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Abstract
Handwriting synthesis, the task of automatically generating realistic images of handwritten text, has gained increasing attention
in recent years, both as a challenge in itself, as well as a task that supports handwriting recognition research. The latter task is
to synthesize large image datasets that can then be used to train deep learning models to recognize handwritten text without the
need for human-provided annotations. While early attempts at developing handwriting generators yielded limited results [1],
more recent works involving generativemodels of deep neural network architectures have been shown able to produce realistic
imitations of human handwriting [2–19]. In this review, we focus on one of the most prevalent and successful architectures
in the field of handwriting synthesis, the generative adversarial network (GAN). We describe the capabilities, architecture
specifics, and performance of the GAN-based models that have been introduced to the literature since 2019 [2–14]. These
models can generate random handwriting styles, imitate reference styles, and produce realistic images of arbitrary text that
was not in the training lexicon. The generated images have been shown to contribute to improving handwriting recognition
results when augmenting the training samples of recognition models with synthetic images. The synthetic images were often
hard to expose as non-real, even by human examiners, but also could be implausible or style-limited. The review includes a
discussion of the characteristics of the GAN architecture in comparison with other paradigms in the image-generation domain
and highlights the remaining challenges for handwriting synthesis.

Keywords Handwriting synthesis · Generative adversarial networks · Text-image generation

1 Introduction

In supervised machine learning, the availability of labeled
datasets is crucial to the training and validation of models.
Unfortunately, there are still many domains without suffi-
ciently large labeled datasets to develop robust supervised
learning solutions, making the resulting models less gen-
eral and susceptible to over-fitting. Since data collection and
annotation processes are typically costly, time-consuming,
tedious, and error-prone (because they necessarily depend
on humans), creating training data without human labeling
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help has become an important goal. The artificial genera-
tion of data samples, also termed data synthesis, has been
widely adopted as a data augmentation approach [20–26].
Data synthesis also has a place in semi-supervised learning,
which depends on a small set of labeled samples to automat-
ically label a larger set of unlabeled data or to amend the
behavior of a model self-trained on some unlabeled data.

In this review, we focus on the specific problem of data
synthesis that requires the generation of images of text that
looks handwritten. Being able to synthesize realistic-looking
images of handwriting can then support the development of
supervised or semi-supervised machine learning models that
can recognize handwritten text. Handwriting recognition is
an important technology for digitizing and understanding
daily (and historic) data production. Research on handwrit-
ing recognition has been active for decades, addressing the
lack of large human-annotated training data by develop-
ing approaches to handwriting synthesis that can provide
automatically labeled training data. We reviewed the works
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presenting these attempts in publications between 2003 and
2013 [1].

Previous attempts to generate handwritten text were based
on a collection of samples for a few characters, either human-
written or built, using templates [1]. To generate words in
cursive script, these methods perturb the character templates
and then concatenate them. However, since these templates
are specific to a given data corpus, they cannot represent
arbitrary handwriting styles or go beyond the textual content
of the corpus.

These early attempts at handwriting generation, previ-
ously reviewed byElanwar [1],were based on algorithms that
inject some noise into real samples of glyphs, i.e., symbols
of characters. Perturbation models or affine transformations
usually succeed in giving the generated glyphs a realistic look
but they are not able to achieve smooth connectivity between
glyphs for cursive handwriting. Few of the early systems
were based on machine learning to suggest one-out-of-many
learned styles for glyph shapes and then connect them using
transitional strokes. Such systems dedicated a model to learn
the connection shape between adjacent characters. There
are newer publications following this methodology, working
with limited-size data and depending on probabilistic mod-
els or other algorithms, for example, Lian et al. in 2018 [27]
and Souibgui et al. in 2022 [28]. Such methods are known as
“few-shot generation modeling” or “few-shot compositional
generation.”As arguedbySouibgui et al. [28], these solutions
might make the best choice for low-resource languages, for
which publicly available handwritten text datasets are scarce.
In recent years, the development of deep neural networks
has produced flexible and generic alternatives to the previous
algorithms, enabling the synthesis of a variety of handwrit-
ing styles and words that were not in the training lexicon of
images, also called out-of-vocabulary (OOV) words.

In this article, we review the solutions recently published
on handwriting synthesis that use a generative adversarial
network (GAN) architecture. It is notable that the work by
Goodfellow et al. [29], which introduced the GAN frame-
work in 2014, included the synthesis of handwritten digits
as a use case for GANs. In 2018, isolated handwritten Chi-
nese characters images were rendered from a printed font
[30] using the GAN-variant “CycleGAN” [31]. We here go
beyond the single-digit task and focus on models that can
generate images of words or even sentences. These models
started to emerge in 2019with the seminal work byAlonso et
al. [2], which we describe first. We then follow with reviews
of the GAN-based handwriting synthesis models published
in 2020 by Fogel et al. [3], Kang et al. [6] and Davis et al. [8],
in 2021 by Zdenek and Nakayama [4], Liu et al. [5], and Gan
and Wang [7], and in 2022 by Gan et al. [9] and Luo et al.
[10]. To the best of our knowledge, these are the important

pioneering works on GAN-based handwriting synthesis to
date. The GAN-based models published after 2022 [11–14]
are extensions to these ninemodels that use different datasets
or refine one or more of their model components but do not
introduce any major changes to them.

Beyond the scope of our paper is a detailed review of other
generative deep learning approaches to handwriting synthe-
sis that use transformers [15–17] or diffusion models [18,
19]. However, we discuss these paradigms of image genera-
tion in Sect. 4with respect to their differences and similarities
to GAN-basedmodels and derive some insights for the future
of generative learning approaches to handwriting.
The task we have discussed so far, also called “offline hand-
writing generation,” requires a model to synthesize images
that look like handwriting, without having to provide infor-
mation about how a human hand could have written the text
with a pen. On the other hand, a model for “online handwrit-
ing generation” not only synthesizes an image of text but also
computes a sequence of “digital ink stamps” that explain how
a human hand would have guided a pen spatially and tempo-
rally to write the text. Discussing the recent works on online
handwriting synthesis [32–37] is also beyond the scope of
our review.

An important motivation to developing handwriting syn-
thesismodels, as we outlined above, is their use in supporting
the development of handwriting recognitionmodels, offering
an endless source of training data atminimum cost. However,
we also want to stress that learning how to create realistic
handwriting styles might be a goal in itself. Use cases may
evolve with the growth of personalization technology. Hand-
writing synthesis may have a role in marketing personalized
gifts and luxury products. A motivation to using the GAN
architecture in particular is that it involves the comparison
of real and synthesized handwriting and thus can be used to
detect the forgery of signatures, preventing illegal access to
financial assets, blackmailing, or planting of false evidence
in crimes.

This review paper is structured as follows. We describe
the seminal GAN-based model architecture for handwriting
synthesis in Sect. 2. We then devise a categorization scheme
of text-image-generatingGANs in the introduction of Sect. 3.
Section3.1 describes the datasets used for model evaluation,
and Sect. 3.2 describes the evaluation mechanisms. Next, we
review the architecture specifics of the nine models under
consideration (Sects. 3.3–3.11) and conclude with a compar-
ison of their capabilities and features (Sect. 3.12).

Webriefly introduce the other text-image-generationmod-
els which preceded and followed the appearance of GANs
and discuss their similarities with and differences to GANs
in Sect. 4 and conclude with a discussion in Sect. 5.
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2 GAN-based handwriting synthesis: the
seminal model

This section describes the seminal model for GAN-based
handwriting synthesis, proposed by Alonso et al. [2]. It is a
variant of the original GAN architecture proposed by Good-
fellow et al. [29], which functions as follows (see Fig. 1): A
generator network G maps a random (latent) noise vector z
to a sample in the image space to fool a discriminator net-
work D, which attempts to classify this sample image as a
real or generated (fake) image. The adversarial loss computed
by the discriminator is used to optimize both the generator
and the discriminator networks’ weights. During training, G
learns to generate more realistic images that D fails to dis-
criminate correctly.

The original GAN architecture [29] suffers from the
drawback of not having control over the generated image
content—in our case, which words are being synthesized by
the network. The conditional GAN model [38] was there-
fore adopted to let the user specify which words the GAN
should generate. The input text t is encoded by an embed-
ding network into the vector y (see Fig. 1). This network is
also referred to as a “content encoder” or “text encoder.” Its
role is to embed the target text into a fixed length vector y
that is used as a condition input to the generator. With this
mechanism, it is possible to generate specific handwritten
word images G(z, y) by pairing a latent space vector z with
the desired text t .

For the use case of creating training datasets for handwrit-
ing recognition systems, it is important that the synthesized
text is legible by such systems. Alonso et al. [2] therefore
proposed to augment the original GAN architecture with an
additional module, the recognition network R (Fig. 1), with
the goal to ensure that the output of the synthesis model is
recognizable, i.e., legible. During the training of the GAN
architecture, the recognition error of this network R is added
to the training loss to guide network G to generate legible
words.

To enable follow-upwith the differentmodifications of the
base model in Fig. 1 introduced by the reviewed generative
models, we summarize the notation of the base model in
Table 1. We now provide the definitions of the relevant loss
functions.

