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Abstract

Medical language models (MLMs) have be-001
come pivotal in advancing medical natural lan-002
guage processing. However, prior models that003
rely on pre-training or supervised fine-tuning004
often exhibit low data efficiency and limited005
practicality in real-world clinical applications.006
While OpenAI’s o1 highlights test-time scaling007
in mathematics, attempts to replicate this ap-008
proach in medicine typically distill responses009
from GPT-series models to open-source mod-010
els, focusing primarily on multiple-choice tasks.011
This strategy, though straightforward, neglects012
critical concerns like data privacy and real-013
istic deployment in clinical settings. In this014
work, we present a deployable, small-scale015
medical reasoning system, MedS3, designed016
for long-chain reasoning in clinical tasks using017
a self-evolution paradigm. Starting with a seed018
dataset of around 8,000 instances spanning five019
domains and 16 datasets, we prompt a base pol-020
icy model to perform Monte Carlo Tree Search021
(MCTS) to construct rule-verifiable reasoning022
chains. Each reasoning step is assigned an evo-023
lution rollout value, allowing verified trajecto-024
ries to train the policy model and the process025
reward model (PRM). During inference, the026
policy model generates multiple responses, and027
the reward model selects the one with a newly028
proposed PRM-guided Vote-Sum (P-VS) strat-029
egy. Experiments on eleven evaluation datasets030
demonstrate that MedS3 outperforms not only031
the prior strongest medical model by 6.59, but032
also 32B-level general reasoning models by033
8.71 points.034

1 Introduction035

Large Language Models (LLMs) have demon-036

strated significant potential in the medical domain037

(Singhal et al., 2023; Nori et al., 2023; Chen et al.,038

2023b), with applications ranging from generating039

clinical notes (Biswas and Talukdar, 2024; Jung040

et al., 2024) to supporting patient communication041

(Tu et al., 2024; Liao et al., 2024b). Recently,042

slow-thinking reasoning models, exemplified by 043

OpenAI o1 (OpenAI, 2024), have shown impres- 044

sive improvements on reasoning-intensive mathe- 045

matical problems (Lyu et al., 2025; Wang et al., 046

2024). However, limited efforts have been made 047

to induce similarly strong reasoning abilities in 048

medical-oriented language models. 049

Before the rise of OpenAI o1, researchers fo- 050

cused on improving medical language models 051

(MLMs) primarily through extensive pre-training, 052

which demands large computational resources and 053

often yields only modest gains in downstream 054

tasks. For instance, MMed-Llama3 post-pretrained 055

Llama3 8B on 25.5B tokens but achieved only 056

about a five-point performance gain compared 057

to its base model (Qiu et al., 2024). Other 058

works (Christophe et al., 2024; Ankit Pal, 2024) 059

leverage supervised fine-tuning (SFT; Ouyang et al. 060

(2022)) since it is computationally efficient. How- 061

ever, many human-annotated SFT datasets provide 062

only concise responses (either short phrases or a 063

single ground truth option), and hence fine-tuning 064

on such data can degrade an MLM’s broader lan- 065

guage fluency, reducing its practical value in re- 066

alistic clinical scenarios. On the other hand, syn- 067

thetic corpora generated by LLMs (Luo et al., 2024; 068

Qiu et al., 2024) often contain hallucinations (Xu 069

et al., 2024b; Huang et al., 2023), so directly us- 070

ing these outputs for teacher-forcing limits a tar- 071

get model’s optimization space. Consequently, fo- 072

cusing on inference-time scaling, often referred 073

to as “slow thinking”, emerges as a data-efficient 074

approach with the potential to enhance clinical mas- 075

tery while mitigating the drawbacks of pre-training- 076

or fine-tuning-heavy strategies. 077

A closely related work to slow thinking is 078

HuatuoGPT-o1 (Chen et al., 2024), which employs 079

GPT-4o to generate reasoning-intensive problems 080

and corresponding complex reasoning steps for dis- 081

tillation and reinforcement learning (RL). While it 082

achieves certain levels of long-chain reasoning, its 083
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Models
Without Without Diverse

Small Size Slow Thinking
Process

Pretraining Close-sourced Teacher Clinical Coverage Reward Usage

MMed-Llama3 ✗ ✗ ✓ ✓ ✗ ✗

UltraMedical ✓ ✗ ✓ ✓ ✗ ✗

HuatuoGPT-o1 ✓ ✗ ✗ ✓ ✓ ✗

O1-journey Part 3 ✓ ✗ ✗ ✗ ✓ ✗

MedS3 ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of MedS3 with other medical models. Our MedS3 supports flexible inference-time scaling
on resource-constrained devices, as well as process reward-guided decoding algorithms. Furthermore, MedS3 is a
self-evolved model without dependence on large proprietary models for distillation or critique.

heavy reliance on large proprietary models limits084

its generalizability to other clinical applications.085

Moreover, The adopted RL algorithm (Schulman086

et al., 2017) requires accurate value models, which087

is far from practicability in medicine yet.088

Another relevant work, O1 Journey Part089

3 (Huang et al., 2025), directly distills OpenAI090

o1’s outputs into ∼70B-parameter models. This091

approach compromises user-friendliness and data092

privacy, and also struggles to detect hallucinations.093

Moreover, relying exclusively on multiple-choice094

problems for distillation constrains its applicability095

to a broader range of clinical tasks.096

In contrast, this work introduces MedS3, a small-097

scale medical language model equipped with ro-098

bust long-chain reasoning capabilities (the “pol-099

icy”) and an accompanying fine-grained process100

reward model (the “PRM”). Our approach uses a101

self-bootstrapping pipeline to enhance the model’s102

performance across diverse clinical tasks. Specifi-103

cally, we curate 16 medical tasks from established104

medical training corpora, encompassing clinical105

diagnosis QA, medical natural language inference,106

knowledge-intensive QA, long-context QA, and107

biomedical QA. We then sample 500 seed instances108

from each task to form an initial dataset of approx-109

imately 8,000 instances, which kickstarts our self-110

evolution process. Leveraging a Monte-Carlo Tree111

Search (MCTS)-based evolution pipeline, we si-112

multaneously generate synthetic datasets for both113

policy fine-tuning and PRM training. Rule-verified114

synthetic trajectories are preserved to optimize the115

policy model, where intermediate reasoning steps116

labeled with MCTS rollout values serve as the PRM117

dataset. By fine-tuning the base model on this en-118

riched policy dataset and further enhancing it using119

our proposed PRM-guided Vote-Sum strategy, our120

system achieves holistically superior performance121

across eleven clinical reasoning benchmarks, sur-122

passing both medical models and general reasoning123

models with much lower parameters. 124

The uniqueness of MedS3 is further underscored 125

by a comprehensive comparison in Table 1, which 126

demonstrates its superiority over other medical 127

models in robust long-chain reasoning and breadth 128

of clinical-task coverage. Overall, we summarize 129

our contributions as follows: 130

1. First Self-Evolution Framework: To the 131

best of our knowledge, this work introduces 132

the first self-evolution framework specifically 133

designed to empower small-scale medical 134

models with long-chain reasoning capabili- 135

ties, enabling data-efficient performance gains 136

across a wide range of clinical applications. 137

2. State-of-the-Art Performance: Our self- 138

evolved system, MedS3, achieves comprehen- 139

sive performance improvements across eleven 140

clinical benchmarks, outperforming all med- 141

ical and large-sized reasoning models over- 142

all. This is driven by the integration of a fine- 143

grained PRM that enhances reasoning accu- 144

racy at each step. 145

3. Open-Source Resources for Research: We 146

openly release both the policy fine-tuning cor- 147

pus and process reward model corpus, provid- 148

ing valuable resources for future research and 149

fostering further advancements in medical AI. 150

2 MedS3 151

This section presents a detailed overview of the 152

proposed MedS3 framework, which is structured 153

into four key components: 154

1. Self-Bootstrapping Evolution (§2.1) which 155

synthesizes reasoning trajectories as training 156

data, with Monte-Carlo Tree Search (MCTS) 157

technique using the base policy π0. 158
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2. Policy Model π (§2.2) which is derived by159

