
Under review as a conference paper at ICLR 2024

TIG-BEV: MULTI-VIEW BEV 3D OBJECT DETECTION
VIA TARGET INNER-GEOMETRY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

To achieve accurate multi-view 3D object detection, existing methods propose to
benefit camera-based detectors with spatial cues provided by the LiDAR modal-
ity, e.g., depth supervision and bird-eye-view (BEV) feature distillation. However,
they employ a direct point-to-point mimicry from LiDAR to camera, which suffers
from the modality gap between Camera-LiDAR features. In this paper, we pro-
pose the Target Inner-Geometry learning scheme to enhance camera-based BEV
detectors from both depth and BEV feature by leveraging the LiDAR modality,
termed as TiG-BEV. Firstly, we introduce an inner-depth supervision module to
learn the low-level relative depth relations in each object. This equips camera-
based detectors with a deeper understanding of object-level spatial structures. Sec-
ondly, we design an inner-feature BEV distillation module to imitate the high-level
semantics of different keypoints within foreground targets. To further alleviate the
domain gap between two modalities, we incorporate both inter-channel and inter-
keypoint distillation to model feature similarity. With our target inner-geometry
learning, TiG-BEV effectively boosts BEVDepth by +2.3% NDS on nuScenes val
set, and achieves leading performance with 61.9% NDS on nuScenes leaderboard.

1 INTRODUCTION

3D object detection aims to recognize and localize objects in 3D space, which has made remarkable
strides in various applications, such as robotics (Antonello et al., 2017) and autonomous driving (Shi
et al., 2020; Wang et al., 2021b; Chen et al., 2022a; Caesar et al., 2020). Mainstream methods for
3D object detection can be categorized into LiDAR-based detectors (Deng et al., 2021; Shi et al.,
2020; 2019) and camera-based detectors (Li et al., 2022b;c; Wang et al., 2021a; 2022b; Zhang et al.,
2022a;b). LiDAR-based methods achieve outstanding performance by taking 3D point clouds as
input, which inherently contains rich spatial structures. In contrast, camera-based methods, while
providing cost-effective color context, are limited by the absence of geometric depth cues.

To address these performance disparities, existing methods leverage the spatial cues provided by the
LiDAR modality to enhance the precision of camera-based detectors. This enhancement primarily
falls into two schemes, as illustrated in Figure 1. (1) Dense Depth Supervision (Figure 1 (a)),
e.g., CaDDN (Reading et al., 2021) and BEVDepth (Li et al., 2022b). These methods project the
input LiDAR points onto image planes as depth maps, and explicitly supervise the categorical depth
prediction within both foreground and background regions. (2) BEV Feature Distillation (Figure 1
(b)), e.g., CMKD (Hong et al., 2022) and BEVDistill (Chen et al., 2022b). Employing the teacher-
student paradigm, these methods compel the camera-based detector (the student) to imitate the BEV
representation of a pre-trained LiDAR-based detector (the teacher). By directly mimicking the BEV
features, the student inherits the encoded high-level BEV semantics from the teacher.

However, existing methods fall short in capturing the inner-geometric characteristics of foreground
targets. Inner geometry of an object includes its low-level spatial contours and high-level part-
wise semantic relations, which are significant for precise object recognition and localization. For
instance, BEVDepth simply employs pixel-level depth supervision without tailoring it to capture
relative depth within objects, and BEVDistill applies foreground-guided distillation but neglects the
inner relations of BEV features. In addition, methods (Chen et al., 2022b; Hong et al., 2022) for BEV
feature distillation directly enforce the channel-level alignment between cross-modal BEV represen-
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(a) Dense Depth Supervision (b) BEV Feature Distillation (c) TiG-BEV (Ours)

Figure 1: Different LiDAR-to-Camera Learning Schemes: (a) Dense Depth Supervision (Li
et al., 2022b; Reading et al., 2021), which directly supervises the categorial depth distribution of
every valid pixel in the whole depth map, (b) BEV Feature Distillation (Chen et al., 2022b; Hong
et al., 2022), which constrainedly aligns the value of BEV feature between different modalities, (c)
Our Target Inner-Geometry Learning (TiG-BEV), which utilizes both the low-level inner-depth
relations and the high-level inner-feature semantics of foreground targets.

tations. Such strict mimicry might have a detrimental impact on performance due to the modality
gap between camera and LiDAR BEV features, i.e., visual appearances vs. spatial geometries.

To alleviate this issue, we propose a novel LiDAR-to-camera learning scheme, TiG-BEV, which in-
volves the inner-geometry of foreground targets into the camera-based detectors for multi-view BEV
3D object detection. As shown in Figure 1 (c), we simultaneously perform target inner-geometry
learning for both depth prediction and BEV representation learning. Firstly, besides the previous
absolute depth map prediction (Li et al., 2022b; Reading et al., 2021), we introduce an inner-depth
supervision module within pixels of different foreground targets. A reference point of depth is adap-
tively selected for each target to obtain the relative depth relationships shown in Figure 2, which
contributes to high-quality depth map prediction with better target structural understanding. Sec-
ondly, we propose an inner-feature BEV distillation module, which imitates the high-level fore-
ground BEV semantics generated by a pre-trained LiDAR-based detector. Different from previous
methods of dense and strict feature distillation (Chen et al., 2022b; Hong et al., 2022), we adaptively
sample several keypoints within each BEV foreground area and guide the camera-based detector to
learn their inner feature-similarities shown in Figure 3, which are in both inter-channel and inter-
keypoint manners. This approach enables the camera-based detector to not only inherit high-level,
part-wise LiDAR semantics but also relieve the modality gap by avoiding strict feature mimicry. Our
extensive experiments consistently demonstrate performance improvements achieved by TiG-BEV
compared to the baseline models.

The contributions of TiG-BEV are summarized below:

• We introduce an inner-depth supervision module that enables us to capture the internal depth
relations between different parts of each foreground target and leads to a better target depth map
prediction which is important to the perspective transformation to obtain the BEV feature.

• We propose an inner-feature BEV distillation module to transfer the well-learned knowledge from
LiDAR modality to camera-based BEV representations with the inner-geometry learning for high-
level BEV semantics instead of directly feature alignment.

