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Abstract

We introduce SLIMP (Skin Lesion Image-Metadata Pre-training) for learning rich
representations of skin lesions through a novel nested contrastive learning approach
that captures complex relationships between images and metadata. Melanoma
detection and skin lesion classification based solely on images, pose significant
challenges due to large variations in imaging conditions (lighting, color, resolution,
distance, etc.) and lack of clinical and phenotypical context. Clinicians typically
follow a holistic approach for assessing the risk level of the patient and for deciding
which lesions may be malignant and need to be excised, by considering the patient’s
medical history as well as the appearance of other lesions of the patient. Inspired by
this, SLIMP combines the appearance and the metadata of individual skin lesions
with patient-level metadata relating to their medical record and other clinically
relevant information. By fully exploiting all available data modalities throughout
the learning process, the proposed pre-training strategy improves performance
compared to other pre-training strategies on downstream skin lesions classification
tasks highlighting the learned representations quality.

1 Introduction

Categorizing skin lesions is an important part of dermatological examination, allowing clinicians to
recognize potential skin malignancies and establish suitable follow-up actions and treatment plans.
Among skin malignancies, melanoma, although having a lower incidence with respect to other skin
cancers, such as basal cell carcinomas (BCCs), squamous cell carcinomas (SCCs) and other types
of skin cancers, has a significantly heavier impact on the patient health in terms of morbidity and
mortality. There are over 330,000 cases of melanoma diagnosed worldwide every year, leading to
more than 55,000 deaths annually [1], with data suggesting an increased incidence in the last years
[2]. Importantly, when detected early (stage I-II) melanoma can be cured in the majority of cases
through surgical excision. This suggests the importance of developing efficient and effective methods
for early detection of melanoma and other types of skin cancers.

Numerous works in the literature have attacked the problem of classifying skin lesions based on their
appearance [3, 4], largely supported by the monumental effort put forward by the international skin
imaging collaboration (ISIC) for constructing the ISIC datasets and organizing the corresponding
challenges from 2016. In dermatological examination common practice, clinical decisions are not
based solely on lesion appearance, but are also conditioned on additional characteristics of the lesions
as well as patient phenotype and habits, as to alleviate overdiagnosis and wasteful use of resources.
Drawing inspiration from this, recent datasets, including SLICE-3D [5], typically include lesion-only
[6] or lesion and patient metadata [5, 7, 8].
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Figure 1: Architecture of the SLIMP approach. An inner multi-modal contrastive loss is employed
to maximize agreement among images of skin lesions and the corresponding lesion-level metadata.
Skin lesion image and metadata representations of a patient are aggregated, summarizing the lesion
phenotype. At the patient level, agreement between the estimated lesion phenotype and their metadata
is pursued through an outer contrastive loss.

Despite the significant effort dedicated in producing large collections of skin lesion data, still the data
available are relatively scarce, due also to the difficulties in their collection and annotation making
the development of deep-learning methods that rely on large data quantities troublesome. Suitable
pre-text tasks offering self-supervision have proven to be invaluable in such scenarios, enabling the
models to learn rich representative features that can be subsequently employed to address downstream
tasks even when less data are available.

Building on these observations, we introduce SLIMP (Skin Lesion Image-Metadata Pre-training),
a novel pre-training approach for skin lesions based on a nested multi-modal contrastive learning.
SLIMP captures relations between the appearance of the lesions and the metadata associated with
them in the context of the patient-level metadata. By incorporating both lesion and patient level
metadata, the proposed method learns representative and generalizable features for skin lesions that
can assist in downstream tasks. We specifically target to exploit all data modalities across all stages of
the learning process. To enable effective transfer to target datasets with varying metadata, we employ
an efficient continual pre-training approach for addressing the problems that arise from the differences
that typically occur between the metadata available in different datasets. Additionally, by exploiting
the similarity induced among the image and metadata features, we propose a method for enhancing
datasets that do not contain metadata, by transferring metadata from a reference dataset with the
target images based on the respective features, using their agreement in the shared embedding space.

The contributions of this work are the following: i) We propose a novel nested multi-modal pre-
training strategy based on contrastive learning for producing rich skin lesion representations by
leveraging metadata both at the lesion and patient levels, in relation to the lesion images; ii) We adapt
the learned representations on different datasets through efficient continual pre-training, effectively
addressing differences in metadata attributes, allowing to exploit metadata in all stages of the learning
process; iii) We propose a retrieval strategy for enhancing image-only datasets using suitable reference
metadata; iv) The proposed nested multi-modal pre-training strategy achieves improved skin lesion
classification performance compared to reference pre-training strategies and strong baselines and
competitive performance against supervised approaches.
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2 Related work

Multi-modal self-supervised representation learning is used for enhancing image-based models
by incorporating different data modalities, especially for tasks where additional context provides
useful information for improved task performance.

CLIP [9], introduced a method for learning image-text representations through a contrastive learning
paradigm. By linking each image to a natural language description, CLIP captures subtle patterns
and nuances, creating representations that can accommodate different applications.

The work of Bourcier et al. [10] adopted a multi-modal pre-training approach for learning repre-
sentations based on satellite imagery and associated metadata, showing that the additional context
provided by metadata leads to improved performance in downstream tasks.

Regarding contrastive learning performed across taxonomies, [11] introduced hierarchical contrastive
pre-training for images, allowing to consider labels organized in a taxonomy, by proposing a natural
extension of the contrastive loss for hierarchical label relations as well as a constraint enforcing loss
for separating distinct lineages. [12] used three levels of contrastive learning for improved sentiment
analysis by incorporating various features combinations of the available data modalities.

In the medical domain, the work of [13] highlighted the importance of taking into account the
patient-slide-patch hierarchy in learning suitable representations for cancer diagnosis based on
whole-slide images. On the other hand, [14] used a contrastive loss spanning multiple levels across
the same modality, ranging from patient-level to observation-level, for maximizing information
utilization of the available data, leading to stronger representations for medical time-series analysis
and classification.

In this work we adopt a contrastive learning strategy across two distinct levels of metadata, modeled
as one level nested within the other, as patient-level metadata are shared while lesion-level metadata
regard individual skin lesions. This scheme encourages learning of more representative skin-lesion
representations that can assist in the downstream skin lesion classification task while offering
improved generalization across different patients.

Continual pre-training has become a key strategy to make pretrained models more specialized
and effective for real-world applications, where domain-specific knowledge is often crucial. In this
context, [15] demonstrated that simply continuing to pretrain a language model on domain-specific
texts substantially improves the accuracy across diverse tasks, even when labeled data is limited.