The goal of the discriminator D is to label real images x
as true (1) and generated images G(z) as false (0). The loss
function of the discriminator D can thus be defined as

lD = Error(D(x), 1) + Error(D(G(z)), 0). (1)

The goal of the generator G is to confuse the discriminator
to mislabel generated images G(z) as being true. Therefore,
the generator loss is

Fig. 1 The main GAN-based architecture used for handwriting gener-
ation, first proposed by Alonso et al. [2], and also adopted by Fogel et
al. [3] and Zedenek and Nakamaya [4]. In addition to the generator–
discriminator network pair (G, D), used in all GANs, a text embedding
network helps condition the GAN on text embedding y, which repre-
sents the target string t , and a recognitionnetwork R guides the generator
G to synthesize text images G(z, y). The discriminator network D is
trained by alternating generated G(z, y) and real image samples x . The
discriminative decisions D(x) and D(G(z)) contribute to calculating
the adversarial loss lD needed to update the weights of both G and D.
The recognition result R(G(z, y)) of the generated image contributes
to calculating the recognition loss lR needed to update G. This base
architecture will be represented by a dashed rectangle in the following
figures to highlight the modifications introduced by other works

Table 1 Notation in reviewed equations

Symbol Meaning

t Condition (target) text string

R(G(z)) Recognized text string from recognizer R

y Embedding vector of t

z Latent noise vector

x Real image from dataset

G(z) Synthesized image from generator G

lD Discriminator loss function

lG Generator loss function

ladv Adversarial loss function

lR Recognizer loss function

lG = Error(D(G(z)), 1). (2)

Since the task of the discriminator D is a binary classifi-
cation problem, applying the binary cross-entropy function
will measure the difference between the distributions of x
and z for image space X and latent space ζ . This yields the
equations
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lD = −
∑

x∈X ,z∈ζ

(log(D(x)) + log(1 − D(G(z)))), (3)

and

lG = −
∑

z∈ζ

log(D(G(z))). (4)

The losses lD and lG can be combined into one loss function

lD,G = Ex [log(D(x))] + Ez[log(1 − D(G(z)))], (5)

where Ex and Ez are the expected values over the distribu-
tions of x and z, respectively. Training the discriminator D
aims at maximizing Eq.5 (i.e., to tell apart real and fake
images), while training the generator G aims at minimizing
Eq.5 (i.e., to minimize the distance between the distributions
of x and z by generating realistic imagesG(z)). Furthermore,
to condition the GAN to generate images of specific text t ,
Eq. 5 needs to be updated by replacing the distributions for x
and z with distributions conditioned on the embedding y of
t :

lD,G = Ex [log(D(x |y))] + Ez[log(1 − D(G(z|y)))]. (6)

Finally, the loss function for the recognition network R is
defined as

lR = E(z,t)[CTC(t, R(G(z, y)))], (7)

which is based on the connectionist temporal classifica-
tion (CTC) algorithm [39] for training neural networks to
recognize words as sequences of letters without explicit
segmentation of these words into letters. It is a dynamic pro-
gramming algorithm that maximizes the log probability over
all possible text segmentations.

3 Review of specific GAN-based handwriting
generation systems

We categorize GAN-based models for handwriting synthesis
according to the input used to generate images. There are two
main categories, style transferGANs and conditionedGANs.
Style transfer GANs are uni-modal architectures (img2img)
that take a two-dimensional (2D) image as input and generate
a 2D output image. Conditioned GANs, on the other hand,
take as input not only a 2D image but also attribute vectors
that represent various types of information, for example, a
class label, a style vector, a text embedding, etc. Conditioned
GANs are therefore multi-modal architectures that take a 2D
image and other conditions as input and generate an output
image obeying these conditions.

GAN-based models for handwriting synthesis are predomi-
nantly conditioned GANs, which can be conditioned on text
input to generate a random-style handwritten word corre-
sponding to the input text [2–4, 12]. The text could be as
short as one character or a single word, or as long as a com-
plete sentence.GANs can additionally be conditioned using a
style vector to control the style of the generated handwritten
word in terms of skew, character size, line thickness, cur-
siveness, etc. The style vector could be explicitly fed to the
GAN [10] or learned by the GAN from an input image, i.e.,
a reference style [5–9, 11, 13, 14]. Accordingly, handwrit-
ing generation GANs can be categorized according to the
generation process as GANs generating random styles and
GANs reproducing input styles. Furthermore, GANs can be
categorized according to the generated image size or con-
tent as GANs generating variable-size output images [3, 4,
7–12, 14], GANs generating arbitrary-length words [3–5,
7–10, 12, 14], and GANs generating unconstrained or out-
of-vocabulary (OOV) text [2, 4–11, 13]. The next section
describes the instantiations of these categories.

In this section, we first describe the datasets used to
train and evaluate the reviewed models (Sect. 3.1), and
then, we explain the different qualitative and quantitative
evaluation methods (Sect. 3.2). Next, we review nine GAN-
based architectures generating images of handwritten text
(Sects. 3.3–3.11). Finally, in Sect. 3.12, we compare the per-
formance of the nine architectures based on the evaluation
methods previously explained in Sect. 3.2.

3.1 Datasets for handwriting generation

The reviewed models have been trained and evaluated on
publicly available datasets of handwritten text, as shown
in Table 2, which facilitates comparing their results. The
datasets used are:

• The IAM dataset by Marti and Bunke (2002) [40] This
dataset contains about 100k images of words from the
English language. It is divided into training, test, and two
validation sets. The dataset is divided into words written
by 657 different authors. The train, test, and validation
sets contain words written bymutually exclusive authors.
In other words, all words written by each author only
appear in one of the four sets. This dataset was used by
all nine of the reviewed works.

• The CVL dataset by Kleber and Sablatnig (2013) [41]
This dataset consists of seven handwritten documents
(one German and six English texts) with about 83K
words, written by 310 writers. It is divided into train and
test sets. The English part of this dataset was used by four
of the reviewed works [3, 4, 7, 10].

• The REMIS dataset by Grosicki and ElAbed (2009) [42]
This dataset is composed of made-up mail and fax let-
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Table 2 Datasets used by different GAN-based architectures for offline handwriting generation

Dataset Size Language No. of Authors [2] [3] [4] [5] [6] [7] [8] [9] [10]

IAM 100k English 657 � � � � � � � � �
CVL 83K German/English 310 × � � × × � × × �
REMIS 13K French 1300 � � × � × × � × �
OpenHaRT 43K Arabic unknown � × × × × × × × ×
The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting [6], HiGAN [7], Davis et al. [8],
HiGAN+ [9], and SLOGAN [10]

ters written in French. 12,723 pages written by 1,300
volunteers have been collected and scanned. More than
250k snippets of words have been extracted from the let-
ters. The dataset is divided into training (43k), validation
(70k+), and test (7,464) subsets. This dataset was used
by five of the reviewed works [2], [3], [5], [8], [10].

• The OpenHaRT dataset by Tong et al. (2010 and 2013)
[43] This dataset offers Arabic handwritten text, obtained
at the document level, and includes a large vocabulary.
It was collected in three phases (2008–2011). The hand-
writing of native Arab speakers, who copied news lines
in their handwriting, was scanned. The dataset is divided
into training (approx. 42k pages), validation (approx. 500
pages), and test (approx. 600 pages) sets. This datasetwas
used by Alonso et al. [2].

3.2 Assessment of generated handwriting images

To evaluate the performance of their architectures and be
able to compare their results, researchers adopted different
methods for expressing and assessing their findings, They
displayed the generated images in different fashions to show
theirmodels’ capabilities and also computed image similarity
metrics to quantify these capabilities. Aside from assessing
whether the generated results looked artificial orweremaster-
ful imitations of handwriting, they subjected their generated
images to the recognition test by handwritten text recognition
systems.

The visualization techniques used as qualitative assess-
ment methods are: Latent-guided synthesis, style interpola-
tion, word ladder, out-of-vocabulary (OOV), and long text
synthesis. The quantitative assessment methods used are:

1. Handwritten text recognition (HTR) using evaluation
metrics such as word error rate (WER), character error
rate (CER), and normalized edit distance (NED).

2. Human (user) assessment using evaluation metrics such
as accuracy (ACC), precision (P), recall (R), false-positive
rate (FPR) and false omission rate (FOR), and user pref-
erence.

3. Quality and similarity measures using evaluation metrics
such as geometry score (GS), Fréchet inception distance

Fig. 2 Examples of successful latent sampling, resulting in variable-
size images with single words or arbitrary-length text

(FID), and multi-scale structural similarity image score
(MS-SSIM).

3.2.1 Assessment by visualizing results

Latent-vector-guided synthesis One of the qualitative eval-
uation methods of the robustness of a generative process
is presenting the GAN architecture with different randomly
sampled noise vectors and different word conditions (Fig. 2).
A realistic appearance of the resulting generated images in
terms of fewer artifacts, a homogeneous background, and
coherent character sizes and orientations would then indi-
cate a robust GAN performance. Also, the legibility of the
handwritten words and the matching of the word condition
are other signs of good performance. Reference-guided syn-
thesis might also be considered when the objective of the
model is to imitate a reference handwriting style. Displaying
pairs of original and generated images visualizes the ability
of the model to disentangle the original style, map it to a
latent space, achieve style diversity, and reproduce more text
in the same desired style.

Style interpolation Another method of visualizing the
results of a GAN for handwriting synthesis is to show exam-
ples of sampling interpolation between two different styles
defined by two latent vectors, respectively. This is achieved
by generating images using interpolated latent values and
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Fig. 3 Examples of generating images using the interpolation of two
different styles (styles A and B)

Fig. 4 Visualization of generated images of handwriting using a word
ladder

showing that the synthesized handwriting gradually changes
from one style to another style (Fig. 3). This evaluates the
ability of the GAN to generalize, i.e., generate continuously
changing, diverse styles, and cluster them in the latent space.

Word ladder The word ladder is a method to evaluate the
robustness of a generative processwhenobserving the images
it generates with a fixed latent vector. Each word image,
displayed on the ladder (Fig. 4), is a new word generated
based on the same latent vector but a different input text. The
word ladder can be used to observe qualitatively whether the
handwriting style of the generated images is preserved with
changing words. Such preservation indicates that the GAN
architecture has indeed learned to map a latent space vector
to one writing style.

Out-of-vocabulary and long text synthesisOne lastmethod
of evaluating the capabilities of aGANmodel is conditioning
it with a relatively long text or words out of the vocabulary of
the training data. Stable models should not obtain degraded
results since they are supposed to be learning individual char-
acter styles and transitions between characters. Models that
show degraded results in such cases are lexicon-based or
depend on sequential models that cannot keep track of long
sequences [2, 3, 6].

3.2.2 Assessment using handwritten text recognition (HTR)

According to Dilipkumar [20], the handwriting recognition
problem cannot be considered a solved problem since the
state-of-the-art (SOTA) models trained on specific datasets
perform poorly on real-world samples. The suggested reason
is that SOTA deep learning models are impacted by having
been trained mostly on synthesized data (for which there is
an endless supply) and not on sufficiently large real datasets.
This leads to outstanding performance when testing on syn-
thetic data (representingmost of the training samples) but this
does not guarantee the generalization of good performance
on real data.