• Extensive experiments have confirmed our effectiveness to enhance multi-view BEV 3D object
detection. On nuScenes val set, the powerful BEVDepth is boosted by +2.3% NDS and +2.4%
mAP, and with further enhancements of +3.0% NDS and +4.1% mAP on test set.

2 RELATED WORK

Camera-based 3D Object Detection. Camera-based 3D object detection has been widely used
for applications like autonomous driving since its low cost compared with LiDAR-based detec-
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Figure 2: Inner-depth Supervision. We
guide the camera-based detector to learn the
relative spatial structures within the target
foreground areas. A depth reference point
(dotted in yellow) is adaptively selected to
calculate relative depth values.

Figure 3: Inner-feature BEV Distillation.
We respectively conduct inter-channel and
inter-keypoint feature distillation in BEV
space for the camera-based detector, which
alleviates the cross-modal semantic gap and
boosts inner-geometry learning.

tors. FCOS3D (Wang et al., 2021a) first predicts the 3D attributes of objects through the features
around 2D centers and MonoDETR (Zhang et al., 2022a) introduces DETR-like (Carion et al., 2020)
architectures without complex post-processing. Recently, Bird’s-Eye-View (BEV), as a unified rep-
resentation of surrounding views, has attracted much attention. DETR3D (Wang et al., 2022b) and
PETR series(Liu et al., 2022a;b) adopt 3D object queries and integrate 3D reference points for fea-
ture aggregation. BEVDet series (Huang et al., 2021; Huang & Huang, 2022) utilize LSS (Philion
& Fidler, 2020) to transform 2D image features into 3D BEV representation. BEVFormer (Li et al.,
2022c) automates the camera-to-BEV process with learnable attention modules and BEV queries
in 3D space. BEVDepth (Li et al., 2022b) observes that accurate depth estimation is essential for
BEV 3D object detection supervised by projected LiDAR points. We defer more related works in
Appendix A due to the space constraints. As a LiDAR-to-camera learning scheme, our TiG-BEV
leverages the pre-trained LiDAR-based detector to improve the performance of camera-based detec-
tors for multi-view BEV 3D object detection.

3 METHOD

The overall architecture of TiG-BEV is shown in Figure 4, which consists of three components: the
student camera-based detector, the teacher LiDAR-based detector, and our proposed target inner-
geometry learning scheme. In Section 3.1, we first introduce the adopted baseline models. Then,
we specifically illustrate how TiG-BEV distills the inner-geometry characteristics, including inner-
depth supervision (Section 3.2) and inner-BEV feature distillation (Section 3.3). Finally in Sec-
tion 3.4, we present the overall loss of for LiDAR-to-camera learning.

3.1 BASELINE MODELS

Student Camera-based Detector. By default, we adopt BEVDepth (Li et al., 2022b) as our stu-
dent camera-based detector for multi-view 3D object detection. Given the input multi-view images
(normally 6 views for a scene), the student model first utilizes a shared 2D backbone and FPN mod-
ule (Lin et al., 2017) to extract the C-channel visual features {Fi}6i=1, where Fi ∈ RC×Hv×Wv , and
Hv,Wv denote the size of feature maps. These features are fed into a shared depth network to gen-
erate the categorical depth map (Reading et al., 2021), {Di}6i=1, where Di ∈ RD×Hv×Wv , where D
denotes the pre-defined number of depth bins. During training, BEVDepth adopts dense depth super-
vision for the predicted depth maps, which projects the paired LiDAR input onto multi-view image
planes to construct pixel-by-pixel absolute depth ground truth, {Dgt

i }6i=1, where Dgt
i ∈ R1×Hv×Wv .

Then, following (Philion & Fidler, 2020), the multi-view visual features are projected into a unified
BEV representation via the predicted depth maps, which is further encoded by a BEV encoder, de-
noted as F cam

bev ∈ RC×Hbev×Wbev . Finally, the detection heads are applied on top to predict objects
in 3D space. We represent the two basic losses of the student model as LA

depth and Ldet, respectively
denoting the Binary Cross Entropy loss for dense absolute depth values and the 3D detection loss.

Teacher LiDAR-based Detector. We select the popular LiDAR detector CenterPoint (Yin et al.,
2021) as the teacher for target inner-geometry learning. Given the input point cloud data, Center-
Point voxelizes into grid-based data and utilizes a 3D backbone to obtain the C-channel LiDAR
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Figure 4: Overall Framework of TiG-BEV, which contains a pre-trained LiDAR-based detector
as teacher, a camera-based detector as student, and a target inner-geometry scheme for cross-modal
learning. Our proposed learning paradigm transfers the inner-geometry semantics of the LiDAR
modality via two components, an inner-depth supervision (Section 3.2) for foreground relative depth,
and an inner-feature BEV distillation (Section 3.3) from both channel-wise and keypoint-wise.

BEV feature F lidar
bev ∈ RC×Hbev×Wbev , which has the same feature size as F cam

bev from the student
detector. As the CenterPoint has been well pre-trained, F lidar

bev can provide the student BEV feature
with sufficient geometric and semantic knowledge, espeically in the target foreground areas. Note
that the LiDAR-based teacher is merely required during training for cross-modal learning, and for
inference, only multi-view images are token as input for the camera-based detector.

3.2 INNER-DEPTH SUPERVISION

In addition to the dense absolute depth supervision, we propose to guide the student model to learn
the inner-depth geometries in different target foreground areas. As shown in Figure 5 (a), for the
instance level, the existing absolute depth supervision with categorical representation ignores the
relative structural information inside each object and provide no explicit fine-grained depth signals.
Therefore, we propose to additionally conduct inner-depth supervision with continuous values from
the LiDAR projected depth maps shown in Figure 5 (b), which effectively boosts the network to
capture the inner-geometry of object targets.