fine-tuning the base policy π0 using the gener-160

ated synthetic data with supervised learning.161

3. Process Reward Model (PRM) Vθ (§2.3)162

which is fine-tuned with step-wise supervi-163

sion using soft-labels and assigns a value in164

the range [0, 1] to each reasoning step, repre-165

senting correctness of individual steps.166

4. PRM-guided Inference (§2.4) which utilizes167

the proposed PRM-guided Vote-Sum strategy168

to choose the final solution.169

The overall framework is presented in Fig. 1.170

2.1 MCTS-guided Evolution171

This algorithm builds upon an n-ary tree, where172

each tree node T contains the following attributes:173

(1) reasoning step s, which is an intermediate step174

tracing from the root; (2) value v, which is an evalu-175

ation of the correctness of the current node; (3) the176

children nodes {c}, which is a collection of nodes177

that continue reasoning from the current node; (4)178

the parent node p which is the former reasoning179

step and (5) the number of visits n. Every root180

node is initialized as T = ([s0], 0, ∅, null, 0) where181

s0 =“Let s break down this problem step by step.”182

to guarantee a multi-step reasoning process. There183

are four stages in a full MCTS pipeline, including184

Node Selection, Node Expansion, Node Rollout,185

and Backpropagation.186

Node Selection This process starts from an initial187

root to select the next node. Within each iteration,188

we use UCB (Winands et al., 2008) as the criterion189

to select a child, which is as follows:190

UCB(T ) = vC + γ

√
lnnTparent

nT
(1)191

where Tparent is the parent node of T and γ is an192

exploration constant set as 2. For each intermedi-193

ate node, we select its child node with the highest194

UCB value. We choose this criterion to expect195

models to further explore those nodes with high196

rollout values but low visiting counts, which in-197

hibits models from repeatedly expanding already198

high-value nodes and encourages the expansion of199

underexplored nodes with the second highest value.200

Node Expansion After picking up the candidate201

node Tc using the UCB criterion, we expand the202

reasoning steps of the current node. If the current203

node possesses a relatively high value (vc ≥ thr, 204

where thr = 0.9 is a pre-defined threshold), we 205

prompt the node to directly generate a Finish node 206

to accomplish this path reasoning. This manual 207

operation not only does not impact the reasoning 208

correctness as a value is close to 1 only when the 209

trace [s0, s1, · · · , sk] is close to the correct final 210

answer, but also reduces unnecessary exploration 211

tokens. Otherwise, assume that the selected node is 212

located at k-th depth among the tree with previous 213

reasoning trajectories [s0, s1, · · · , sk] connected by 214

a coherence phrase ts, we sample B single-step 215

outputs {sk+1,i | i = 1, 2, · · · , B} based on the 216

previous trajectory using a Reason1 node: 217

sk+1,i ∼ π0([s0 ⊕ s1 ⊕ · · · ⊕ sk] | x) (2) 218

where ⊕ is the operation to connect two steps us- 219

ing the coherence phrase ts, π0 is the base pol- 220

icy model, x is the original input prompt and 221

sk+1,i is sampled with a high temperature (1.0) 222

to harvest a diverse search space. To control 223

that each reasoning step is atomic enough for 224

the whole thought path, we set the stop to- 225

kens as Step k+2. Subsequently, the B nodes 226

{Ti = ([s0, s1, · · · , sk, sk+1,i], 0, ∅, Tc, 0) | i = 227

1, 2, · · · , B} are added to Tc as children nodes. 228

Node Rollout As the PRM is not yet available 229

during evolution, the rollout process is conducted 230

using simulation to obtain the estimated value for 231

a chosen node. Specifically, for a chosen unvis- 232

ited node Tc, we set a simulation budget L = 233

min(Lmin,
L0
k ) where k is reasoning step counts, 234

to encourage sufficient simulation trials when the 235

known reasoning path is short, but expect to see 236

a deterministic reasoning result conditioning on a 237

long trajectory. After that, we prompt the policy 238

model π0 to directly output the answer L times: 239

alc ∼ π(x, [s0, s1, · · · , sk]) (3) 240

where l ∈ [1, L] and alc is the l-th simulated an- 241

swer. The accuracy of the L simulations acc = 242
1
L

∑L
l=1 1alc=y is assigned as the value of Tc. For 243

the Finish node, the rollout value is computed by 244

comparing the derived answer and the ground truth 245

and an 0/1 value is assigned. 246

Backpropagation After obtaining the value 247

for the selected node, we conduct value back- 248

propagation starting from Tc till the root node, up- 249

dating all tree node values among the trace. This 250

1Prompts of Finish and Reason actions are illustrated in
Appendix D
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𝑦𝑦1 = 0.16,𝑦𝑦2 = 0,𝑦𝑦3 = 0

0.2

Question:
A 71-year-old man comes to the physician accompanied
by his wife [omitted].Which of the following is most
likely to confirm the diagnosis?\nA. Serum CA 19-9\nB.
Right upper quadrant abdominal ultrasound\nC. CT
angiography of the abdomen\nD. Endoscopic retrograde
cholangiography\nE. Upper endoscopy.
Ground Truth: C.
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(a) Step-by-step reason with rollout simulation value score (b) Node Rollout

0.2

Step 0: Let’s break down this problem step
by step.

Step 1: Determine the most appropriate
diagnostic test to confirm the diagnosis
based on the patient's symptoms [omitted]

?
Step 2: Evaluate the diagnostic yield of
each option. Option A, serum CA 19-9, is a
tumor marker that can be elevated [omitted]
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Propagate
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(d) Policy and PRM Tuning

0.16 0.0 0.0

0.7 0.5 1.0

Seed Dataset

𝑠𝑠1 𝑠𝑠2 𝑠𝑠𝐾𝐾 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑠𝑠1 ⊕ 𝑠𝑠2 ⊕⋯⊕ 𝑠𝑠𝐾𝐾
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Figure 1: Overview of the construction of MedS3 framework. MedS3 utilizes a Monte-Carlo Tree Search pipeline
to self-generate step-by-step reasoning paths for each question in the seed dataset (a). During this process, MedS3

uses result simulation to obtain the rollout value for each node (b); After obtaining the child’s rollout value, MedS3

executes back-propagate to enable precise value prediction from deeper layer to transfer back to shallow nodes (c).
After gathering all correct and wrong finish nodes, we use supervised fine-tuning to optimize the policy model π
with correct reasoning trajectories and step-wise discriminative loss to obtain a process reward model Vθ (d).

process aims to use more accurate value estimation251

in the deeper layer to update early nodes’ values252

so that these values serving as PRM’s optimization253

labels become synchronously precise. Specifically,254

for an arbitrary node Tk, we propose to update its255

visits nk and vk as follows:256

nk = nk + 1 (4)257

vk =
1

2

(
vk +

∑
ch vch · nch∑

ch nch

)
(5)258

Note that this update process considers both its259

children values and its own value, which guarantees260

that the parent node will never have the same value261

as its children. It considers both correctness and262

completeness for the evaluation of a reasoning step.263

Termination of Search Due to computational264

limits, we cannot afford excessive computing re-265

sources to fully expand the tree for a training in-266

stance. Therefore, we set two criteria to terminate267

the search process. Firstly, we set the minimum cor-268

rect nodes to τ . Once the total correct count in the269

tree exceeds τ , we stop the exploration of this tree.270

Second, if there are no correct nodes after afford-271

ing a certain number of node exploration trials, we272

prompt π0 to generate Finish node for all leaves. 273

The first strategy aims to reduce extra computation, 274

while the second expects to obtain as more correct 275

answers as possible, for the optimization of both 276

policy and reward models. 277

2.2 Policy Model Fine-tuning 278

The policy training mainly leverages the correct 279

nodes T 1
k which are assigned a value 1.0 during 280

rollout and corresponding reasoning trajectories 281

gathered before: Dπ = {(T 1
k , [s0⊕s1⊕· · ·⊕sk])}. 282

These correct reasoning traces are supervised fine- 283

tuned to deduce a self-improved policy model: 284

Lπ =
1

Lk

Lk∑
i=1

− log pπ(yi|x, y<i) (6) 285

where yi is the i-th token of the reason trajectory 286

and Lk is the total length of the trajectory. 287

2.3 PRM Fine-tuning 288

Dataset Collection We gather all fin- 289

ish nodes and their corresponding traces: 290

{(T j
k , [s0, s1, · · · , s

j
k], v

j
k) | k = 1, 2, · · · ,K; j = 291

1, 2 · · · , J}, where K is the max depth of the 292

evolved tree, J is the max width of the j-th 293
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layer, and vjk ∈ (0, 1). The reasoning traces294

[s0, s1, · · · , sjk] are assembled with ts. This295

naturally enables Vθ to distinguish between296

siblings inheriting from the same parent node:297

T j1
k and T j2

k with distinct rollout values vj1k and298

vj2k . To prevent Vθ from being biased by the299

distribution of value 0 and value 1, we tallied the300

correct and incorrect finish nodes: {T 0
k | vTk

= 0}301

and {T 1
k | vTk

= 1}, and randomly sampled302

elements min
(
|{T 0

k }|, |{T 1
k }|
)

from these two303

sets, maintaining a balanced distribution of the304

nodes of correct and incorrect reasoning: {T̂ 0
k }305

and {T̂ 1
k }. The sampled nodes are combined and306

form the final Vθ tuning set: DVθ
= {T̂ 0

k } ∪ {T̂ 1
k }.307

Learning objective Previous works in the math308

domain choose to directly learn the rollout309

value (Zhang et al., 2024a) or learn the pair-wise310

ranking preference (Guan et al., 2025). However,311

in our work, we choose to learn the prediction of312

the correctness probability of an intermediate step313

using a 2-class cross-entropy loss. The PRM Vθ is314

tuned based on the tuned policy model, with the315

language model head replaced by a token classifi-316

cation layer with a cross-entropy loss at the end of317

each step. Although Zhang et al. (2025) suggests318

that the PRM label should be set to 1 (a hard label)319

once the rollout score is above zero, empirically we320

borrow the insight from label-smoothing (Szegedy321

et al., 2016), where a soft label groups positive in-322

ternal steps tightly in the representation space. We323

show the comparison between the soft and hard la-324

bel in Appendix B.1. Specifically, we set the label325

yk as the original node rollout value, and optimize326

Vθ using the following loss function:327

LVθ
=

1

|DVθ
|
∑

Tk∈DVθ

yk log ŷk+(1−yk) log(1−ŷk)

