
Relational Transformer: Toward Zero-Shot
Foundation Models for Relational Data

Rishabh Ranjan01∗, Valter Hudovernik0, Mark Znidar0, Charilaos Kanatsoulis0,
Roshan Upendra1, Mahmoud Mohammadi1, Joe Meyer1, Tom Palczewski1,

Carlos Guestrin0, Jure Leskovec0
0Stanford University, 1SAP Labs LLC

{ranjanr,guestrin,jure}@stanford.edu

Abstract

Pretrained transformers readily adapt to new sequence modeling tasks via zero-
shot prompting, but relational domains still lack architectures that transfer across
datasets and tasks. The core challenge is the diversity of relational data, with
varying heterogeneous schemas, graph structures and functional dependencies. In
this paper, we present the Relational Transformer (RT) architecture, which can be
pretrained on diverse relational databases and directly applied to unseen datasets
and tasks without task- or dataset-specific fine-tuning, or retrieval of in-context
examples. RT (i) tokenizes cells with table/column metadata, (ii) is pretrained
via masked token prediction, and (iii) utilizes a novel Relational Attention mecha-
nism over columns, rows, and primary–foreign key links. Pretrained on RelBench
datasets spanning tasks such as churn and sales forecasting, RT attains strong zero-
shot performance, averaging 93% of fully supervised AUROC on binary classifi-
cation tasks with a single forward pass of a 22M parameter model, as opposed to
84% for a 27B LLM. Fine-tuning yields state-of-the-art results with high sample
efficiency. Our experiments show that RT’s zero-shot transfer harnesses task-table
context, relational attention patterns and schema semantics. Overall, RT provides
a practical path toward foundation models for relational data.

1 Introduction
Foundation models [3] have transformed natural language processing (NLP) [7] and computer vi-
sion (CV) [9] through general-purpose architectures—primarily the transformer [35]—which enable
large-scale pretraining and effective transfer. In contrast, relational databases, the dominant reposi-
tories of structured enterprise data, still lack such models. Unlike sequences, relational data consists
of interconnected tables with heterogeneous columns linked via primary–foreign keys, where pre-
dictive signals are dispersed across rows, columns, tables, and time. Designing a foundation model
for relational databases is crucial [36], and would enable zero-/few-shot predictions, efficient fine-
tuning, and help democratize AI.

Prior work. Tabular models [5, 31] require manual feature engineering. Relational deep learning
(RDL) [14] methods—GNNs [30, 4], transformers [11, 25], hybrids [39]—remain schema-specific.
Tabular foundation models [17, 18, 22] and LLM serialization [40] cannot capture multi-table struc-
ture effectively. For a detailed discussion, see App. A.

Our contribution. We introduce Relational Transformer (RT, Fig. 1), enabling pretraining and
zero-shot transfer across relational databases via three innovations: (i) cell-level tokenization, repre-
senting each database cell as a token with embedding derived from its value, column, and table name,
enabling all relational tasks to be formulated as masked token prediction; (ii) task table prompting

∗Work done, in part, as an intern at SAP Labs LLC.

AI for Tabular Data workshop at EurIPS 2025

Figure 1: (a) Schema with task table for labels. (b) Context window samples relevant cells, ex-
cluding future rows. (c) Cells=tokens with value+schema embeddings. Relational Attention: (1)
column, (2) feature (row+F→P), (3) neighbor (P→F).

providing task-specific context for zero-shot prompting; (iii) Relational Attention (Sec.3.2) with
column, feature (row + F→P links), neighbor (P→F links), and full attention masks. Pretrained on
RelBench [30], RT achieves 93% of supervised AUROC in zero-shot transfer (compared to 84% for
Gemma3-27B at 105× higher FLOPs) and requires 10–100× fewer steps for fine-tuning.

2 Background
A relational database (RDB) consists of tables connected via primary keys (P–keys) and foreign keys
(F–keys), forming F→P and P→F links (Fig.1). Many RDBs are inherently temporal, requiring
models to ensure temporal consistency by conditioning solely on information observed before the
target timestamp. We focus on masked token prediction (MTP), where the goal is predicting a
masked cell value. This includes forecasting tasks (predict future events via task tables with labels
and timestamps) and autocomplete tasks (predict missing values in existing columns). See App. B.

3 Relational Transformer
The design of Relational Transformer (RT, Fig. 1) is guided by three core principles: (i) effectively
capture relational structure, (ii) support flexible self-supervised pretraining, and (iii) enable zero-
shot generalization across heterogeneous schemas.

Figure 2: RT can be pretrained on data with diverse schemas and task definitions. Pretrained RT is
accurate on new datasets and tasks with zero-shot prompting. Dataset- and task-specific fine-tuning
of pretrained RT shows high learning efficiency.

2

3.1 Input Representation
RT introduces two key innovations in input representation: (i) task table prompting, where prediction
tasks are represented as additional tables appended to the database, and (ii) cell-level tokenization,
where each database cell is modeled as an individual token.

Task table prompting. Predictive tasks are added to the database as tables. Task rows act as seed
rows for context sampling, with only one task active at a time to ensure task-specific sampling.

Context sampling. Starting from a seed row, RT constructs an n-cell context using a bounded-width
BFS that (1) includes all F→P parent rows, (2) subsamples P→F child rows up to width w, and (3)
excludes rows with later timestamps to prevent temporal leakage (see App. K).

Cell encoding. Each cell (v, c, t) is encoded as x = Wd r+W E schema(c, t), where r is a datatype-
specific normalization of value v, and E schema embeds “<column> of <table>”. Masked cells
replace Wdr with a learned mask vector md. (See App. C for details.)

3.2 Relational Attention
RT operates on cell tokens and applies scaled dot-product attention with mask M:
Attention(Q,K,V;M) = (Softmax((QK⊤)/

√
dK)⊙M)V, where Q,K ∈ Rn×dK , V ∈ Rn×dV ,

and M ∈ {0, 1}n×n. We use four relational masks:

• Column: Mcolumn[q, k] = 1{Col(k) = Col(q)} models intra-column value distributions;
• Feature: Mfeature[q, k] = 1{Row(k) = Row(q)∨Row(k) ∈ OutLinks(q)} mixes features within

a row and its F→P-linked parents;
• Neighbor: Mneighbor[q, k] = 1{Row(q) ∈ OutLinks(k)} aggregates signals from P→F-linked

children (GNN-like message passing);
• Full: Mfull[q, k] = 1 enables unrestricted pairwise interactions.

Masks are implemented sparsely and compiled to efficient FlashAttention-based [6] kernels using
FlexAttention [8]. See App. D for more details.

3.3 Output Decoding and Training
Datatype-specific decoders map output embeddings to predictions. For a masked cell with repre-
sentation r and decoder output r′, we use HuberLoss for regression and binary cross-entropy for
classification. This unified objective applies to both pretraining and fine-tuning. See App. E.

4 Results
Data. We use RelBench [30] with six databases (excluding rel-event due to leakage) spanning
domains like e-commerce, forums, and sports, with 10 classification and 8 regression forecasting
tasks. We also define 17 binary classification and regression autocomplete tasks (App. J).

Pretraining. Leave-one-DB-out: for each target dataset, we pretrain on all tasks from the remaining
datasets. RT is a 12-layer transformer (22M params; context length 1024) trained for 50k steps.
Further details in App. F.

100 101 102 103 104

Fine-tuning steps + 1 (batch_size = 256)

55

60

65

70

75

80

Te
st

 A
UR

OC
 (%

)

70.8

68.5

0-shot

Binary Classification (mean over 5 downstream tasks)

Pretrained RT (ours)
Untrained RT (ours)
Untrained RDL-GNN
Pretrained Griffin
Untrained Griffin

100 101 102 103 104

Fine-tuning steps + 1 (batch_size = 256)

0

10

20

30

40

Te
st

 R
2 (

%
) 29.0

17.7

0-shot
Regression (mean over 4 downstream tasks)

Figure 3: Learning curves (log-scale X-axis). First point = zero-shot.

3

Table 1: Zero-shot test AUROC (%) for 10 binary classification tasks. Higher is better. Random/-
majority baseline is 50.0. For RelLLM we use their own prompt construction. Other baselines have
equivalent database subgraphs. Gemma and RelLLM additionally include dataset and task descrip-
tions, as well as natural language instructions. The target task is never seen during pretraining.