Foreground Target Localization. To accurately obtain the inner-depth values, we first localize
the foreground pixels for each object targets in the depth maps. Given the ground-truth 3D bounding
boxes, we extract the corresponding 3D LiDAR points inside the box for each object target, and
project them onto different image planes. In this way, we can attain the pixels within foreground
object areas on both the predicted and ground-truth depth maps, {Di, D

gt
i }6i=1. The foreground

pixels can roughly depict the geometric contour of different target objects and well improve the
subsequent inner-depth learning. We taking the i-th view as an example and omit the index i in the
following texts for simplicity. Suppose there exist M target objects on the image, we denote the
foreground depth-value set for the M objects as {Sj , S

gt
j }Mj=1, where each {Sj , S

gt
j } includes the

foreground categorical depth prediction and ground-truth depth values for the j-th target.

Continuous Depth Representation. Different from the categorical representation of absolute
depth values, we represent the predicted inner depth of foreground targets by continuous values,
which reflects more fine-grained geometric variations. For pixel (x, y) of the j-th target object Sj ,
the predicted possibility of k-th depth bin is denoted as Sj(x, y)[k], where 1 ≤ k ≤ D. Then, we
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Figure 5: Comparison of Categorical Ab-
solute Depth and Continuous Inner Depth.
We adopt the inner-depth supervision with
continuous depth values to guide the camera-
based student to learn local spatial structures
of foreground object targets.
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Figure 6: Details of Innter-feature BEV
Distillation. For each foreground area in
BEV space, we represent rach target feature
by a set of keypoints and conduct feature
distillation in both inter-channel and inter-
keypoint manners.

calculate the continuous depth value Ŝj(x, y) for the pixel (x, y) as

Ŝj(x, y) =

D∑
k=1

(Ŝ[k] · Sj(x, y)[k]), (1)

where Ŝ[k] denotes the depth value of the k-th bin center. By this, we convert the categorical depth
prediction of different target objects, {Sj}Mj=1, into continuous representations, denoted as {Ŝj}Mj=1.

Adaptive Depth Reference. To calculate the relative depth values, we propose to utilize an adap-
tive depth reference for different foreground targets. Specifically, according to the predicted con-
tinuous depth values in {Ŝj}Mj=1, we select the pixel with the smallest depth prediction error as the
reference point for each target, and correspondingly set its depth value as the depth reference, as
shown in Figure 5. For the j-th target with the ground-truth inner-depth {Ŝj , Ŝ

gt
j }Mj=1, we calculate

the depth reference point (xr, yr) by

(xr, yr) = Argmin
(x,y)∈Ŝj

(
Ŝgt
j (x, y)− Ŝj(x, y)

)
. (2)

Then, the predicted and ground-truth reference depth values are denoted as Ŝj(xr, yr) and
Ŝgt
j (xr, yr), respectively. By adaptively selecting the reference point with the smallest error, the

inner-depth distribution can dynamically adapt to objects with different shapes and appearances,
which stabilizes the learning for some truncated and occluded objects.

Inner-depth Calculation. On top of the reference depth value, we calculate the relative depth
values within the foreground area of each target object. For pixel (x, y) of the j-th target {Ŝj , Ŝ

gt
j },

the predicted and ground-truth inner-depth values are formulated as

rŜj(x, y) = Ŝj(x, y)− Ŝj(xr, yr),

rŜgt
j (x, y) = Ŝgt

j (x, y)− Ŝgt
j (xr, yr).

(3)

We denote the obtained predicted and ground-truth inner-depth value sets for M target objects as
{R̂j , R̂

gt
j }Mj=1. Finally, we supervise the inner-depth prediction by an L2 loss, formulated as

LR
depth =

M∑
j=1

||R̂j − R̂gt
j ||2. (4)

3.3 INNER-FEATURE BEV DISTILLATION

Besides the depth supervision for low-level spatial information, our TiG-BEV also adopts the inner-
geometry learning for high-level BEV semantics from pre-trained LiDAR-based detectors. Previous
works (Chen et al., 2022b; Hong et al., 2022) for BEV distillation directly force the student to imitate

5



Under review as a conference paper at ICLR 2024

the teacher’s features point-to-point in the BEV space. In spite of the performance improvement,
such strategies are constrained by the following two aspects. On the one hand, due to the sparsity of
scanned point clouds, the LiDAR-based BEV features might contain redundant and noisy informa-
tion in the background areas. Although BEVDistill (Chen et al., 2022b) utilizes foreground masks to
alleviate this issue, such dense feature distillation still cannot provide focused and effective guidance
to the student network. On the other hand, the camera-based and LiDAR-based BEV features depict
different characteristics of the scene, respectively, visual appearances and spatial structures. There-
fore, forcing the BEV features to be completely consistent between two modalities is sub-optimal
considering the semantic gap. In our TiG-BEV, we propose an inner-feature BEV distillation (Fig-
ure 6) consisting of inter-channel and inter-keypoint learning schemes, which conducts attentive
target features distillation and relieve the cross-modal semantic gap.
Target Keypoint Extraction. To distill the knowledge of LiDAR-based detectors only within
sparse foreground regions, we extract the BEV area of each object target and represent it by a series
of keypoint features. Given the ground-truth 3D bounding box for each target, we first enlarge the
box size for a little bit in the BEV space to cover the entire foreground area, e.g., object contours
and edges. Then, we uniformly sample its BEV bounding box by N keypoints, and adopt bilinear
interpolation to obtain the keypoint features from the encoded BEV representations. From both
camera-based F cam

bev and LiDAR-based F lidar
bev , we respectively extract the keypoint features for

all M object targets as {f cam
j , f lidar

j }Mj=1, where f cam
j , f lidar

j ∈ RN×C . By these, such BEV
keypoints can well represent the part-wise features and the inner-geometry semantics of foreground
targets.
Inter-channel BEV Distillation. Taking the j-th object target as an example, we first apply an
inter-channel BEV distillation, which guides the student keypoint features to mimic the channel-wise
relationships of the teacher’s. Such inter-channel signals imply the overall geometric semantics of
each object target. Compared with the previous channel-by-channel supervision, our inter-channel
distillation can preserve the distinctive aspects of the two modalities, while effectively transfer the
well pre-trained knowledge of LiDAR-based detectors. Specifically, we calculate the inter-channel
similarities of both camera-based and LiDAR-based keypoint features, formulated as

Acam
j = f cam

j f cam
j

⊤; Alidar
j = f lidar

j f lidar
j

⊤
, (5)

where Acam
j , Alidar

j ∈ RC×C denote the feature relationships between different C channels for
the two modalities. For all M objects in a scene, we adopt L2 loss between the two inter-channel
similarities for feature distillation as