Lie et al. [16] developed a continual pre-training framework for the mBART model to boost machine
translation for low-resource languages, where translation data is often limited or nonexistent. By
generating mixed-language text from available monolingual resources, they enabled mBART to
‘self-train’ on noisy but representative data and extend its language skills to previously unseen
languages.

In the domain of geospatial analysis, [17] tackled the resource-intense needs of geospatial applications
with a continual pre-training method that exploits the rich representations coming from large-scale
image datasets like ImageNet-22k.

The work of [18] extended this adaptive pre-training to general computer vision, aiming to address
the high costs of self-supervised learning. Their approach, utilize existing pretrained models as a
starting point to accelerate learning, achieving improved accuracy with fewer resources.

Multi-modal continual pre-training has only recently been explored, mainly regarding the adaptation
of vision-language models [19, 20]. In the medical domain, [21] proposed continual pre-training
for multi-modal medical data in a multi-stage manner to avoid interference between image and
non-image modalities during learning.

The proposed method makes use of continual pre-training to fully exploit target dataset metadata.
Due to the differences in the recorded attributes, continual pre-training allows adapting the metadata
encoder accordingly, leading to improved classification performance. To the best of our knowledge,
this is the first work that explores the use of multi-modal continual pre-training for tabular metadata,
allowing to fully exploit the available metadata of target domains. Importantly, the proposed continual
pre-training strategy does not rely on target labels, which are not always available in the context of
skin lesion classification and other similar medical applications.
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Data enhancement through retrieval has been proposed in the natural language processing
domain under different settings. In [22], a retrieval-enhanced language model (RETRO) is introduced
augmenting a frozen language model allowing retrieval from a large text database for improving
its performance. In a similar direction, [23] proposed a discrete key-value bottleneck architecture
considering pairs of sparse, separable and learnable key-value codes.

The work of [24] applies the idea in a multi-modal setting, establishing image-text correspondences
using independently pre-trained image and text encoders by exploiting similarities within each
modality in combination with a reduced dataset of known image-text correspondences. We consider
a retrieval-enhanced variant of SLIMP for allowing multimodal classification even for image-only
datasets, by matching metadata from a reference dataset.

3 Method

In this section we present SLIMP, a self-supervised pre-training approach with a nested contrastive
loss. Given a reference skin-lesion classification dataset providing metadata at the lesion and at
the patient levels, the proposed approach aims to learn representative and generalizable skin lesion
representations by combining lesion images with the corresponding metadata at both levels. Two
strategies are proposed for adapting these representations to target datasets in a way that fully exploit
their metadata, even when the structure and content differ from the source data. This leads to enhanced
performance on downstream tasks by leveraging multi-modal information about the skin lesions, as
shown in Section 4. The notation used throughout this section is summarized in Table 6.

3.1 Nested constrastive multi-modal learning

The overall approach is presented in Figure 1 and summarized in Algorithm 1. For each patient
p ∈ {1, ..., P} our model process Lp lesion images {I lp}

Lp

l=1 with an image encoder to extract
image-based features {wl

p ∈ RD}Lp

l=1, where D denotes the embedding size of each component. In
parallel, the model processes the corresponding lesion-specific tabular metadata {TLl

p}
Lp

l=1 with a
tabular metadata encoder, to extract metadata-based feature representations {hl

p ∈ RD}Lp

l=1 on a
lesion level. The resulting lesion-level representations are jointly optimized using an inner InfoNCE
loss [25] in order to maximize their agreement. By maximizing the cosine similarity between
the corresponding lesion image-metadata pairs and, analogously, minimizing the cosine similarity
between non-matching pairs, the model learns a multi-modal lesion-level representations. The two
lesion-level modalities are merged via concatenation, which has been shown to be a simple yet
effective strategy [26] for obtaining a combined lesion-level representations {(wl

p, h
l
p)}

Lp

l=1. These
combined lesion representations are aggregated for all the lesions of a patient by applying average
pooling and they are subsequently linearly transformed into a single vector zp ∈ RD, summarizing
the lesion phenotype of the patient. At the outer level, SLIMP processes the patient-specific tabular
metadata (TPp) utilizing an outer tabular metadata encoder, yielding a representation xp ∈ RD. An
outer InfoNCE loss is then applied between the patient-level metadata representation xp ∈ RD and
the patient-level lesion phenotype representation zp ∈ RD obtained at the inner level. This nested
contrastive pre-training framework enables the model to learn rich skin lesion representations that
take into account the overall phenotype of the patient. Specifically, letting s(·, ·) denote the cosine
similarity function and τ a temperature parameter, we employ a two-level nested contrastive loss with
a weighting factor λ ∈ [0, 1] as described below:

Lp
lesions = − 1

2Lp

Lp∑
l=1

(
log

exp(s(wl
p, h

l
p)/τ)∑

j∈Lp
exp(s(wl

p, h
j
p)/τ)

+ log
exp(s(hl

p, w
l
p)/τ)∑

j∈Lp
exp(s(hj

p, wl
p)/τ)

)
, (1)

Lpatient = − 1

2P

P∑
p=1

(
log

exp(s(zp, xp)/τ)∑
i∈P exp(s(zp, xi)/τ)

+ log
exp(s(xp, zp)/τ)∑
i∈P exp(s(xi, zp)/τ)

)
, (2)

Ltotal =
λ

P

P∑
p=1

Lp
lesions + (1− λ)Lpatient. (3)
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Algorithm 1: SLIMP pseudocode

Data: Lesion images: {{Ilp}
Lp

l=1}
P
p=1, lesion metadata:

{{TLl
p}

Lp

l=1}
P
p=1, patient metadata: {TPp}Pp=1.

Sample a batch of B patients
Llesions = 0
for p ∈ {1, . . . , B} do

Build batch of N lesion image-metadata pairs from patient p
for l ∈ {1, . . . , N} do

wl
p = ImageEncoder(Ilp)

hl
p = LesionTabularEncoder(TLl

p)
end
Llesions += 1

B
InfoNCELoss({wl

p}Nl=1, {hl
p}Nl=1)

zp = Linear(AvgPool({(wl
p, h

l
p)}Nl=1))

end
{xp}Bp=1 = PatientTabularEncoder({TPp}Bp=1)
Lpatient = InfoNCELoss({(zp, xp)}Bp=1)
Ltotal = λ · Llesions + (1− λ) · Lpatient

3.2 Handling divergent metadata of target datasets

SLIMP can be applied on reference, large-scale skin lesion classification datasets as [5] for learning
lesion representation both from images and metadata. Nevertheless, due to differences in clinical
practice, regulatory context, and other factors, metadata provided by different datasets, typically di-
verge in structure and/or collected attributes. To leverage all available data modalities on downstream
tasks, we firstly propose an multi-modal continual pre-training approach for effectively adapting the
learned representations to target datasets with potentially smaller size and diverging metadata. We
also propose a retrieval-base strategy for allowing metadata-endowed skin lesion classification even
for dataset which lack metadata completely.