Target DB ∈ pretraining? → Maybe No Yes

Dataset ↓ Task ↓ Gemma Gemma Gemma Entity
Mean Griffin RT

(ours)
Rel

LLM Griffin RT
(ours)

Parameter count → 4B 12B 27B 0 22M 22M 3B 22M 22M

rel-amazon item-churn 62.1 55.0 42.1 73.0 69.0 70.9 64.1 71.9 73.3
rel-amazon user-churn 58.1 54.7 50.5 64.4 62.3 64.0 60.1 64.1 66.1
rel-avito user-clicks 54.5 59.5 59.8 44.7 45.9 59.5 62.3 45.9 60.9
rel-avito user-visits 60.1 57.9 62.7 60.7 60.7 61.8 56.2 62.2 62.6
rel-f1 driver-dnf 56.2 54.6 75.8 75.4 57.7 81.2 71.8 57.7 81.2
rel-f1 driver-top3 84.6 90.5 91.4 85.0 82.5 89.3 70.6 81.8 89.3
rel-hm user-churn 59.8 47.1 48.7 64.4 60.2 62.8 56.0 60.4 63.3
rel-stack user-badge 79.1 79.8 80.0 66.2 73.5 80.1 62.1 82.3 81.1
rel-stack user-engage 65.9 67.8 78.0 83.5 77.5 75.7 69.5 89.4 86.9
rel-trial study-out 52.6 57.4 57.2 50.0 51.0 51.8 59.0 57.2 54.6

Mean AUROC → 63.3 62.4 64.6 66.7 64.0 69.7 63.2 67.3 71.9

Baselines. Schema-agnostic baselines are Griffin [38] (22M; same pretraining) and LLMs [33, 40]
(4B–27B). Schema-specific ones are RDL-GNN [30], RelLLM [39]. EntityMean is non-neural.

4.1 Fine-Tuning Efficiency

Fig. 3 shows pretrained RT achieves strong zero-shot performance (first point on curves) and main-
tains advantages during fine-tuning. RT outperforms Griffin despite identical pretraining data. Un-
trained RT catches up to RDL-GNN quickly but requires extensive training to match pretrained RT.
Full fine-tuning results for all tasks, are in App. G.

4.2 Zero-shot prompting Table 2: Zero-shot test R2 (%) for 8 regression tasks.
Higher is better. Global mean baseline is 0.0. Setup is
same as Table 1. LLM baselines are poor (App. L.2).

Target DB ∈ pretraining? → No Yes

Dataset ↓ Task ↓ Entity
Mean Griffin RT

(ours) Griffin RT
(ours)

rel-amazon item-ltv 54.2 20.1 33.2 20.1 35.4
rel-amazon user-ltv 19.9 20.6 36.4 24.4 39.7
rel-avito ad-ctr 3.4 2.4 4.5 2.4 7.7
rel-f1 driver-pos 38.2 −0.7 54.7 4.6 58.4
rel-hm item-sales 1.8 2.7 14.0 2.5 30.4
rel-stack post-votes 43.7 27.4 32.4 27.1 32.7
rel-trial site-succ −6.4 1.4 5.2 2.6 3.5
rel-trial study-adv −0.5 −2.5 2.1 −2.5 3.4

Mean R2 → 19.3 8.9 22.8 10.1 26.4

Setup. In Tabs. 1 and 2 we report zero-
shot results. The target task is always
unseen; we report both when the target
dataset is unseen and after continued pre-
training on it. RT and Gemma use our
sampling algorithm to build context; Grif-
fin is adapted to include task-table rows
for zero-shot capability; RelLLM uses its
own prompts. Both Gemma and RelLLM
additionally receive task descriptions and
natural-language instructions. See App. H.

4.3 Ablations

Ablations reveal key factors enabling zero-shot transfer (App. I): (1) self labels (past task rows for
target entity) are critical—removing them drops zero-shot AUROC from 70.1% to 53.8% and R2

from 22.8% to −5.5%; (2) column names matter for zero-shot (shuffling reduces R2 by 2.3%) but
not fine-tuning; (3) column attention has highest impact on zero-shot transfer, while feature/neigh-
bor attention matter more for fine-tuning. Full attention is surprisingly dispensable.

5 Conclusion

We introduced Relational Transformer (RT), a schema-agnostic architecture enabling foundation
models for relational data through: (i) cell-level tokenization for unified masked token prediction, (ii)
Relational Attention masks capturing column, row, and link structures, and (iii) task table prompting
for zero-shot generalization. Pretraining on merely 6 databases yields strong zero-shot transfer (94%
of supervised AUROC) and highly-efficient fine-tuning. Limitations include inability to handle link
prediction and distinguish multiple foreign keys, which can be explored in future work.

4

Acknowledgements

We thank Matthias Fey, Harshvardhan Aggarwal, Vijay Prakash Dwivedi, Michael Bereket, Marcel
Roed, Joshua Robinson, Martin Jurkovic, Fengyu Li, Justin Gu, Zoe Ryan, Sam Thelin, Johannes
Hoffart, Maximilian Schambach, Andrew Pouret, Viswa Ganapathy, Tassilo Klein and Mark Li for
help with this research.

References
[1] Dominique Beaini, Shenyang Huang, Joao Alex Cunha, Zhiyi Li, Gabriela Moisescu-Pareja,

Oleksandr Dymov, Samuel Maddrell-Mander, Callum McLean, Frederik Wenkel, Luis Müller,
et al. Towards foundational models for molecular learning on large-scale multi-task datasets.
In The Twelfth International Conference on Learning Representations, 2024.

[2] Mitchell Black, Zhengchao Wan, Gal Mishne, Amir Nayyeri, and Yusu Wang. Comparing
graph transformers via positional encodings. In International Conference on Machine Learn-
ing, pages 4103–4139. PMLR, 2024.

[3] Rishi Bommasani et al. On the opportunities and risks of foundation models, 2022.

[4] Tianlang Chen, Charilaos Kanatsoulis, and Jure Leskovec. RelGNN: Composite message pass-
ing for relational deep learning. In Forty-second International Conference on Machine Learn-
ing, 2025.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 785–794, 2016.

[6] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in neural information process-
ing systems, 35:16344–16359, 2022.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

[8] Juechu Dong, Boyuan Feng, Driss Guessous, Yanbo Liang, and Horace He. Flex attention: A
programming model for generating optimized attention kernels, 2024.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[10] Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. AAAI Workshop on Deep Learning on Graphs: Methods and Applications, 2021.

[11] Vijay Prakash Dwivedi, Sri Jaladi, Yangyi Shen, Federico López, Charilaos I. Kanatsoulis,
Rishi Puri, Matthias Fey, and Jure Leskovec. Relational graph transformer, 2025.

[12] Vijay Prakash Dwivedi, Charilaos Kanatsoulis, Shenyang Huang, and Jure Leskovec. Rela-
tional deep learning: Challenges, foundations and next-generation architectures. In Proceed-
ings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 2,
pages 5999–6009, 2025.

[13] Bahare Fatemi, Jonathan Halcrow, and Bryan Perozzi. Talk like a graph: Encoding graphs for
large language models. In The Twelfth International Conference on Learning Representations,
2024.

[14] Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph repre-
sentation learning on relational databases. In Forty-first International Conference on Machine
Learning, 2024.

5

[15] Matthias Fey, Vid Kocijan, Federico Lopez, Jan Eric Lenssen, and Jure Leskovec. Kumorfm:
A foundation model for in-context learning on relational data, 2025.

[16] Mikhail Galkin, Xinyu Yuan, Hesham Mostafa, Jian Tang, and Zhaocheng Zhu. Towards
foundation models for knowledge graph reasoning. In The Twelfth International Conference
on Learning Representations, 2024.

[17] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A trans-
former that solves small tabular classification problems in a second. In The Eleventh Interna-
tional Conference on Learning Representations, 2023.

[18] Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin
Hoo, Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a
tabular foundation model. Nature, 637(8045):319–326, 2025.

[19] Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure
Leskovec. Prodigy: Enabling in-context learning over graphs. Advances in Neural Information
Processing Systems, 36:16302–16317, 2023.

[20] Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and
Pan Li. On the stability of expressive positional encodings for graphs. In The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[21] Charilaos I Kanatsoulis, Evelyn Choi, Stephanie Jegelka, Jure Leskovec, and Alejandro
Ribeiro. Learning efficient positional encodings with graph neural networks. In The Thir-
teenth International Conference on Learning Representations, 2025.

[22] Myung Jun Kim, Leo Grinsztajn, and Gael Varoquaux. Carte: Pretraining and transfer for tab-
ular learning. In International Conference on Machine Learning, pages 23843–23866. PMLR,
2024.

[23] Derek Lim, Joshua David Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron,
and Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation learn-
ing. In The Eleventh International Conference on Learning Representations, 2022.