LIC
bev =

M∑
j=1

||Alidar
j −Acam

j ||2. (6)

Inter-keypoint BEV Distillation. The inter-channel distillation guides the camera-based detector
to learn the channel-wise diversity from the LiDAR-based teacher. However, it is conducted with-
out considering the inner correlation of different keypoints within each object target, which is not
capable of capturing the local geometries among different foreground parts, e.g., the front and rear
of cars. To this end, we propose to utilize the inter-keypoint correlations of LiDAR-based BEV
features and transfer such inner-geometry semantics into camera-based detectors. Analogous to
the aforementioned inter-channel module, for the j-th target object, we calculate the inter-keypoint
similarities in a transposed manner for the two modalities as

Bcam
j = f cam

j
⊤f cam

j ; Blidar
j = f lidar

j

⊤
f lidar
j , (7)

where Bcam
j , Blidar

j ∈ RN×N denote the feature relationships between different N keypoints re-
spectively for camera and LiDAR. We also adopt L2 loss for all M targets as

LIK
bev =

M∑
j=1

||Blidar
j −Bcam

j ||2. (8)

Then, the distillation loss for inter-channel and inter-keypoint features is formulated as

Lbev = LIC
bev + LIK

bev, (9)

where the two terms are orthogonal respectively for the channel-wise feature diversity and keypoint-
wise semantic correlations.
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Table 1: Performance Comparison on nuScenes (Caesar et al., 2020) Val Set. ’C’ and ’L’ denote
the camera-based and LiDAR-based methods, which refer to the input data during inference. *
denotes our implementation using BEVDet (Huang et al., 2021) codebase.

Method Modality Backbone Resolution mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterPoint (Yin et al., 2021) L VoxelNet - 0.564 0.646 0.299 0.254 0.330 0.286 0.191

FCOS3D (Wang et al., 2021a) C ResNet-101 900 × 1600 0.343 0.415 0.725 0.263 0.422 1.292 0.153
PGD (Wang et al., 2022a) C ResNet-101 900 × 1600 0.369 0.428 0.683 0.260 0.439 1.268 0.185
MonoDETR (Zhang et al., 2022a) C ResNet-101 900 × 1600 0.372 0.434 0.676 0.258 0.429 1.253 0.176
DETR3D (Wang et al., 2022b) C ResNet-101 900 × 1600 0.303 0.374 0.860 0.278 0.437 0.967 0.235
PETR (Liu et al., 2022a) C ResNet-101 512 × 1408 0.357 0.421 0.710 0.270 0.490 0.885 0.224
BEVFormer (Li et al., 2022c) C ResNet-101 900 × 1600 0.416 0.517 0.673 0.274 0.372 0.394 0.198
PETRv2 (Liu et al., 2022b) C ResNet-101 640 × 1600 0.421 0.524 0.681 0.267 0.357 0.377 0.186

BEVDet (Huang et al., 2021) C Swin-T 256 × 704 0.312 0.392 0.691 0.272 0.523 0.909 0.247
+ TiG-BEV L → C Swin-T 256 × 704 0.334 0.421 0.647 0.270 0.554 0.777 0.211

+2.2% +2.9% -4.4% -0.2% +3.1% -13.2% -3.6%

BEVDet4D (Huang & Huang, 2022) C ResNet-101 512 × 1408 0.370 0.492 0.667 0.272 0.475 0.331 0.182
+ TiG-BEV L → C ResNet-101 512 × 1408 0.412 0.520 0.608 0.271 0.451 0.341 0.187

+4.2% +2.8% -5.9% -0.1% -2.4% +1.0% +0.5%

BEVDepth∗ (Li et al., 2022b) C ResNet-101 512 × 1408 0.416 0.521 0.605 0.268 0.455 0.333 0.203
+ TiG-BEV L → C ResNet-101 512 × 1408 0.440 0.544 0.570 0.267 0.392 0.331 0.201

+2.4% +2.3% -3.5% -0.1% -6.3% -0.2% -0.2%

3.4 OVERALL LOSS

To sum up, we benefit the student camera-based detector by target inner-geometry from two com-
plementary aspects, i.e., an inner-depth supervision for low-level signals and an inner-feature BEV
distillation for high-level semantics. They produce two losses as LR

depth and Lbev. Together with
the original two losses, i.e., dense absolute depth supervision LA

depth, and 3D detection Ldet, the
overall loss of our TiG-BEV is formulated as

LTiG = Ldet + LA
depth + LR

depth + LIC
bev + LIK

bev. (10)

4 EXPERIMENT

In this section, we first introduce our implementation settings. Then, we conduct a series of experi-
ments with ablation studies to show the effectiveness of TiG-BEV.

4.1 EXPERIMENTAL SETTINGS

Dataset. We evaluate our TiG-BEV on nuScenes dataset (Caesar et al., 2020), one of the most
popular large-scale outdoor public datasets for autonomous driving. It consists of 700, 150, 150
scenes for training, validation and testing, respectively. We refer to Appendix B.1 for dataset details.

Implementation Details. We implement our TiG-BEV using the BEVDet (Huang et al., 2021;
Huang & Huang, 2022) code base on 8 NVIDIA A100 GPUs, which is built on MMDetec-
tion3D toolkit (Contributors, 2020). A pre-trained CenterPoint (Yin et al., 2021) with voxel size
of [0.1, 0.1, 0.2] is adopted as the LiDAR-based teacher, and the camera-based students include
BEVDepth (Li et al., 2022b), BEVDet (Huang et al., 2021) and BEVDet4D (Huang & Huang,
2022). During inference, the camare-based detecots only take multi-view images as input without
the LiDAR data or teachers. Referring to BEVDepth, we additionally add the dense depth super-
vision on top of BEVDet and BEVDet4D besides our TiG-BEV. We follow their official training
settings as default, including data augmentation (random flip, scale and rotation), training schedule
(2x), and others (AdamW optimizer (Loshchilov & Hutter, 2017), 2e-4 learning rate and batch size
8). For nuScenes val set in Table 1, we compare our TiG-BEV with all other methods under the
CBGS strategy (Zhu et al., 2019). For nuScenes test set in Table 2, we implement TiG-BEV on
BEVDepth with ConvNeXt-base (Liu et al., 2022c) backbone and input images of 640× 1600. We
train our model for 20 epochs with CBGS and evaluate with test time augmentation. For all other
results, we do not utilize CBGS to better reveal the significance of proposed methods.
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Table 2: Performance Comparison on nuScenes (Caesar et al., 2020) Test Set. ’C’ denotes the
camera-based method, which refers to the input during inference. * denotes our implementation the
same as BEVDistill (Chen et al., 2022b) and † is reported by DistillBEV (Wang et al., 2023).