(7)328

where ŷk is the predicted probability of the given329

step and yk is the label. This soft-label training,330

not only encourages Vθ to cluster preferred and dis-331

preferred steps, but also prevents the learning of332

fuzzy labels (rollout value around 0.5).333

2.4 PRM-guided Decoding334

Referring to the inference scaling law (Wu et al.,335

2024d), enlarging the inference token budget is336

a deterministic way to enhance the downstream337

reasoning performance. To balance between the338

advantages of enlarging the inference budget and339

unwillingly reduced efficiency, we propose a new340

B 0.03, 0.08

D 0.02

Question (MedQA 10): A 23-year-old woman comes to the physician 
because she is embarrassed about the appearance of her nails. She 
has no history of serious illness and takes no medications. She 
appears well. A photograph of the nails is shown. Which of the 
following additional findings is most likely in this patient?\nA. Silvery 
plaques on extensor surfaces\nB. Flesh-colored papules in the 
lumbosacral region\nC. Erosions of the dental enamel\nD. Pallor of 
the conjunctival mucosa\nE. Holosystolic murmur at the left lower 
sternal border

A 0.77, 0.55, 0.47, 0.77, 0.54, 0.95, 0.86, 0.73

C 0.64, 0.76, 0.88, 0.95, 0.98

∑

PRM Score: 0.95
Step 1: Identify the likely con
dition based on the patient's
symptoms and physical examin
ation……\n\nStep 2: Review th
e options and determine which
condition is most likely associ
ated with nail changes……\n\n
Step 3: Assess the likelihood
of each condition based on th
e patient's demographic infor
mation and medical history……
\n\nStep 4: Based on the likel
ihood of each condition, deter
mine which additional finding i
s most likely in this patient. Si
nce the patient is likely to hav
e psoriasis, the additional find
ing of silvery plaques on exten
sor surfaces is the most likely.
\n\nThe answer is A.

4.85

4.21

≺

Figure 2: Overview of the PRM-guided Vote-Sum.

decoding strategy named PRM guided Vote-Sum 341

that considers both response estimation and seman- 342

tic coherence, which is illustrated in Fig. 2. 343

PRM guided Vote-Sum (P-VS) This method em- 344

ploys π to sample M candidate responses {ym | 345

m = 1, 2, · · · ,M} given an input problem x and 346

uses the PRM Vθ to select the response whose an- 347

swer is estimated to have the highest values in 348

total. Specifically, for a simple output ym, we 349

split it into K steps {skm | k = 1, 2, · · · ,K} 350

with pre-defined coherence phrase ts. The PRM 351

assigns a score q ∈ [0, 1] for each internal step 352

{qkm = Vθ(s
1
m⊕s2m⊕· · ·⊕skm) | k = 1, 2, · · · ,K}. 353

The overall response score vym takes the minimum 354

value of the score chain (Lightman et al., 2023) or 355

the last value (Zhang et al., 2025). The Vote-Sum 356

strategy comprehensively considers the occurrence 357

of semantically equivalent outputs but also the con- 358

fidence score predicted by Vθ: 359

av = {(a1, va1), (a2, va2), · · · , (an, van)}

(8)

360

ytarget = argmax
ym∈{yj |ayj=argmaxai vai ,(ai,vai )∈av}

vym

(9)

361

where n ≤ M is the number of different an- 362

swers obtained from the M responses, van = 363∑
m 1aym=an · vym is the sum of values of sam- 364

ples whose answers equal to an. 365

3 Data Statistics 366

A slow-thinking system in medical scenarios 367

should both excel at exam-level question answer- 368

ing (QA) and handling real-world clinical scenar- 369

ios, like diagnosis (Tchango et al., 2022), specific 370

disease syndrome (Lab, 2020) and drug-related 371

problems (Huynh et al., 2016). However, previous 372
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Figure 3: Overview of the used seed datasets.

works only focused on a simple scenario, with only373

limited data diversity, especially multiple-choice374

QA, to train reasoning models. To approximate375

realistic clinical usage and promote medical rea-376

soning models on a diverse range of clinical tasks,377

we curate a training corpus, from 16 existing pub-378

lic medical datasets and divide them into five di-379

mensions according to the task category. For each380

dataset, we randomly select 500 items and form381

a seed dataset with around 8,000 instances. We382

show the dataset statistics in Fig. 3. The details383

about the definition of the five dimensions and the384

corresponding tasks can be found in Appendix E.385

4 Experiments386

In this section, we comprehensively evaluate387

the proposed MedS3 on various downstream388

domains, including both in-domain and out-of-389

domain datasets.390

4.1 Experiment Setups391

Training and Evaluation We choose Llama3.1-392

8B-Instruct as the initialization of both the policy393

model and PRM model. We select MedQA (Jin394

et al., 2021), PubMedQA (Jin et al., 2019), MedM-395

CQA (Pal et al., 2022), PubHealth (Kotonya and396

Toni, 2020), BioMRC (Pappas et al., 2020), Heal-397

Fact Classification (Kotonya and Toni, 2020),398

Drug Dose Extraction (Huynh et al., 2016), DDX-399

Plus (Tchango et al., 2022) as the in-domain400

evaluation benchmarks, the medical parts of401

MMLU (Hendrycks et al., 2021), BioASQ (Tsatsa-402

ronis et al., 2012) and SEER Classification (Dubey403

et al., 2023) as the out-of-domain evaluation sets. 404

We provide three different decoding strategies for 405

MedS3, including CoT (Wei et al., 2022), Self- 406

Consistency (SC) and our proposed P-VS. The hy- 407

perparameters of synthesis, self-training and evalu- 408

ation are presented in Appendix F. 409

Baselines We choose the following categories to 410

serve as baselines: (1) Proprietary general LLMs, 411

including GPT-3.5-turbo (OpenAI, 2022) and GPT- 412

4o-mini (OpenAI, 2023); (2) Open-sourced gen- 413

eral LLMs, including Llama 3 8B, Llama 3.1 414

8B (Dubey et al., 2024) and Qwen2.5 7B (Yang 415

et al., 2024), QWQ-preview-32B (Team, 2024) 416

and two distilled models from DeepSeek R1 (Guo 417

et al., 2025): R1-Distill-Llama8B and R1-Distill- 418

Qwen32B; (3) Open-sourced Medical LLMs, in- 419

cluding MedLlama 3 8B2, MMedS-Ins-Llama- 420

3-8B (Wu et al., 2024b), Med42 (Christophe 421

et al., 2024), OpenBioLLM (Ankit Pal, 2024), and 422

UltraMedical3-8B and UltraMedical3.1-8B (Zhang 423

et al., 2024b). We also compare our method with 424

HuatuoGPT-o1-8B (Chen et al., 2024). 425

4.2 Main Results 426

We present the comprehensive experiment results 427

in Table 2. The results unveil that most prior 428

medical LLMs show superior results in traditional 429

medical benchmarks (MedQA or PubMedQA); 430

while such superiority cannot generalize to out-of- 431

distribution real-world clinical benchmarks (DDX- 432

Plus or DrugDose), which results in their sub- 433

optimal overall performance compared to Llama3- 434

8B. In contrast, our MedS3 is not optimized ex- 435

clusively for multiple-choice medical datasets and 436

hence achieves the best performance among all 437

open-sourced competitions. As an 8B system, 438

MedS3 achieves +13.07 average performance gains 439

with respect to the base model in the overall assess- 440

ment, which not only outperforms medical-oriented 441

models as well as general reasoning models. 442

Specifically, compared to HuatuoGPT-o1 and 443

MedLlama3, MedS3 shows superior performance 444

on reasoning-intensive benchmarks, including 445

MedQA and MedMCQA, as well as clinical bench- 446

marks. This verifies that MedS3 learns medical 447

reasoning philosophies and the clinical deduction 448

process. Another model MMedS-Ins, which di- 449

rectly post-pretrains and fine-tunes on millions of 450

clinical corpus, harvests superior performance on 451

2https://huggingface.co/
ProbeMedicalYonseiMAILab/medllama3-v20
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Models
Knowledge QA BioMedical QA Long Context QA NLI Diagnosis QA

Avg.MedQA MedMCQA PubMedQA BioASQ MMLU BioMRC DDXPlus PubHealth HealthFact DrugDose SEER

Proprietary language models
GPT-4o-mini 75.81 67.58 47.80 83.01 83.79 66.85 54.00 59.14 65.24 73.91 54.54 66.52
GPT-3.5-turbo 59.31 58.12 37.40 74.11 71.11 56.22 39.05 57.84 67.85 86.96 73.61 61.96

Open-source language models
Qwen2.5-7B 55.54 54.12 53.40 73.62 74.38 56.48 31.25 57.11 52.69 60.87 33.07 54.78
Llama3-8B 57.50 55.92 56.40 75.73 68.55 56.50 35.30 64.09 70.88 73.91 47.07 60.17
Llama3.1-8B 61.51 57.42 59.00 71.36 72.52 55.60 19.00 61.82 63.97 73.91 52.62 58.98
R1-Distill-Llama8B 50.12 48.89 46.60 70.55 68.42 53.49 36.10 55.73 62.04 69.57 31.71 53.93
QwQ-32B-preview 68.89 61.03 48.60 73.62 74.18 79.76 45.40 63.36 66.08 39.13 37.26 59.76
R1-Distill-Qwen32B 76.83 66.27 38.20 78.32 85.07 78.66 53.90 59.95 63.80 82.61 26.22 64.53