Image-metadata continual pre-training When the target dataset provides metadata comprising
different attributes and/or of different structure with respect to the reference one, a multi-modal
continual pre-training approach on the target dataset is employed. In this case, the image and tabular
encoders are fine-tuned to adapt the representations on the input features of the target domain. This
requires for the target dataset to contain both lesion-level and patient-level metadata. In cases where
patient metadata are unavailable, a variant of this setup is considered, using the lesion level loss alone,
taking into account solely the lesion images and the corresponding metadata. This allows to cope
with varying levels of data availability while maintaining robust continual feature learning across
both the image and metadata modalities.

Dataset enhancement via metadata retrieval When the target dataset lacks metadata, a retrieval-
based approach is followed for artificially enhancing the target dataset by creating metadata pseudo-
modalities. As lesion metadata are tightly related to the corresponding images, we consider the
possibility of enhancing datasets which do not provide metadata by constructing pseudo-modalities
of patient-level and lesion-level metadata using the corresponding modalities of the reference dataset
on which the SLIMP model has been pre-trained. Drawing inspiration from [24], and building on the
fact that the lesion and patient level modalities have been trained to maximize agreement, we use the
encoding of the lesion images to retrieve the metadata of the original dataset that exhibit the highest
similarity and use them on downstream tasks ‘as-if’ they were accompanying metadata.

Specifically, in this setup, presented in Figure 2, the model utilizes only the images I lp from the target
dataset, passing them through the image encoder of the SLIMP model that has been pre-trained on the
reference dataset, providing the target dataset image representations wl

p. Based on these features, we
then conduct a two-step retrieval process to incorporate additional context from the reference dataset
metadata representations. First, we compare wl

p with the features h̃l derived from the pre-trained
SLIMP lesion metadata encoder and we retrieve the vector ĥl with the highest cosine similarity.
The combined feature set {(wl

p, ĥ
l)} is linearly transformed into a single patient-level vector ẑp,

which is then compared with the features x̃p derived from the pre-trained SLIMP patient metadata
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Figure 2: Retrieval of lesion and patient metadata from the reference dataset (red path) for constructing
metadata pseudo-modalities for the target dataset (green path) using SLIMP. (Best viewed zoomed-in)

encoder, to retrieve the most relevant x̂p. By adding pseudo-modalities on both the patient and the
lesion-level, this retrieval process produces three feature vectors for each image of the target dataset
ŷlp : {(wl

p, ĥ
l, x̂p)} that can be used for lesion classificition in the target datasets.

4 Experimental evaluation

4.1 Datasets

Evaluation is performed considering five widely used, public skin lesion datasets, which differ in
key aspects, including dataset size, image type (dermoscopic or clinical), availability of metadata
(such as the number of patient clinical features), and degree of class imbalance. Namely, the
datasets considered are: SLICE-3D[5], PAD-UFES-20 [7], HIBA [27], HAM10000 [8], and PH2
[6]. Their main characteristics are summarized in Table 1. The skin lesion classification datasets
contain different taxonomies, with important class imbalance of varying degrees (Figure 3). To allow
comparison across all the datasets, we mainly consider the task of classifying lesions in benign and
malignant. Section B provides additional dataset details and benign and malignant class definition.

4.2 Implementation

Unless otherwise stated, we employ ViT-Small [28] as a transformer-based image encoder and TRACE
[29] as a transformer-based tabular data encoder. We train the model for 150 epochs on an NVIDIA
RTX A6000 GPU with 48GB of VRAM. For pre-training the model on the SLICE-3D dataset, we
consider a batch size of 4 patients and N = 100 lesions. For continual pre-training on target datasets,
we fine-tune the embedding layers of the image encode and learn new metadata encoders for the
metadata encoder, keeping the attention layers of all encoders frozen. We have observed that this
strategy leads to increased downstream performance. During continual pre-training, the batch size
is increased to 64 patients. For allowing downstream performance assessment we randomly split

Dataset Number of
Samples

Number of
Patients Targets Patient Missing

Values(%)
Lesion Missing

Values(%)
Patient

Metadata
Lesion

Metadata
SLICE-3D 401,059 1,042 Benign/Malignant 1.78% 0.04% ✓ ✓

PAD-UFES-20 2,298 1,373 Multiclass 32.2% 7.00% ✓ ✓
HIBA 1,616 623 Multiclass 21.2% 12.8% ✓ ✓

HAM10000 10,015 N/A Multiclass 0.57% 1.17% ✓ ✓
PH2 200 N/A Multiclass N/A 6.12% ✗ ✓

Table 1: Main aspects of skin lesion datasets considered in the evaluation.
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the target datasets into training and validation splits with a ratio of 90%-10%, respectively. Both
pre-training stages use the Adam optimizer with a learning rate of 10−4 and λ = 0.9.

4.3 Protocol

The SLIMP model is pre-trained on SLICE-3D, a large-scale medical imaging dataset. As per
standard practice [30], for evaluating the intrinsic quality of the learned features learned by the
SLIMP model through self-supervision, evaluation is performed by considering k-nearest neighbors
(kNN) with k = 10 and linear probing classification on the downstream skin-lesion classification task
on different target datasets. The impact of SLIMP features stemming from different modalities is also
analyzed in the results. Performance of the models is evaluated considering four metrics: Accuracy
(Acc), Balanced Accuracy (BAcc), F1-Score, and area under receiver operator curve (AUC). Balanced
Accuracy corresponds to the average of the Sensitivity and Specificity scores and is particularly
relevant in the medical domain as it captures the model’s ability to correctly identify positive and
negative instances, even when datasets suffer from significant class imbalance.

4.4 Results

Our main goal is to assess the quality of the skin lesion representations learned by the proposed
SLIMP model. Additionally, we examine the extent in which the use of metadata in different parts of
the pipeline impacts the performance on the downstream task. In these regards, we consider strong
baselines in each of these parts. Table 2 summarizes the results.