Method Modality Backbone Resolution mAP↑ NDS↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

CenterPoint (Yin et al., 2021) L VoxelNet - 0.603 0.673 0.262 0.239 0.361 0.288 0.136

FCOS3D (Wang et al., 2021a) C ResNet-101 900 ×1600 0.358 0.428 0.690 0.249 0.452 1.434 0.124
PGD (Wang et al., 2022a) C ResNet-101 900 ×1600 0.386 0.448 0.626 0.245 0.451 1.509 0.127
DETR3D (Wang et al., 2022b) C VoVNet-99 900 ×1600 0.412 0.479 0.641 0.255 0.394 0.845 0.133
PETR (Liu et al., 2022a) C VoVNet-99 900 ×1600 0.441 0.504 0.593 0.249 0.384 0.808 0.132
BEVFormer (Li et al., 2022c) C VoVNet-99 900 ×1600 0.481 0.569 0.582 0.256 0.375 0.378 0.126
PETRv2 (Liu et al., 2022b) C VoVNet-99 640 ×1600 0.490 0.582 0.561 0.243 0.361 0.343 0.120
BEVDet (Huang et al., 2021) C Swin-B 640 ×1600 0.424 0.488 0.524 0.242 0.373 0.950 0.148
BEVDet4D (Huang & Huang, 2022) C Swin-B 640 ×1600 0.451 0.569 0.511 0.241 0.386 0.301 0.121
Unidistill (Zhou et al., 2023) L → C ResNet-50 256 ×704 0.289 0.384 0.659 0.259 0.514 1.064 0.170
X3KD (Klingner et al., 2023) L → C ResNet-101 640 ×1600 0.456 0.561 0.506 0.253 0.414 0.366 0.131

BEVDepth† (Li et al., 2022b) C Swin-B 640 ×1600 0.489 0.590 - - - - -
+ DistillBEV (Wang et al., 2023) L → C Swin-B 640 ×1600 0.525 0.612 - - - - -

BEVDepth∗ (Li et al., 2022b) C ConvNeXt-B 640 ×1600 0.491 0.589 0.484 0.245 0.377 0.320 0.132
+ BEVDistill (Chen et al., 2022b) L → C ConvNeXt-B 640 ×1600 0.498 0.594 0.472 0.247 0.378 0.326 0.125
+ TiG-BEV L → C ConvNeXt-B 640 ×1600 0.532 0.619 0.450 0.244 0.343 0.306 0.132

+4.1% +3.0% -3.4% -0.1% -3.4% -1.4% -0.0%

Table 3: Ablation Study of Target
Inner-geometry Learning. LR

depth and
Lbev denote the losses of inner-depth su-
pervision and inner-feature BEV distilla-
tion, respectively.

LR
depth Lbev mAP NDS

0.329 0.431
✓ 0.339 0.440

✓ 0.359 0.454
✓ ✓ 0.366 0.461

Table 4: Ablation Study of Inner-depth Su-
pervision. We compare different settings for
relative depth value calculation and depth ref-
erence selection. * denotes our implementation.

Setting Depth Reference mAP NDS

BEVDepth∗ - 0.329 0.431

All-to-Certain 3D Center 0.358 0.452
2D Center 0.358 0.452

All-to-Adaptive Highest Conf 0.357 0.455
Smallest Error 0.366 0.461

4.2 MAIN RESULTS

On nuScenes Val and Test Set. In Table 1, we compare our TiG-BEV with other 3D object
detectors on nuScenes val set. As shown, our LiDAR-to-camera learning schemes respectively
boost the three baseline models, BEVDet, BEVDet4D, and BEVDepth, by +2.9%, +1.4%, and
+2.3% NDS. In Table 2, we report the performance on nuScenes test leaderboard. We can observe
that our TiG-BEV outperforms all other multi-view BEV 3D detectors with 61.9% NDS and 53.2%
mAP, and surpasses another LiDAR-to-camera learning method BEVDistill by +3.0% NDS and
+4.1% mAP, achieving leading performance on this competitive benchmark. Besides, it shows that
our method can also perform better with stronger backbones and larger resolutions.

Visualization. As visualized in Figure 7, we show results of BEVDepth before and after TiG-
BEV. It is observed that more accurate results are obtained by our inner-geometry learning. Within
the orange circles, false positives and ghosting objects can be reduced, and some 3D locations and
orientations of the bounding boxes are also refined. More results are shown in Appendix B.2.

4.3 ABLATION STUDY

Here, we validate the effectiveness for each component and adopt BEVDepth as the student model.

Inner-geometry Learning. The individual effectiveness of the two main components can be ex-
amined by only equipping one of them. As shown in Table 3, if we only introduce the inner-depth
supervision to the vanilla baseline, the mAP and NDS attains +1.0% and +0.9% gains. Instead,
when we only use the inner-feature BEV distillation, the mAP and NDS are improved by +3.0%
+2.3%. In addition, the combination of both components achieves better +3.7% mAP and +2.7%
NDS, demonstrating the two proposed objectives can collaborate for better performance.

8



Under review as a conference paper at ICLR 2024

w/o TiG-BEV w TiG-BEV Ground Truth BEV Space

Figure 7: Visualization of Detection Results. From left to right, we show the results before and
after the TiG-BEV learning schemes, ground-truth annotations, and the overall BEV-space results.

Table 5: Ablation Study of Inner-feature BEV Dis-
tillation. LIC

bev and LIK
bev denote the losses of inter-

channel and inter-keypoint distillation, respectively.