Researchers working on generating handwritten text use
handwriting recognition (HTR) to judge the quality of a

model for handwriting synthesis. They compare the perfor-
mance of a HTR system when trained with real training
samples only to that with a mix of real and synthetic training
samples, where the synthetic samples are produced by the
model for handwriting synthesis under investigation. When-
ever a performance improvement of the HTR system occurs
due to the augmentation of the training samples using syn-
thetic data, researchers consider this as a clue of high-quality
handwriting synthesis.

3.2.3 Assessment with user studies

Toevaluate the quality of generated images, some researchers
add human assessment and preference studies. Participants
of the experiments are usually shown a mix of real and gen-
erated images, and asked to spot the generated images. A
confusion matrix of the human preference indicates the pop-
ulation plausibility through accuracy (ACC). Other metrics
such as precision (P), recall (R), false-positive rate (FPR),
and false omission rate (FOR) values can be used as well.
The population accuracy weighs the quality of the genera-
tive process.

3.2.4 Assessment of the generated image quality

The method of assessing the images generated by the nine
reviewed models depends on the objective of the generative
process. For architectures that sample a random-style vector
for image generation, the focus is on image fidelity, while for
architectures that imitate a reference style of an image, the
goal is high similarity between the reference and the gener-
ated image.

The geometry score (GS) [44] compares the topology of
the underlying real and generated manifolds and provides a
way to measure potential mode collapse (the lower GS value
the better). Mode collapse is the phenomenon that, after a
long phase of generations, the model starts to generate new
samples that are very similar to each other (or, in the extreme
case, the same).

The Fréchet inception distance (FID) [45]measures visual
quality and sample diversity. It gives a distance between real
andgenerated data distributions, so the lower its value the bet-
ter. Although it was not designed for handwriting image data,
it can fairly serve as an indication of similarity between real
and generated handwritten text. However, some researchers
[4] claim it cannot assess style transfer quality since it was
introduced for unconditional image generation and cannot
tell how well the results match the conditions.

The multi-scale structural similarity image score (MS-
SSIM) [46] is a multi-scale variant of a perceptual similarity
metric. This type ofmetric attempts to predict human percep-
tual similarity judgments and discard irrelevant aspects. MS-
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SSIM values range between 0.0 and 1.0; higher MS-SSIM
values correspond to perceptually more similar images.
The GAN-train and GAN-test metrics [47] evaluate condi-
tional image generation via the image recognition task (here
HTR), the case for which FID is not the best metric. For
GAN-train, a recognition model is trained on a training set of
generated images and testedon a test set of real images.GAN-
train is an indicator of the diversity of generated images.
Conversely, for GAN-test, real images are used to train a
model, which is then tested on generated data. GAN-test is
a measure of the fidelity of generated images with respect to
the original data.

Recently,Gan et al. [9] proposed the use of three additional
metrics to evaluate the quality of synthesizedhandwritten text
images, the inception score (IS) [48], which measures the
realism and diversity of generated images, the kernel incep-
tion distance (KID) [49], which, similar to FID, measures
the distance between distributions of the generated and real
samples, and the peak signal-to-noise ratio (PSNR), which
measures the reconstruction error.

In the subsections below, we review the capabilities and
architecture of nine handwriting generation models, which,
as mentioned above, are the only GAN-based architectures
for the task of word synthesis that we could find in the lit-
erature (at the time of writing). Due to the chronological
dependency of the reviewed architectures, we present them
roughly in the order in which they were published, making
exceptions for two works [6, 8] for ease of developing of the
relevant concepts.

3.3 Alonso et al., A2iA, France, 2019

Motivation The seminal contribution of Alonso et al. [2] for
the task of handwriting synthesis, i.e., augmenting the condi-
tional GAN architecture with a recognition network R that is
trained using the CTC loss function, was motivated by their
goal to create legible images of words.

Method An overview of the method proposed by Alonso
et al. [2] was outlined in the previous section. We here give
some details on the architecture and loss functions used. In
their design, the embedding network consisted of recurrent
layers of bidirectional long short-term memory (Bi-LSTM)
[50] to encode the input character string (word) t . The recog-
nition network R is a gated convolutional recurrent network
(CRNN), originally for scene text recognition by Shi et al.
[51], consisting of an encoder of five layers, with tanh acti-
vations and convolutional gates, followed by a max pooling
layer, and a decoder made up of two stacked bidirectional
LSTM layers.

The generator network G uses up-sampling ResBlocks
[52], conditional batch normalization (CBN) layers [53],
and a self-attention layer [54]. The discriminator D consists

of down-sampling ResBlocks, a self-attention layer, and a
global sum pooling layer.

The adversarial loss function of the discriminator D
(Eq. 1) was implemented as a hinge function lD = −E(x,t)

[min(0,−1 + D(x))] − E(z,t)[min(0,−1 − D(G(z, y)))].
The CTC loss term was not only used to define the recogni-
tion loss lR (Eq. 7), but also added to the adversarial loss of
the generator:

lG = −E(z,t)[D(G(z, y))]+E(z,t)[CTC(t, R(G(z, y)))],
(8)

which we simplify to

lG = ladv + λ lR, (9)

including the regularization factor λ.
Alonso et al. noticed that, during training, the magnitudes

of the gradients of the weights in R were much larger than in
D. They, therefore, proposed the use of the above regulariza-
tion factor λ, for which they tested three values in an ablation
study. They found that the existing larger contribution from
gradients in R was valuable, as it yielded the most legible
synthesized images, and therefore recommended the use of
λ = 1.

Furthermore, Alonso et al. proposed to train D with one
batch of real images and one batch of generated images per
training step, They trained R with real data only, to prevent
the model from learning how to recognize generated images
of text.

Results Alonso et al. tested their model using both French
and Arabic datasets, producing variable-length words, some-
times not present in the training set (see details on the datasets
in Sect. 3.1). The generated images were of fixed dimen-
sions. The generated images were used to train a handwritten
text recognition (HTR) engine to observe the effect of aug-
menting the training dataset with synthesized samples (see
Table 6). The authors praised the overall visual quality of the
images generated by their model, even though they reported
the generation of a few instances with “style collapse” where
the characters of the generated words lose coherence. Image
similarity metrics are reported in Table 8

3.4 Fogel et al., ScrabbleGAN, Amazon Rekognition,
Israel, and Cornell Tech, USA, 2020

Motivation Fogel et al. [3] were motivated by the goal to
generate arbitrary long words without suffering the style col-
lapse that they noticed in the work by Alonso et al. [2]. They
wanted to be able to generate different handwriting styles by
changing the latent factors of the noise vector z, i.e., gener-
ate both cursive and non-cursive text, with either a bold or
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thin pen stroke. They also wanted to allow for variable-size
output images.
Method In designing ScrabbleGAN, Fogel et al. avoided the
use of recurrent layers as an embedding network to pro-
cess the input text string. Instead, their embedding network
is composed of a bank of filters, as large as the alphabet
size. Individual filters, corresponding to each character, are
applied to the input string to generate a text map of each
character. These text maps (filter outputs) are multiplied by
the noise vector z, which controls the handwriting style. The
resultingmaps are then concatenated horizontally into awide
text embedding vector y, used to condition the generator
G to generate adjacent character images. The generator G
can then be looked at as a concatenation of identical class-
conditional generators, where each class is a character. For
an input embedding y, each of these generators produces a
patch containing one handwritten character image in paral-
lel. Each convolutional-up-sampling layer in G widens the
receptive field and achieves the overlap between every two
neighboring characters. The overlap allows adjacent charac-
ters to connect smoothly giving a realistic cursive word. In
order to generate the same style for the entire word, the noise
vector z is kept constant throughout the generation of all the
characters in the input text string.

ScrabbleGAN uses the following architectures for the net-
works G, D, and R: The generator network G consists of
three fully convolutional residual blocks, which up-sample
the spatial resolution, followed by conditional instance nor-
malization layers. Finally, a convolutional layer with a tanh
activation is used to output the final image. The discriminator
D consists of four residual blocks (also fully convolutional
to cope with varying-width generated images), followed
by a linear layer with one output. The final prediction is
the average of the patch predictions, which is fed into a
GAN hinge-loss [55]. ScrabbleGAN uses a similar design as
Alonso et al. [2] for the recognition network R. Its convolu-
tional recurrent neural network (CRNN) architecture has six
convolutional layers and five pooling layers, all with ReLU
activation and a final linear layer to output class scores com-
pared to the ground truth using the CTC loss.

During the training of ScrabbleGAN, same gradient bal-
ancing approach as proposed by Alonso et al. (Eq. 9) is used
to avoid gradient explosion. Only the recognizer network
R requires labeled data for its optimization, while the dis-
criminator D only predicts whether or not an image of a
handwritten word is realistic. Therefore, unlabeled data can
be used to optimize it. This allowsScrabbleGAN to be trained
in a semi-supervised fashion using partially labeled data.

Results ScrabbleGAN was evaluated using the same
datasets as Alonso et al. and an additional dataset (see
Sect. 3.1). Qualitatively inspecting their results, Fogel et al.
mentioned that their generated images contain fewer arti-
facts when compared to the images generated by Alonso et

al.’s model [2]. They reported better FID and GS values than
Alonso et al. (see Table 8). They also reported some quan-
titative results in the form of WER and NED of an HTR
evaluation (see Table 6).

The ScrabbleGAN architecture was used by Chang et al.
[12] to generate handwritten text images in other languages
in a cross-lingual fashion. The authors reported that their
GAN model generates handwritten images of a target lan-
guage without seeing any labeled handwritten data of that
language (i.e., zero-shot). Their generator was trained on
English images to generate handwritten images of a vari-
ety of other languages and scripts like Vietnamese, Arabic,
and Cyrillic.

3.5 Zdenek and Nakayama, JokerGAN, The
University of Tokyo, Japan, 2021

Motivation Zdenek and Nakayama [4] found the solutions
based on a fixed size of characters set, like that of Scrab-
bleGAN, not suitable to be extended to some languages like
Japanese or Chinese. The reason is that the memory require-
ments for the bank of base filters (embedding network) grow
significantly as the size of the character set increases. They
wanted to generate images of handwritten text of arbitrary
words and variable length, but with fewer memory require-
ments. They also wanted to improve the character alignment
in the generated word image by adding more conditional
inputs to G related to the vertical properties of characters
in the target word. They named this information “text line
embedding” (TLE), marking characters that rise above the
main body line (i.e., ascenders like h, b, and l) and charac-
ters that drop below (i.e., descenders like g, y, and j).