We first consider comparison using features that have been obtained via pre-training on the reference
SLICE3D dataset. In this context, we consider the Pre-SLIMP setup, which uses the visual features
extracted by the image encoder of SLIMP pre-trained on the lesion and patient metadata of SLICE3D,
and compare it against the features obtained by SimCLR [31] pre-trained on the images of SLICE3D.
We also consider the downstream classification performance of the subclass-balancing contrastive
learning approach (SBCL) proposed in [32]. We observe that Pre-SLIMP shows competitive perfor-
mance with SimCLR, even though it does not consider any image self-supervision, surpassing it in
PAD-UFES-20 and HAM10000, while showing lower performance in HIBA and PH2. This suggests
that SLIMP incorporates information from corresponding metadata in the image representation,
potentially enabling to be robust against image domain shift. Similar conclusions can be drawn from
the kNN classification results presented in Table 3.

Pre-SLIMP also outperforms SBCL, which explicitly handles class imbalance and long-tail distri-
butions. Additionally, Table 2 provides the results from the MAE [33], BeiTv2 [34] and DINOv2
[35] generic foundation models. For a qualitative evaluation, attention maps produced by the SLIMP
method are compared against the ones obtained by DINOv2 and MAE, and SimCLR in Section F.

Use of metadata We note that, as the metadata attributes of the target datasets differ from the
reference one, the pre-trained metadata encoders cannot be directly used. This shortcoming is
addressed by the SLIMP model, which applies continual pre-training on the target dataset as described
in Section 4.2. This allows the use of target dataset metadata, both at the continual pretraining stage
and at the downstream classification task. We see that the image representations obtained after
continual pre-training, denoted as SLIMPIMAGE, improve downstream classification performance,
clearly outperforming the SBCL method continually pre-trained on the target datasets (SBCL-C).
Importantly, the complete SLIMP method, which uses the features obtained by all data modalities
in the downstream task, leads to improved performance across all the metrics for most datasets,
both for linear probing (Table 2) and kNN (Table 3) evaluation. Interestingly, SLIMP also shows
competitive performance compared to TFormer [36], a fully supervised model for multi-modal lesion
classification trained directly on both the images and metadata of the target dataset, showing a
decrease in performance only for the PAD-UFES-20 dataset.

To assess the effectiveness of the nested-architecture in providing better skin lesion representations,
we also consider a variant of SLIMP, SLIMPFLAT, which comprises a single InfoNCE loss, applied
between the image features and the features obtained by a tabular encoder operating on the concate-
nated patient-lesion metadata. SLIMP clearly outperforms this single-level variant, demonstrating the
effectiveness of its nested contrastive learning architecture in capturing image-metadata relations.
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PAD-UFES-20 HIBA HAM10000 PH2
MD Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

Generic Pretrained Models
MAE ✗ 51.2 51.7 0.498 0.486 45.1 47.7 0.582 0.289 82.7 64.7 0.441 0.863 - - - -
BEiTv2 ✗ 56.5 54.1 0.462 0.491 54.3 50.6 0.362 0.412 80.5 50.0 0.445 0.516 80.0 50.0 0.444 0.914
DINOv2 ✗ 75.2 75.0 0.750 0.783 75.3 74.3 0.744 0.799 84.2 71.0 0.727 0.879 86.7 81.3 0.785 0.867

Pretrained on SLICE3D
SimCLR ✗ 70.4 70.5 0.699 0.766 84.6 84.3 0.863 0.913 81.2 69.4 0.522 0.868 95.0 87.5 0.857 1.000
SBCL ✗ 66.1 66.0 0.642 0.672 66.7 67.5 0.671 0.671 56.0 63.8 0.403 0.710 75.0 75.0 0.546 0.734
Pre-SLIMP ✗ 78.3 78.2 0.793 0.816 75.3 75.5 0.747 0.863 82.9 66.3 0.474 0.851 90.0 83.3 0.800 0.941
Ret-SLIMP ✓* 78.3 78.4 0.795 0.810 77.8 78.0 0.772 0.851 84.3 69.7 0.534 0.857 90.0 88.1 0.833 0.952
Continual pre-training
SBCL-C ✗ 71.3 71.1 0.689 0.711 72.2 73.9 0.762 0.760 62.2 73.4 0.484 0.816 90.0 84.4 0.750 0.719
SLIMPIMAGE ✗ 76.1 75.5 0.764 0.807 77.8 78.1 0.763 0.867 84.7 69.2 0.529 0.889 95.0 96.4 0.923 0.988
SLIMPFLAT ✓ 85.7 85.3 0.872 0.906 84.6 84.5 0.854 0.911 84.4 75.6 0.608 0.894 95.0 96.4 0.923 0.988
SLIMP ✓ 90.9 90.2 0.921 0.926 90.7 90.6 0.914 0.947 85.9 78.5 0.650 0.901 95.0 96.4 0.923 0.988
Supervised
TFormer ✓ 91.3 91.3 0.917 0.960 88.9 88.9 0.892 0.963 82.1 76.2 0.601 0.875 95.0 91.7 0.909 0.988
Low-shot Evaluation
SLIMP 1% ✓ 83.9 84.1 0.849 0.908 75.3 75.8 0.726 0.863 76.0 69.6 0.493 0.802 70.0 64.3 0.500 0.548
SLIMP 5% ✓ 84.4 84.1 0.858 0.912 80.9 81.1 0.803 0.901 76.8 71.0 0.512 0.821 90.0 83.3 0.800 0.952
SLIMP 10% ✓ 88.7 88.2 0.901 0.922 84.0 84.2 0.835 0.917 77.0 72.3 0.526 0.818 90.0 84.5 0.833 0.952

Table 2: Comparison of SLIMP with various baselines, on the lesion classification task using linear
probing. MD stands for ‘Metadata’ used for downstream classification, while asterisk (*) denotes the
use of metadata from the reference dataset (SLICE3D). For all metrics higher values are better. Best
results are in bold, second best are underlined.

