prediction, it indicates two key points: first, the
correlation is not a random event, and second, for the specific cancer data studied, LVMs with higher
BSS are generally expected to perform better on these tasks, yet proportional to the correlation.

The variations in correlation observed in Table 3a for BSS with information retrieval top-1 accuracy
across different datasets and LLMs can be attributed to several factors. Firstly, the dataset-specific
differences, such as the type and quality of information present in pathology reports, play a significant
role. In some datasets, like TCGA-LUAD, we observe that LVMs with higher BSS values tend to
align better with LLM semantic spaces, resulting in stronger correlations with information retrieval
performance. This indicates a stronger semantic alignment with the LLM’s semantic space in this
dataset.

However, in datasets like TCGA-LGG, the correlation is weaker, potentially due to LVMs retrieving
cases that are less semantically aligned yet still achieving high top-1 accuracy. This can occur because
accuracy, when measured solely by subtype, may overlook nuances in semantic similarity that BSS
captures. As a result, some LVMs might succeed in retrieving correct subtypes but fail to retrieve
semantically similar cases, leading to a drop in correlation.

Secondly, the latent spaces of different LLMs have subtle distinctions, influencing the correlation
values observed within each cancer dataset. These variations in LLM latent spaces likely contribute
to the differing degrees of alignment and correlation across datasets, which matches our expectations
given the inherent complexity and context-specific nuances in each dataset.

Similarly, for the information retrieval task, we conducted the search and calculated the top-1, top-3,
and top-5 accuracy with slide-level representation derived from varying patch numbers ranging from
150 to 1500 with a step of 100. This allowed us to gather 10 samples per each dataset. As such, we
then had a total of 7× 10 = 70 samples for each of the top-k accuracy metrics.
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Algorithm 3 Correlation Test with Information Retrieval

Require: Patch numbers P ← {150, 250, 350, . . . , 1500} for a given dataset
1: Initialize top-k metrics K ← {1, 3, 5}
2: for each patch number p ∈ P do
3: Compute slide-level representation for Di using p patches
4: for each top-k metric k ∈ K do
5: Conduct the search and Calculate top-k accuracy Ai,p,k

6: Compute average Boltzmann Semantic Score (BSS) Bi,p,k

7: end for
8: end for
9: Collect all the top-k accuracy samples in a list Collect all the BSS samples in a list

10: Calculate Pearson correlation between BSS list and top-k accuracy list
11: Perform two-sided Pearson correlation test and obtain p-value
12: if p-value < 0.05 then
13: Report correlation and p-value as significant
14: else
15: Report correlation and p-value as not significant
16: end if
17: Report correlations and p-values for the dataset

Malignant glioma, possible small cell 

glioblastoma

Extensive small-cell glial neoplastic proliferation

Nuclear anaplasia

Brisk mitotic activity

Microvascular proliferation

Zones of tumor necrosis

GFAP staining: focal sparse gliofibrillarity

p53 overexpression in about 10% of neoplastic 

cells

MIB-1 proliferation index between 6% and 30%

Glioblastoma

Frequent small-multinucleated cells

Nuclear anaplasia

Brisk mitotic activity

Microvascular cellular proliferation

Vascular necrosis and thrombosis

Prominent karyorrhexis

GFAP staining: focal heavy glial fibrillogenesis

by neoplastic cells

p53 overexpression in about 2/3 of neoplastic 

cells

MIB-1 proliferation index of about 30%

Glioblastoma (WHO Grade IV)

Small fragments of high-grade glioma with oval 

to angular nuclei

Frequent abnormal mitotic figures

Microvascular hypertrophy and borderline 

microvascular proliferation

Early tumor cell palisading without frank 

necrosis

Ki-67 labeling index of approximately 20%

Query: TCGA-06-0876 Command-R Top-1: TCGA-06-0875 UNI Top-1: TCGA-06-0879

Query: TCGA-06-1800 Command-R Top-1: TCGA-06-6697 UNI Top-1: TCGA-06-0877

Gliosarcoma

Patient with a brain mass

staining positive for GFAP and reticulum,

and negative for cytokeratin.

MIB-1 index is 50%, indicating a high

proliferation rate

Gliosarcoma (WHO Grade IV)

Patient with a right temporal lobe brain mass

Staining strongly positive for GFAP and S100 

in areas with cells resembling neoplastic 

astrocytes.

Spindle-shaped cells are mostly negative for 

GFAP and S100, but positive for reticulin and 

CD34.

Vimentin is diffusely positive.

EMA shows scattered weak positivity.

Pan-keratin is negative.

Ki-67 index is Approximately 30%

Glioblastoma

Patient with a heterogeneously enhancing 

mass in the medial left temporal lobe, 

extending to thalamic, subthalamic, and 

ventricular subependymal regions

Neoplastic cells are gliofibrillogenic.

A very small minority of neoplastic cells

overexpress p53 protein.

NeuN and synaptophysin demonstrate 

infiltration of neoplastic cells in grey and

white matter.

Neurofilament is negative.

MIB-1 index is Approximately 5%

Figure 9: Two random queries from the TCGA-GBM dataset are shown. In this experiment, we
reported the top-1 retrieved case for Command-R as a candidate from LLMs and for UNI as a
candidate from LVMs. By querying the case, we summarized the key microscopic details in the
pathology reports here. The texts highlighted in green are semantically similar to the details in the
reports; yellow indicates extra information mentioned in the retrieved case that is not fundamentally
different; and red indicates semantically different information, making the case dissimilar to that of
the query. In both cases, Command-R retrieved a more semantically similar case than UNI, although
the cases retrieved by UNI had some similarities.

L QUALITATIVE EXAMPLES

Two random queries from the TCGA-GBM dataset are shown in Figure 9.
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Figure 10: Organ-Independent search on the original text reports

M LLM REPRESENTATION PLOTS

The LLM performance on each cancer dataset through organ-specific and organ-independent for two
scenarios of original and perturbed text reports for different LLMs are shown in Figure 10, 11, 12,
and 13.

N CONSENSUS: CANCER BY CANCER

Cancer by cancer Cohen’s Kappa Score is illustrated in Figure 14. As discussed in the body of paper,
we know that the agreement between different LLMs varies cancer by cancer. Here, on LGG, KIRC,
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Figure 11: Organ-specific search on the original text reports
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Figure 12: Organ-independent search on the perturbed text reports
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Figure 13: Organ-specific search on the perturbed text reports
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LUAD, LUSC, and BRCA there are significant agreement between LLMS. Yet, on UCEC, KIRP, and
GBM, LLMs do not similar agreement in ranking different LVMs.
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Figure 14: Cancer by Cancer Cohen’s Kappa Score. As seen, on LGG, KIRC, LUAD, LUSC, and
BRCA, there are significant agreements between LLMS. Yet, on UCEC, KIRP, and GBM, LLMs
tend to disagree. According to this metric, a score ranging from 0.21 to 0.40 is considered fair, 0.41
to 0.60 is moderate, 0.61 to 0.80 is substantial, and 0.81 to 1.00 represents almost perfect agreement.
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