Method Zdenek and Nakayama [4] were inspired by the
use of text maps in ScrabbleGAN. In their design, however,
the target text map is a result of the concatenation of “embed-
ding elements.” Every embedding element represents one
character and is the concatenation of three pieces of infor-
mation per character: (1) character embedding, (2) the latent
vector z, and (3) the text line (TLE) embedding. Each embed-
ding element is passed through a basefilter (rather than a bank
of filters as in ScrabbleGAN), implemented as a linear neural
network layer. All outputs are horizontally tiled next to each
other to create a text base map. This modification allows the
JokerGANmodel to operate on huge alphabetic sets like that
of the Asian languages.

The JokerGAN architecture of the networks G, D, and
R is similar to the Alonso et al. [2] model shown in Fig. 1
but Zdenek and Nakayama replaced the conditional batch
normalization layers of G by multi-class conditional batch
normalization (MCCBN) layers. These layers operate on the
text embedding feature maps. With multi-class-conditional
batch normalization (MCCBN), multiple classes of charac-
ters can be used per image. During the generative process, the
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feature maps are divided into k identical size regions, where
k is the number of characters of the target word. Different
gain and bias parameters are learned to compute the values
of each region of the batch-normalized feature map for each
character in the sequence of the k characters.

The latent vector z, sampled from a normal distribution, is
also injected into the MCCBN layer of G to generate differ-
ent handwriting styles, as well as the text line conditions to
prevent misalignment and distortion of the generated word
images. Similar to ScrabbleGAN, JokerGAN uses a semi-
supervised fashion with partially labeled data to train its
networks. The training losses are the adversarial loss and
the CTC loss combined (Eq. 9).

Results JokerGANwas evaluated using two of the datasets
used by ScrabbleGAN in addition to a Japanese dataset. It
was tested to generate out-of-vocabulary words, and for lan-
guage domain transfer, that is, training the model in one
language and generating word images in another. JokerGAN
showed agreeable results for both tasks. The visual results
also showed JokerGAN’s ability to generate multiple words
at a time, despite being trained on single words, by introduc-
ing a symbol (or class) for white space, at the size of one
character. The symbol was concatenated to the word condi-
tion to appear as white space in the generated image.

The images generated by JokerGAN were used to aug-
ment the training of a handwritten text recognition engine.
The experimental results indicated an improvement in HTR
performance when trained on images generated by Joker-
GAN compared to HTR trained without data augmentation.
Zdenek andNakayama reported their HTR performance aug-
mented with generated images Table 6 and mentioned that
they outperformed ScrabbleGAN in the human assessment
of the fidelity of the generated images with better FID, GAN-
train, and GAN-test measures values (Table 7).

3.6 Liu et al., HTG-GAN, Institute of Automation,
China, 2021

Motivation All three models JokerGAN, ScrabbleGAN and
the original model by Alonso et al. (Fig. 1), are not able to
imitate the calligraphic style of an input image. The reason
is that these models are conditioned on the desired text string
and a latent noise vector z, but not on writing style attributes
or an input image of a handwritten word. In other words,
these models are not able to reproduce a writer’s style in a
reference text image to generate an image with new text. The
generated style is obtained from the randomly sampled latent
vector z instead. This motivated the approach by Liu et al.
[5], who proposed to describe a particular writer’s style by a
latent vector s that represents a set of content-agnostic calli-
graphic attributes (text skew, slant, roundness, stroke width,
ligatures, etc.) and is decoupled from the latent vector y that
describes the “content,” i.e., the desired text string.Themodel

Fig. 5 HTG-GAN architecture: During training, the encoder network
extracts a style vector from an image, allowing images in a similar style
to be generated, but with arbitrary text. The noise vector z is usually
added to the text embedding; however, during inference, a randomly
sampled latent style vector from the training database of styles is used
to generate the desired text

by Liu et al., called HTG-GAN, is designed to learn writers’
calligraphic styles through input images of their handwriting
samples, and then, during inference, mimic a selected style
with only the desired text string t as an input.

Methods To compute the latent vector s from an input
image of a sample of a writer’s handwriting, Liu et al. added
a block, the calligraphic style encoder S, to build the HTG-
GAN architecture, see Fig. 5. Style encoder S consists of four
residual blocks and two fully connected layers with ReLU
activation and spectral normalization used in each block. The
two fully connected layers are used to obtain the mean and
variance for Gaussian sampling. The generator G has three
residual blocks similar to those in S and uses nearest neighbor
interpolation to perform up-sampling. One final convolu-
tional layer outputs the generated image. The discriminator
D consists of four residual blocks similar to S, followed by
a final fully connected layer to output the binary signal “syn-
thetic” or “real.” The recognizer R uses the convolutional
recurrent neural network (CRNN) architecture proposed by
Alonso et al. [2].

During the training stage, in addition to the adversarial
loss ladv and the CTC loss lR that guide G to generate real-
istic and legible handwriting images, HTG-GAN uses the
Kullback–Leibler divergence loss lKL [56] to guide G to
generate diverse styles from different latent representations.
Also, a reconstruction loss lrec was added to the training
losses to encourage G to generate visually pleasing images.
The reconstruction loss evaluates the pixel-wise similarity
between the generated image and the input image (L1 loss).
Accordingly, the full objective function of HTG-GAN is:

lS,G,D,R = λ1 lKL + λ2 ladv + λ3 lrec + λ4 lR (10)
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where λ1, λ2, λ3 and λ4 are balancing weights.
Results The authors compared the performance of HTG-

GAN to the model by Alonso et al. and to ScrabbleGAN on
the same datasets. Their results were comparable in regard
to the image similarity metrics (see Table 8). It was reported
that the images generated by HTG-GAN had better visual
quality and fewer artifacts. Moreover, comparing results for
the handwritten text recognition task, a slight improvement
over ScrabbleGAN performance was reported (See Table 6).

3.7 Kang et al., GANwriting, Universitat Autonoma
de Barcelona, Spain, 2020

Motivation The goal of Kang et al.’s work [6] was to create a
handwriting generator, called GANwriting, that can imitate
a reference handwriting style of a particular writer, provided
by sample images of the writer’s handwriting. The novel idea
was to add a block to themodel architecture, called the writer
classifier W that can penalize the generated image if it does
not hold the desired style and can guarantee that the provided
calligraphic attributes characterizing a particular handwrit-
ing style were properly transferred to the generated word
instances. Kang et al. also introduced the calligraphic style
encoder S to the architecture by Alonso et al. [2] (Fig. 1),
which was also used by Liu et al. [5] in HTG-GAN, as
described above.

Method The GANwriting architecture includes a text
embedding network and the networks G, D, and R, as sug-
gested by Alonso et al. (Fig. 1), but Kang et al. made some
changes: The embedding network consists of three fully
connected layers with ReLU activation functions and batch
normalization, and its output y includes two types of encod-
ings: (1) low-level encodings of different characters that form
a word and their spatial position within the string and (2)
global string encodings aiming for consistency of the whole
word. These two feature encodings are concatenated and fed
to the generator G, together with the style features s, as a
single feature map F = [Fs ||y].

The style features s are computed by the encoder S, which
uses a VGG-19 backbone network with batch normalization
(VGG-19-BN) [57], and additive noise z. The input to the
generator G is thus F = [Fs ||y] + z.

The generator G consists of two residual blocks, using
AdaIN [58] as the normalization layer, four convolutional
modules with nearest neighbor up-sampling, and a final tanh
activation layer to generate the output image. The discrim-
inator D starts with a convolutional layer, followed by six
residual blocks with LeakyReLU activations and average
pooling, and a final binary classification layer.

Quite different from the Alonso et al. base model, the
recognizer R of the GANwriting architecture consists of an
encoder and a decoder, coupled with an attention mecha-
nism.AVGG-19-BNfollowedbya two-layeredbidirectional

gated recurrent unit (B-GRU) is used as the encoder network,
and the decoder network is a one-directional RNN that out-
puts character-by-character predictions at each time step. The
attention mechanism dynamically aligns the context features
from each time step of the decoder with high-level features
from the encoder, hopefully corresponding to the next char-
acter to decode.

The writer classifier W of GANwriting follows the same
architecture as the discriminator D, but with a final classi-
fication by a multilayer perceptron with a number of nodes
equal to the number of writers |W| in the training dataset.

The optimization process ofGANwriting is based on three
loss functions: the discrimination loss lD, which is imple-
mented as a binary cross-entropy loss (Eq. 1), the writer
classifier loss lW, which is implemented as a multi-class
cross-entropy loss with the number of classes being the
number of writers |W|, and the recognizer loss lR as the
Kullback–Leibler divergence loss [56]. ThewholeGANwrit-
ing architecture was trained end to end with the combination
of the three proposed loss functions:

l(H ; D;W ; R) = lD(H ; D) + lW(H;W) + lR(H;R), (11)

where H stands for the combination of the G, S, and embed-
ding networks. Kang et al. [6] did not mention any gradient
balancing attempts during training.

Results Kang et al. did not provide comparisons to
previous work on handwriting generation. However, later
works [9, 10] have run experiments using the GANwrit-
ing model to obtain results for the sake of comparison (see
Tables 6 and 8). Alternatively, Kang et al. reported that
their results outperform FUNIT [59], an image-to-image
translation architecture for natural scene text. Furthermore,
human examiners reportedly found various synthesis results
produced by GANwriting to be satisfactory. By design,
GANwriting requires multiple reference images per writer
to extract a reliable style feature for each synthetic sample
during training (i.e., a few-shot setup). Thus, a slight degra-
dation has been found to occur when either the input text is
an out-of-vocabulary (OOV) word or has a style never seen
during training. Additionally, GANwriting cannot generate
long handwritten words (longer than ten letters) and can only
imitate a given input handwriting style, i.e., it cannot generate
random-style text.

Kang et al. extended their work [11] to generate hand-
written text lines by a periodic padding module inside the S
block. Thismethodwas able to generate handwriting samples
of any length irrespective of the length of the style input by
replacing the Seq2Seq-based recognizer with a Transformer-
based recognizer. The authors did not compare the results of
their original and extended models.

