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1 Abstract

Transformers have been widely recognized as powerful tools to analyze mul-

tiple tasks due to its state-of art multi-head attention spaces, such as Natural

Language Processing (NLP), Computer Vision (CV) and Speech Recognition

(SR). Inspired by its abundant designs and strong functions on analyzing

input data, we would like to start from the various architectures, further

proceed to the investigation on its statistical mechanism and inference and

then introduce its applications on dominant tasks. The underlying statis-

tical mechanisms arouse our interests and intrigue us to investigate it in

a higher level, and this surveys will focus on its mathematical foundations

and then use the principles to try to analyze the reasons for its excellent

performance on many recognition scenarios.

Key Words: Transformer, Natural Language Processing (NLP), Computer

Vision (CV), Speech Recognition (SR), Deep Learning
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2 Architectures

2.1 Vanilla Transformers

Transformer is unparalleled in its multi-head attention mechanism, which

is to score one sample based on one-by-one projections. In linguistic tasks,

the projections aim at analyzing the sequential relationships between to-

kens and then quantify the importance of specific tokens exerted by other

tokens. Compared with sequence to sequence structure [1], transformers are

advantageous for enabling whole samples to be computed in parallelism [2],

avoiding the time-series restriction imposed by token orders.

Figure 1: Transformers Configuration

Although transformers [3] are progressive in many pattern recognition as-
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pects [4], there are also visible disadvantages due to its parallel subspace

mechanism. Firstly, not each head is positive to the model training and in-

ference even impedes the further improvement of the recognition accuracies.

To be extended, Facebook AI team [5], [6], [7], , [8], , [9], [10] illustrates that

some heads are less useful in model performance. Based on their one-by-one

head pruning approaches, the performance of the model will be significantly

impaires when more than half heads are excluded from the multi-head at-

tention layers. In order to deploy the automatic algorithm on head pruning,

they develop the layer-wise methods to specify the importance score of each

head and mask the heads with lower scores. This method facilitates the in-

vestigation on dynamics of transformers and then inspires many enlightening

methods on elaborating the architectures.

2.2 Dynamic Transformers

2.2.1 Head Dynamics

Dynamic mechanism of neural networks has been widely investigated in re-

cent years and demonstrates the vigorous potential to be adaptive to envi-

ronmental change. When it comes to dynamic transformers, there are three

main kinds of dynamics: head dynamics, layer dynamics and attention dy-

namics. For head dynamics, besides previous mentioned Facebook research,

other researchers try to explain the dynamics from different aspects. To

be specific, [11] explains the roles of parallel heads from linguistic aspects,

including semantic and syntactic etc, which comprehensively summarizes

that the heads set-up should be adaptive according to the input. For the
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input with higher semantic analysis needs, specific heads would like to be

preserved and similarly, heads endowed with higher synaptic functions are

preferred to be deployed for input with this kind of needs. In the end of the

literature, it applies L0 normalization to dynamically tune the heads to be

pruned in specific layers and achieves better model performance.

[12] introduces head dynamics via adaptive weighted quantification, which is

inspired by the channel of convolutional neural networks to tune the weights

of different heads tracking deeper self-attention layers. In summary, the dif-

ferent heads embedded into different layers is an effective approach to im-

prove the performance of inference, and what is more, less heads mean less

computational cost in both training as well as inference.

2.2.2 Attention Span Dynamics

Inherited from the head pruning idea, some scholars propose to dynamically

tune the lifespan of multi-head attention mechanisms, which not only elevate

the model performance but also open a new door to attention design. In the

first phase, Facebook [13] illustrates the adaptive softmax-function in mea-

suring distances and scoring the past representations of all trained samples.