PAD-UFES-20 HIBA HAM10000 PH2
MD Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

Pretrained on SLICE3D
SimCLR ✗ 67.4 67.1 0.631 0.765 80.3 80.1 0.822 0.902 87.2 69.7 0.552 0.935 85.0 62.5 0.400 0.914
Pre-SLIMP ✓ 70.0 70.4 0.706 0.752 72.8 72.9 0.732 0.847 82.0 62.5 0.400 0.818 90.0 83.3 0.800 0.941
Ret-SLIMP ✓* 72.2 72.3 0.738 0.769 72.8 73.2 0.707 0.815 80.8 59.9 0.343 0.789 95.0 91.7 0.909 0.887
Continual
SLIMPIMAGE ✓ 70.9 70.4 0.739 0.764 74.1 74.5 0.716 0.818 82.6 64.4 0.439 0.861 95.0 96.4 0.923 0.988
SLIMPFLAT ✓ 81.3 81.5 0.823 0.881 77.8 77.8 0.783 0.895 84.1 73.0 0.576 0.884 95.0 96.4 0.923 0.988
SLIMP ✓ 89.6 89.6 0.904 0.927 87.7 87.5 0.886 0.924 85.9 75.2 0.618 0.888 95.0 96.4 0.923 0.988

Table 3: Comparison of SLIMP with baselines on the lesion classification task using kNN with
k = 10. MD stands for ‘Metadata’ used for downstream classification, while asterisk (*) denotes the
use of metadata from the reference dataset (SLICE3D). For all metrics, higher values are better. Best
results are in bold, second best are underlined.

The use of pseudo-modalities constructed through retrieval of metadata from the reference dataset,
denoted as Ret-SLIMP in the tables, shows consistently improved performance compared to Pre-
SLIMP and comparable performance with SLIMPIMAGE, even though it has not seen any data from
the target datasets during training. This is valuable when the target dataset lacks metadata. This
observation also further highlights the importance of using metadata for downstream classification.

Low-shot evaluation The proposed multi-modal continual pre-training strategy does not rely on
target labels. This is crucial as data labeling is expensive and time-consuming, especially in the
context of skin lesion classification and other similar medical applications. To further assess the
quality of the learning representations, we examine how SLIMP performs in a low-shot learning
setting, considering 1 %, 5 %, and 10 % of the target dataset labels for downstream classification.
The results, presented in the last rows of Table 2 (highlighted in orange), indicate that the SLIMP
features lead to remarkable low-shot learning performance. It is interesting to note that in most cases,
SLIMP low-shot performance is better than SLIMPIMAGE and SLIMPFLAT. The first suggests the
importance of the model making use of metadata both during pre-training, but also for the downstream

Method Metadata Acc F1-macro F1-weighted
SBCL ✗ 45.7 0.289 0.433
SimCLR ✗ 84.2 0.688 0.826
TFormer ✓ 78.7 0.698 0.792
SLIMP ✓ 82.9 0.825 0.835

Table 4: Comparison of SLIMP with SBCL, SimCLR and TFormer baselines for an imbalanced
multiclass classification task on PAD-UFES-20 dataset. Best results in bold.
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Image Metadata PAD-UFES-20 HIBA HAM10000 PH2
Lesion Patient Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

Linear Probing
✓ ✗ ✗ 76.1 75.5 0.764 0.807 77.8 78.1 0.763 0.867 84.7 69.2 0.529 0.889

95.0 96.4 0.923 0.988✓ ✓ ✗ 88.3 88.2 0.892 0.917 87.0 86.7 0.885 0.916 84.0 69.3 0.527 0.882
✓ ✓ ✓ 90.9 90.2 0.921 0.926 90.7 90.6 0.914 0.947 85.9 78.5 0.650 0.901

kNN
✓ ✗ ✗ 70.9 70.4 0.739 0.764 74.1 74.5 0.716 0.818 82.6 64.4 0.439 0.861

95.0 96.4 0.923 0.988✓ ✓ ✗ 87.0 87.2 0.877 0.919 81.5 81.4 0.824 0.905 85.1 70.8 0.555 0.888
✓ ✓ ✓ 89.6 89.6 0.904 0.927 87.7 87.5 0.886 0.924 85.9 75.2 0.618 0.888

Table 5: Ablation study of the SLIMP encoder outputs used for downstream classification.

classification task. Comparable performance to SLIMPFLAT further highlights the ability of the nested
contrastive learning to capture relations among metadata and images.

Multiclass classification In Table 4 we evaluate our proposed SLIMP method in a multiclass
classification setting on PAD-UFES-20 dataset, in comparison with SimCLR, SBCL, and TFormer.
We report results for the overall Accuracy (Acc), F1-macro (which ensures equal contribution
from minority classes), and F1-weighted (which accounts for class imbalance). Notably, SLIMP
outperforms all baselines in both F1-score metrics, highlighting the robustness of SLIMP in handling
imbalanced multiclass classification tasks. We note that techniques addressing class imbalance can
be combined with SLIMP to further improve multiclass classification performance.

4.5 Ablation

To assess the importance of incorporating two distinct levels of metadata, we compare different
variants of SLIMP in Table 5. Specifically, in the first row of we consider the linear probing
performance of a variant where only the image encoder is fine-tuned on the target dataset, while in
the second row we consider a variant where the image encoder is still fine-tuned on the target dataset,
while a single metadata encoder is used, trained on the lesion metadata of the target dataset alone.
The third row shows the results of the proposed SLIMP model. The last three rows report analogous
results with kNN classification. The results suggest that the addition of each modality contributes
positively to the downstream task performance. Additional ablations are provided in Section C.

5 Conclusions and limitations

We have presented SLIMP, a novel nested multi-modal pre-training strategy for learning rich skin
lesion representations by considering lesion images in combination with associated lesion-level
as well as patient-level metadata. The experimental evaluation demonstrates SLIMP’s ability to
learn representations that improve performance in downstream classification tasks, by combining
information about the patient’s lesion phenotype, with information regarding their traits and habits.
In this context, we propose strategies for fully exploiting available metadata, through all the stages
of the learning process, including a method that enables the enhancement of image-only skin lesion
datasets by ‘borrowing’ patient and lesion metadata from reference pre-training data. Importantly,
the proposed method does not rely on data annotations, handling a major challenge in healthcare
applications where data annotation incurs significant costs. The results obtained for low-shot settings
of the target datasets, demonstrate the quality of the obtained skin lesion representations as they
enable high classification performance even with minimal labeled data. Considering the above, our
proposed method has the potential to become widely applicable in clinical settings, providing insights
and decision support during skin lesion diagnosis.

Despite its strengths, the proposed method has certain limitations. Firstly, the nested pre-training
strategy requires a data structure that incorporates both patient- and lesion-level metadata, which
may limit its adaptability to other domains where such structured scenarios do not straight-forwardly
exist. Secondly, significant shift in the image domain, including high variability in the sources and
resolutions of lesion images, can possibly downgrade downstream performance. This problem can be
addressed by incorporating image augmentations in the learning process. Regarding negative impacts,
it should be noted that misuse of this method, as for all computer-aided diagnosis methods, can lead
to overdiagnoses, or misdiagnoses, with important psychological and economic repercussions. Hence,
real-life use of such systems should be intended only for assisting the decision-making of expert
users, and not for direct use by the patients.
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A Notation

Table 6 summarizes the notation used throughout the manuscript.