The GANwriting architecture was also extended byWang
et al. [13] to generate multi-scale and more complex writing
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styles by introducing attentional feature fusion (AFF) to the
GANwriting model. The style VGG-19-based encoder was
modified to obtain multi-scale features including global and
local features. The resultingmodelwas namedAFFGanWrit-
ing and reportedly generates images of better visual quality
than those generated by GANwriting or a previous model by
Wang et al. [16] that was based on a Transformer.

3.8 Gan andWang, HiGAN, The University of the
Chinese Academy of Sciences, China, 2021

Motivation The goal of Gan and Wang [7] was to design a
model that can generate diverse handwriting conditioned on
arbitrary-length texts and disentangled styles, extending the
work of Kang et al. [6], GANwriting, so that longer texts and
arbitrary styles can be produced. Gan andWang proposed the
Handwriting imitation GAN (HiGAN) model, which offers
two options for the latent representation of the style s: (1)
a randomly sampled style from a prior distribution, or (2) a
style disentangled from a reference image through the pre-
trained style encoder S.

Method HiGAN uses the samemodel blocksG, D, S,W ,

and R as GANwriting (Fig. 6), and details of the internal
design of the blocks can be found in the implementation code
that the authors shared.

HiGAN expands on the loss functions used for train-
ing. Two types of adversarial losses are used that guide the
training of the generator G: (1) For an arbitrary text string
embedding y and a style feature s, randomly sampled from
a prior normal distribution N (0; 1), the generator G synthe-
sizes image G(y, s) using the loss function

ladv1 = EX [log(D(X))] + Ey,s[log(1 − D(G(y, s)))]. (12)

(2) For a real input image X , the generator synthesizes a
realistic image conditioned on the disentangled style S(X),
using the loss function:

ladv2 = EX [log(D(X))] + Ey,X [log(1
−D(G(y, S(X))))]. (13)

Combining the two losses, the overall adversarial loss during
training is

ladv = ladv1 + ladv2. (14)

The full objective of HiGAN can be summarized as follows:
(1) When maximizing the adversarial loss ladv, the discrimi-
nator D, recognizer R, and writer identifierW are optimized,
and (2) when minimizing the adversarial loss, the generator
G and style encoder S are jointly optimized:

lD = −ladv, (15)

lG,S = ladv + λ1lR + λ2lW + λ3lS + λ4lKL, (16)

where λ1, λ2, λ3, and λ4 are balancing weights. Here,
loss terms lw and lKL are computed by the writer classifier
W , which offers two options: Styles from known writers,
defined with writer IDs, e.g., w1, w2, etc., can be disentan-
gled or trained using data from unseen writers, who do not
have a corresponding identifier. Consequently, two versions
of losses are available to guideG to reproduce the input style.
Loss lW is implemented as a cross-entropy function and lKL
is the Kullback–Leibler divergence loss. The recognizer R is
first optimized by minimizing the CTC loss for each (image
X , ground-truth text t) pair in the training set:

CTC loss = EX ,t [−t log(R(X))]. (17)

Then, the parameters of R are kept fixed when minimizing
the adversarial loss. The trained R can guide G to synthesize
a legible handwriting image G(y; s) through the loss term lR
in Eq. 16:

lR = Ey,s[−y log(R(G(y, S(X))))]. (18)

Similarly, for the style encoder S, first, the latent style recon-
struction loss is employed. Then, the model is forced to
reconstruct the style s of any synthetic imageG(y; s) through
the loss term lS in Eq. 16:

lS = Ey,s[‖s − S(G(y, s))‖1]. (19)

Results The performance of the HiGAN architecture was
compared to the performance of GANwriting and Scrabble-
GAN on the same datasets. HiGAN showed better perfor-
mance regarding the visual quality of the generated images,
the quantitative evaluation of image similarities, and the
handwritten text recognition error rates (see Tables 6 and 8).
The experiments showed that HiGAN could synthesize even
long texts of similar styles. However, spaces between words
were omitted, making the entire sentence a single very long
word. It should also be noted that HiGAN sometimes pro-
duced a low visual quality of synthetic images due to blurred
and distorted characters.

Inspired by the HiGAN architecture, Zdenek and Naka-
maya [14] proposed JokerGAN++ to support the imitation
of style from reference images, a feature that is not provided
by JokerGAN. They introduced a style encoder block to their
architecture that is based on aVision Transformer (ViT) [60].
The authors report that JokerGAN++ produces better images
than ScrabbleGAN, JokerGAN, and HiGAN with regard to
qualitative and quantitative HTR assessment.
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Fig. 6 TheGANwriting architecture: Novel modifications are the addi-
tions of a writer classifier network W and a style encoder network S.
A writer’s style is provided to W by m = 15 image samples of the
writer’s handwriting for training (few-shot training). After training, S
can extract a style vector from an image, allowing images in a similar
style to be generated, but with arbitrary text. Additive noise z is added
to the text embedding as usual, and some noise is added to the disentan-
gled style vector s. The design shown here was also used for HiGAN
architecture [7]

3.9 Davis et al., BrighamYoung University and
Adobe Research, USA, 2020

Motivation Davis et al. [8] wanted to generate images with a
full line of text with spacing between words and the possibil-
ity to reproduce a writer’s style for a given input text and new
arbitrary text. They modified the architecture proposed by
Alonso et al. in Fig. 1 such that theirGANwas conditioned on
both an arbitrary text string, and a latent style vector extracted
from a reference image of real handwriting. They combined
variational auto-encoders with GANs to generate variable-
size images of handwritten lines. The generated image size
is predicted using their deep architecture that estimates the
characters’ sizes and the inter-word spacing. Those estimates
are based on the input writing style, disentangled from the
reference image, and the target/conditioned text.

Method To accomplish their goals, Davis et al. introduced
two remarkable functional networks in their architecture,
see Fig. 7. The first network is the spacing network C that
predicts the horizontal text spacing from the extracted style
vector. The second network is a pre-trained encoder E that
computes a perceptual loss [61]. Perceptual losses encourage
natural and pleasing generation results. These lossesmeasure
image similarities more robustly than per-pixel losses. The
perceptual loss forces G to generate a handwriting style that
mimics the input image style. In other words, while G learns
to reconstruct images from style and content, the encoder E
only needs to extract the style vector.

Fig. 7 The architecture byDavis et al.: The style encoder S disentangles
a style vector s from the reference handwriting image and uses this
vector to (1) help the spacing network C estimate the proper character
sizes and inter-word spaces and (2) update the style bank to enhance the
future estimates of the spacing network C . The text embedding makes
use of the spacing network information and the latent noise to guide G
to convey the desired text string in diverse styles. The networks D and
R function as usual. Network E computes the perceptual reconstruction
loss between the styles in both the reference and the generated image
to urge G to transfer the same input style

The architecture proposed by Davis et al. can be trained in
two modes: GAN training and auto-encoder training. In the
GAN-only training, the adversarial losses, including CTC
from network R, are computed and used to update G and
D. In the auto-encoder training, the reconstruction losses
(pixel and perceptual) are computed to update G and S. The
mean square error (MSE) loss is used to train the network
C . The network E is trained both as an auto-encoder with a
decoder and L1 reconstruction loss when the objective is to
copy the reference style on a new text, and as a handwriting
recognition network with CTC loss when the objective is to
reproduce both the reference style and text.

The architecture functions as follows: (1) A generator net-
workG produces images from spaced text, a style vector, and
noise, (2) a style extractor network S computes a style vector
from an image and the recognition predictions, (3) a spacing
network C predicts the horizontal text spacing based on the
style vector, (4) a patch-based convolutional discriminator
D to detect real versus synthesized images, (5) a pre-trained
handwriting recognition network R to encourage image leg-
ibility and correct content, and (6) a pre-trained encoder E
to compute a perceptual loss.
Davis et al. explained the details of the internal design of the
six networks in their supplementary material [8].

They also modified the gradient balancing technique, pre-
viously introduced byAlonso et al. [2]. In the previousworks,
the balancing terms were all learned during training and
updated on each epoch. To reduce memory requirements,
they forced some training steps to only store the gradients
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(for later balancing), and other steps to update the parameter
values. The weights in the balancing formula were chosen
heuristically so as to emphasize the parts they discovered the
model has struggled with.

Results Davis et al. provided many ablation study details
and visual representations of the results of their experimen-
tal work. They studied the effect of the different losses they
used on the output image legibility and quality. They showed
evidence that the network S extracted styles accurately at the
author level and clustered style vectors for the same writer
without intentional training. Commenting on their recon-
struction results, the authors noted that their model is able
to mimic aspects of a writer’s global style, but failed to copy
character shape styles. Nonetheless, they describe the gener-
ated images to be convincing, based on a human assessment
experiment conducted via Amazon Mechanical Turk. The
participants were fooled by the synthesized images, voting
them to be real most of the time.

The authors used the same datasets as were used for the
model by Alonso et al. [2] and for ScrabbleGAN [3]. They
described their results to be similar in quality to those by
ScrabbleGAN based on two image similarity metrics FID
and GS (see Table 8).

3.10 Gan et al., HiGAN+, University of Posts &
Telecommunications and University of the
Chinese Academy of Sciences, China, 2022

Motivation According to Gan et al. [9], the architecture pro-
posed by Davis et al., which learns to extract styles from
images based on the pixel-to-pixel reconstruction loss, can-
not correctly imitate styles of reference samples in most
cases. They attributed the reasons to the spatial misalignment
of image pairs, and the texture existence limiting the effi-
ciency of pixel-based methods. To enhance the visual quality
of the generated images and also achieve a more accurate
handwriting style transfer, Gan et al. [9] proposed a modi-
fied version called HiGAN+ of their previous work HiGAN
[7]. With HiGAN+, they aimed to reproduce the same style
as a reference image on a new input text string.

To address the blurriness of characters, whichwas degrad-
ing the generated image quality, and to better transfer the
reference style, Gan et al. were motivated to add terms to the
loss function used byHiGAN. They also wanted a compacter
model and thus redesigned the writer identifier network W
such that the style encoding was conducted in the earlier
layers.

Method Gan et al. made use of the comment by Davis et
al. about the problem of generating character styles versus a
global word style. The new design of the generator converts
the text into individual character embeddings, rather than
an entire text embedding, and then concatenates those local
characters patches together into words. With convolutions,

the overlaps and transitions among characters are learned.
This is similar to the feature map creation of ScrabbleGAN.