For offline training, the past samples are iterated for multiple epochs and

their features will be learnt from multiple training. This approach adaptively

processes the past representations to grasp the more attention information

that should be repetitively utilized. By Contrast, the less useful feature

representations in parallel attention are abandoned.
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Following the exploration, [14] deploys deep reinforcement learning to dy-

namically tune the attention span, replacing the previous method in tradi-

tional entropy estimation to sensitively perceive the feedback from neutral

network optimization as well as updates. Given the specific layer, the atten-

tion span is adaptively prolonged or pruned to explore better configuration

at specific timestamp. Similarly, the attention span is also dynamic at in-

ference time and the controller selects the optimal attention space for mini-

batch data or large batch data. In summary, the dynamics concentrates

on attention has been widely investigated from multiple aspects to fulfill

the potential of attention mechanism, which is manipulating the concept of

projection to simulate the toke relationship and furthering the optimization

on the highlighted tokens. Transformer attentions are divided into multiple

attention subspace, the more excellent subspace will be spared with higher

weights before head communication via fully connected layers. The head

pruning method, to some extent, is to prune the less useful components

and the attention span optimization is developed to adjust the sparsity or

intensity of the network. Absolutely, an overcomplete neutral network is a

common challenge to deep learning training, which is mostly demonstrated

as most parameters are less meaningful to actual recognition or classifica-

tion. The overestimated parameters are centralized in such a small bound

and play extremely trivial roles in accuracy metrics, and pruning or revising

network architectures are an effective approach to tackle this problem.
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Figure 2: Reinforcement Learning

2.2.3 Deep Network Compression

On the other hand, network compressions are firstly systematically summa-

rized by [15], which comprehensively illustrates the methodology on enabling

network to be deployed and saves at relatively low memory, storage and

computing costs. [16] propose the pipeline on deep network compression in

time order: network pruning, weights sharing and clustering, huffman cod-

ing. Layer-wise pruning is similar as previous head pruning, in which lights

are shed on the whole layer without substantial contributions to the model

performance. When it comes to the cluster sharing, [9] firstly clusters the

weights via K-means algorithm and the number of clusters is based on the

actual compression bitwidth.
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Figure 3: Pipeline of Deep Network Compression

After that, it navigates the centroid center to encode all weights in the same

cluster. In this way, various weights are compressed into a single value to

enable the network to be saved and deployed in a more economical config-

uration. Finally, huffman encoding is employed to further the compression

regarding the very closed value distributions. According to the experimental

results, [16] effectively compress the neutral networks up to 50% and signif-

icantly lower the needs for saving and inference.

Although the compression concept is quite helpful to us to explore on-device

machine learning, the pipeline demands such a high time consuming. The

three steps are facilitated in timestamp, which is unrealistic to be deployed

for online training. Online machine learning is focused on receiving train-

ing samples online without knowing the following samples at each time. As

a consequence, [17] propose a parallel pruning and quantization method-

ology, achieving better time saving with relatively low space requirements.

These exploration are also enlightening and beneficial for tiny transformers
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all economic transformer for inclusive scenarios and tasks.

2.2.4 Layer Dynamics

Figure 4: Pipeline of Knowledge Distillation

Head is an essential component of the self-attention layer, and the self-

attention layer is a crucial part in the whole transformer framework. Some

scholars shed light on the dynamic self-attention layer mechanism, which

stepwisely decreases the layer use in whole training as well inference. [18]

introduces a state-of-art integrated layer and width dynamics and illustrates

the concrete procedures. They use the concept of knowledge distillation

to train the transformers with both dynamics. To be specific, they train

two separate neural networks: teacher network and student network and

each two has their respective responsibilities. For the teacher network, it is

prototypes as vanilla transformers with fixed layers and fixed heads to train

the input sample. Based on the training circumstance of teacher work, the

student network will transfer the learning experiences from teacher network
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to optimize its own layer width and number training selection and routines.

3 Statistical Interpretation

3.1 Statistical Mapping and Word Embedding

In dominant linguistic model focuses on applying joint probabilities to fore-

cast contextual information and then proceed to semantic linguistic mean-

ing. Here let me take an example: the appearance probability of word

“tiger” in all Wikipedia pages is only about 0.06%, however, when it comes

to the page title with the word, the probability of far larger than the former

case. It absolutely indicates that the concrete linguistic scenarios play es-

sential roles in analyzing the semantic information and then to make better

decisions on classification or recognition. Based on this fact, the concept of

continuous cache is proposed to enhance the language model.