Notation Description

P Number of patients indexed by p ∈ {1, ...P}
Lp Total lesions of patient p indexed by l ∈ {1, ...Lp}
TPp Tabular metadata for patient p
TLl

p Tabular metadata for lesion l of patient p
Ilp Lesion image l of patient p
wl

p Image encoder output of Ilp
hl
p Tabular encoder output of TLl

p

xp Tabular encoder output of TPp

zp Linearly transformed output based on {wl
p, h

l
p}

D Output dimensionality of each component

H̃ = {h̃l}Ll=1 Lesion-level pre-trained features of original dataset
X̃ = {x̃p}Pp=1 Patient-level pre-trained features of original dataset

ĥl Retrieved features from H̃

ẑp Linearly transformed output based on {wl
p, ĥ

l
p}

x̂p Retrieved features from X̃

ŷl
p concat{wl

p, ĥ
l, x̂p}

Table 6: Summary of the notation.

B Dataset details

The following skin-lesion classification datasets are considered:

SLICE-3D [5]: a public skin lesion dataset containing up to 401,059 15mm-by-15mm field-of-view
cropped images, centered on distinct lesions extracted from 3D Total Body Photography (TBP)
collected across seven dermatologic centers worldwide. The dataset was curated for the ISIC 2024
Challenge and contains 40 clinical features concerning both patients and lesions, such as age, sex,
general anatomic site, common patient identifier, clinical size, and various data fields from the TBP
Lesion Visualizer.

PAD-UFES-20 [7]: a skin lesion dataset containing 2,298 close-up clinical images collected using
different smartphone devices. It includes six types of skin lesions, data from 1,373 patients, and up to
22 clinical features per sample, covering both patient and lesion attributes, such as age, skin lesion
location, and lesion diameter. The skin lesions are: Basal Cell Carcinoma (BCC), Squamous Cell
Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma (MEL), and
Nevus (NEV).

HIBA [27]: a skin lesion archive with clinical and dermoscopic images collected in Argentina,
containing 1,616 images of 10 different types of skin lesions, including Basal Cell Carcinoma (BCC),
Squamous Cell Carcinoma (SCC), Actinic Keratosis (ACK), Seborrheic Keratosis (SEK), Melanoma
(MEL), Nevus (NEV), Vascular Lesion (VASC), Lichenoid Keratosis (LK), Solar Lentigo (SL), and
Dermatofibroma (DF).
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HAM10000 [8]: also known as “Human Against Machine with 10,000 training images,” this dataset
comprises 10,015 multi-source dermoscopic images of skin lesions divided into seven classes and
includes four clinical features, with two related to patient demographics and two describing lesion
characteristics. The skin lesions are: Actinic Keratosis and Intraepithelial Carcinoma (AKIEC), Basal
Cell Carcinoma (BCC), Benign Keratosis-like Lesions (BKL), Dermatofibroma (DF), Melanoma
(MEL), Melanocytic Nevi (NV), and Vascular Lesions (VASC).

PH2 [6]: a small dataset with 200 dermoscopic skin lesion images, including three classes: 80
common nevi, 80 atypical nevi, and 40 melanomas. The dataset contains 13 clinical lesion features,
such as clinical and histological diagnosis, and the assessment of various dermoscopic criteria.

SLICE-3D [5], being the largest and most complete one, is considered as the reference dataset for
pre-training the SLIMP model. All other datasets are considered as target datasets for performing
skin classification using the pretrained model. Unless otherwise stated, evaluation is performed
considering binary classification targets (benign/malignant) of the datasets that are better balanced.

For PAD-UFES-20 [7], malignant classes include Basal Cell Carcinoma (BCC), Melanoma (MEL)
and Squamous Cell Carcinoma (SCC), while benign classes include Actinic Keratosis (ACK), Nevus
(NEV) and Seborrheic Keratosis (SEK). In HAM10000 [8], Basal Cell Carcinoma (BCC) and
Melanoma (MEL) are categorized as malignant, with benign classes comprising Actinic Keratosis
(ACK), Nevus (NEV), Vascular Lesion (VASC), Dermatofibroma (DF), and Benign Keratosis-like
Lesions (BKL). In HIBA [27], the malignant class includes Basal Cell Carcinoma (BCC), Melanoma
(MEL) and Squamous Cell Carcinoma (SCC), while benign lesions encompass Actinic Keratosis
(ACK), Dermatofibroma (DF), Lichenoid Keratosis (LK), Seborrheic Keratosis (SEK), Nevus (NEV),
Vascular Lesion (VASC), and Solar Lentigo (SL). In the case of PH2 [6] dataset, the malignant
category consists only of melanomas, while common nevi and atypical nevi were grouped as benign.
SLICE-3D [5], the largest dataset in this study, is inherently binary, with an extremely imbalanced
distribution: 99.9% of lesions are benign, while only 0.1% are malignant.

C Extended ablation

We report additional ablations concerning the choice of image and tabular encoders, as well as the
patient batch size. In the tables below, we highlight in light blue the reference configuration adopted
in the experiments of the main text.

C.1 Image encoder

We consider the influence of the image encoder size on the downstream skin lesion classification task.
Specifically, we consider the Tiny, Small & Base ViT variants [28, 37]. Table 7 shows the influence
of the image encoder size on the performance metrics across four datasets: PAD-UFES-20, HIBA,
HAM10000, and PH2. Interestingly, the influence of the image encoder size in the case of SLIMP is
reduced, which can be attributed to the complementary information added by the metadata through
the tabular encoder. Table 8 reports the number of parameters for the different image encoder sizes,
with ViT-Base being approximately 4× larger than ViT-Small and 15× larger than ViT-Tiny.

PAD-UFES-20 HIBA HAM10000 PH2 - w/out patient metada
Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

lin
pr

ob SLIMP w/ ViT-T 89.6 89.0 0.908 0.922 89.5 89.3 0.904 0.939 84.7 81.7 0.665 0.910 95.0 91.7 0.909 1.000
SLIMP w/ ViT-S 90.9 90.2 0.921 0.926 90.7 90.6 0.914 0.947 85.9 78.5 0.650 0.901 95.0 96.4 0.923 0.988
SLIMP w/ ViT-B 87.8 86.9 0.896 0.899 83.3 83.0 0.851 0.918 81.7 72.4 0.553 0.862 90.0 83.3 0.800 1.000

kN
N

SLIMP w/ ViT-T 81.7 81.4 0.837 0.858 83.3 83.2 0.842 0.904 85.7 74.9 0.612 0.904 90.0 83.3 0.800 1.000
SLIMP w/ ViT-S 89.6 89.6 0.904 0.927 87.7 87.5 0.886 0.924 85.9 75.2 0.618 0.888 95.0 96.4 0.923 0.988
SLIMP w/ ViT-B 84.8 84.4 0.865 0.900 81.5 81.3 0.830 0.887 82.3 64.4 0.438 0.851 80.0 66.7 0.500 1.000

Table 7: Impact of image encoder size on the skin classification performance using SLIMP. Best
results in bold.