Open-source medical models
MMedS-Ins 53.57 48.24 56.60 77.35 50.86 31.47 97.53 54.26 69.64 95.65 97.93 66.65
MedLlama3 55.85 59.36 66.40 84.63 70.08 47.97 22.50 62.39 68.10 69.57 50.69 59.78
Med42 50.20 49.70 55.40 74.76 61.43 57.26 31.35 59.14 81.57 65.22 37.14 56.65
OpenBioLLM 50.20 50.56 41.40 47.73 61.69 27.46 16.55 18.77 53.28 34.78 46.48 40.81
UltraMedical3-8B 68.89 61.82 51.60 80.58 75.08 45.18 36.70 66.13 72.73 60.87 24.55 58.56
UltraMedical3.1-8B 70.93 62.78 56.40 77.18 76.43 54.26 31.55 59.14 70.20 56.52 45.86 60.11

Open-source slow-thinking medical models
HuatuoGPT-o1 62.53 59.31 69.20 87.70 70.53 50.98 40.20 24.61 66.08 56.52 46.85 57.68
MedS3 (Ours)

CoT 65.91 60.55 56.80 78.48 75.66 55.84 51.65 57.03 64.73 73.91 48.97 62.68
SC 70.93 64.21 58.20 79.13 79.63 63.66 57.00 64.42 70.37 86.96 52.19 67.88
P-VS 71.88 65.20 59.60 80.10 79.50 77.12 65.20 73.03 79.97 95.65 58.36 73.24

Table 2: Experiment results in 11 medical datasets among four types of models. We highlight the best results
with bold and underlines the second-best results. MedS3 with PRM guided Vote Sum (P-VS) achieves superior
performances on real-world clinical datasets.

in-domain clinical tasks, such as SEER and DDX-452

Plus. However, directly fine-tuning on question-453

answer pairs inevitably makes the model lose the454

ability to output long responses, which is extremely455

important in reasoning tasks. In contrast, our model456

MedS3, possesses a comprehensive performance457

on both traditional tasks and clinical scenarios with458

strong reasoning abilities.459

5 Analysis460

5.1 Effectiveness of P-VS461

In this section, we compare our proposed decod-462

ing method P-VS to the previously widely adopted463

PRM decoding method: Best-of-N (BoN) as well464

as ORM guided methods (ORM with Last and465

ORM with Vote-Sum). We compare three vari-466

ants of BoN, including BoN-min (Lightman et al.,467

2023) which takes the minimum step value of a468

reasoning trajectory as the estimation of the whole469

sequence, BoN-prod (Lightman et al., 2023) which470

takes the production of step values instead, and471

BoN-last (Zhang et al., 2025), which treats the472

PRM as an ORM. We select two traditional QA473

tasks and three clinical tasks to conduct compari-474

son and show results in Table 3. A very interesting475

finding is that in the two traditional QA datasets,476

BoN-last achieves extremely bad results, but shows477

great performance on par with Vote-Sum in clini-478

cal tasks. We hypothesize that clinical tasks and479

Olympia-level math problems are both difficult for480

Llama3.1-8B, and hence the findings that PRM be- 481

haves more like an ORM transfer successfully to 482

clinical tasks. On the other hand, on relatively ad- 483

vantageous tasks, MC-rollout value encodes values 484

of both future and current steps, which leads the 485

PRM to perform as a human-labeled PRM to dis- 486

tinguish steps precisely. As a result, in traditional 487

medical tasks, we use the minimum value among 488

step values to represent the whole sequence’s cor- 489

rectness, while in clinical tasks, we use the last 490

step’s value instead. Compared to ORM-based 491

methods, they only excel at traditional QA bench- 492

marks, lagging far behind all PRM-based methods 493

in clinical usage, further validating the efficacy 494

of process supervision. ORM with Vote-Sum sur- 495

passes ORM with last by a large margin, which 496

also verifies the effectiveness of the proposed Vote- 497

Sum strategy. We present the error rate of PRM 498

in Appendix B.2 to show that rule-verified PRM is 499

sufficient in detecting erroneous clinical reasoning 500

steps. 501

5.2 Inference-Time Scaling 502

In this section, we discuss whether MedS3 can 503

benefit from more inference tokens. We sample 504

n = 2, 4, 8, 12, 16 candidates for a given problem, 505

and conduct P-VS to select the most plausible re- 506

sponse. We select five clinical datasets (Healthfact, 507

DDXPlus, SEER, BioMRC, Pubhealth) to illustrate 508

the scaling law, and plot the results in Fig. 4. We 509

observe that the first 4 samples provide significant 510
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Select Model Value Estimation Traditional QA Clinical Tasks
Majority ORM PRM Min Prod Last Vote-Sum MedQA MedMCQA Healthfact DDXPlus SEER Mean

✓ 70.93 64.21 70.37 57.00 52.19 62.94
✓ ✓ 67.87 60.63 63.38 53.75 48.71 58.87
✓ ✓ 71.88 64.67 70.12 57.15 53.44 63.45

✓ ✓ 67.64 59.20 73.57 52.40 41.24 58.81
✓ ✓ 65.51 60.00 75.51 57.30 47.67 61.20
✓ ✓ 60.17 58.00 78.37 65.10 61.67 64.66
✓ ✓ 71.88 65.20 79.97 65.20 58.36 68.12

Table 3: Comparison of P-VS with other decoding methods under the same token budgets. “Majority” means we
use SC to select the final response. “ORM with Last” means selecting the response with the max ORM value.

1K 2K 3K 4K 5K 6K 7K
Number of Tokens
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Figure 4: Budget scaling on clinical benchmarks. When
the token budget increases, MedS3’s improves rapidly
and then slows down as the budget is further increased.

performance improvements, showing a satisfactory511

tradeoff between the tokens consumption and the512

performance improvement. Although more genera-513

tions bring fewer significant performance gains, the514

increasing trend never slows down except for the515

Pubhealth dataset, illustrating nearly unbounded516

scaling potentials.517

5.3 Comparison of Slow-Thinking Styles518

In this section, we compare MCTS plus PRM519

which is what MedS3 leverages, with distillation520

from strong reasoning models, which is what521

O1-journey-part3 (Huang et al., 2025) does and522

pure reinforcement learning (RL), which is what523

DeepSeek-R1 (Guo et al., 2025) adopts. These524

methodologies are widely used for empowering525

small language models with strong long-chain rea-526

soning abilities. We use the same dataset in §3527

to implement RL, and use the officially released528

distillation dataset provided by Huang et al. (2025)529

to SFT the base model. The results presented in530

Fig. 5 demonstrate that in exam-level medical QA531

datasets where the base model already excels at,532

MedQA MedMCQAHealthfact DDXPlus SEER
Dataset

0
10
20
30
40
50
60
70
80

Pe
rfo

rm
an

ce

Base Distill RL MCTS+PRM

Figure 5: Three widely adopted methods to empower
models with medical reasoning abilities. MCTS+PRM
is the best among the three, making it the core of MedS3.

distillation from large proprietary reasoning mod- 533

els is much more data-efficient than the other two 534

methods, albeit sacrificing generalization in clini- 535

cal tasks. In contrast, with both considerable per- 536

formance leap and generalization, RL is second 537

to MCTS+PRM. We hypothesize that the medi- 538

cal diagnosis step is easier to determine than math 539

reasoning steps, resulting in a more accurate PRM. 540

6 Conclusion 541

In this paper, we present MedS3, a self-evolved 542

slow-thinking medical language model built for 543

universal clinical usage. We collect a seed dataset, 544

with only 7,465 instances but covering 16 different 545

realistic medical tasks, and use Monte-Carlo Tree 546

Search to construct policy data and PRM data. We 547

propose a new decoding method, which enables the 548

resulting policy model to collaborate with the fine- 549

tuned PRM model, to produce credible long-chain 550

responses. Experiment results demonstrate that our 551

model achieves superior performance on eleven 552

downstream medical benchmarks, especially in re- 553

alistic clinical ones, surpassing open-sourced mod- 554

els with a large margin. 555
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Limitations556

MedS3 achieves superior performance over eleven557

benchmarks by conducting MCTS in seed datasets558

to collect both policy and PRM training data and559

a newly proposed decoding strategy: PRM-guided560

Vote-Sum. However, it can be further improved561

via these strategies: (1) conduct an iterative self-562

evolution pipeline to enhance both the policy and563

PRM; (2) cooperate with reinforcement learning to564

empower the policy with the “aha-moment” (Guo565

et al., 2025) ability; (3) introduce more training566

samples to avoid data imbalance.567

Ethics Considerations568

In developing clinical slow-thinking model MedS3,569

it is crucial to address ethical consideration that570

arise when utilizing AI in healthcare environments.571

Below are the key ethical considerations that have572

been taken into account:573

Perfomance vs. Potential Risks While MedS3574

demonstrates significant enhancements in clinical575

reasoning and task performance, it is important to576

acknowledge the inherent limitations of AI models.577

These models can generate misleading information578

of “hallucinations”, which could pose risks in clin-579

ical settings. Therefore, MedS3 is not intended580

to replace medical professionals or provide defini-581

tive clinical decisions but rather to assist healthcare582

providers under appropriate supervision.583

Data Ethics and Privacy Compliance All pa-584

tient data has been anonymized, and informed con-585

sent was obtained for its use, ensuring full compli-586

ance with privacy policies and obtaining explicit587

permission for all data usage. Additionally, data588

usage has been approved by relevant ethics commit-589

tees, ensuring compliance with ethical standards590

and privacy protection requirements.591
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LLM and attempt to inject domain-specific knowl-995