To be specific, the hidden states in recurrent neutral network is manipulated

for conserving the long dependence memory, quantifying the correlation be-

tween current input and past inputs in time stamp. Continuous cache [19]

deploys the ordered hidden states and infers the joint probabilities of cur-

rent input based on continuous cache in contextual spaces. In this way,

the long-memory diminishing is mitigated to some extents and on the other

hand, the joint probability with multiple previous states as well as present

sates is able to take as many as possible contexts into very comprehensive

consideration. Furthermore, it summarizes some experimental results based

on different datasets. The result demonstrates that continuous cache mech-
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anism is suitable for enhancing language model. The cache design is inspires

by the cache design in computer system, which is centralized on absorbing as

many as possible prior experiences into the present analysis and inference.

However, the accuracy is directly decided by the number of long-memory

information preserved in the cache and in the meanwhile, too many memo-

ries also present the further linguistic recognition.

The core objective of Natural Language Processing is to project a space and

map the abstract linguistic information to embedded features. [20] compre-

hensively introduces a way to measure the semantic relationship of word,

distinguishing the words/samples with closed semantic meanings.In actual

practice, the judgement or inference on specific meaning or sentence roles

vary from each other. Regarding the situation, the literature proposes some

constructive methods in light of closet words. To be specific, it outlines

two pairs of words: debug and debugging, streaming and stream. Although

they are actually different words, in most cases, they have similar meaning

and content roles in sentences or paragraphs. As a consequence, the effect-

ing word embedding should map them as closed feature vectors to further

the accurate recognition. When it comes to some concrete and important

details, the cosine computation is proposed as fundamental mathematical

quantification to compute the similarities of pair words.

In light of space representation, the specific tokens will extract their mathe-

matical representation from corpus space. Following the process, the subse-

quent tokens are integrated into joint probability computations. After that,
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the correlation analysis will be performed to measure and infer the quantita-

tive vocal analogies, combining the developed mathematical transformation

to facilitate the inference and elaborations.

Following the previous literature, it is clear that better representations can

lead to better recognition and awareness. However, with the rising the de-

velopment in the area of Natural Language Processing, embedded features

gradually become more and more complicates and the amount of features

also present the exploded tendencies. In the actual training process, the

redundant features won’t be positive to the model performance and accu-

racy, and more computational resources and memory and storage require-

ments also exert huge pressures on the feasibility and effectiveness of model

training. Concerning the fact, [21] proposes two state-of-art approaches to

comparing different corpus. For the first type, it is centralized on measuring

the correlations of tokens with mathematical feature spaces via log-function

to approximate it into a co-occurrence probability. Meanwhile, the another

methodology is focused on cosine value to simulate the similarity, which

is the special instance-based with combining with another contextual vec-

tor to facilitate the measuring process. In summary, this literature is very

meaningful to compare two different and discuss their advantages and disad-

vantages in statistical layer, and what is more important, it opens a door for

us to tackle the complexity of words under specific scenarios and formalize

the specific adaptive strategies.
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Figure 5: Text Corpus in NLP

Embedding is a strong tool to enable the NLP training to be tunes regarding

the semantic spaces of input tokens. Normally, the embedding spaces are

initialized by by recursive neutral network. Nevertheless, recurrent neutral

network is probability generating the embedding features with very high

dimensions, causing great difficulties in effectively training the model. On

the other hand, the long-term analysis in time domain also consumes a

recorded number of computation energies, which further imposes the great

obstacles on dynamic training. For instance, the word king is mathemat-

ically decomposed as: queen + woman - man, woman and man are more

common words in different context and have their relatively fixed mathe-

matical mapping vectors. Regarding the formulated word relationship, the

retrained RNN tackle the equation and generate the appropriate embedding

spaces as features vectors for the word: king. In this way, the corpus are

also saved memory to store such a large amount words in dictionary, which

only enables fundamental vocabulary to be in stock.
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3.2 Muti-Layer Neutral Network