Gan et al. added a patch discriminator network to decide
whether a given patch was cropped from real or synthetic
images. Thatwas intended to improve the local texture details
of synthetic images, since, instead of grading the whole
image, it verified the patch fidelity. Details of the internal
design of the blocks of HiGAN+ were not explained in the
paper and might be found in the implementation code that
the authors have shared.

Gan et al. modified the objective function they developed
for HiGAN, Eq.16, by adding additional loss terms to guide
the generator:

lG,S = ladv + λ1lpatch + λ2lR + λ3lW + λ4lctx + λ5lS

+λ6lrecn + λ7lKL, (20)

where λ1, λ2,…, λ7 are balancing weights. Some of these
weights were empirically set, and others were dynamically
adjusted during training with the gradient balancing strategy.
Loss terms ladv, lR, lW, lS, and lKL are the same as in HiGAN.
The local patch loss lpatch penalizes the local structures to help
achieve good local consistency, especiallywhen the input text
is long.

The contextual loss lctx measures the similarity of two
handwriting images, requiring no spatial alignment and
allowing slight deformations as it focuses on the high-level
style features. The content reconstruction loss lrecn improves
the content and style consistency since it regularizes the gen-
erative model to achieve a more robust handwriting style
transfer.

The training of HiGAN+ was done in three stages, (1)
pre-training the writer identifier W and text recognizer R,
(2) reusing writer identifier W as style encoder S, and (3)
GAN optimization with gradient balancing.
Results Gan et al. tested HiGAN+ using several qualita-
tive and quantitative metrics. In particular, they used image
similarity metrics to evaluate the visual quality of synthe-
sized images and HTR to check on readability of the results.
They introduced a writer identification error metric to eval-
uate handwriting style transferability. Gan et al. compared
HiGAN+ to the related works discussed in this survey [3,
6–8], and the transformer-based architecture [15]. The com-
parisons favor HiGAN+ over the other structures visually
and quantitatively (see Table 8) even with one-shot hand-
writing style transfer. The assessment study showed that
humans were fooled by the images generated by HiGAN+
and preferred its imitated styles over the images generated by
other architectures (see Table 7). However, the error analysis
showed that HiGAN+ failed to generate plausible images for
scribbled handwriting and for punctuation marks and digits.
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Fig. 8 SLOGAN architecture:
The style encoder S is replaced
by a lookup table of handwriting
samples associated with their
writer ID. The input is an image
of machine-printed text rather
than an embedding of a text
string. In the inference stage, the
writer ID is input to the bank to
obtain its corresponding style
vector. Noise is added to
parameterize this style (i.e.,
create a new unknown style) if
needed. The discriminator Dchar
checks for the character shape
legibility, while discriminator
Djoin checks for the character
transition legibility

3.11 Luo et al., SLOGAN, South China University of
Technology, China, 2022

Motivation Luo et al. [10] provided some interesting rea-
soning about the previous works on handwriting generation,
suggesting that the latent vectors are not sufficient for rep-
resenting variance in handwriting styles and thus limit the
ability of these vectors to represent style diversity. They
declared that there is an imbalance in the IAM dataset, used
by the previously discussed models, regarding the frequency
of contributions of individual writers. They suggested that
gaps in the style space cannot be filled by the previous solu-
tions since no new styles can be invented, and collectingmore
data with new styles is infeasible. In their architecture, called
SLOGAN, Luo et al. proposed a solution to this problem by
using a style bank to store vectors of parameterized hand-
writing styles. The idea is for styles, identified by IDs, to
be acquired by the generator to guide the synthetic images
toward specific styles. New styles can then be synthesized by
controlling the latent style parameters.

Luoet al. also noted that the previously discussed solutions
are not sufficiently flexible to embed text contents, espe-
cially out-of-vocabulary and long texts. The reason, in their
opinion, is the failure of previous architectures to accurately
detect transition locations of adjacent characters or learn their
shapes. To solve this, they suggested that the conditioned text
should be fed to the GAN as a machine-printed style image.
In such a way, various contents could be generated by chang-
ing the string characters and realigning their positions on the
input image.

Method The SLOGAN architecture, shown in Fig. 8, is
significantly different than the previously discussed works.

Luo et al. gave up the recognition network R, first introduced
by Alonso et al. [2]. Nonetheless, SLOGAN is able to gener-
ate legible text images. Luo et al. dealt with the problem of
legibility as an image style transfer problem as inCycleGAN.
The input is an image of printed text rather than a text string
(i.e., conditioned text), so SLOGAN also does not include
an embedding network. SLOGAN consists of a style bank, a
generator, and two discriminators, each with dual heads.

The style bank is a simple lookup table that storesm hand-
writing styles as latent vectors, each having a writer ID. The
style bank is randomly initialized and jointly updated with
the generator under the supervision of writer IDs. The gen-
erator G is an encoder-decoder architecture (i.e., identical
mapping of both the same handwriting style and content).
It takes a white-background machine-printed-style image as
input and generates a version of that image with the printed
text converted to handwriting.

The separated character discriminator Dchar supervises
the generator at the character level. It comprises an atten-
tion mechanism to overcome the need for character-level
annotation and localizes characters using a text string. The
discriminator Dchar has two heads, namely Dchar,adv and
Dchar,context. After localizing characters in the input image,
adversarial training and content (character class) training for
every character follows. The cursive join discriminator Djoin

is a global discriminator thatmodels the relationship between
adjacent characters. It works on patches segmented from
the feature map with overlapping receptive fields to focus
on the regions between adjacent characters. Discriminator
Djoin also has two heads, namely Djoin,adv and Djoin,ID. They
undergo adversarial training and handwriting style super-

123



Generative adversarial networks for handwriting image generation: a review

vision (i.e., writer style identification) on the segmented
patches.

The designers of SLOGAN gave up network R but did
not give up the need for text recognition loss to train G. In
the previously reviewed models, R was a separate network
to recognize the text in the generated images. In SLOGAN,
one of the two discriminators Dchar, performs the recognition
internally on the character level using its Dchar,context head,
so the recognition loss is implicitly added to the adversarial
loss for training networks G and D.

The generator and discriminators are updated alternatively
during training. To parameterize handwriting styles the style
bank is updated jointly with the generator. At the inference
stage, the latent style vector z is parameterized by individ-
ually manipulating each element to take value within the
min-max range for any of the learned n parameters per style.
The input printed image, i.e., conditioned text, can bemanip-
ulated to achieve different alignment effects such as curved
text or text of arbitrary length.

Results SLOGAN was evaluated for the visual quality
of the generated image, and the diversity in both style and
content (Table 8), HTR evaluation (Table 6), and human
assessment were used as well (Table 7). Volunteers were
confused to tell the real from the generated images and
voted for subtle imitation of input styles. Luo et al. com-
pared their results to the here-discussed GAN-based works
ScrabbleGAN [3], Alonso et al. [2], and GANwriting [6], as
well as transformer-based works [15] and sequential model-
based works as well. The quantitative evaluation indicates
that SLOGAN outperforms them all.

Luo et al. did not provide an error analysis of SLOGAN,
but one thing to note about their work is that SLOGAN can
successfully generate new styles to fill the gap inside the style
latent space. However, this will always be limited to the space
defined by the training population only.

3.12 Comparison of model capabilities and
architectures

Up to the time of writing, the nine reviewed handwriting
generation systems were all the systems based on GANs
architectures that we could find in the literature. In this
section, we summarize their capabilities and architecture
designs. As can be seen in Table 3, most works employ gen-
erator, discriminator, recognition, and embedding networks,
trained with adversarial and CTC loss functions, and can
handle handwritten text images, conditioned text, and latent
noise. Table 3 also visualizes less common architecture com-
ponents, loss functions, and input information, such as the use
of writer identification networks, style banks, cross-entropy
and contextual loss functions, and text line and spacing infor-
mation as input.

A comparison of the reviewed systems for offline hand-
writing generation based on their capabilities and their
provided features is given inTable 4. Eight of ninemodels can
generate images by randomly sampling styles from a prior
distribution (random-style generation) and generate words
outside the lexicon or the corpus of words used to train the
GAN architecture (unconstrained and out-of-vocabulary text
generation). The generated images from seven of the models
may contain very longwords,multiple-spacedwords, or even
an entire line of text (arbitrary-length words). Six models
ensure that the generated image width varies with the num-
ber of characters in the word to avoid distortion (variable size
output image), and five models can imitate the handwriting
styles of reference images (reproducing input style).

Under the row header “Code Availability,” Table 4 lists
for which works we were able to find implementation code
that is shared publicly with the community on GitHub at the
time of writing of this review paper. Unfortunately, only five
of the nine works made their code available to the research
community. We hope that more code will become available
in the future, as it enables reproducibility of the results, com-
parisons between models, and furthers future research.

A comparison of the reviewed systems based on the quan-
titative methods used to report results is given in Table 5.
Seven of nine models used HTR to evaluate the quality of
the generated images. Any performance improvement in the
recognition results was deemed to be due to the augmenta-
tion of the training samples using synthetic data, indicating
high-quality handwriting synthesis.

The HTR system used by researchers developing GAN-
based models for handwriting synthesis is typically the
recognizer network R. ScrabbleGAN, JokerGAN, and HTG-
GAN, for example, use the same architecture for R as
suggested by Alonso et al. [2]. The other works reviewed
here proposed different architectures for R. The HTR per-
formance is based on two main metrics: the word error rate
(WER), which indicates the percentage of mistakenly recog-
nized words in the test set, and the normalized edit distance
(NED), which is the edit distance between the predictedword
and the ground-truth (GT) word normalized by the length of
the GTword (see Table 6). The lower the values ofWER and
NED, the better is the recognition result.

For the IAM dataset, the performance of ScrabbleGAN,
JokeGAN, and HTG-GAN is relatively close. SLOGAN out-
performs them all. However, for the RIMES dataset, the
performance of ScrabbleGAN, SLOGAN, andAlonso et al.’s
model is almost the same. HTG-GAN has a slight advantage
over them. For the CVL dataset, later models could not out-
perform the reference results by ScrabbleGAN.