edge and expertise through continual pre-training996

techniques. Such type of methods usually require997

significant computational resources. For example,998

3 billion training tokens are used in HuatuoGPT-999

II (Chen et al., 2023a) and PMC-Llama (Wu et al.,1000

2024a) even requires more than 75 billion tokens.1001

However, results in recent works (Qiu et al., 2024)1002

show that the benefits of continued pre-training1003

are diminishing as the capabilities of the generalist1004

LLMs improve.1005

Fine-tuned Medical LLMs Compared to contin-1006

uous pre-training, fine-tuning is a more efficient1007

approach. It can rapidly adapt to medical scenarios1008

and perform the relevant tasks effectively when the1009

base LLMs are sufficiently powerful. (Ankit Pal,1010

2024; Christophe et al., 2024; Zhang et al., 2024b)1011

Specifically, Liao et al. (2024a) develops a two-1012

stage method which can decouple the knowledge-1013

injection and clinical alignment procedure during1014

the fine-tuning process to prevent the ‘alignment-1015

tax.’ Wu et al. (2024c) collects a wide range of1016

medical language processing tasks spanning 191017

task categories and 122 unique clinical tasks to im-1018

prove the LLMs’ capacities on various downstream1019

clinical tasks.1020

Slow-Thinking Medical LLMs With the signif-1021

icant achievements of the o1 (Jaech et al., 2024)1022

in complex reasoning tasks, previous works show1023

the potential advantage of the o1-like models in1024

medical tasks (Xie et al., 2024; Xu et al., 2024a;1025

Nori et al., 2024). Based on these, previous works1026

develop the slow-thinking medical LLMs with dis-1027

tillation: Huang et al. (2025) directly learn the1028

reasoning trajectory generated by o1 and Chen1029

et al. (2024) improving the model’s reasoning abil-1030

ity through o1 synthesis of reflective data and rein-1031

forcement learning. Besides, Yu et al. (2025) create1032

a Chinese version slow-thinking medical LLMs by1033

constructing the preference data with QwQ (Team,1034

2024).1035

B Further Experiments1036

In this section, we present more experiments to1037

validate the effectiveness of MedS3.1038

B.1 Soft Train vs. Hard Train1039

We here compare the PRM training techniques,1040

where the step label is set to a hard two-class 0/11041

label (Zhang et al., 2025) or a soft float label in-1042

troduced in MedS3. We remain the other settings1043

Method MedQA MedMCQA Healthfact DDXPlus SEER Average

Hard 64.81 62.18 77.61 64.35 54.94 64.778
Soft 71.88 65.20 79.97 65.20 58.36 68.122

Table 4: Comparison between soft-label which is
adopted in MedS3 and hard-label.

unchanged and set the label to 1 if the step’s rollout 1044

value is greater than 0, otherwise 0 when train- 1045

ing the hard PRM. The results in Table 4 indicate 1046

that soft-label is comprehensively superior to hard- 1047

label. Although Zhang et al. (2025) indicate that 1048

hard-label works after prompting an LLM to fil- 1049

ter bad intermediate steps, for the sake of privacy 1050

in clinical uasge and fairness we do not conduct 1051

filtering. 1052

B.2 Reliability of PRM 1053

Although our process reward model (PRM) is 1054

trained using rollout-value—a rule-based supervi- 1055

sion signal—we empirically demonstrate that the 1056

PRM exhibits strong capability in identifying erro- 1057

neous reasoning steps. To evaluate this, we com- 1058

pare two metrics: the task error rate (defined as 1059

instances where model predictions deviate from 1060

ground truth answers) and the PRM error rate (oc- 1061

curring when the PRM assigns a higher score to an 1062

incorrect candidate than to the ground truth-aligned 1063

prediction). As illustrated in Table 5, the major- 1064

ity of tasks exhibit a PRM error rate of zero, with 1065

the exception of the Healthfact dataset. This sug- 1066

gests that our fine-tuned PRM effectively differen- 1067

tiates between valid and invalid clinical reasoning 1068

steps. Furthermore, the observed discrepancy be- 1069

tween task and PRM error rates implies that most 1070

errors arise not from the PRM’s assessment but 1071

from the policy model’s failure to generate candi- 1072

dates aligned with the ground truth. This finding 1073

underscores the need to refine the policy model in 1074

future iterations to address this limitation. 1075

C Future Work 1076

As a pioneering work, we have validated that small 1077

language models can self-evolve to empower them- 1078

selves with strong reasoning abilities in clinical 1079

usage. There are several remaining directions to 1080

further enhance MedS3: 1081

1. Conduct iterative evolution. Currently we 1082

are only focusing on one iteration evolution, 1083

which greatly leaves the PRM under-tuned. 1084

2. Conduct Human-interference evaluation. MC- 1085
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Error Type MedQA MedMCQA HealthFact PubmedQA BioASQ Med MMLU BioMRC DDXPlus PubHealth DrugDose SEER

Task 28.91 34.60 20.03 40.40 23.79 20.50 22.88 34.60 26.97 4.35 41.87
PRM 0.00 0.00 16.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5: Comparison of error rates (lower is better) in task-level and PRM-level, where PRM works with no errors
in most of testbeds.

rollout value is verified to be not the best1086

choice for evaluating the value of an internal1087

step. We are eager to introduce fine-grained1088

step label to enhance the optimization of the1089

PRM.1090

3. Introduce more clinical data, not limited to1091

close-ended generation. Currently, all the data1092

used in MedS3 are close-ended, and the ap-1093

plication of reasoning is not limited to such a1094

narrow room. We intend to extend MedS3 to1095

broader clinical tasks to make MedS3 a more1096

useful system.1097

We will continue our exploration and make MedS31098

more practical in medical domains.1099

D Prompt Template1100

We show the prompt used to synthesize reasoning1101

data in Fig. 6 and Fig. 7.1102

E Dataset Details1103

In this section, we elucidate the seed dataset and1104

the evaluation sets. We divide the used 16 training1105

datasets into the following five dimensions:1106

1. Long Context QA: This dimension enables1107

MedS3 to capture useful information from1108

the given context and response with long-1109

chain reasoning. This dimension covers1110

BioMRC (Pappas et al., 2020), HeadQA1111

Topic Classification (Vilares and Gómez-1112

Rodríguez, 2019; Wu et al., 2024b), and DDX-1113

Plus (Tchango et al., 2022).1114

2. Knowledge-Intensive QA: This dimension1115

teaches MedS3 to use long-chain reasoning to1116

answer knowledge-intensive problems, which1117

covers MedQA (Jin et al., 2021), MedM-1118

CQA (Pal et al., 2022), PubMedQA (Jin1119

et al., 2019) and PubHealth (Kotonya and1120

Toni, 2020).1121

3. Bio-Medical QA: This part leverages gen-1122

eral data in bio-medicine domains to en-1123

hance the generality of MedS3, which in-1124

cludes SciQ (Welbl et al., 2017), Evidence1125

Inference (DeYoung et al., 2020) and Head 1126

QA (Vilares and Gómez-Rodríguez, 2019). 1127

4. Medical Natural Language Inference: This 1128

dimension prompts MedS3 to discriminate 1129

biomedical research concepts and correspond- 1130

ing descriptions, which contains Healthfact 1131

Classification (Kotonya and Toni, 2020), 1132

Medical Question Pair (MQP; McCreery 1133

et al. (2020)), and catalonia-independence- 1134

corpus (CIC; Zotova et al. (2020)). 1135

5. Diagnosis QA: This dimension is related to 1136

real-world clinical scenarios, including dis- 1137

ease diagnosis and classification and drug re- 1138

lated questions. We choose Covid-19 Classifi- 1139

cation (Lab, 2020), Drug-Dose Extraction and 1140

Adverse Drug Event Classification (Huynh 1141

et al., 2016; Wu et al., 2024b). 1142

The descriptions of each training and evaluation 1143

datasets are presented below: 1144

1. MedQA (Jin et al., 2021) is a widely used 1145

benchmark for evaluating AI systems in med- 1146

ical question answering, featuring multiple- 1147

choice questions from professional medical 1148

licensing exams such as the USMLE and ex- 1149

ams from China and Taiwan. We adopt its 1150

5-options English version, taking its training 1151

set as seed data and 1,273 test problems as the 1152

evaluation benchmark. 1153

2. PubmedQA (Jin et al., 2019) is a specialized 1154

benchmark for biomedical question answer- 1155

ing, consisting of question-answer pairs de- 1156

rived from PubMed abstracts. It focuses on 1157

yes/no/maybe questions that require reasoning 1158

over biomedical literature. We use the human- 1159

labeled question set and split the training set 1160

and test set, with both 500 problems for evolu- 1161

tion and evaluation, respectively. Note that we 1162

do not include relevant contexts before ques- 1163

tions, challenging models’ internal knowledge 1164

comprehension. 1165

3. MedMCQA (Pal et al., 2022) is a large-scale 1166

benchmark for medical question answering, 1167
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Reason Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023 Today Date: 23 July 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Think critically about the problem and answer with concise, accurate reasoning.
Please ensure your reasoning is thorough and elaborate, breaking down each step
of your thought process.