[24] Aliakbar Nafar, K Brent Venable, and Parisa Kordjamshidi. Learning vs retrieval: The role
of in-context examples in regression with large language models. In Proceedings of the 2025
Conference of the Nations of the Americas Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume 1: Long Papers), pages 8206–8229, 2025.

[25] Jakub Peleška and Gustav Šír. Transformers meet relational databases, 2024.

[26] Bryan Perozzi, Bahare Fatemi, Dustin Zelle, Anton Tsitsulin, Mehran Kazemi, Rami Al-Rfou,
and Jonathan Halcrow. Let your graph do the talking: Encoding structured data for llms, 2024.

[27] Jingang QU, David Holzmüller, Gaël Varoquaux, and Marine Le Morvan. TabICL: A tabular
foundation model for in-context learning on large data. In Forty-second International Confer-
ence on Machine Learning, 2025.

[28] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in
Neural Information Processing Systems, 35:14501–14515, 2022.

[29] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3982–3992, 2019.

[30] Joshua Robinson, Rishabh Ranjan, Weihua Hu, Kexin Huang, Jiaqi Han, Alejandro Dobles,
Matthias Fey, Jan Eric Lenssen, Yiwen Yuan, Zecheng Zhang, et al. Relbench: A benchmark
for deep learning on relational databases. Advances in Neural Information Processing Systems,
37:21330–21341, 2024.

6

[31] Ravid Shwartz-Ziv and Amitai Armon. Tabular data: Deep learning is not all you need. Infor-
mation Fusion, 81:84–90, 2022.

[32] Marco Spinaci, Marek Polewczyk, Johannes Hoffart, Markus C. Kohler, Sam Thelin, and Tas-
silo Klein. Portal: Scalable tabular foundation models via content-specific tokenization, 2024.

[33] Gemma Team and Google DeepMind. Gemma 3 technical report, 2025.

[34] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[36] Liane Vogel, Benjamin Hilprecht, and Carsten Binnig. Towards foundation models for rela-
tional databases [vision paper]. In NeurIPS 2022 First Table Representation Workshop, 2022.

[37] Wenhui Wang, Hangbo Bao, Shaohan Huang, Li Dong, and Furu Wei. Minilmv2: Multi-head
self-attention relation distillation for compressing pretrained transformers. In Findings of the
Association for Computational Linguistics: ACL-IJCNLP 2021, pages 2140–2151, 2021.

[38] Yanbo Wang, Xiyuan Wang, Quan Gan, Minjie Wang, Qibin Yang, David Wipf, and Muhan
Zhang. Griffin: Towards a graph-centric relational database foundation model. In Forty-second
International Conference on Machine Learning, 2025.

[39] Fang Wu, Vijay Prakash Dwivedi, and Jure Leskovec. Large language models are good rela-
tional learners, 2025.

[40] Marek Wydmuch, Łukasz Borchmann, and Filip Graliński. Tackling prediction tasks in rela-
tional databases with llms, 2024.

[41] Jun Xia, Chengshuai Zhao, Bozhen Hu, Zhangyang Gao, Cheng Tan, Yue Liu, Siyuan Li, and
Stan Z Li. Mole-bert: Rethinking pre-training graph neural networks for molecules. In The
Eleventh International Conference on Learning Representations, 2023.

[42] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen,
and Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in
neural information processing systems, 34:28877–28888, 2021.

[43] Jianan Zhao, Zhaocheng Zhu, Mikhail Galkin, Hesham Mostafa, Michael M Bronstein, and
Jian Tang. Fully-inductive node classification on arbitrary graphs. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

[44] Qifang Zhao, Weidong Ren, Tianyu Li, Hong Liu, Xingsheng He, and Xiaoxiao Xu. Graphgpt:
Generative pre-trained graph eulerian transformer. In Forty-second International Conference
on Machine Learning, 2025.

7

A Related Work

Relational deep learning (RDL). [14] introduced an end-to-end framework for predictive mod-
eling on relational databases using neural networks. At its core, RDL represents a database as
a relational entity graph: a temporal, heterogeneous graph where each table is a node-type, each
row an individual node, and every primary-foreign key relationship an edge. Initial approaches
applied heterogeneous graph neural networks directly to these relational entity graphs [30], and
more recently, advanced message-passing approaches have been proposed to enhance the efficiency
of GNNs on relational data [4]. Transformers have emerged as a way to improve upon the GNN
message-passing paradigm. [25] and [11] propose transformer-based architectures that achieve bet-
ter performance than GNNs on relational data. An review of RDL architecture can be found in [12].
A key limitation, however, is that these architectures are schema-specific, which prevents pretraining
and fine-tuning on diverse database structures. Our Relational Transformer, by design, is schema-
agnostic, enabling it to learn from and be directly applied to new, unseen database structures. This
design principle allows our architecture to demonstrate foundation model-like capabilities, similar
to those recently shown in tabular learning.

Tabular foundation models (TFMs). Recent advancements in tabular foundation models have
demonstrated significant promise, exhibiting capabilities such as in-context learning [17, 27] and
efficient fine-tuning [22]. These efforts have explored both supervised [17] and self-supervised [32,
22] pretraining on real [22] or synthetic [17, 27] data. Extending tabular foundation models to rela-
tional data is non-trivial, because not only are there multiple tables, but rows in one table are linked
to rows in another by foreign-primary key links. We take inspiration for the universal cell encoder-
s/decoders from PORTAL [32], which has a similar handling of column names and text/numeric/-
datetime data types. We also take inspiration from the TabPFNv2 [18] transformer architecture,
which uses stacked layers of row-wise and then column-wise attention, except that we also have
all-pair attention and use attention masks to capture foreign-primary key links.

Relational foundation models (RFMs). While tabular foundation models can, in principle, be
applied to relational datasets, they fail to account for the rich, multi-table structure of real-world
data. To address this limitation, recent works have begun to develop dedicated relational foundation
models. For instance, [15] propose a relational foundation model based on graph-transformers and
in-context learning, demonstrating both in-context learning and fine-tuning capabilities. However,
their solution is not open-sourced, and the exact pretraining procedure has not been released. Sep-
arately, [38] design a novel architecture pretrained on a mixture of tabular and relational datasets,
showing that fine-tuning improves downstream task performance. Their model, however, differs
significantly from our own; it first aggregates information within each table and then utilizes graph
neural networks to propagate that information between tables. In contrast, our model uses a cell-
level representation of the entire database and employs attention masks to directly represent the
foreign-key structure. This allows our approach to reason directly over the relational database in its
native, cell-based format, offering a more granular and unified understanding.

Pretrained models for graphs. Pretrained graph learning models have shown strong success in
molecular domains. For example, MoleBERT [41] introduces masked atom modeling and triplet-
masked contrastive learning to pretrain GNNs for both node-level and graph-level tasks relevant to
drug discovery. [1] scale pretraining by curating massive multi-task molecular datasets with billions
of labels, showing that combining quantum and biological data improves low-resource tasks. Be-
yond molecules, [19] introduced a novel pretraining framework that leverages prompt-based graph
representations to enable in-context learning on graphs. GraphAny [43] develops a zero-shot node
classification framework, grounded in linear least-squares principles, that generalizes across graphs
with disjoint feature and label spaces by leveraging LinearGNN ensembles and inductive attention.
ULTRA [16] targets knowledge graph reasoning, learning universal relational representations that
transfer zero-shot to unseen knowledge graphs. Finally, GraphGPT [44] casts graphs as reversible
token sequences via Eulerian paths, enabling transformer-based generative pretraining that scales
with model size.

Graphs and Large Language Models. A growing line of research investigates how large lan-
guage models can be adapted to reason over graph-structured and relational data. [13, 26] explore
parameter-efficient encoders that converts graphs into soft prompts for frozen LLMs, showing that
performance strongly depends on the choice of graph serialization and structure encoding. [40] in-
vestigate predictive modeling directly on relational databases with LLMs, demonstrating that careful

8

schema-aware prompt design improves over naive text flattening. Building on this idea, [39] propose
Rel-LLM, a hybrid architecture that combines GNN encoders with LLMs in a retrieval augmented
generation framework. These works highlight the potential of combining graph or relational en-
coders with LLMs, but they are often limited by small context windows and are not tailored to
relational databases. In contrast, our proposed Relational Transformer directly encodes multi-table
structure via attention masks, offering a fully end-to-end solution that can operate either indepen-
dently or alongside large language models.