The choice of N , the number of images and lesions selected per patient during training, also plays
a role in performance differences. For ViT-Tiny and ViT-Small, N = 100 was chosen to balance
computation and training efficiency, while for ViT-Base, N = 50 was used due to the model’s
significantly larger size and computational requirements. This may partially explain the performance
drop observed in ViT-Base architectures, as the model has less diverse per-patient data for training.
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Figure 3: Representation of class distribution within each dataset considered.

# of params (milions)
w/ TRACE w/ FT-Transformer

ViT-Tiny ViT-Small ViT-Base ViT-Small
SLIMP

SLICE-3D 8.7 34.3 136 99.9
SLIMP

PAD-UFES-20 2.2 8.3 32.6
78.5HIBA 2.1 8.0 31.3

HAM10000 2.1 8.0 31.3
Table 8: Number of parameters for the SLIMP and the SLIMP methods for different image and
tabular encoders.

In summary, ViT-Small tends to strike the best balance between performance and model complexity,
as seen across most datasets.

C.2 Tabular encoder

We compare the performance of SLIMP considering two tabular encoders: FT-Transformer [38] and
TRACE [29]. Table 9 presents the corresponding performance across all datasets, using ViT-Small
as the image encoder. TRACE, which is specialized for clinical data, consistently outperforms the
generic FT-Transformer across all datasets and metrics considered, despite the fact that SLIMP
with FT-Transformer has a significantly larger number of parameters, as shown in Table 8. In fact,
despite being over four times bigger, FT-Transformer does not achieve the same level of performance.
Moreover, in contrast to the adopted tabular encoder TRACE, FT-Transformer requires a significant
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amount of hyper-parameter tuning to achieve optimal performance. These observations suggest
that the task-specific design of TRACE offers a better balance of efficiency and performance when
working with medical metadata, making it a more suitable choice for SLIMP.

PAD-UFES-20 HIBA HAM10000
Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

lin
pr

ob SLIMP w/ FT-Transformer 89.6 89.1 0.908 0.946 84.6 84.0 0.871 0.910 80.2 50.0 0.000 0.655
SLIMP w/ TRACE 90.9 90.2 0.921 0.926 90.7 90.6 0.914 0.947 85.9 78.5 0.650 0.901

kN
N SLIMP w/ FT-Transformer 87.4 87.2 0.886 0.939 82.7 82.6 0.837 0.882 77.7 52.4 0.159 0.745

SLIMP w/ TRACE 89.6 89.6 0.904 0.927 87.7 87.5 0.886 0.924 85.9 75.2 0.618 0.888

Table 9: Comparison between the generic tabular encoder FT-Transformer and the tabular encoder
for medical data TRACE. Best results in bold.

Table 10 compares the computational complexity, measured in GFLOPS, for SimCLR, SLIMP
with FT-Transformer, and SLIMP with TRACE with different encoder sizes (ViT-Tiny, ViT-Small,
ViT-Base). Naturally, computational costs scale with the size of the ViT encoder, highlighting the
trade-off between model size and efficiency. In relation to metadata encoding, SimCLR which
lacks metadata encoding is slightly more efficient with respect to the proposed multimodal SLIMP
method, but SLIMP generally performs better, as has been shown in the results presented in the
main text. On the other hand, the FT-Transformer tabular encoder introduces a significant overhead.
The reference configuration featuring SLIMP with TRACE is a more balanced choice, offering
improved performance with significantly less GFLOPS compared to the FT-Transformer. The number
of GFLOPS for the supervised approaches SBCL, SBCL-C and TFormer are also reported in the table
for comparison. Additionally, Table 11, reports the number of parameters and the relative training
time between the SimCLR, SLIMP, SBCL and TFormer. Relative training times are normalized with
respect to the SimCLR’s training time on SLICE-3D.

GFLOPS
SBCL(-C) 0.564
TFormer 4.509
SimCLR 1.258 | 4.608 | 17.582 (ViT-T | ViT-S | ViT-B)
SLIMP w/ FT-Transformer 1.694 | 6.298 | 24.233 (ViT-T | ViT-S | ViT-B)
SLIMP w/ TRACE 1.298 | 4.765 | 18.203 (ViT-T | ViT-S | ViT-B)

Table 10: Comparison of computational complexity in terms of GFLOPS between SBCL(-C),
TFormer, SimCLR, SLIMP with FT-Transformer, and SLIMP with TRACE with different encoder
sizes. ViT-T, ViT-S and ViT-B correspond to ViT-Tiny, ViT-Small and ViT-Base, respectively.

SLICE-3D PAD-UFES-20 HIBA HAM10000 PH2

#
pa

ra
m

s SimCLR 5.5M
SLIMP 34.3M 8.3M 8.0M 8.0M 4.1M
SBCL 0.5M 0.5M 0.5M 0.5M 0.5M

TFormer 27.8M 27.8M 27.8M 27.8M

re
l.

tim
e SimCLR 1

SLIMP 0.3 0.04 0.03 0.1 0.002
SBCL 0.2 0.06 0.05 0.01 0.002

TFormer 0.01 0.01 0.04 0.002
Table 11: Model size comparison based on the total trainable parameters for every dataset (columns)
and the relative training time, normalized to SimCLR’s training time on SLICE-3D.

C.3 Patient batch size

We examine the impact of the patient batch size considered in the continual pre-training of the SLIMP
on the PAD-UFES-20 dataset. Table 12 shows how the patient batch size affects performance on
binary skin lesion classification. We observe that smaller batch sizes, as B = 4 and B = 8, yield
slightly lower Balanced Accuracy (BAcc) and F1 scores, while larger batch sizes, lead to improved
performance across all metrics but AUC. B = 64 achieves the highest BAcc of 89.5% and an F1
score of 0.913. Interestingly, further increasing the batch size (e.g., B = 128 or B = 256) does not
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result in further performance gains and, in some cases, slightly decreases accuracy and F1 scores.
This further highlights the importance of carefully choosing the patient batch size considered in the
pre-training, as it can significantly impact performance. The choice of B = 64 strikes an effective
balance, justifying its choice as the reference configuration.