LR
depth LIC

bev LIK
bev mAP NDS

✓

0.339 0.440
✓ 0.342 0.444

✓ 0.358 0.452
✓ ✓ 0.366 0.461

Table 6: Target Depth Prediction Com-
parison. * denotes our implementation.

Metric BEVDepth∗ + TiG-BEV

SILog↓ 29.306 15.897
Abs Rel↓ 0.217 0.091
Sq Rel↓ 1.103 0.232
log10↓ 0.079 0.038
RMSE↓ 3.167 2.077

Inner-depth Supervision. To calculate the relative depth values within foreground targets, we
compare two paradigms concerning the relationships among different inner points, 1) All-to-Certain
calculates the relative depth from all sampled points to a certain reference point, such as the projected
center of 3D bounding box or the center of 2D bounding box. 2) All-to-Adaptive dynamically selects
the reference pixel with the highest confidence across all depth bins or the smallest depth error to the
ground truth (Ours). As shown in Table 4, our All-to-Adaptive with smallest depth errors obtains the
best improvement, which indicates the dynamic depth reference point can flexibly adapt to different
targets for inner-geometry learning.

Inner-feature BEV Distillation. Our TiG-BEV explores the BEV feature distillation from two
perspectives, inter-channel and inter-keypoint. We equip the baseline with one of them at a time
in Table 5. As shown, both distillation methods contribute to the final performance, respectively
boosting the NDS by +1.3% and +2.1%. This well illustrates the importance of learning inner-
geometry semantics within different foreground targets in BEV space. Further combining them
two can benefit the performance by +3.7% and +3.0% for mAP and NDS. A more comprehensive
comparison of distillation methods are shown in Table 7 of Appendix B.2.

Target Depth Estimation. As shown in Table 6, all metrics show that the depth prediction of
target becomes more accurate with TiG-BEV, which is consistent with the visualization of predicted
depth maps (Fig. 8) in Appendix B.2 and facilitates target positioning in BEV space.

5 CONCLUSION

In this paper, we propose a novel target inner-geometry learning framework that enables the camera-
based detector to inherit the effective foreground geometric semantics from the LiDAR modality. We
introduce inner-depth supervision and inner-feature distillation in BEV space, respectively for learn-
ing better low-level structures and high-level semantics. Extensive experiments are implemented to
illustrate the significance of TiG-BEV for multi-view BEV 3D object detection. In future work, our
focus will be on exploring a multi-modal learning strategy that enhances both camera and LiDAR
modalities, aiming for a unified real-world perception system.
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A MORE RELATED WORKS

Depth Estimation. Depth estimation is a classical problem in computer vision. These method can
be divided into single-view depth estimation and multi-view depth estimation. Single-view depth es-
timation is either regarded as a regression problem of a dense depth map or a classification problem
of the depth distribution. (Bhat et al., 2021; Fu et al., 2018; Eigen et al., 2014; Poggi et al., 2020;
Ranftl et al., 2021) generally build an encoder-decoder architecture to regress the depth map from
contextual features. Multi-view depth estimation methods usually construct a cost volume to regress
disparities based on photometric consistency (Wei et al., 2022; Guizilini et al., 2022; Zhang et al.,
2019; Shen et al., 2021; Peng et al., 2022; Zhang et al., 2022d). For 3D object detection, previous
methods (Park et al., 2021; Reading et al., 2021; Hong et al., 2022) also introduce additional net-
works for depth estimation to improve the localization accuracy in 3D space. Notably, MonoDETR
(Zhang et al., 2022a;b) proposes to only predict the foreground depth maps instead of the dense
depth values, but cannot leverage the advanced geometries provided by LiDAR modality. Different
from them, our TiG-BEV conducts inner-depth supervision that captures local sptial structures of
different foreground targets.

Knowledge Distillation has shown very promising ability in transferring learned representation
from the larger model (teacher) to the smaller one (student). Prior works (Zagoruyko & Komodakis,
2016; Huang & Wang, 2017; Liu et al., 2021a; Tung & Mori, 2019a) are proposed to help the
student network learn the structural representation for better generalization ability. Such teacher-
student paradigms have also been extended to other vision tasks, including action recognition (Cui
et al., 2020), video caption (Pan et al., 2020), 3D representation learning (Fu et al., 2022; Zhang
et al., 2022c; Liu et al., 2021b; Sautier et al., 2022), object detection (Dai et al., 2021; Chen et al.,
2017; Zhou et al., 2023) and semantic segmentation (Hou et al., 2022; Wang et al., 2020). How-
ever, only a few of works consider the multi-modal setting between different sensor sources. For 3D
representation learning, there are some interesting approaches. I2P-MAE (Zhang et al., 2022c) lever-
ages Masked Autoencoders to distill 2D pre-trained knowledge into 3D transformers. BEV-LGKD
Li et al. (2022a) generates the foreground mask and view-dependent mask for better localization.
BEVDistill (Chen et al., 2022b) transfer knowledge from LiDAR feature to the cam feature by dense
feature distillation and sparse instance distillation. UniDistill (Zhou et al., 2023) focuses on transfer-
ring knowledge from multi-modality detectors to single-modality detectors in a universal manner.
X3KD (Klingner et al., 2023) is a knowledge distillation framework for multi-camera 3D object
detection, leveraging cross-modal and cross-task information by distilling knowledge from LiDAR-
based detectors and instance segmentation teachers. DistillBEV (Wang et al., 2023) involves feature
imitation and attention imitation losses across multiple scales, enhancing feature alignment between
a LiDAR-based teacher and a multi-camera BEV-based student detector. BEVSimDet (Zhao et al.,
2023) proposes a simulated multi-modal student to simulate multi-modal features with image-only
input. VCD (Huang et al., 2023) presents some useful designs for temporal fusion and introduce a
fine-grained trajectory-based distillation module. FD3D (Zeng et al., 2023) uses queries for masked
feature generation and then intensify feature representation for refined distillation.

Our TiG-BEV also follows such teacher-student paradigm and effectively distills knowledge from
the LiDAR modality into the camera modality. By modeling the relative relationships inside fore-
ground objects in a novel way, the performances of camera-only detectors are further enhanced.