B Background (Full Version)

B.1 Relational Databases

A relational database (RDB) is a collection of tables linked through inter-table relationships. Each
table is composed of rows, where every row is a set of cells, one for each column in the table. We
define feature columns as the columns that contain numeric, text and datetime information, and ID
columns then define how rows are uniquely identified and connected across tables. Every table has
a primary key (P–key), and some include foreign keys (F–keys) referencing primary keys in other
tables. This induces a graph structure, where connections from foreign keys to primary keys are
denoted as F→P links, and the reverse incoming connections as P→F links.

Many RDBs are temporal, with timestamp columns that record when rows are created. Temporal
information is crucial: if we want to predict whether a user will buy an item at time t, the model must
only use information available before t, otherwise it risks temporal leakage. To prevent temporal
leakage, modeling is conditioned only on rows that were created prior to the target row. Finally,
the schema of an RDB specifies the tables with their columns and datatype along with the relational
structure. Because schemas vary widely, pretraining requires schema-agnostic architectures that
directly incorporate multi-table structure through attention masks.

B.2 Predictive Tasks

Masked token prediction (MTP). We focus on masked token prediction, where the goal is to predict
the value of a masked cell in the database, conditioned on the rest of the observed database. A broad
class of important predictive tasks on RDBs can be framed as MTP, including (1) autocomplete tasks
and (2) forecasting tasks.

Autocomplete tasks. Here the missing or masked value belongs to a feature column that already
exists in the database. Consider the e-commerce schema with Users, Items, and Transactions tables.
An autocomplete task might involve predicting a user’s age in the Users table if the entry is missing,
or inferring the category of an item in the Items table from its textual description and price. In both
cases, the label comes from an existing feature column.

Forecasting tasks. Here, the goal is to predict something that has not yet happened. For example,
in the e-commerce setting, we want to forecast whether a given user will churn in the next month,
or predict the total revenue of a product in the upcoming quarter. Unlike autocomplete, the target
values for forecasting do not exist in the original database and must be constructed from future rows.

Task tables. To formalize forecasting tasks, we introduce a new task table. This table stores the
forecasting labels, together with foreign keys linking to the relevant entities (e.g., user IDs or item
IDs) and a timestamp specifying the prediction horizon. For instance, a task table for churn predic-
tion might contain one row per user, indicating whether the user made a purchase within the next 30
days, with a timestamp showing the cutoff date.

C Cell Token Encoding (Full Version)

A cell is represented by (v, c, t), where v is the cell value, c is the column name, and t is the table
name. The value v can be numeric, boolean, datetime, or text; other modalities (e.g., image) can be
handled analogously to text.

9

• Numeric/boolean. Normalize to obtain r = (v − µc)/σc ∈ R, where µc and σc are the col-
umn mean and standard deviation computed on the training split. For booleans, this provides a
calibrated scale.

• Datetime. Convert to seconds and normalize globally: r = (v − µT)/σT , where µT and σT ∈ R
are the global mean and standard deviation of timestamps in the training split.

• Text. Embed using a frozen text encoder E text: r = E text(v) ∈ Rdtext .

Schema semantics are incorporated via a text embedding of the phrase “<column_name> of
<table_name>”, e.g., “price of product”, “age of user”, using E schema. The token
embedding is x = Wd r + W E schema(c, t), where Wd is datatype-specific and W is shared. For
masked cells, the value embedding Wdr is replaced with a learned mask vector md.

RT does not rely on positional encodings, as relational structure is directly captured by specialized
attention layers. While graph positional encodings [23, 20, 21, 2] could be incorporated, we leave
the architecture free of them to maintain simplicity and generality.

D Relational Attention (Full Version)

The core of RT is a novel Relational Attention mechanism in which the fundamental processing unit
is the cell token. This formulation enables flexible pretraining via MTP, and stands in contrast to
Graph Transformers [10, 28, 42], which tokenize at the row level, but can be viewed as a natural
extension of Tabular Transformers [17, 18]. By operating at the cell level, RT can explicitly model
one-to-one dependencies between attributes across rows, columns, and tables, while also supporting
zero-shot generalization across schemas. RT follows the standard transformer design, but augments
each block with Relational Attention layers that effectively encode relational structure and induc-
tive bias. Other architectural details (normalization, activations, etc.) follow the design choices of
LLaMA [34].

The main operation in RT is the scaled dot-product attention (SDPA) with masking, given by:

SDPA(Q,K,V;M) = Softmax

(
Mask

(
QK⊤;M

)
√
dk

)
V, Mask(A;M)ij =

{
Aij if Mi,j = 1

−∞ if Mi,j = 0

Here, Q ∈ Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv are the query, key and value matrices, and n is
the context length. M ∈ {0, 1}n×n is the attention mask, which controls token-to-token visibility.
M[q, k] = 1 means the q-th token can attend to the k-th token, and M[q, k] = 0 means it cannot.
For example, auto-regressive language models use a causal attention mask, given by Mcausal[q, k] =
1{k ≤ q}, where 1{·} is the indicator function.

Relational Attention masks. Using specialized masks, we define four attention types: column,
feature, neighbor, and global. For the cell corresponding to token i, let Col(i) be its column, Row(i)
its row, and OutLinks(i) the set of rows, possibly in different tables, which are pointed to by foreign
keys of Row(i).

• Column attention. For any query token, this layer allows attention only to key-value tokens from
the same column, resulting in the mask: Mcolumn[q, k] = 1{Col(k) = Col(q)}. Column attention
helps model the distribution of values in each column.

• Feature attention. For any query token, this layer allows attention to key-value tokens from the
same row, as well as from F→P linked rows with the attention mask given by: Mfeature[q, k] =
1{Row(k) = Row(q) ∨ Row(k) ∈ OutLinks(q)}. Feature attention is equivalent to row-wise
attention after joining each table with its parent tables, and enables feature mixing for entities.

• Neighbor attention. For any query token, this layer allows attention to key-value tokens from
P→F linked rows, defined by the attention mask: Mneighbor[q, k] = 1{Row(q) ∈ OutLinks(k)}.
Neighbor attention captures information from incoming links to an entity, enabling the model to
aggregate signals from its child rows. This module acts analogously to message-passing in GNNs.

• Full attention. Finally, a standard bidirectional layer allows full pairwise interactions:
Mfull[q, k] = 1. Full attention confers the expressive power of standard Transformers, com-
plementing the relationally constrained layers above.

10

Taken together, the proposed attention layers provide the model with an explicit encoding of
database structure. These layers are implemented with sparse attention masks, and compiled to
efficient FlashAttention-based [6] kernels using FlexAttention [8]. The proposed transformer block
in RT is summarized in Alg. 2.

E Output Decoding and Training Objective (Full Version)

Cell decoders / prediction heads. An output token embedding e′ from the transformer backbone is
processed by multiple cell decoders (also called prediction heads), one for each datatype, into a cell
representation r′. The decoder to select for final prediction depends on the task type, or equivalently
on the datatype of the masked cell. Binary classification corresponds to the boolean datatype, and
regression corresponds to the numeric datatype.

Loss. Having separate decoders for different datatypes allows us to use custom loss functions for
each task type. In this work, we only mask cells in boolean or numeric columns as RelBench tasks
are either binary classification or regression. For a masked cell c with value v, representation r
(as defined in § 3.1), and decoder output r′, we apply HuberLoss(r, r′) for regression and binary
cross-entropy loss BCE(1{r > 0}, r′) for binary classification. The overall loss is the mean over
all masked cells in the batch. This formulation is used in both pretraining and fine-tuning, ensuring
consistency between objectives and contributing to sample efficiency.

F Experimental Setup (Full Version)

Architecture details. We use a 12 layer transformer with hidden dimension 256 and 8 attention
heads per layer. We use gated MLPs with SiLU activation, as found in the Llama architecture
[34], with hidden dimension 1024. For text embeddings, we use the MiniLMv2 [37] model from
SentenceTransformers [29], which produces 384 dimensional embeddings. With this configuration,
the architecture has about 22M trainable parameters.

Training details. We pretrain RT for 50k steps at a context length of 1024, with a batch size of 256,
AdamW optimizer with weight decay 0.1, and a peak learning rate of 10−3, with linear warmup from
zero for the first 20% of training, and linear decay to zero for the remainder. One each downstream
task, we fine-tune for 33k steps with the same context length, batch size and optimizer as above, but
with a constant learning rate of 10−4 and no weight decay. One pretraining (fine-tuning) run takes
around 2 hours (1.5 hours) on 8×A100 GPUs at BFloat16 precision, with a training throughput of
around 8 batches/second or 2M tokens/second.