Acc BAcc F1 AUC
SLIMP w/ B = 4 90.0 86.4 0.886 0.907
SLIMP w/ B = 8 89.1 88.4 0.906 0.911
SLIMP w/ B = 32 88.7 88.4 0.898 0.928
SLIMP w/ B = 64 90.9 90.2 0.921 0.926

SLIMP w/ B = 128 89.6 89.1 0.908 0.918
SLIMP w/ B = 256 89.6 89.1 0.908 0.927

Table 12: Performance of the SLIMP method with different batch sizes (B) during the continual
self-supervised learning stage on the PAD-UFES-20 dataset. Best results in bold.

D Textual data

We reproduce a concept-based interpretability (CBI) method [39], by adapting CLIP on the SLICE-3D
dataset, considering a ViT-B/16 backbone architecture which offers optimal results. This methodology
uses visual-language models for exploiting textual concepts for melanoma classification offering
three different variants; (1) the Baseline approach, which directly applies CLIP, selecting the label
that achieves the highest cosine similarity between the image and text embeddings, (2) the CBM
approach, which introduces dermoscopic concepts and utilizes melanoma-specific coefficients to make
predictions and (3) the GPT-CBM approach, which extends each dermoscopic concept introduced in
CBM with multiple textual descriptions by querying it into ChatGPT.

In Table 13 we compare the performance of the above approaches, with our proposed SLIMP method,
across three different target datasets, in a ‘melanoma vs all’ classification scenario. SLIMP is only
adapted during linear probing while all pre-trained models on SLICE-3D dataset remain unchanged,
highlighting the robustness of the learned representations. SLIMP consistently outperforms all other
approaches without the need of task-specific pre-training.

PAD-UFES-20 HIBA HAM10000
Acc BAcc F1 AUC Acc BAcc F1 AUC Acc BAcc F1 AUC

Baseline 23.9 51.3 0.044 0.422 68.5 54.8 0.261 0.502 72.0 58.6 0.247 0.595
CBM 78.7 69.6 0.109 0.778 48.2 61.3 0.333 0.659 54.1 58.8 0.238 0.565

GPT-CBM 35.7 57.3 0.051 0.599 48.8 61.7 0.336 0.638 55.5 57.6 0.231 0.581
SLIMP 98.7 70.0 0.571 0.993 90.1 72.3 0.600 0.939 89.1 67.9 0.452 0.892

Table 13: Comparison of SLIMP method with CBI variants across three target datasets. Results for
the proposed SLIMP method are obtained using a linear probing setting. Best results in bold.

E Additional training details

Batch sampling strategy For both the initial and continual self-supervised pre-training stages,
we construct each batch with B patients, including their respective patient-level tabular metadata.
Additionally, for each patient, we sample N lesion images and their corresponding lesion-level tabular
metadata. The number of lesions N varies per patient and is capped by an upper limit Nmax. If a
patient has more lesions, then a subset of N = Nmax lesions is randomly sampled in each epoch. In
addition, a positive lesion sampling strategy is implemented, ensuring that, if a patient has malignant
lesions, they are always included in the N lesions sampled during training. This ensures that the
model encounters an adequate number of malignant lesions.

For the pseudo-modalities retrieval setup, where the images from the target dataset lack both lesion
and patient metadata, we create two independent pools with tabular features derived from the metadata
of the SLICE-3D reference dataset, by passing them through the pre-trained inner and outer tabular
encoders. This step does not preserve any association between patients and their corresponding
lesions. Consequently, the retrieval process of patient/lesion-level metadata is not constrained to
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select features from the same patient across every modality, maximizing the flexibility of the proposed
architecture.

Training details of supervised methods We pre-train SBCL [32] with a ResNet-32 architecture,
for 1000 epochs on SLICE-3D dataset, followed by a dataset-specific continual pre-training (SBCL-C)
for 100 epochs. Both pre-training setups use the SGD optimizer with a learning rate of 0.5 for the
initial pre-training and 1e−2 for the continual pre-training. We evaluate each target dataset on the
corresponding SBCL-C model, by applying linear classification for 150 epochs (following the SLIMP
linear probing setting) with a learning rate of 0.1. During linear classification we select the Classifier-
Balancing (CB) [40] train rule, which proved to outperform LDAM (Label-Distribution-Aware
Margin Loss) [41].

Regarding TFormer [36], we utilize the variant designed to process two modalities, namely clinical
images and tabular metadata, since the target datasets do not explicitly provide clinical and dermo-
scopic image pairs of the same lesion. During training, TFormer was fine-tuned on each target dataset,
using Adam optimizer with a learning rate of 1e−4, and a weight decay of 1e−4. The learning rate
was adjusted dynamically through the Cosine Annealing learning rate scheduler. The loss function
used throughout the training process was Binary Cross-Entropy.

F Qualitative assessment

Figure 4 shows the t-SNE [42] embeddings of the three SLIMP variants presented in Table 5, on the
PAD-UFES-20 dataset. We observe a better separation between benign and malignant lesions when
metadata are considered during pre-training.

Figure 5 presents randomly selected lesions from each dataset with the corresponding attention
maps extracted from the pre-trained image encoders of SLIMP, SimCLR (pre-trained on SLICE-
3D under the same setting as SLIMP), DINOv2 and MAE, in this order. We note that SLIMP
effectively localizes the majority of the lesions, regardless of differences in lesion shape, texture
and color. This consistency in identifying relevant lesion regions indicates the robustness of the
learned representations across diverse datasets that exhibit a high variation in visual appearance.
It also showcases the ability of the model to focus on important visual features, supporting the
improved downstream classification performance, and suggesting that the method can enhance the
interpretability and reliability of the results.

Figure 4: t-SNE visualization of SLIMP features for benign and malignant lesions in the PAD-UFES-
20 dataset. Left: Pre-training using image encoder alone; Middle: Pre-training using image and
lesion metadata; Right: Pre-training using images with lesion and patient-level metadata.
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Figure 5: Attention maps of SLIMP as obtained by the image encoder’s last block, in comparison with
the attention maps of SimCLR, DINOv2 and MAE pre-trained image encoders for the SLICE-3D
source dataset (top), and across four target datasets; PAD-UFES-20 (middle-left), HIBA (middle-
right), HAM10000 (bottom-left) and PH2 (bottom-right).
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