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0: Let’s break down this problem step by step

Step 1:

Figure 6: Reason template

Finish Template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

Cutting Knowledge Date: December 2023 Today Date: 23 July 2024

<|eot_id|><|start_header_id|>user<|end_header_id|>

Reasoning Example: {Few-shot Example}

You are a professional medical expert majored at reasoning in hard
medical-related problems.

Use thorough and elaborate steps to complete your reasoning. Conclude the task
by stating: "The answer is {answer}".

Problem: {problem}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Step 0: Let’s break down this problem step by step

Step 1:

Figure 7: Finish template
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featuring over 194,000 multiple-choice ques-1168

tions sourced from Indian medical entrance1169

exams and other educational resources. It1170

spans a wide range of medical topics, includ-1171

ing anatomy, pharmacology, and pathology,1172

and is designed to evaluate the reasoning and1173

knowledge application skills of AI systems in1174

a clinical context. The test set contains 4,1831175

problems.1176

4. MMLU (Hendrycks et al., 2021) is to mea-1177

sure LLM’s multitask accuracy, which con-1178

tains 14,421 problems. The test covers 571179

tasks including elementary mathematics, US1180

history, computer science, law, and more. We1181

select its medical-related problems, resulting1182

in a test set with 1,561 problems.1183

5. BioMRC (Pappas et al., 2020) is a collec-1184

tion of medical-related question-answer pairs,1185

specifically designed for the evaluation of ma-1186

chine reading comprehension (MRC) tasks in1187

the biomedical domain. It is derived from a1188

wide range of medical texts, including clinical1189

notes, research papers, and medical textbooks.1190

The dataset contains a series of questions and1191

corresponding answers, where the answers are1192

extracted from relevant passages of text. We1193

use its 6,250 test set as the evaluation set.1194

6. HeadQA (Vilares and Gómez-Rodríguez,1195

2019) is a specialized medical question-1196

answering dataset designed to evaluate models1197

in the context of neurology and head-related1198

disorders. It consists of a collection of ques-1199

tions paired with answers derived from a va-1200

riety of clinical notes, medical reports, and1201

other head-related health data sources.1202

7. DDX-Plus (Tchango et al., 2022) is a compre-1203

hensive medical diagnostic dataset designed1204

to assist in the development and evaluation of1205

machine learning models for differential diag-1206

nosis in clinical settings. It consists of clini-1207

cal cases, where each case includes a set of1208

symptoms, patient history, physical examina-1209

tion findings, and diagnostic questions, along1210

with a list of potential diagnoses ranked by1211

their likelihood. The diverse set of cases in1212

the dataset spans multiple medical specialties,1213

making it an ideal resource for creating mod-1214

els capable of assisting healthcare profession-1215

als in making informed diagnostic decisions.1216

Due to its huge test set (over 100,000 test in- 1217

stances), we randomly select 2,000 items for 1218

evaluation. 1219

8. SciQ (Welbl et al., 2017) is a scientific 1220

question-answering dataset designed to as- 1221

sess machine learning models in answering 1222

factual questions across a wide range of sci- 1223

entific domains. It consists of over 13,000 1224

questions derived from scientific literature, in- 1225

cluding topics in physics, biology, chemistry, 1226

and earth sciences, among others. Each ques- 1227

tion is paired with a correct answer and is 1228

supported by a passage of text from which the 1229

answer is extracted. 1230

9. Evidence Inference (DeYoung et al., 2020) 1231

is a collection designed to evaluate machine 1232

learning models on their ability to infer log- 1233

ical conclusions from evidence presented in 1234

the form of textual information. This dataset 1235

consists of structured pairs of premises (evi- 1236

dence) and hypotheses, where the goal is for 1237

models to determine the logical relationship 1238

between them—whether the hypothesis is sup- 1239

ported, contradicted, or is neutral with respect 1240

to the provided evidence. Typically used for 1241

tasks such as textual entailment or natural lan- 1242

guage inference (NLI), the dataset includes 1243

a variety of complex scenarios across multi- 1244

ple domains, including law, healthcare, and 1245

science, where reasoning based on available 1246

evidence is crucial. 1247

10. PubHealth (Kotonya and Toni, 2020) is a com- 1248

prehensive dataset for explainable automated 1249

fact-checking of public health claims. Each in- 1250

stance in the PUBHEALTH dataset has an as- 1251

sociated veracity label (true, false, unproven, 1252

mixture). Furthermore each instance in the 1253

dataset has an explanation text field. The ex- 1254

planation is a justification for which the claim 1255

has been assigned a particular veracity label. 1256

We construct two different test sets. Health- 1257

fact is to directly predict whether a given in- 1258

stance is true/false/unproven/mixture. The 1259

other, Pubhealth, is to predict whether the 1260

instance sentence and the given explanation 1261

expresses the same meaning. 1262

11. Medical Question Pair (McCreery et al., 2020) 1263

contains a dataset of 3,048 similar and dissimi- 1264

lar medical question pairs hand-generated and 1265
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labeled by Curai’s doctors. Models should1266

clarify whether the given two questions are1267

similar or not.1268

12. Catalonia-independence-Corpus (Zotova1269

et al., 2020) is a dataset built for stance1270

detection in Twitter for the Catalan and Span-1271

ish languages, with the aim of facilitating1272

research on stance detection in multilingual1273

and cross-lingual settings.1274

13. Covid-19 Classification (Lab, 2020) is an ex-1275

tension of the Hedwig library and contains1276

all necessary code to reproduce the results1277

of some document classification models on a1278

COVID-19 dataset created from the LitCovid1279

collection.1280

14. Adverse Drug Event (Huynh et al., 2016) is1281

critical for developing automated systems that1282

can support clinicians in identifying harmful1283

drug reactions, potentially reducing healthcare1284

costs, and enhancing patient safety. Given the1285

increasing volume of clinical data, this dataset1286

plays a key role in advancing AI-driven drug1287

safety research and improving the overall qual-1288

ity of healthcare. We build Drugdose extrac-1289

tion test set to benchmark models to extract1290

the exact dose of a specific drug.1291

F Hyperparameters1292

F.1 Data Synthesis1293

For each node expansion, we simultaneously gen-1294

erate 3 different responses with the same prompt.1295

We set the generation temperature to 1. The stop1296

tokens are set to {Step k: | k = 1, 2, · · · 100} to1297

ensure that each node represents a single reasoning1298

step. We use the first sample in MedQA as the1299

one-shot example and prompt GPT-4o to generate1300

step-by-step outputs.1301

F.2 Self-Training of Policy and PRM1302

Policy tuning We use trl3 as the training frame-1303

work. We use vanilla SFTTrainer to train the pol-1304

icy model. We set the warmup ratio to 0.03 and1305

the max sequence length to 8192. The batch size1306

is set to 64 and the learning rate is set to 2e-4. We1307

use LoRA (Hu et al., 2022) to efficiently train the1308

model, where the rank r and alpha α are set to 161309

and 32, respectively. We train 1 epoch for the total1310

24,441 positive synthesized samples.1311

3https://huggingface.co/docs/trl/index

PRM tuning We use PRMTrainer of trl to 1312

train the PRM model. We use the same hyper- 1313

parameters as those used in the policy fine-tuning 1314

but conduct a simple data filtering method. For an 1315

instance where all its solution trajectories are all 1316

correct or incorrect, we only randomly maintain 1317

one of them, as the excessively simple or hard in- 1318

stance will disturb the training process. For other 1319

instances, we guarantee that the correct trajectories 1320

and incorrect trajectories have the same total count 1321

for a given data point, which performs a simple 0-1 1322

class balance. We train 1 epoch for filtered 76,792 1323

samples with LoRA, where the rank r and α are 1324

set to 64 and 128, respectively. 1325

F.3 Evaluation 1326

For evaluation, the temperature is set to 1.0 and 1327

top_p is set to 0.9. The max generation tokens 1328

are set to 8,192. Among the three presented de- 1329

coding mechanisms, CoT (Wei et al., 2022) di- 1330

rectly prompts models to generate a long reasoning 1331

chain and outputs the answer with “The answer is 1332

{answer}” for the convenience of answer extrac- 1333

tion. Self-Consistency (Wang et al., 2023) gener- 1334

ates N = 16 samples for a given problem, and we 1335

select the one whose answer appears most times 1336

among the N outputs. For PRM-guided Vote-Sum, 1337

we generate N = 12 samples for datasets where 1338

SC has already achieved a high score (MedM- 1339

CQA, Med-MMLU and BioASQ) and generate 1340

N = 16 samples for other datasets. This is rea- 1341

sonable since not all generated samples are of high 1342

quality due to the sampling parameters top_p. We 1343

manually filter some low-probability samples to 1344

prevent them from disturbing the Vote-Sum com- 1345

putation. We use exact match (EM) to measure 1346

the performance. Specifically, we extract the con- 1347

tents following the last “The answer is” template 1348

to match the self-reflection thinking style, and per- 1349

form appropriate post-process to derive a final pre- 1350

diction. For multiple-choice problems, we directly 1351

choose the first character of prediction phrases and 1352

measure whether the ground truth is equal to the 1353

prediction. For close-ended generation tasks, we re- 1354

move quotes and turn the prediction and the ground 1355

truth into lowercase phrases. After that, we check 1356

whether the ground truth phrases exist in the pre- 1357

diction phrases. 1358

F.4 Training Details of Distillation and RL 1359

In this section, we elucidate the implementation 1360

details of distillation and RL. 1361
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Distillation For Distillation method, we fine-1362

tune Llama3.1-8B with 2K training data4 released1363

by Huang et al. (2025), which combined with the1364

questions in MedQA and corresponding response1365

generated by o1 (Jaech et al., 2024). We adopt1366

LoRA (Hu et al., 2022) and set the rank r to 16 and1367

alpha α to 32 for fair comparisons. For fine-tuning1368

parameters, we set the learning rate to 2e-6 and1369

batch size to 128.1370

RL We follow Guo et al. (2025) to use Group1371

Relative Policy Optimization (GRPO; Shao et al.1372

(2024)) to conduct RL training. We set the number1373

of generations to 10 and the learning rate to 1e− 6.1374

We adopt ZeRO-3 (Rajbhandari et al., 2020) to1375

save memory and conduct full fine-tuning in one1376

8xA100 machine. The batch size is set to 4 per1377

GPU. For the adopted prompt, we use the same1378

prompt illustrated in DeepSeek-R1-zero, and use1379

<think></think><answer></answer> to learn1380

the slow-thinking output style. We use accuracy1381

reward and format reward, and the reward setting1382

is presented below in Table 6.1383

Table 6: Reward configurations for training RL-style
medical models. Null means that there is no contents
between <answer> and </answer>.