G Supervised Fine-Tuning Results (Full Version)

In this section, we present detailed supervised fine-tuning results. Figures 4 and 5 show per-task
learning curves for classification and regression tasks, respectively. We then provide additional full
fine-tuning results in Section G.1, analyzing the effect of pretraining in high-resource settings and
comparing RT against both schema-specific and schema-agnostic baselines.

G.1 Supervised learning in high-resource settings

Setup. In Table 3, we report results from full-dataset fine-tuning, using up to several million train-
ing examples and continuing until convergence (tens of thousands of steps). We compare against
schema-specific baselines (RDL-GNN, RelGNN, and RelGT), which cannot be pretrained, as well
as schema-agnostic baselines (RelLLM and Griffin). For RT and Griffin, we evaluate both untrained
and pretrained initializations to assess the impact of pretraining. For all methods, the best check-
point is selected based on validation set performance. For RelGNN, RelGT, and RelLLM, we use
the original training setups and hyperparameters. For Griffin, we increase the model size and update
the sampling and pretraining procedures to be consistent with RT.

Observations. The pretrained RT achieves the best performance on average, achieving the highest
mean AUROC and R2. On classification, it is outperformed on certain tasks by RelGNN, RelGT and
RelLLM, but it is important to note that these methods utilize custom setups for each task, whereas
RT uses a single unified hyperparameter setup across all experiments. On regression, pretrained

11

60

70
Te

st
 A

UR
OC

 (%
)

rel-amazon/user-churn
4.7M examples

60

70

rel-hm/user-churn
3.9M examples

60

80

rel-stack/user-badge
3.4M examples

60

80

rel-stack/user-engagement
1.4M examples

60

70

80

rel-amazon/item-churn
2.6M examples

101 103

55

60

65

Te
st

 A
UR

OC
 (%

)

rel-avito/user-visits
87K examples

101 103

55

60

65

rel-avito/user-clicks
59K examples

101 103

Fine-tuning steps + 1 (batch_size = 256)

60

70

rel-trial/study-outcome
12K examples

101 103

60

70

80

rel-f1/driver-dnf
11K examples

101 103

60

80

rel-f1/driver-top3
1.4K examples

Pretrained RT
Pretrained Griffin

Untrained RT
Untrained Griffin

Untrained RDL-GNN

Figure 4: Per-task test set learning curves on classification tasks for up to 32k fine-tuning steps (8M
training examples, including repetitions). X-axis is on log-scale.

Table 3: Supervised fine-tuning results. Models are trained on the full training set until convergence,
with checkpoint selection based on validation performance. RT achieves the best mean AUROC and
R2 across tasks, surpassing both schema-specific (cannot be pretrained) and schema-agnostic (can
be pretrained) baselines.

Dataset Task Train
set size
(sorted)

Cannot be pretrained Can be pretrained

RDL
GNN

Rel
GNN

Rel
GT

Rel
LLM Griffin Griffin RT

(Ours)
RT

(Ours)

pretrained? → No No No Yes No Yes No Yes

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon user-churn 4.7M 70.7 71.0 70.4 71.9 70.0 69.4 70.5 70.8
rel-hm user-churn 3.9M 69.4 70.9 69.3 70.5 68.3 68.0 69.9 70.5
rel-stack user-badge 3.4M 88.9 89.0 86.3 89.6 87.0 87.0 88.5 88.7
rel-stack user-engage 1.4M 90.6 90.8 90.5 91.2 89.8 90.4 90.0 90.2
rel-amazon item-churn 2.6M 82.8 82.6 82.5 83.4 81.1 79.9 83.2 83.4
rel-avito user-visits 87K 66.1 66.2 66.8 67.0 65.0 62.6 65.0 65.2
rel-avito user-clicks 59K 63.1 68.2 68.3 66.7 63.0 64.7 63.6 59.0
rel-trial study-out 12K 68.6 71.2 68.6 71.0 68.9 64.6 68.6 68.2
rel-f1 driver-dnf 11K 72.5 75.3 75.9 77.2 74.5 66.7 78.7 84.2
rel-f1 driver-top3 1.4K 80.9 85.7 83.5 82.2 82.5 78.7 82.7 91.9

Mean AUROC → 75.4 77.1 76.2 77.1 75.0 73.2 76.1 77.2

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-hm item-sales 5.5M 21.8 22.1 22.6 nan 31.1 30.4 45.7 39.0
rel-amazon user-ltv 4.7M 21.9 17.9 17.5 nan 30.7 32.9 47.9 47.4
rel-amazon item-ltv 2.7M 3.7 3.5 3.4 nan 23.4 25.2 31.5 36.8
rel-stack post-votes 2.5M 17.9 12.2 13.1 nan 41.8 42.7 37.1 36.5
rel-trial site-succ 150K 4.0 −9.5 −28.8 nan 6.8 −2.4 −8.8 6.4
rel-trial study-adv 43K 18.8 19.7 17.0 nan 11.2 18.2 41.3 43.4
rel-f1 driver-pos 7.5K 7.6 20.7 12.4 nan 29.9 0.6 33.7 51.6
rel-avito ad-ctr 5.1K 18.3 15.6 18.4 nan 5.9 8.4 −1.5 4.5

Mean R2 → 14.3 12.8 9.4 nan 22.6 19.5 28.4 33.2

RT ranks best on average, substantially outperforming the second-best method across most tasks.
Overall, RT matches or exceeds the performance of schema-specific baselines while maintaining
a general, schema-agnostic design, showing that generalization does not come at the expense of
fine-tuning performance.

12

0

10

20

30

40
Te

st
 R

2 (
%

)

rel-hm/item-sales
5.5M examples

0

10

20

30

40

50

rel-amazon/user-ltv
4.7M examples

0

10

20

30

40

50

rel-amazon/item-ltv
2.7M examples

0

10

20

30

40

rel-stack/post-votes
2.5M examples

101 103

5

0

5

10

Te
st

 R
2 (

%
)

rel-trial/site-success
150K examples

101 103

Fine-tuning steps + 1 (batch_size = 256)

0

10

20

30

40

rel-trial/study-adverse
43K examples

101 103

0

20

40

60

rel-f1/driver-position
7.5K examples

101 103

5

0

5

10

15

20

rel-avito/ad-ctr
5.1K examples

Pre-trained RT
Pre-trained Griffin

Untrained RT
Untrained Griffin

Untrained RDL-GNN

Figure 5: Per-task test set learning curves on regression tasks for up to 32k fine-tuning steps (8M
training examples, including repetitions). X-axis is on log-scale.

H Zero-Shot Results (Full Version)

This section provides the complete zero-shot results for all individual tasks, broken down by dataset
and task type. These results support the summary presented in Section 4.2 of the main paper. Table 5
details the full regression results, including the LLM baselines, which, notably, fail to make mean-
ingful predictions for regression tasks. For reference, Table 4 is a copy of Table 1 from Section 4.

Setup. The target task is always unseen. We report results for when the target dataset is also unseen,
as well as after doing some continued pretraining on the target dataset. For RT and Gemma, we con-
struct the input context using our sampling algorithm. For Griffin, we adapt its sampling procedure
to include rows from task tables, making it consistent with our approach and enabling zero-shot ca-
pabilities. For RelLLM we use their own prompt construction. Both RelLLM and Gemma baselines
are additionally provided with textual task descriptions and natural language instructions.

Table 4: Zero-shot test AUROC (%) for 10 binary classification tasks. Higher is better. Random/-
majority baseline is 50.0. For RelLLM we use their own prompt construction. Other baselines have
equivalent database subgraphs. Gemma and RelLLM additionally include dataset and task descrip-
tions, as well as natural language instructions. The target task is never seen during pretraining.

Target DB ∈ pretraining? → Maybe No Yes

Dataset ↓ Task ↓ Gemma Gemma Gemma Entity
Mean Griffin RT

(ours)
Rel

LLM Griffin RT
(ours)

Parameter count → 4B 12B 27B 0 22M 22M 3B 22M 22M

rel-amazon item-churn 62.1 55.0 42.1 73.0 69.0 70.9 64.1 71.9 73.3
rel-amazon user-churn 58.1 54.7 50.5 64.4 62.3 64.0 60.1 64.1 66.1
rel-avito user-clicks 54.5 59.5 59.8 44.7 45.9 59.5 62.3 45.9 60.9
rel-avito user-visits 60.1 57.9 62.7 60.7 60.7 61.8 56.2 62.2 62.6
rel-f1 driver-dnf 56.2 54.6 75.8 75.4 57.7 81.2 71.8 57.7 81.2
rel-f1 driver-top3 84.6 90.5 91.4 85.0 82.5 89.3 70.6 81.8 89.3
rel-hm user-churn 59.8 47.1 48.7 64.4 60.2 62.8 56.0 60.4 63.3
rel-stack user-badge 79.1 79.8 80.0 66.2 73.5 80.1 62.1 82.3 81.1
rel-stack user-engage 65.9 67.8 78.0 83.5 77.5 75.7 69.5 89.4 86.9
rel-trial study-out 52.6 57.4 57.2 50.0 51.0 51.8 59.0 57.2 54.6

Mean AUROC → 63.3 62.4 64.6 66.7 64.0 69.7 63.2 67.3 71.9

13

Table 5: Zero-shot R2 (%) for 8 regression tasks. Higher is better. Global mean baseline is 0.0.
Setup is same as Table 2.