From Table 5, we note that for only five of nine models
user studies were reported to assess the quality of the gen-
erated images. Some studies observed the users’ preferences
in selecting the most visually convincing generated images.
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Table 3 Comparison between
GAN-based architectures
designs, inputs, and training
losses

Feature type [2] [3] [4] [5] [6] [7] [8] [9] [10]

Architecture components of the GAN:
Generator network G � � � � � � � � �
Discriminator network D � � � � � � � � �
Recognition network R � � � � � � � � x
Embedding network � � � � � � � � x
Style encoder network S x x x � � � � � x
Writer identification network W x x x x � � x � x
Spacing network C x x x x x x � x x
Pretrained encoder network E x x x x x x � x x
Style bank x x x x x x � x �

Input data of the GAN:
Conditioned text � � � � � � � � �
Latent noise � � � � � � � � �
Handwritten text image x x x � � � � � �
Latent style x x x x � � � � �
Printed text image, writer ID x x x x x x x x �
Text line information x x � x x x x x x
Text spacing information x x x x x x � x x

Loss functions of the GAN:
Adversarial loss � � � � � � � � �
CTC loss � � � � x � � � x
Kullback-Leibler loss x x x � � � x � x
Cross entropy loss x x x x � � x � x
Reconstruction losses x x x � x � � � x
Perceptual losses x x x x x x � x x
Mean-square error loss x x x x x x � x x
Contextual loss x x x x x x x � x

-

The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting
[6], HiGAN [7], Davis et al. [8], HiGAN+ [9], and SLOGAN [10]

Table 4 Features of GAN-based
architectures for handwriting
generation

Feature type [2] [3] [4] [5] [6] [7] [8] [9] [10]

Generation of random style � � � � × � � � �
Reproduction of input style × × × × � � � � �
Variable-size output image × � � × × � � � �
Arbitrary-length words × � � � × � � � �
Unconstrained and OOV text generation � × � � � � � � �
Code availability × � × × � � � � ×
The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting
[6], HiGAN [7], Davis et al. [8], HiGAN+ [9], and SLOGAN [10]

Table 5 Assessment strategies
used for the reviewed models

Feature type [2] [3] [4] [5] [6] [7] [8] [9] [10]

Evaluation using HTR performance � � � � × � × � �
Evaluation using human assessment × × � × � × � � �
Evaluation using image similarity metrics

→ FID � � � � � � � � �
→ GS � � × � × × � × �
→ MS-SSIM × × × � × × × � ×
→ IS, KID, PSNR × × × × × ×× × � ×
→ GAN-train, GAN-test × × � × × × × × ×
The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting
[6], HiGAN [7], Davis et al. [8], HiGAN+ [9], and SLOGAN [10]
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Table 6 Model performance on
three commonly used datasets,
measured with the handwritten
text recognition (HTR) metrics

Dataset: IAM

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

Word error rate (%) – 23.98 36.3 20.5 17.26∗ – – 1.86∗∗ 14.97

Normalized edit distance – 13.57 13.04 7.35 – – – – –

Dataset: RIMES

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

Word error rate (%) 11.9 11.68 – 10.15 – – – – 11.5

Normalized edit distance 4.03 3.74 – 2.7 – – – – –

Dataset: CVL

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

Word error rate (%) – 22.9 62.33 – – 28.91 – – 34.98∗∗∗

Normalized edit distance – 15.62 28.42 – – – – – –

Bold values indicate the best value
Only the self-reported results of the authors’ best performing model that uses both real and synthesized data
are listed. The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5],
GANwriting [6], HiGAN [7], Davis et al. [8], HiGAN+ [9], and SLOGAN [10]. ∗ The result for GANwriting,
(17.26), was not reported by Kang et al. [6], but by Luo et al. [10]. ∗∗ Gan et al. [9] may have used a different
training setting that yielded a lowWER for HiGAN+ on IAM. They also reported a different WER of 25.24%
for ScrabbleGAN [3]. ∗∗∗ Instead of training and testing on CVL, as was done by others [3, 4, 7], Luo et al.
[10] trained on IAM plus synthetic data and tested on CVL only. This explains a somewhat higher word error
rate

Table 7 Model performance according to human evaluation and user preference studies

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

TP (%) – – – – 27.01 – 34.2 31.72 31.5

TN (%) – – – – 22.3 – 18 18.32 19.45

FP (%) – – – – 27.69 – 31.9 18.28 28.55

FN (%) – – – – 22.99 – 15.8 31.68 20.5

Precision (%) – – – – 49.4 – – – 52.46

Recall (%) – – – – 54.1 – – – 60.58

FPR (%) – – – – 55.4 – – – 59.48

FOR (%) – – – – 50.8 – – – 51.31

Accuracy (%) – – – – 49.3 – 52.2 50.04 50.95
∗User preference rate for realistic look (%) – (26.5) 43.9 – – – – – –
∗∗User preference rate of visual quality (%) – (9.18) – – (5.42) (21.02) (10.27) 37.25 –

Bold values indicate the best value
The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting [6], HiGAN [7], Davis et al. [8],
HiGAN+ [9], and SLOGAN [10]. ∗In the experiment conducted by Zdenek and Nakayama [4], the user picks 1-out-of-3 generated images as the
most realistic. The numbers in the table show the percentage of people who find the generated images more realistic. The result for ScrabbleGAN
(26.5) was not reported by Fogel et al. [3], but by Zdenek and Nakayama [4]. ∗∗In the experiment conducted by Gan et al. [9], the user picks
1-out-of-5 generated images from different GANmodels as the most visually convincing. The numbers in the table show the percentage of preferred
images picked by the users. The results in parentheses (.) were not originally reported by the respective model developers but by Gan et al. for the
purpose of comparison

The reported results show the percentage of preferred images
(like the study led by Gan et al. to compare HiGAN+ to five
previous works). In some cases, the reported results show
the percentage of users voting for the images generated by
some model (like the study led by Zdenek and Nakayama to
compare the quality of images generated by JokerGAN vs.
ScrabbleGAN). The higher percentages indicate a stronger
preference.

Other studies were concerned about the rates of the user
classification of images as real or fake images, computing
metrics such as accuracy (ACC), precision (P), recall (R),
false-positive rate (FPR), and false omission rate (FOR) and
constructing a confusion matrix. The classification accura-
cies closer to 50% suggest random classification. In such
cases, human experts cannot tell which images are fake. The
reported results are shown in Table 7. In that context, we note
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Table 8 Model performance according to image similarity metrics

Dataset: IAM + RIMES

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

FID 23.94 23.78 – 22.85 – – 23.72 – 12.06

GS 8.58 × 10−4 7.6 × 10−4 – 7.41 × 10−4 – – 7.19 × 10−1 – 5.59×10−4

Dataset: IAM only

Metric [2] [3] [4] [5] [6] [7] [8] [9] [10]

FID – (14.31∗) 9.18 12.18 120.07 18.31∗∗ 20.65 5.95 –

GS – – – 2.23×10−3 – – 4.88 × 10−2 – –

GAN-train – (51.84) 49.14 – – – – – –

GAN-test – (28.41) 10.9 – – – – – –

IS – (1.33) – – (1.33) (1.33) (1.24) 1.41 –

KID – (2.95) – – (1.39) (1.67) (3.13) 0.37 –

PSNR – (11.26) – – (10.8) (11.76) (12.03) 12.34 –

MSSIM – (0.19) – – 0.20 (0.25) (0.18) 0.33 –

Bold values indicate the best value
The GAN-based models are: Alonso et al. [2], ScrabbleGAN [3], JokerGAN [4], HTG-GAN [5], GANwriting [6], HiGAN [7], Davis et al. [8],
HiGAN+ [9], and SLOGAN [10]. The results in parentheses (.) were not originally reported by the respective model developers but were presented
later by developers of competing architectures for the purpose of comparison. ∗This result may not be accurate, as it was reported with different
values in different works. ∗∗Gan et al. [7] reported two FID results for latent-vector-guided and reference-guided synthesis by HIGAN, respectively.
Following Gan et al. [9], we here report the average value

that generated images by both SLOGAN and HiGAN+ are
the most perplexing to human experts.

Table 5 also shows that for all nine models image sim-
ilarity measurements were used to assess the quality of the
generated images, although they vary in the metrics used and
the dataset they were generate from (see Table 8).

Thegeometry score (GS)measures the potentialmode col-
lapse after a long phase of generations. The lower GS value
is the better. The Fréchet inception distance (FID) measures
the distance between real and generated data distributions,
so the lower its value is the better. The multi-scale structural
similarity image score (MS-SSIM) predicts human percep-
tual similarity judgments with values ranging between 0.0
and 1.0. Higher MS-SSIM values correspond to perceptually
more similar images. The GAN-train and GAN-test metrics
evaluate conditional image generation via the image recog-
nition task (here HTR). GAN-train is an indicator of the
diversity of generated images. Conversely, GAN-test mea-
sures the fidelity of generated images with respect to the
original data. The word error rate (WER) is used as the mea-
surement of performance in both methods. The lower the
values are the better.

The inception score (IS) measures the diversity of gen-
erated images. The higher IS value is the better. The kernel
inception distance (KID) measures the distance between dis-
tributions of the generated and real samples. The lower KID
value is the better. The peak signal-to-noise ratio (PSNR)
measures the reconstruction error. The higher PSNR value is
the better.

For models trained with a combination of samples from IAM
andRIMESdatasets, we note that FID andGSvalues are very
similar except for the SLOGANmodelwhich has remarkable
improvement over them.
For models trained with the IAM dataset only, HiGAN+ has
the best performance regarding all metrics except for GS
where HTG-GAN is better, and for GAN-train/test metrics
where JokeGAN has the best performance.

4 GANs versus other generative models

One of the earliest categories of models used for image gen-
eration is the auto-encoder (AE). The AE paradigm takes the
raw input image and performs data encoding by learning a
mapping of the input image x to a low-dimensional latent
space z through a series of CNN layers (encoder). Vector z
can summarize (or compress) the most important features of
the high-dimensional image x . The decoder (usually some
de-convolutional layers) can then use z to reconstruct an
image very similar to the original image x . However, the
compression made by the AE might lead to lower-quality
reconstruction as the dimension of the latent vector becomes
smaller.