Relationship Supervision. Some related works have investigated channel-wise and pixel-wise
relationship supervision in various domains. (Gatys et al., 2016) studied pixel-wise relationships in
image style transfer and found that matching higher layer style representations preserves local image
structures at a larger scale, resulting in smoother visuals. (Tung & Mori, 2019b) proposed similarity-
preserving knowledge distillation, guiding the student network towards teacher network’s activation
correlations. If two inputs produce similar activations in the teacher network, the student network
should be guided towards a similar configuration. (Hou & Zheng, 2021) introduced a channel-wise
relationship preserving loss for visualizing adapted knowledge in domain transfer. They claimed
that channel-wise relationships remain effective after global pooling, unlike pixel-wise relationships,
which can be overshadowed pre-classifier. Our TiG-BEV has also been inspired by these works and
explored the designs of learning the internal relationships of foreground objects.
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Table 7: Comparison with BEVDistill (Chen et al., 2022b). † and * denote the implementation
of BEVDistill and ours, respectively. We present the performance improvement of the learning
methods correspondingly to their implemented baselines.

Method mAP↑ NDS↑
BEVDepth† 0.311 0.432
+ BEVDistill 0.332 (+2.1%) 0.454 (+2.2%)

BEVDepth∗ 0.329 0.431
+ Naive Distill 0.338 (+0.9%) 0.434 (+0.3%)
+ Inner-feature Distill 0.359 (+3.0%) 0.454 (+2.3%)
+ TiG-BEV 0.366 (+3.7%) 0.461 (+3.0%)

Table 8: Comparison with Concurrent Works. We present the performance improvement of some
concurrent works, UniDistill (Zhou et al., 2023), X3KD (Klingner et al., 2023), DistillBEV (Wang
et al., 2023), correspondingly to their implemented baselines which uniformly use ResNet-50 as
backbone with the image resolution of 256 × 704.

Student mAP↑ NDS↑ Method mAP↑ NDS↑ Venue

BEVDet 0.203 0.331 UniDistill 0.260(+5.7%) 0.373(+4.2%) CVPR 2023
BEVDet 0.305 0.378 DistillBEV 0.327(+2.2%) 0.407(+2.9%) ICCV 2023
BEVDet 0.298 0.379 TiG-BEV 0.331(+3.3%) 0.411(+3.2%) Ours

BEVDet4D 0.328 0.459 DistillBEV 0.363(+3.5%) 0.484(+2.5%) ICCV 2023
BEVDet4D 0.322 0.451 TiG-BEV 0.356(+3.4%) 0.477(+2.6%) Ours

BEVDepth 0.359 0.472 X3KDmodal 0.368(+0.9%) 0.494(+2.2%) CVPR 2023
BEVDepth 0.364 0.484 DistillBEV 0.389(+2.5%) 0.498(+1.4%) ICCV 2023
BEVDepth 0.357 0.481 TiG-BEV 0.383(+2.6%) 0.498(+1.7%) Ours

B MORE EXPERIMENTS

In this section, we further conduct a series of experiments to show the effectiveness of our approach.

B.1 DATASET

NuScenes dataset (Caesar et al., 2020) provides synced data captured from a 32-beam LiDAR at
20Hz and six cameras covering 360-degree horizontally at 12Hz. We adopt the official evaluation
toolbox provided by nuScenes, which reports the nuScenes Detection Score (NDS) and mean Av-
erage Precision (mAP), along with mean Average Translation Error (mATE), mean Average Scale
Error (mASE), mean Average Orientation Error (mAOE), mean Average Velocity Error (mAVE),
and mean Average Attribute Error (mAAE).

B.2 MAIN RESULTS

Comparison with BEVDistill (Chen et al., 2022b). In Table 7, we compare our TiG-BEV with
another LiDAR-to-camera learning method BEVDistill in the same setting. As shown, on top of a
better baseline model, our approach can achieve higher performance boost for both mAP and NDS.
Besides, we compare with the naive distillation that directly applies MSE loss to the entire BEV
features between camera and LiDAR, where our inner-feature distillation performs better. These
well demonstrate the superiority of target inner-geometry learning to foreground-guided dense dis-
tillation.

Comparison with Concurrent Works. As shown in Table 8, we further compare our TiG-BEV
with other recent works in the same setting which also belong to LiDAR-to-camera learning meth-

15



Under review as a conference paper at ICLR 2024

Table 9: Performance Comparison without CBGS (Zhu et al., 2019). For all methods, we adopt
ResNet-101 as the 2D backbone and 512× 1408 as the image resolution. * denotes our implemen-
tation.

Method mAP↑ NDS↑
BEVDet∗ 0.272 0.297
+ TiG-BEV 0.375 (+10.3%) 0.388 (+9.1%)

BEVDet4D∗ 0.336 0.435
+ TiG-BEV 0.409 (+7.3%) 0.489 (+5.4%)

BEVDepth∗ 0.393 0.487
+ TiG-BEV 0.430 (+3.7%) 0.514 (+2.7%)

Table 10: Performance Comparison on KITTI Val Set (Geiger et al., 2012).

Method 3D AP
Easy Moderate Hard

CMKD (Hong et al., 2022) 23.53 16.33 14.44
+ TiG-BEV 26.63 16.61 14.31

ods. As there is a lack of consistency in the baselines reproduced by everyone, we have also included
the baseline in the table for comparison. It should be noted that, the baseline performance of UniDis-
till is unexpectedly low, making it difficult to find an appropriate setting to compare with. Besides
it, our proposed method has been demonstrated to be simple yet efficient and highly competitive,
achieving comparable performance to the latest state-of-the-art methods.

Without CBGS (Zhu et al., 2019) Strategy. In Table 9, we present the results of TiG-BEV with-
out the CBGS training strategy. Without the resampling of training data, the performance improve-
ment of learning target inner-geometry becomes more notable, +10.3%, +7.3%, and +3.7% mAP
for the three baselines, which indicates the superior LiDAR-to-camera knowledge transfer of our
TiG-BEV.

Performance on KITTI Val Set (Geiger et al., 2012). In addition, we also conduct an experiment
on KITTI validation set which is one of the most popular datasets for monocular 3D object detection.
The main baseline is CMKD (Hong et al., 2022), which is a state-of-the-art method on KITTI dataset
and use a classical distillation method to transfer knowledge of teacher model. We add constraints
on knowledge distillation of target objects with our TiG-BEV for further optimisation and achieve a
better performance than the baseline.