[22] Deep neutral networks are developed from multiple layer perceptrons

[23], which is capable of extracting features automatically without any man-

ual selection. [24] comprehensively introduces the basic pipeline of neutral

network, including the elementary mathematical equation of neutral layer,

the way to connect different neutral layers and how layers are integrated into

a whole network and finally how data goes into the network for classification

as well as back-propagation process. In addition, some good approaches to

reducing error rate are also proposed. [25]visualizes important details, espe-

cially the mechanism of data flowing and optimization, the paper analyzes

them in an easy way. In neutral network, different neutral nodes are con-

nected with each neutral node in last layer. When the data goes through the

network, they are calculated via the nodes and from both size and shape.

In the layer of mathematics, it is similar as matrix product process, which

nodes work as a filter to product with original data and further to be train-

able for update.

Figure 6: Architecture of Multi-layer Perceptron
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In light of back-propagation process, the paper comprehensively demon-

strates the gradient descent process. To be specific, after the data pass the

whole neutral network, the dataset will be changed to a new result. The

loss function computed its difference between label and the new result for

extending loss. Based on the value of loss, we are able to acknowledge which

direction is the right way leading to gradient descent and then the trainable

part in the network will be updated. For the classical neutral network, the

function is one-order so the derivative is fixed for each kind of variable. Fi-

nally, it summarizes some ways to avoid over-fitting and error elimination,

which is beneficial in actual optimization activities.

3.3 From RNN to Transformers: Why RNN is expensive?

Neutral network-based Natural Language Processing is very popular in cur-

rent AI research,among which Recurrent neutral network is one kind of deep

network model applied in the assignment and have achieved great recogni-

tion accuracy and very progressive in many aspects, including text classifi-

cation, natural machines translation, knowledge graph and dialogue gener-

ations.

Figure 7: Architecture of General RNN
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In recurrent neutral network[26], there is a chain of states conveyed in the

architecture for analyzing semantic relationship of sentences. To be detailed,

ht is the hidden state at time step t, vt is the circulating weights to work as

previous reference for present input analysis. From Figure 2, we can clearly

see the two important important components and their folded relationship

in time-ordered based analysis. xt represent the token in time t, which is

only one or several words in one sentence. For example, we can assume a

long sentence: My father and I are looking for a house to be purchased and

compare the items in different price. In this case, each token is as ”father”,

”different”, ”item” and ”looking for”. The aforementioned token such as

”father” and ”house” are continuously to be integrated into vt and then be

conveyed to next tokens. Absolutely, their roles or importance gradually

decay with the time order going through. Google AI team indicates that

the forget stats is the most important part in Recurrent Neutral Network

architectures due to its leading roles on deciding the mutual effects exerted

by each token in time stamp, so how to fine-tune the forget gate weights are

the most challenging part in Recurrent Neutral Network architectures.

Figure 8: Input Token in RNN Processing
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However, the one-by-one input token analysis is processed in time-reliance

order, which significantly constrain the efficiencies of model training and in-

ference. To be clear, the Recurrent Neutral Network architecture single unit

is responsible for each token in time order, so the token is reliable on state

of previous token, which imposed the great restriction on parallel comput-

ing capacities. In other words, the success that Recurrent Neutral Network

based architecture achieves is at the cost of extreme computational costs

and memory demands.

Regarding the issue, some scholars put their efforts into RNN comupting

efficiency and elaborations. [27] discusses an economic and simple computa-

tional iteration to tackle the compexity of the embedding spaces of sentences

efficiently, which is called as scalable log-bilinear models. To be specific, the

algorithm is split into two layers: a contextual information feature vectors

as well as the scoring function (Softmax Function) to quantify the correla-

tions between the target tokens. The Softmax function will finally estimate

the probabilities of each case the select the contextual information as the

previously mentioned mathematical reference (the semantic relationship in-

ference).

[1] is another very important milestone in Natural Language Processing, or

in other words, it is a very remarkable capstone in end to end architectures.