Target dataset ∈ pretraining? → Maybe No Yes

Dataset ↓ Task ↓ Gemma Gemma Gemma Entity
Mean Griffin RT

(ours)
Rel

LLM Griffin RT
(ours)

Parameter count → 4B 12B 27B 0 22M 22M 3B 22M 22M

rel-amazon item-ltv < −9 < −9 < −9 54.2 20.1 32.5 − 20.1 32.2
rel-amazon user-ltv < −9 < −9 < −9 19.9 20.6 36.9 − 24.4 38.3
rel-avito ad-ctr < −9 < −9 −8.2 3.4 2.4 4.5 − 2.4 8.0
rel-f1 driver-pos 35.2 43.4 52.4 38.2 −0.7 52.4 − 4.6 58.7
rel-hm item-sales < −9 < −9 < −9 1.8 2.7 14.0 − 2.5 30.9
rel-stack post-votes < −9 < −9 < −9 43.7 27.4 33.9 − 27.1 35.0
rel-trial site-succ < −9 < −9 < −9 −6.4 1.4 4.5 − 2.6 5.1
rel-trial study-adv < −9 < −9 −7.1 −0.5 −2.5 2.6 − −2.5 3.1

Mean R2 → < −9 < −9 < −9 19.3 8.9 22.7 − 10.1 26.4

Observations RT demonstrates non-trivial zero-shot performance on all tasks. On classification
(Table 4), it attains the best average AUROC and is the only method to consistently beat the entity
mean baseline. On regression, where LLM baselines fail to provide meaningful predictions, RT
is the only model to consistently achieve positive R2 and significantly surpassing the EntityMean
baseline on average.

I Ablation Studies (Full Version)

This section provides complete ablation results referenced in the main paper. All ablations use the
same pretrained checkpoints as in the main experiments.

I.1 Context Construction Ablations

In Section 4.3, we summarize our ablations of the context window construction to analyze the emer-
gence of zero-shot performance. Here, we provide the full results of that study. Specifically, we
systematically remove or perturb individual context components and report their effect on both zero-
shot transfer and supervised fine-tuning performance.

Setup. In Table 6, we report results when shuffling column and table names, removing past labels
from the target entity, or removing labels from other entities. For zero-shot evaluation, the ablations
are applied directly to the sampled context used as input. For fine-tuning, models are trained to
convergence with the same modified contexts. In addition, Table 7 provides statistics on the number
of label cells (mean ± std. dev.) included in a context window of length 1024 under our sampling
procedure (Alg. 1).

Observations. We find that zero-shot transfer primarily arises from the presence of past labels of
the target entity. Removing these labels causes the largest drop in performance, whereas removing
labels from other entities has a smaller effect. Shuffling column and table names also harms transfer,
highlighting the importance of semantic signals from schema metadata. In the fine-tuning setting,
classification performance is largely robust to these ablations, but regression tasks consistently ben-
efit from access to past labels of the target entity.

I.2 Architecture Ablations

In order to assess the contribution of the relational attention layers to zero-shot transfer and fine-
tuning performance, we conduct a comprehensive ablation study. Here, we present the detailed
results of our findings summarized in Section 4.3. Specifically, we remove individual attention
layers—column, feature, neighbor, or full/global—and analyze their effect across regression tasks,
while classification results (showing minor differences) are provided in App. I.

Table 8 shows the full Relational Attention layer ablations. We observe no clear patterns in the zero-
shot setting, but during finetuning removing any layer results in a decrease in performance, except
on the user-clicks task, where the model is prone to overfit.

14

Table 6: Ablation study of context construction. To explain the zero-shot performance we remove
column names, past labels from the target entity and labels from other entities. To assess how much
task-relevant information is lost, we repeat the same ablations in the fine-tuning setting. Shading
indicates the performance difference relative to the full context (none column).

Dataset ↓ Task ↓ Zero-shot Fine-tuned

Ablated from context → none col
names

self
labels

other
labels none col

names
self

labels
other
labels

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 71.0 48.1 72.2 83.4 83.3 83.4 83.2
rel-amazon user-churn 63.9 63.9 55.2 64.2 70.8 70.4 70.8 70.6
rel-avito user-clicks 59.5 58.5 55.0 59.7 59.0 60.8 61.0 60.1
rel-avito user-visits 61.8 61.2 49.9 62.1 65.2 65.1 64.4 65.3
rel-f1 driver-dnf 82.0 81.7 50.3 82.0 84.2 84.3 83.6 84.3
rel-f1 driver-top3 89.1 86.5 74.3 89.1 91.9 91.8 89.7 91.7
rel-hm user-churn 62.8 60.0 54.5 62.9 70.5 70.6 70.2 70.7
rel-stack user-badge 80.0 79.2 54.8 82.4 88.7 88.9 88.8 88.8
rel-stack user-engage 77.1 80.1 41.9 77.2 90.2 90.1 90.2 90.2
rel-trial study-out 54.5 53.2 54.5 54.6 68.2 69.0 68.8 68.9

Mean AUROC → 70.1 69.5 53.8 70.6 77.2 77.5 77.1 77.4

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-amazon item-ltv 33.2 33.0 -2.8 33.1 36.8 34.7 28.0 35.1
rel-amazon user-ltv 36.4 33.6 -5.7 36.1 47.4 47.2 21.9 37.6
rel-avito ad-ctr 4.5 5.7 -3.6 4.5 4.5 4.9 -5.2 4.3
rel-f1 driver-pos 54.7 50.3 -31.9 54.7 51.6 52.3 54.7 54.1
rel-hm item-sales 14.0 9.2 -2.8 14.7 39.0 39.5 33.6 39.3
rel-stack post-votes 32.4 27.5 -0.7 32.8 36.5 35.9 34.9 37.2
rel-trial site-succ 5.2 3.2 1.5 5.1 6.4 8.3 8.7 2.5
rel-trial study-adv 2.1 1.3 2.1 2.1 43.4 42.4 37.0 38.1

Mean R2 → 22.8 20.5 -5.5 22.9 33.2 33.2 26.7 31.0

J Autocomplete tasks

Definition. Autocomplete tasks are defined as masked cell prediction on feature columns that
already exist in the database. Unlike forecasting tasks, they do not require constructing additional
task tables. The input sequence to the model is constructed in the same way as for forecasting tasks,
preserving the relational structure and temporal order, but sampling starts from the masked database
row.

Task selection. All autocomplete tasks were selected manually by inspecting the database schema.
For each task, we also identify potential sources of information leakage and discard these columns
on the fly when building the input sequence.

Task overview. Tables 10 and 11 list all classification and regression autocomplete tasks, respec-
tively, together with label distributions (classification) and summary statistics (regression).

K Relational Transformer Implementation Details

Sampling cells for the context window. In § 2, prediction tasks such as forecasting and autocom-
pletion are framed as predicting a masked cell in the appropriate row (the seed row). We sample
the context window independently for each training/testing example, so there is always a unique
seed row for context construction. Given the seed row and context length L, a suitable algorithm
should select the cells most relevant to predicting the masked cell. Since relevance requires strong
models to estimate accurately, we use a simple heuristic guided by the intuition that most relevant
information lies within a few hops of the seed row when following F→P and P→F links, and that
lower hops are more informative than higher hops.

We treat rows as the sampling unit: once a row is selected, all its non-missing feature cells (i.e.,
cells not from primary- or foreign-key columns) are included in the context. After the seed row,
other rows are added using a bounded-width BFS across F→P and P→F links, with the follow-
ing modifications: (1) F→P links are immediately followed; (2) the traversal stops when the total

15

Table 7: Breakdown of “in-context labels” sampled by Alg. 1. Context length is 1024 cells. Numbers
are (mean± std. dev.; both rounded to the nearest integer). Target entity, e.g., user, item, etc., is the
one for which prediction is desired. Labels refer to unmasked cells from the target column. Other
entities are reached via graph traversal. Multiple labels are possible for the same entity as the tasks
are temporal.