Visualization. More visualization results of BEVDepth before and after our TiG-BEV are shown
in Fig. 9. With the help of our inner-geometry learning, the detection of false positives and ghost
objects can be reduced, and more missed objects have been detected. The most obvious and common
improvement is that locations and orientations of the bounding boxes are further refined and they are
more consistent with the ground-truth boxes within orange marks. What’s more, we visualize our
depth prediction with and without the inner-depth supervision in Figure 8, which effectively refines
the contours and edges of foreground objects. And the conclusion implied in the visualization of
predicted depth maps is consistent with Table 6.

B.3 ABLATION STUDY

2D Backbones and Temporal Information. We further explore the influence of 2D backbones
and temporal information to our TiG-BEV in Table 11. We observe that our TiG-BEV brings sig-
nificant performance improvement consistent over different 2D backbones. Also, our target inner-
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Before Inner-Depth  After Inner-Depth  

Figure 8: Visualization of Predicted Depth Maps, which are before and after the inner-depth
supervision, respectively.

Table 11: Ablation Study of 2D Backbones and Temporal Information. CenterPoint (Yin et al.,
2021) and BEVDepth (Li et al., 2022b) are adopted as the teacher and student models, respectively.

Backbone Resolution Multi-frame Method mAP NDS

VoxelNet - ✓ Teacher 0.564 0.646

ResNet-18 256× 704
✓

Student 0.285 0.405
+ TiG-BEV 0.323 (+3.8%) 0.430 (+2.5%)

Student 0.260 0.295
+ TiG-BEV 0.294 (+3.4%) 0.335 (+4.0%)

ResNet-50 256× 704
✓

Student 0.329 0.431
+ TiG-BEV 0.366 (+3.7%) 0.461 (+3.0%)

Student 0.298 0.328
+ TiG-BEV 0.338 (+4.0%) 0.375 (+4.7%)

ResNet-101 512× 1408
✓

Student 0.393 0.487
+ TiG-BEV 0.430 (+3.7%) 0.514 (+2.7%)

Student 0.345 0.366
+ TiG-BEV 0.403 (+5.8%) 0.416 (+5.0%)

geometry learning schemes can provide positive effect for both single-frame and multi-frame set-
tings. The improvement of mAP ranges from +3.4% to +5.8% and the improvement of NDS ranges
from +2.5% to +5.0%.

Performance of Small Object Detection. In Table 12, we explored the impact of each component
of our method on small object detection. We consider pedestrian, motorcycle, bicycle, traffic cone
and barrier, these five classes in NuScenes to be relatively small objects, and we calculated their
detection results in terms of mAP on the validation set. This quantitative analysis further confirms
that our method is also effective in detecting small objects and provides gains in performance with
each component.

Performace of Different Distance Ranges. The detection of distant objects remains a long-
standing challenge due to the sparsity of LiDAR points and the inaccuracy of depth estimation.
Here we define 0 to 30 meters as close detection, and 30 to 60 meters as long-distance detection. As
can be seen from the Table 13, our method can greatly improves the performance of close detection,
and it also works even in the face of long-distance object detection with each designed module. In
the future work, we will continue to pay attention to and strive to solve the problem of long-distance
object detection.
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w/o TiG-BEV w TiG-BEV Ground Truth BEV Space

w/o TiG-BEV w TiG-BEV Ground Truth BEV Space

Figure 9: Visualization of Detection Results. From left to right, we show the 3D object detection
before and after the TiG-BEV learning schemes, ground-truth annotations, along with the overall
BEV-space results.

Table 12: Ablation Study of Small Objects Detection Performance. We use BEVDet4D as base-
line and ResNet-101 as backbone with the image resolution of 512 × 1408.

LA
depth LR

depth Lbev
mAP↑ (%)

pedestrian motorcycle bicycle traffic cone barrier

43.3 34.5 32.4 54.8 55.2
✓ 44.6 35.6 32.8 56.3 55.9
✓ ✓ 45.4 37.3 33.7 57.8 58.8
✓ ✓ ✓ 45.7 38.8 37.5 58.9 57.2
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Table 13: Ablation Study for Objects Detection Performance of Different Distance Ranges. We
use BEVDet4D as baseline and ResNet-101 as backbone with the image resolution of 512 × 1408.

Distance (m) LA
depth LR

depth Lbev mAP↑ NDS↑
[0,30) 44.2 53.7
[0,30) ✓ 46.6 55.6
[0,30) ✓ ✓ 47.4 55.8
[0,30) ✓ ✓ ✓ 48.6 56.8

[30,60) 10.2 28.7
[30,60) ✓ 10.3 28.5
[30,60) ✓ ✓ 11.7 30.1
[30,60) ✓ ✓ ✓ 12.6 30.2

B.4 DISCUSSION

Improvements of Inner-depth Supervision vs. Inner-feature Distillation. Our inner-depth pro-
vides fine-grained depth cues for object-level geometry understanding, which is low-level infor-
mation and implicitly benefits the mAP accuracy. The inner-feature directly supervises high-level
semantics of BEV features, explicitly affecting the detection and recognition performance. They are
complementary and can collaborate for better results.

Limitations and Future Works of Inner-depth Supervision. One limitation that will inevitably
be involved in depth-related explicit supervision is the ground truth from LiDAR. Due to the sparsity
of LiDAR, both absolute depth supervision and relative depth supervision will be affected to some
extent, though the performance of object detection will be better with inner-depth supervision under
the same conditions. For sparse point clouds, a good way to alleviate it is through depth completion.

Another limitation is the occlusion problem of the target. Due to visual occlusion, the ground
truth of the occluded object that we can obtain is limited, which will affect the learning of depth
prediction and inner-depth learning. A good way to alleviate it is to consider multi-frame images for
inner-depth supervision of the same object’s interior. But a potential risk here is that if the intrinsic
and extrinsic parameters are inaccurate, it will directly affect the coordinate system transformation
between multiple frames, thereby affecting the ground truth of depth values.
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