Conditions Accuracy Format

Correct 1 1
Incorrect -1 -1

Null 0 Null

G AI Assistant Usage1384

We mainly use AI assistants to polish our expres-1385

sions.1386

H Case Study1387

4https://huggingface.co/datasets/SPIRAL-MED/
o1-journey-Ophiuchus
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Question:
A 47-year-old executive schedules an appointment his physician for a routine medical check-up. He currently has no 
complaints and claims to be “as fit as a fiddle.” The physical examination findings are unremarkable, except for a mid-
systolic murmur heard in the 2nd left intercostal space that radiates to the carotids on auscultation. The physician instructs 
the patient to stand from a supine position with the stethoscope still placed on his chest. Which of  the following changes 
would occur with this maneuver?\nA. An increase in right atrial pressure\nB. An increase in left ventricular end-diastolic 
pressure\nC. An increase in pulmonary capillary wedge pressure\nD. A reduction in the slope of  the pacemaker 
potential\nE. A reduction in diastolic filling time

Llama3.1-8B: 
When the patient stands from a supine position, the following changes occur:\n\n*   Venous return to the heart decreases 
due to gravity, which leads to a decrease in right atrial pressure (A).\n*   The decrease in venous return also leads to a 
decrease in left ventricular end-diastolic pressure (B).\n*   The decrease in left ventricular end-diastolic pressure would not 
directly affect the pulmonary capillary wedge pressure (C).\n*   The pacemaker potential is not directly affected by changes 
in posture.\n*   The diastolic filling time is not directly affected by changes in posture.\n\nThe mid-systolic murmur heard 
in the 2nd left intercostal space that radiates to the carotids is likely due to aortic stenosis. When the patient stands from a 
supine position, the murmur may become louder due to the increased gradient across the aortic valve. \nThe answer is A.

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the likely diagnosis based on the physical 
examination findings. The presence of  a mid-systolic murmur heard in the 2nd left intercostal space that radiates to the 
carotids on auscultation is suggestive of  aortic stenosis. Aortic stenosis is characterized by the narrowing of  the aortic valve
opening, which can lead to a delay in left ventricular ejection and a subsequent murmur.\n\nStep 2: Understand the effect 
of  standing from a supine position on the cardiovascular system. When a person stands from a supine position, gravity 
causes a decrease in venous return to the heart. This decrease in venous return leads to a decrease in the preload, which is 
the initial stretching of  the cardiac myocytes prior to contraction.\n\nStep 3: Determine how the decrease in preload affects 
the heart's function. A decrease in preload leads to a decrease in the end-diastolic volume, which in turn leads to a decrease 
in the stroke volume. This is because the heart's ability to pump blood is directly related to the amount of  blood it receives 
during diastole.\n\nStep 4: Consider how the decrease in stroke volume affects the murmur associated with aortic stenosis. 
The murmur associated with aortic stenosis is typically a systolic ejection murmur, which is caused by the delay in left 
ventricular ejection. When the stroke volume decreases, the murmur may become softer or less intense, but it will not change 
its timing or location.\n\nStep 5: Analyze the options provided to determine which one is most closely related to the change 
in the murmur associated with aortic stenosis. The murmur is not directly related to the options provided, but the decrease in 
stroke volume is related to the decrease in diastolic filling time. When the heart is in a supine position, the diastolic filling 
time is longer due to the increased venous return. When the person stands, the diastolic filling time decreases due to the 
decreased venous return.\n\nStep 6: Select the correct answer based on the analysis. The correct answer is the one that is 
most closely related to the change in the murmur associated with aortic stenosis, which is the decrease in diastolic filling 
time.\n\nThe answer is E. 

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the likely diagnosis. The presence of  a mid-systolic 
murmur heard in the 2nd left intercostal space that radiates to the carotids suggests aortic stenosis. This condition is 
characterized by the narrowing of  the aortic valve opening, leading to obstruction of  blood flow from the left ventricle into
the aorta.\n\nStep 2: Understand the impact of  changing the patient's position on the heart's hemodynamics. The physician 
instructs the patient to stand from a supine position. This change in position affects the heart's position and the volume of
blood returning to the heart. When a person stands up, gravity causes blood to pool in the lower extremities, reducing the 
volume of  blood returning to the heart.\n\nStep 3: Analyze the effect on venous return to the heart. Standing from a supine 
position reduces the volume of  blood returning to the heart due to venous pooling in the lower extremities. This reduction in
venous return affects the heart's ability to fill with blood, particularly during diastole.\n\nStep 4: Relate the change in 
venous return to the heart's hemodynamics. The reduced venous return to the heart results in decreased diastolic filling time. 
This is because the heart has less blood available to fill with during diastole, leading to a shorter diastolic filling 
period.\n\nStep 5: Eliminate incorrect options. The other options do not directly relate to the change in position and its 
effect on the heart's hemodynamics. Option A (an increase in right atrial pressure) might occur in conditions of  volume 
overload or tricuspid regurgitation but is not directly related to the change in position. Option B (an increase in left 
ventricular end-diastolic pressure) and Option C (an increase in pulmonary capillary wedge pressure) might occur in 
conditions of  left ventricular failure or pulmonary congestion but are not directly related to the change in position. Option D 
(a reduction in the slope of  the pacemaker potential) is not directly related to the change in position and is more related to 
electrophysiological changes.\n\nStep 6: Choose the correct answer. The correct answer is related to the change in diastolic 
filling time due to reduced venous return to the heart.\n\nThe answer is E.

Figure 8: Cases of MedQA
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Question:
Imagine you are a doctor, next I will give you a dialogue and please make a diagnosis decision based on it. You only need to 
choose one answer among the following lists: ['spontaneous pneumothorax', 'cluster headache', 'boerhaave', 'spontaneous rib 
fracture' 'gerd', 'hiv (initial infection)', 'anemia', 'viral pharyngitis', 'inguinal, hernia', 'myasthenia gravis', 'whooping cough', 
'anaphylaxis', 'epiglottitis', 'guillain-barré syndrome', 'acute laryngitis', 'croup', 'psvt', 'atrial fibrillation', 'bronchiectasis', 
'allergic sinusitis', 'chagas', 'scombroid food poisoning', 'myocarditis', 'larygospasm', 'acute dystonic reactions', 'localized 
edema', 'sle', 'tuberculosis', 'unstable angina', 'stable angina', 'ebola', 'acute otitis media', 'panic attack', 'bronchospasm / acute 
asthma exacerbation', 'bronchitis', 'acute copd exacerbation / infection', 'pulmonary embolism', 'urti', 'influenza', 
'pneumonia', 'acute rhinosinusitis', 'chronic rhinosinusitis', 'bronchiolitis', 'pulmonary neoplasm', 'possible nstemi / stemi', 
'sarcoidosis', 'pancreatic neoplasm', 'acute pulmonary edema', 'pericarditis', 'cannot decide']. The answer should be a single 
word. \nAge: 51 \n\nSex: M \n\nInitial evidence: Have you been coughing up blood? Yes \n\nEvidence: Have you been 
coughing up blood? Yes;Do you have pain somewhere, related to your reason for consulting? Yes;Characterize your pain: 
Sensitive;Characterize your pain: A knife stroke;Do you feel pain somewhere? Posterior chest wall(r);Do you feel pain 
somewhere? Posterior chest wall(l);How intense is the pain? 5;Does the pain radiate to another location? Nowhere;How
precisely is the pain located? 4;How fast did the pain appear? 5;Are you experiencing shortness of  breath or difficulty 
breathing in a significant way? Yes;Do you smoke cigarettes? Yes;Do you constantly feel fatigued or do you have non-restful 
sleep? Yes;Have you recently had a loss of  appetite or do you get full more quickly then usually? Yes;Have you had an 
involuntary weight loss over the last 3 months? Yes;Are you a former smoker? Yes;Do you have a cough? Yes;Have you 
traveled out of  the country in the last 4 weeks? N;Are you exposed to secondhand cigarette smoke on a daily basis? Yes;Do
you have family members who have had lung cancer? Yes. 

Llama3.1-8B: 
Based on the provided dialogue, I would choose: 'bronchogenic carcinoma'. \nThe answer is 'bronchogenic carcinoma' 
because the patient is a 51-year-old male who has been coughing up blood, has a history of  smoking, is a former smoker, and 
has a family history of  lung cancer. 