Dataset Task Target entity
labels

Other entity
labels

Unique
labeled entities

Binary Classification Tasks

rel-amazon user-churn 4 ± 4 1 ± 5 2 ± 3
rel-hm user-churn 6 ± 4 0 ± 0 1 ± 0
rel-stack user-badge 7 ± 6 3 ± 6 1 ± 1
rel-amazon item-churn 8 ± 7 2 ± 6 2 ± 3
rel-stack user-engagement 16 ± 10 10 ± 10 3 ± 1
rel-avito user-visits 2 ± 2 0 ± 0 1 ± 0
rel-avito user-clicks 1 ± 1 0 ± 0 0 ± 1
rel-trial study-outcome 0 ± 0 0 ± 0 0 ± 0
rel-f1 driver-dnf 19 ± 14 0 ± 0 1 ± 0
rel-f1 driver-top3 17 ± 11 0 ± 0 1 ± 0

Regression Tasks

rel-hm item-sales 39 ± 13 0 ± 3 1 ± 1
rel-amazon user-ltv 4 ± 4 1 ± 5 2 ± 3
rel-amazon item-ltv 9 ± 8 2 ± 6 2 ± 3
rel-stack post-votes 16 ± 10 4 ± 14 2 ± 2
rel-trial site-success 1 ± 2 0 ± 1 1 ± 1
rel-trial study-adverse 0 ± 0 0 ± 0 0 ± 0
rel-f1 driver-position 14 ± 10 0 ± 0 1 ± 0
rel-avito ad-ctr 1 ± 1 0 ± 0 0 ± 1

Table 8: Ablation studies on the attention layers of RT on classification tasks. col, feat, nbr, full
denote that column-, feature-, neighbor-, full- attention layers are absent respectively. Total param-
eter count is kept constant by increasing the number of layers. Shading is proportional to difference
from the none column.

Dataset ↓ Task ↓ Zero-shot Fine-tuned

Ablated attention → none col feat nbr full none col feat nbr full

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 60.8 73.0 70.8 71.5 83.4 83.3 83.1 82.2 83.2
rel-amazon user-churn 63.9 63.2 62.8 62.9 63.1 70.8 70.7 70.4 69.3 70.3
rel-avito user-clicks 59.5 63.0 62.0 58.7 61.5 59.0 62.1 64.9 62.4 63.3
rel-avito user-visits 61.8 60.9 62.9 62.7 60.6 65.2 65.6 65.3 64.6 65.0
rel-f1 driver-dnf 82.0 79.4 77.1 81.4 81.9 84.2 83.8 82.2 81.1 82.2
rel-f1 driver-top3 89.1 87.5 85.1 88.0 89.3 91.9 92.0 85.9 90.4 90.2
rel-hm user-churn 62.8 66.1 65.8 65.6 64.4 70.5 69.8 70.1 69.4 70.1
rel-stack user-badge 80.0 79.4 82.0 79.7 81.2 88.7 89.2 88.9 88.1 88.8
rel-stack user-engage 77.1 78.2 80.9 79.1 83.1 90.2 90.0 89.5 89.2 90.0
rel-trial study-out 54.5 59.4 54.8 58.6 54.8 68.2 66.6 66.5 68.3 67.1

Mean AUROC → 70.1 69.8 70.6 70.8 71.1 77.2 77.3 76.7 76.5 77.0

number of cells reaches the context length; (3) unvisited rows at the same depth from the seed row
are sampled uniformly; and (4) rows with timestamps greater than the seed row’s timestamp are
skipped (temporal constraint). The algorithm is summarized in Alg. 1. We use a fast, optimized
Rust implementation to prevent on-the-fly sampling from slowing training.

In Alg. 1, F→P and P→F links are treated asymmetrically. The number of F→P links from a row is
limited by the number of foreign-key columns in that table, and each parent row typically contains
important features (e.g., a transaction row links to user and product). Conversely, P→F
links can have unbounded degree; informative signals from P→F links often arise via aggregation,
with diminishing returns from including many children. Thus we prioritize F→P links (followed
immediately without subsampling) and subsample P→F links by enforcing a width bound w (i.e.,
follow at most w children from any row).

16

Table 9: Pretraining with multi-cell masking. Masked cells contribute to the loss. The target cell
is always masked. Other cells are masked with probability P(mask). NP denotes no pretraining.
Shading is proportional to difference from the P(mask) = 0.0 column.

Dataset ↓ Task ↓ Zero-shot Fine-tuned

P(mask) → 0.0 0.2 0.4 0.0 0.2 0.4 NP

AUROC (%) for 10 binary classification tasks. Higher is better. Random/majority baseline is 50.0.

rel-amazon item-churn 70.2 70.5 72.1 83.4 83.0 82.9 83.2
rel-amazon user-churn 63.9 62.6 62.9 70.8 70.7 70.6 70.5
rel-avito user-clicks 59.5 61.5 61.1 59.0 62.3 62.2 63.6
rel-avito user-visits 61.8 63.0 63.2 65.2 65.5 65.5 65.0
rel-f1 driver-dnf 82.0 80.9 76.7 84.2 81.7 77.7 78.7
rel-f1 driver-top3 89.1 89.8 87.6 91.9 91.0 91.2 82.7
rel-hm user-churn 62.8 60.5 62.3 70.5 69.9 69.9 69.9
rel-stack user-badge 80.0 79.1 77.9 88.7 88.3 88.7 88.5
rel-stack user-engage 77.1 75.0 73.6 90.2 90.1 90.0 90.0
rel-trial study-out 54.5 55.1 55.2 68.2 70.2 68.2 68.6

Mean AUROC → 70.1 69.8 69.3 77.2 77.3 76.7 76.1

R2 (%) for 8 regression tasks. Higher is better. Global-mean baseline is 0.0.

rel-amazon item-ltv 33.2 9.3 13.2 36.8 37.0 30.9 31.5
rel-amazon user-ltv 36.4 25.8 16.4 47.4 49.0 49.6 47.9
rel-avito ad-ctr 4.5 8.0 10.8 4.5 3.6 1.9 −1.5
rel-f1 driver-pos 54.7 46.8 42.4 51.6 50.1 47.7 33.7
rel-hm item-sales 14.0 10.0 6.2 39.0 50.7 53.5 45.7
rel-stack post-votes 32.4 33.5 32.3 36.5 39.9 38.5 37.1
rel-trial site-succ 5.2 1.4 3.0 6.4 7.1 6.6 −8.8
rel-trial study-adv 2.1 0.5 −1.8 43.4 47.3 46.8 41.3

Mean R2 → 22.8 16.9 15.3 33.2 35.6 34.4 28.4

Table 10: Autocomplete classification tasks with distributions of observed non-missing labels (pro-
portions in parentheses). When applicable, the positive/negative value mapping is provided.

Dataset Table Column Pos./Neg. values Non-missing Positive (prop.) Negative (prop.)

rel-amazon review verified N/A 20 862 040 14 493 882 (0.69) 6 368 158 (0.31)

rel-avito SearchInfo IsUserLoggedOn N/A 2 579 289 827 095 (0.32) 1 752 194 (0.68)

rel-stack postLinks LinkTypeId 1 vs 3 103 969 89 076 (0.86) 14 893 (0.14)

rel-trial
studies has_dmc t vs f 234 467 79 850 (0.34) 154 617 (0.66)

eligibilities adult t vs f 273 160 251 581 (0.92) 21 579 (0.08)

eligibilities child t vs f 273 160 51 899 (0.19) 221 261 (0.81)

rel-event event_interest not_interested N/A 15 398 514 (0.03) 14 884 (0.97)

K.1 Relational Transformer Block

Algorithm 2 illustrates the architecture of a single Relational Transformer Block. This block consists
of a series of attention mechanisms: a column attention layer, a feature attention layer, a neighbor at-
tention layer, and a global attention layer, each with its own specific relational inductive bias. These
Relational Attention layers are followed by a feed-forward network (MLP) for further processing.

K.2 Discussion

RT preserves the natural symmetries of relational data. In particular, the architecture is invariant to
permutations of rows, columns, and tables, providing an inductive bias that improves generalization.
This contrasts with LLM-based approaches for relational data, which are often highly sensitive to
prompt order and formatting. Permutation invariance has been a key driver of success in prior graph
neural networks, and respecting such symmetries has also shown benefits for large language models.