A variant of the AE, which generates new data that is not
strictly similar to the input data, is known as the variational
auto-encoder (VAE). A VAE replaces the deterministic bot-
tleneck representation z for a random sampling operation.
Instead of learning specific values for the latent variables in
the compressed vector z, it learns a random distribution over
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each latent variable in z parameterized by mean and stan-
dard deviation. VAEs represent a probabilistic twist over AEs
where they can sample from themean and standard deviation
to compute different latent variables (i.e., different z vec-
tors) and generate new data. The rise and rapid evolution of
GAN architectures caught the attention of handwriting gen-
eration researchers by 2018. The reason was the ability of
GANs to generate high-fidelity images compared to those
generated by auto-encoders and variational auto-encoders
that were so popular before. For several years, GANs have
remained the preferred type of image-generation models,
with researchers proposing different architectures and opti-
mization methods, even though GANs can be challenging
to train. The GAN training process is inherently unstable,
in particular, the simultaneous dynamic training of the two
competing networks G and D. When training a GAN, one
may face two problems, namely mode collapse (Sect. 3.2.4)
and divergence (or non-convergence) of the model. Model
collapse can lead to a lack of novelty in image generation—
the generated images are not radically new or different from
the images in the training data domain, and the GAN does
not generalize well and scale.

Although stable training of GANs remains an open prob-
lem, many empirical tips and tricks have been proposed [62]
that result in the reliable training of a stable GAN model.
The recommendations involve (1) modifying the design of
the GAN architecture, (2) selecting an appropriate optimiza-
tion algorithm, and (3) proposing a loss function that reduces
the divergence between the distribution of the training image
data and the distribution of the generated image data. The
notable work by Saxena and Cao [62] reviews the divergence
of these distributions and describes regularization schemes
across 24 GAN models. The work discusses the concerns
raised by the authors of each model, the approaches used
to handle these concerns, and the strengths and limitations
of each proposed solution. Similarly, one by one, we have
detailed themotivation, architecturemodifications, loss func-
tions, training procedure (all use the Adam optimizer [63]),
and results for the nine pioneer GANmodels for handwriting
generation.

Alongside continued research on GANs, there has been
a search for new paradigms for general image generation in
order to find models that achieve training stability and effi-
ciency, as well as quality and novelty of image generation.
The most popular paradigm is the diffusion model [64–66],
which started out as amodel [67] that reportedly could gener-
ate images of animals (cats, horses) and scenes (bedrooms)
with higher average FID scores than the StyleGAN model
[68].

Diffusion models are now used in commercial products
(e.g., DALLE-3 [69] and StableDiffusion [70]) to create both
photorealistic and non-photorealistic imagery. Only recently,
the diffusion paradigm has been applied to the task of gener-

Fig. 9 Image generation using iterative noise cancellation via multiple
diffusions

ating handwriting in fixed-sized images [18, 19] with results
on datasets IAM and RIMES that reportedly have lower error
scores than GANs [18] and also do much better on the task
of writer retrieval [19].

Unlike VAE or GAN models that generate samples in
“one shot,” guided by the vector of latent variables, diffu-
sion models gradually de-noise an input sample by capturing
the most important information and alleviating noise until
a noise-free sample is generated (Fig. 9). A white noise
image can be thought of as the representation of all possible
images, including desired images of handwriting. Generat-
ing a desired image can then be done by a de-noising process
that starts with a white noise image and iteratively cancels
noise until a handwriting image emerges.

The training process of a diffusion model starts with “for-
ward noising,” where the information in the original image is
gradually wiped out by an incremental amount of noise until
the image contains pure noise. Then, the network is trained
to estimate and gradually subtract the noise until it recovers
the original image. To generate new images, the diffusion
model performs the same iterative method of noise cancel-
lation (de-noising), using a trained auto-encoder with skip
connections, which estimates the amount of noise added to
the input image of pure noise, then subtracts the noise from
the image, and repeats the process multiple times.

A drawback of the original diffusion model [66] is that it
works in the high-dimensional image space rather than the
much lower-dimensional latent space, and is therefore slow to
train. This motivated research work on latent diffusion mod-
els (LDMs) [70]. A LDM is very similar to an auto-encoder
with an encoder–decoder structure. The difference is that the
encoder network outputs the latent representation of the input
image which is not directly decoded by the decoder network.
Alternatively, a series of diffusion processes start on the latent
representation rather than the original image input (i.e., the
lower-dimensional latent space). Finally, after de-noising, the
“clean” latent vector is decoded and projected back to the
image space. The stable diffusion model [70] is the condi-
tioned version of the latent diffusion model (LDM), where
text is used as a conditional input to guide the de-noising pro-
cess and generate a specific image content. The text must be
encoded (embedded) before being concatenated to the latent
representation that undergoes the diffusion process.
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With a transformer network, the attention weights adapt
dynamically to the input and are not static as in the convo-
lution weights of a trained GAN generator. Therefore, high-
quality zero-shot image generation is possible and visually
satisfying. Transformers assume minimal prior knowledge
about the structure of the problem, in contrast to convolu-
tional blocks. Transformers make few or no assumption on
the input data for the model design thus transformers have
weak inductive bias. The model size of transformers-based
architecture is a major drawback. The lack of specific prob-
lem assumptions leads to large models with many weights
and requires large training datasets, or, alternatively, a pre-
trainedmodel on a large dataset from a different domain. The
huge number of parameters for global spatial attention to the
entire input image makes the computation of attention maps
very expensive.

The existing paradigms for image generation,GANs,AEs,
VAEs, and diffusion models, all share the concept of encod-
ing the image information into a latent representation and
decoding this representation back to a generated image under
specific embedded conditions. There are similarities in the
model architectures proposed under each of these paradigms
and their performance for fixed-size images. The ability to
generate variable-size images, however, is important for the
generation of arbitrary-length words (Fig. 2). For variable-
size images, GANs can generate the highest quality images
without notable mode collapse, as we have seen for six out
of the reviewed nine pioneer models.

5 Conclusions

Handwriting synthesis can be helpful to forensic examin-
ers, people with disabilities, and researchers working on
handwriting recognition systems, especially for low-resource
languages. Handwritten text images have diverse writing
styles and difficult-to-segment cursive joins [18]. Recent
work on handwritten text generation shows that augmenta-
tion of training data using synthetic text images has improved
the performance of handwritten text recognition systems.

In our previous work [1], we reviewed a decade of pub-
lished works on handwriting generation and discussed their
limitations, particularly in producing truly cursive text. As
we described in this review, handwritten text synthesis faces
many difficulties: the need to generate variable-sized images,
as short as one word and as long as an entire text line, to
generate arbitrary-length words out of the training vocabu-
lary, and to imitate a reference writer’s style. The conditional
GAN architectures that have emerged since we published our
last review article [1] have shown remarkable capabilities
to transfer style and generate images of realistic handwrit-
ten text. As we detailed in this review article, they produce

styles that are based on latent vectors sampled from a given
distribution or disentangled from reference images.

In this article, we reviewed the 2019 seminal GANmodel
by Alonso et al. [2] and eight additional pioneer GAN-based
handwriting generation models in detail, as well as works
that used or adapted these models, with publication dates to
the end of 2023. The range of dates shows that the research
area is new and active.

We noticed that the handwritten datasets usedweremostly
in English with very few exceptions in Arabic, French, Ger-
man, and Japanese.Notably, the othermost spoken languages
in the world, Chinese, Hindi, and Spanish, or languages with
low resources have had less attention.We needmore research
involving other languages than English to investigate the
challenges that these languages bring to handwriting gen-
eration. Such research could give rise to generative models
that can be used to create large-size image datasets of synthe-
sized handwriting, starting from a given word and generating
a corresponding imageof the handwritten text. These datasets
could then be used to support the development of handwrit-
ing recognition models, providing researchers with images
and ground-truth labels for training these models, without
ensuing the costs of human annotation experiments.

As we detailed, the researchers’ goal was to explore the
best designs for the embedding, generator, and discrimina-
tor networks. They investigated the introduction of auxiliary
networks to the seminal model for various assistive roles like
recognition, encoding, and style extraction. They conducted
numerous ablation studies to find out what kind of loss func-
tions could aid the generator in obtaining what they see as
the best realistic and meaningful image. They evaluated their
systems qualitatively and quantitatively, using metrics from
other domains, to demonstrate the superiority of their work.
Whenwegathered the results they reported in tables to enable
comparisons of performance, we noticed some mismatches
between the numbers in the comparison tables reported in
the individual papers. It is difficult to clearly point out weak-
nesses in the reviewed architectures, as most of the papers
claim superiority and do not provide sufficient quantitative
and qualitative error analyses (e.g., figures of failure cases).
The numerical results look comparable in most cases, which
makes us indecisive about a preferable model. The authors
of the reviewed models have reported occasional flaws in the
generation process in the form of visually degraded instances
of generated words (Fig. 10). The authors did not report any
issues with mode collapse. The low quality of some images
may have been due to low-probability latent vectors. The
flaws may also be attributed to a difficulty in capturing and
imitating some complex writing styles, not seen before in
the training data. This lack of generalization is an inevitable
data-related issue that was initially the motive for the image-
generation research.
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Fig. 10 Examples of unclear handwritten text images generated by the
reviewed GAN-based architectures

A potential ethical concern is the illegal use of handwrit-
ing synthesis in forgery. Some researchers believe that such
concern is overstated [7, 8]—as long as thework does not tar-
get imitating signatures and can only produce digital images,
rather than physical documents, no ethical concerns should
arise. Gan and Wang [7] also declared that the published
works are still not strong enough to fool handwriting identi-
fication experts.

The reviewed articlesmake exceptional contributions. The
efforts of the authors are undeniable. However, it is worth
noting that human handwriting is very arbitrary, and thus, all
the reviewedworks indeedhave limits for synthesizingmean-
ingful handwriting images (Fig. 10). Despite such impressive
efforts in developing models that imitate offline handwriting
and their promising results, handwriting synthesis remains a
challenging and unsolved problem. Future works on hand-
writing synthesis will likely continue to focus on ways to
address style representation and content embedding by trying
different encoder designs or different concepts of represen-
tation. Researchers should keep working on the evaluation
methods. So far there is no clear relationship between the
human assessment metrics and the success of style transfer,
or text recognition results. Future works should explore dif-
ferent languages other than English especially low-resource
languages and languageswith large character sets. It is impor-
tant that the researchers publish their generated datasets as
well as their code. Many research areas are in dire need of
labeled datasets, and regardless of the quality of the gener-
ated images, the privilege of having images of handwritten
text with associated annotations will make a great difference
for such research areas.
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