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: The patient presents with coughing up blood (hemoptysis), 
which is a symptom that can be associated with several conditions, including lung cancer, pulmonary embolism, and 
infections such as pneumonia or tuberculosis. The patient's age (51) and smoking history (current and former smoker) 
increase the likelihood of  lung cancer.\n\nStep 2: Assess the patient's pain characteristics. The patient reports pain in the 
posterior chest wall, which is a common location for lung cancer. The pain is described as sensitive and like a knife stroke,
which suggests that it may be related to a tumor or mass in the lung.\n\nStep 3: Evaluate the patient's other symptoms, 
including shortness of  breath, fatigue, loss of  appetite, and weight loss. These symptoms are consistent with a diagnosis of  
lung cancer, particularly if  the patient has a smoking history.\n\nStep 4: Consider the patient's family history of  lung cancer, 
which may increase the risk of  developing the disease.\n\nStep 5: Based on the patient's symptoms and risk factors, the 
most likely diagnosis is lung cancer. The patient's cough and exposure to secondhand cigarette smoke also support this 
diagnosis.\n\nStep 6: Among the provided options, the most likely diagnosis is 'pulmonary neoplasm', which is a broad 
term that includes lung cancer.\n\nThe answer is pulmonary neoplasm. \nThe answer is pulmonary neoplasm.

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: The patient is a 51-year-old male with a history of  smoking, 
exposure to secondhand cigarette smoke, and a family history of  lung cancer. He presents with symptoms of  coughing up 
blood, chest pain, shortness of  breath, fatigue, loss of  appetite, and involuntary weight loss. These symptoms suggest a 
serious underlying condition that requires immediate attention.\n\nStep 2: The patient's symptoms of  coughing up blood 
and chest pain are indicative of  a respiratory or cardiac issue. Given his history of  smoking and exposure to secondhand 
smoke, lung cancer is a significant concern. However, other conditions such as chronic obstructive pulmonary disease 
(COPD), pneumonia, or cardiac conditions like myocardial infarction or pericarditis should also be considered.\n\nStep 3: 
The patient's chest pain is described as sensitive and like a knife stroke, localized to the posterior chest wall on both sides.
This pain is severe, appearing rapidly, and is associated with shortness of  breath. These symptoms suggest a condition that is 
causing inflammation or obstruction of  the airways or lungs.\n\nStep 4: Considering the patient's symptoms and history, 
the most likely diagnosis is lung cancer. However, other conditions such as COPD, pneumonia, or cardiac conditions should 
also be considered. Given the patient's coughing up blood, chest pain, and shortness of  breath, a diagnosis of  lung cancer is
the most likely explanation for his symptoms.\n\nStep 5: Based on the patient's symptoms and history, the best answer is 
'pulmonary neoplasm'. This diagnosis takes into account the patient's coughing up blood, chest pain, shortness of  breath, 
and history of  smoking and exposure to secondhand smoke.\n\nThe answer is 'pulmonary neoplasm'.

Figure 9: Cases of DDXPlus
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Question:
Imagine you are a doctor, next I will give you summarization of  a patient and please help me to give a suggestion for next 
treatment. You just need to pick out an answer from ['Intraoperative rad with other rad before/after surgery', 'Intraoperative 
radiation', 'No radiation and/or cancer-directed surgery', 'Radiation after surgery', 'Radiation before and after surgery', 
'Radiation prior to surgery', 'Surgery both before and after radiation']\nAge at diagnosis: 73\n\nRegional nodes positive 
(1988+): 0\n\nTotal number of  in situ/malignant tumors for patient: 1\n\nRadiation recode: 
None/Unknown\n\nChemotherapy recode: No/Unknown\n\nER Status Recode Breast Cancer (1990+): Positive\n\nPR
Status Recode Breast Cancer (1990+): Negative\n\nCS tumor size (2004-2015): 16\n\nDerived HER2 Recode (2010+): 
Negative\n\nRegional nodes examined (1988+): 8\n\nCOD to site recode: Diseases of  Heart\n\nRace recode: 
White\n\nSex: Female\n\nVital status recode (study cutoff  used): Dead\n\nDiagnosis_year: 2010\n\nLast_fu _year: 
2015\n\ninterva_years: 5

Llama3.1-8B: 
Based on the provided information, I would suggest the following treatment plan:\n\nGiven the patient's age (73) at 
diagnosis, the presence of  a single tumor (1), and the fact that the patient has died from a cause other than breast cancer 
(Diseases of  Heart), it's likely that the cancer was not the primary cause of  death.\n\nHowever, considering the patient's 
ER-positive status and the relatively large tumor size (16), a treatment plan that includes radiation therapy may be beneficial.
\n\nGiven the patient's age and the fact that the cancer was not the primary cause of  death, I would suggest 'Radiation after 
surgery' as the next treatment plan. This approach would allow for the removal of  the tumor through surgery, followed by 
radiation therapy to target any remaining cancer cells and reduce the risk of  recurrence. \nThe answer is 'Radiation after 
surgery'..

MedS3

Step 0: Let's break down this problem step by step.\n\nStep 1: Identify the key information from the patient's summary. The 
patient is a 73-year-old female with breast cancer, diagnosed in 2010. The cancer is ER-positive, PR-negative, and HER2-
negative. The patient had 8 regional nodes examined, but none were positive. The cancer was 16mm in size.\n\nStep 2: 
Assess the patient's prognosis and treatment options. Given the patient's age, cancer size, and ER-positive status, the patient 
is likely to benefit from hormone therapy. However, the patient's PR-negative status suggests that PR-targeted therapy may 
not be effective.\n\nStep 3: Consider the patient's vital status and last follow-up year. The patient passed away in 2015, 
which suggests that the cancer may have progressed despite treatment.\n\nStep 4: Evaluate the treatment options for ER-
positive breast cancer. The standard treatment for ER-positive breast cancer includes hormone therapy, such as tamoxifen or 
aromatase inhibitors. However, the patient's PR-negative status and cancer progression suggest that hormone therapy may 
not be sufficient.\n\nStep 5: Consider the patient's cancer-directed surgery and radiation therapy. The patient's cancer size 
and regional nodes examined suggest that surgery and radiation therapy may have been used to treat the cancer.\n\nStep 6: 
Evaluate the radiation therapy options. Given the patient's cancer progression, radiation therapy may have been used to 
control symptoms or slow disease progression.\n\nStep 7: Consider the patient's overall health and treatment goals. The 
patient's age and cancer progression suggest that aggressive treatment may not be feasible.\n\nStep 8: Based on the patient's 
cancer characteristics and treatment history, the most likely treatment approach is radiation after surgery.\n\nThe answer is 
'Radiation after surgery'.

MedS3-PRM:
Step 0: Let's break down this problem step by step.\n\nStep 1: Analyze the patient's information to identify relevant details 
that may impact treatment decisions. The patient is a 73-year-old female with a diagnosis of  breast cancer in 2010, which is 
now 5 years after last follow-up. Key information includes:\n\n- ER-positive, PR-negative breast cancer, indicating hormone 
receptor status.\n- HER2-negative, which may impact targeted therapy options.\n- 1 in situ/malignant tumor, suggesting a 
localized cancer.\n- No regional nodes positive, indicating no distant metastasis.\n- The patient's vital status is recorded as 
dead, but the cause of  death is listed as diseases of  the heart, which may not be directly related to breast cancer.\n\nStep 2: 
Determine the patient's cancer stage and potential treatment options. Given the patient's ER-positive status, treatment 
options may include hormone therapy, but the lack of  information on chemotherapy recode and radiation recode makes it 
challenging to determine the extent of  treatment.\n\nStep 3: Consider the patient's age, comorbidities, and overall health 
status, which may influence treatment decisions. The patient is 73 years old, and the cause of  death is listed as heart disease,
suggesting potential comorbidities.\n\nStep 4: Evaluate the impact of  HER2-negative status on treatment options. HER2-
negative breast cancers are typically treated with hormone therapy, chemotherapy, or a combination of  both.\n\nStep 5: 
Consider the role of  surgery in the patient's treatment plan. While the specific details of  the patient's cancer-directed surgery 
are not provided, it is likely that surgery played a role in the patient's treatment.\n\nStep 6: Assess the potential benefits and 
risks of  radiation therapy in this patient. Given the patient's age and comorbidities, the decision to use radiation therapy may
be influenced by the potential benefits and risks.\n\nStep 7: Determine the most appropriate next treatment step based on 
the patient's information. Considering the patient's ER-positive status, the lack of  information on chemotherapy recode and 
radiation recode, and the patient's age and comorbidities, it is challenging to determine the most appropriate next treatment
step.\n\nHowever, given the lack of  information on radiation therapy and chemotherapy, and considering the patient's age 
and comorbidities, I would suggest the following treatment option:\n\nGiven the patient's ER-positive status and the lack of  
information on chemotherapy recode and radiation recode, I would recommend a treatment option that focuses on hormone 
therapy and cancer-directed surgery. However, without more information on the patient's cancer stage and treatment history, 
it is difficult to provide a more specific recommendation.\n\nAmong the provided options, the most conservative approach 
would be to choose the option that does not involve radiation therapy, considering the patient's age and 
comorbidities.\n\nThe answer is 'No radiation and/or cancer-directed surgery'

Figure 10: Cases of SEER
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