Figure 5 demonstrates its general framework it have also laid the founda-

tions on the following appearance of transformers architectures.
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Figure 5 is an example of sequence to sequence learning based on the ma-

chine translation scenarios. To be detailed, there are two components in the

framework: Encoder and Decoder. The encoder is responsible for processing

the input tokens as traditional approach of Recurrent Neutral Network and

the final unit will generate the final state that summarizes all information

of the whole sentence (the blue unit that is marked as ”DONE”).

Figure 9: Sequence to Sequence Learning

We can clearly see that the blue states will be conveyed to the decoder,

which is responsible to generate the texts that we are expecting. In machine

translation scenarios, the decoder is to generate the language that we pre-

set. In other scenarios such as text classification, the decoder is designed

to geneate the classification results (normally it is just a number) and the

response to the input chat conversations. The blue state will simutaneouly

map to all units in decoder and then all unit will go through in time time to

process the input from previous unit. Different from the order that encoder

follows, the decoder generate the state in the inverse order with the encoder.
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According to the reported experimental results, the state-of-art sequence to

sequence learning model achieves up to 6% improvement on multiple domi-

nant natural machine translation dataset.

In statistical pattern recognition, scholars widely take actions to specifi-

cally mask some tokens/pixels/frames to improve the predictions on the

dataset, especially in time-series based analysis. [28] proposes an very ef-

fective masking methods in sequence to sequence learning. Generally, no

matter in encoder or decoder, the previous state is essential to the training

of next state. However, if the we mask specific tokens in one sentence, such

as ”I XXX(like) my dog because he is very cute”. ”like” is masked in the

sentence but it can be infered from the contextual information ”he is cute”.

Similarly, in statistical inference masking tokens are beneficial to improve

the predicting abilities. It is like to train human brains with higher-level

difficult tasks to intrigue better generalization abilities. The literature is

focused on this phenomenon and investigate the start-to-point methodology

to dynamically mask specific units in both encoders and decoders to achieve

better model performances.
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Figure 10: Start-to-Point Masking in Seq2Seq Learning

In light of the more improvements on sequence to sequence learning, the

pretrained methods are introduced to enhance the generalism of linguis-

tic tasks. [29] indicates a state-of-art approach to tackle the long-memory

diminishing in seq2seq, which is also serious in this architectures. The liter-

ature firstly proposed to train the recurrent neutral networks using limited

dataset or the dataset with unrelevant i.i.d. In this way, the weights in each

recurrent neutral network will be roughly tuned to achieve preset accuracy

threshold. After that, the full dataset or the target datasey will be applied

in retraining with less training epochs and effectively eliminate the over-

fitting parameters to some extents. The approach is also introduces into

following BERT (Bidirectional Early Training Transformer) but transform-

ers have better generalism abilities compares with the sequence to sequence

learning system.
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3.4 Why Transformers are Efficient?

Figure 11: Multi-head Attention in Transformers

Figure 7 presents the detailed architecture of transformers, including the

data pipeline (input embedding, positional encoding, encoder and decoder,

output embedding), the feature vector projections in decoder and encoder

and the scaled computations. Diving into ther statistical mechanism, it is

similar as sequence to sequence learning that the final state of encoder will

conver all the information from all units to decoder. Nevertheless, the differ-

ence is that sequence to sequence learning is centralized on processing tokens

one-by-one, which decompose the whole sentence and consume much time.

For multi-head attention framework, the whole sentence is not split into

multiple tokens and then embedded, on the contrary, they are embedded

together and performed positional encoding to mark the relative relation,

which is simulating the one-by-one unit multiplication in seq2seq learning.
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Based on the positional marks, transformer deploy the token projection to

score the relative correlation via k, q, v trainable weights. The dimension

of the k,q,v matrices are the same as the embedding size of input samples.

The essence of the projection is to project the whole sentence into a feature

space (k), and then k projects to another feature space. In this way, each

token will obtain a normalized score from every other tockens, representing

the semantic correlations with each. Compared with sequence to sequence

learning, the multi-head attention statistical mechanism does not require

specific input in time stamp and enabling the sequential learning to be de-

ployed in parallelism.