We also discuss role of the specialized attention layers in determining the expressive power of RT.
For empirical evidence, see § 4.3.

17

Table 11: Autocomplete regression tasks with summary statistics of observed non-missing labels
(rounded to two decimals).

Dataset Table Column Non-missing Min Max Median Mean

rel-amazon review rating 20 862 040 0.0 5.0 5.0 4.39

rel-f1

results position 15 207 1.0 33.0 7.0 7.97

qualifying position 9 815 1.0 28.0 11.0 11.24

constructor_results points 12 290 0.0 66.0 0.0 3.86

constructor_standings position 13 051 1.0 22.0 7.0 7.27

rel-hm transactions price 15 453 651 0.0 0.51 0.03 0.03

rel-trial studies enrollment 271 866 0.0 188 814 085.0 60.0 3 975.83

rel-event users birthyear 36 715 1900.0 1999.0 1991.0 1988.74

Algorithm 1: Sampling the context window of Relational Transformer. We use a modified
Breadth-First Search (BFS) algorithm, with accommodations for relational-specific considera-
tions, such as F→P links and temporal constraints.
Input: seed row s, context length L, width bound w, and, for each row r in the database:

non-missing feature cells C(r), P→F neighbors NP→F(r), F→P neighbors NF→P(r)
and timestamp T (r)

Output: the set of database cells C in the context window
C ← {}, F ← {s} // F is the frontier of rows to explore
while |C| < L ∧ F ̸= {} do

/* select a row to explore; R is the set of candidates */
R← {r ∈ F | r was added via an F→P link} // F→P linked rows
if R = {} then

R← argminr∈F HOPDISTANCE(r, s) // rows closest to s

r ← RANDOMSELECT(R) // pick a row at random
F ← F \ {r} // remove row from frontier
if r has been visited then continue else mark r as visited

/* visit row */
C ← C ∪ C(r) // add cells to context
F ← F ∪NF→P(r) // add F→P neighbors to frontier
N ← {q ∈ NP→F(r) | T (q) ≤ T (s)} // filter P→F neighbors by time
N ← RANDOMSAMPLE(N,w) // pick ≤ w P→F neighbors at random
F ← F ∪N // add P→F neighbors to frontier

return C

Column attention. Removing column attention does not reduce expressivity, since global attention
can emulate it. In particular, some global heads can learn to restrict attention to tokens from the
same column by exploiting table and column name embeddings in their query–key construction.

Feature attention. Feature attention is the only mechanism that explicitly groups cells into rows.
While neighbor attention provides partial information,cells in the same row attend to the same set
of neighbors, it cannot uniquely disambiguate rows, especially in tables without incoming foreign
keys.

Neighbor attention. Similar to column attention, neighbor attention is not strictly required for ex-
pressivity, as feature and global attention together can simulate its effect. Feature attention exposes
F→P links, which global attention can then leverage to infer P→F relationships.

Full attention. Without full attention, information can only propagate one hop per layer, limiting
expressivity to local message passing. By contrast, full attention enables long-range interactions in
a fixed number of layers, independent of database or graph diameter.

We leave the full theoretical characterization of RT’s expressive power to future work.

18

Algorithm 2: A transformer block in RT.

Input: input token representations X ∈ Rn×d

Output: output token representations X ∈ Rn×d

X← X+ NORM(MHA(X;Mcolumn))

X← X+ NORM(MHA(X;Mfeature))

X← X+ NORM(MHA(X;Mneighbor))

X← X+ NORM(MHA(X;Mfull))
X← X+ NORM(MLP(X))
return X

L Baseline Implementations

L.1 LLM Prompt Construction

Large language models (LLMs) are evaluated under the same information regime as our relational
transformer (RT): input to both is constructed from the same context subgraph produced by our
sampling algorithm (Alg. 1). In this graph, nodes correspond to database rows and edges represent
F→P and P→F links. We serialize the sampled entity graph into JSON, which encodes relational
structure.

Serialization procedure. We begin with the subgraph produced by the sampler. Serialization
starts at the task node, which specifies the prediction timestamp and links directly to the target entity
for which the label is to be predicted. From this target entity, we traverse the relational graph using
both F→P and P→F links. Each visited row is merged into the existing record in the case of F→P
link or further serialized and appended as a new entry to the list of linked entities in the case of P→F
link.

Prompt components. Each prompt follows a fixed four-part structure: (i) a short dataset descrip-
tion; (ii) a description of the prediction task; (iii) the serialized graph context (a JSON of table–row
objects) including the prediction timestamp t0; and (iv) a concise instruction specifying the expected
output (“yes” or “no”). Dataset and task descriptions are adapted from prior work [30].

Full prompt example.
You are a strict prediction assistant. Follow the instructions exactly.
Database
Name: Stack Exchange
Description: Stack Exchange is a network of question-and-answer websites on different topics,
where questions, answers, and users are subject to a reputation award process. The reputation
system allows the sites to be self-moderating. The database includes detailed records of

activity
including user biographies, posts and comments (with raw text), edit histories, voting, and
related posts. In our benchmark, we use the stats-exchange site.
Task
Name: user-badge
Description: This task is to predict if this user will receive a new badge in the next 3

months or not.
Input
- Database serialization starting from the target instance, expanding context by including

rows
reached via f2p (foreign to primary) and p2f (primary to foreign) relationships.

- The first timestamp in the sequence denotes the prediction time t0.
Database serialization for the target entity
{

"timestamp": "2021-01-01T00:00:00",
"UserId": 211098,
"Id": 211098,
"AccountId": 12827220.0,
"DisplayName": "Shashwat Tiwary",
"Location": null,
"ProfileImageUrl": null,
"WebsiteUrl": null,
"AboutMe": null,
"CreationDate": "2019-09-15T05:33:35.413000",
"add_badges": [

19

{"Id": 383629, "UserId": 211098, "Class": 3, "Name": "Editor", "TagBased": false,
"Date": "2019-09-15T07:40:23.563000"}

],
"add_user-badge": [
{"timestamp": "2020-10-01T00:00:00", "UserId": 211098, "WillGetBadge": "no"},
{"timestamp": "2020-04-02T00:00:00", "UserId": 211098, "WillGetBadge": "no"},
...
{"timestamp": "2019-10-03T00:00:00", "UserId": 211098, "WillGetBadge": "no"}

]
}
Output
- Output exactly one word on a single line: yes or no.
- No units, no punctuation, no spaces, no commas, no extra text, no extra symbols, no new

lines.
Make your prediction for the target entity at t0 using database serialization,
database description, and task description.

In-context labels. Due to the nature of our sampling algorithm, past (unmasked) labels from the
target column can remain in the serialized JSON. For example, in the user-badge task (see full
prompt above), the nested entries under add_user-badge constitute such in-context labels. More
details on the occurrence and distribution of these labels are provided in Table 7.

L.2 Regression results with LLM baselines

In addition to classification, we evaluated zero-shot regression with LLMs of varying sizes un-
der the same RT information regime. Across eight regression tasks, performance was consistently
poor—smaller models even failed to produce stable numerical outputs under strict prompting. We
attribute this to unconstrained number generation and a context not optimized for LLM regression.
Prior work shows that carefully selecting and formatting in-context examples can substantially im-
prove results [24]. Given these limitations, we do not report detailed regression metrics.

L.3 Griffin

To ensure a fair comparison with Griffin, we scale its hidden dimension from 512 to 728, resulting
in a comparable parameter count to RT (22.8M vs. 22.3M). We also match the training setup by
adopting both the leave-one-database-out and continued pre-training regimes. However, since the
Griffin implementation does not support joint training on forecasting and autocomplete tasks, we
restrict it to forecasting tasks only.

20

	Introduction
	Background
	Relational Transformer
	Input Representation
	Relational Attention
	Output Decoding and Training

	Results
	Fine-Tuning Efficiency
	Zero-shot prompting
	Ablations

	Conclusion
	Related Work
	Background (Full Version)
	Relational Databases
	Predictive Tasks

	Cell Token Encoding (Full Version)
	Relational Attention (Full Version)
	Output Decoding and Training Objective (Full Version)
	Experimental Setup (Full Version)
	Supervised Fine-Tuning Results (Full Version)
	Supervised learning in high-resource settings

	Zero-Shot Results (Full Version)
	Ablation Studies (Full Version)
	Context Construction Ablations
	Architecture Ablations

	Autocomplete tasks
	Relational Transformer Implementation Details
	Relational Transformer Block
	Discussion

	Baseline Implementations
	LLM Prompt Construction
	Regression results with LLM baselines
	Griffin