On the other hand, the bridge between encoder and decoder also include

more abundance information without forgetting unnecessary contextual rep-

resentations. In previous descriptions on sequence to sequence learning, the

feature representations are only generated from last unit in the architecture

of recurrent neutral networks. By contrast, transformers analyze the whole

sentence in parallelism and then load the complete representations into en-

coder, which provides very complete inference on the encoder and facilitate

the computing efficiencies.

[30] illustrates the importance of forget gate in Long Short Term Memory

architecture, which outperforms other components in this structure. How-

ever, although transformers utilize the concrete correlation score to quantify

the importance of tokens, it is not as effective as LSTM to specifically ”for-

get” some feature information so as to decrease the general accuracy in some
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task.

What is more, transformer is worse in long sentence process compared with

LSTM-like architecture due to the distant token information fastly decaying

with the facilitation on k, q, v weight training. In order address the issue,

many researchers propose some enlightening ways to tacker the long-term

decaying regarding the transformer framework.

[31] integrate the objective of long short term memory architecture into

transformer framework and demonstrate state-of-art long term processing

abilities. The literature grasp the projection score mechanism, enabling

each token projection to to correlated with each other using additional se-

quential communications. From Figure 9, each tokens is connected with each

other one to simulate the configuration of LSTM and tuned during gradient

descent.

Figure 12: Architecture of TransformerXL

[32] is another important capstone in transformer framework training, which

is called Deep Bidirectional Transformers. There are two existing strate-
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gies for applying pre-trained language representations to downstream tasks:

feature-based and fine-tuning. The paper discusses the two issues and intro-

duces its unique way to explore better pre-trained modes. To be detailed,

there are two core objectives in author’s exploration: 1. The paper points

out that the essence of language representations is to utilize mask mech-

anism to activate pretrained deep bidirectional representations. 2. Pre-

trained representations simplify the power-consuming architecture training

stage, which is potential to adapt to all kinds of language task.

In order to process the mask issue, the masked tokens go through the whole

architecture and make predictions based on its context. What is more,

Masked LM and Next Sentence Prediction (NSP) are introduced to pre-train

BERT and they serve as finely tuning the parameters in the architecture to

adapt to high performance. These ways contribute to advance the same

pre-trained model to successfully tackle various NLP tasks.

4 Application

As we have discussed in the previous chapter that multi-head attention

mechanism has achieved great success and comprehensively analyze the

rooted reason for this. In this chapter, we are getting down to the spe-

cific application scenarios and introduce the roles that transformers play in

these areas.
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4.1 Natural Language Processing

Natural Language processing is definitely the widest area that transformer

are applied. [33] and [34] demonstrates that the application of transformer

in text classification as well as sentimental analysis.

To be detailed, there are two main design on the text classification task.

The first one is to only preserve the encoder part without the decoder part,

then the encoder directly links with a classifier. Normally, when the fea-

ture vectors of input samples will be performed mean-pooling on the length

size, and then the word embedding dimension product with a multi-layer

perceptron to be transmitted to the vectors with the sample class number

as labels. As Figure 11 shows, we can clearly see that MLP replaces the

encoder layer and works as the classifier to process the final feature vectors.

Figure 13: Text Classification

On the other side, some researcher don’t thoroughly substitute the classifier
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for MLP, which means that they deploy the attention as a part of classifier.

We all know that tranditional linguistic model contains encoder, decoder as

the main components. The decoder works as predictions for target feature

vectors from encoder using attention mechanism. Nevertheless, the preserva-

tion on decoder is not very effective and meaningful for token correlation in

a whole sentence regarding the function conducted by encoder. In addition,

the text classification is not for generating concreted information/sentence

in respect to inputs, only enabling the network to generate the probabilities

of each class or even a judging label. As a consequence, the first approach

is popular in current transformer framework.

Figure 14: Machine Translation

4.2 Machine Translation

Machine translation is a very typical scenarios for end-to-end sequence learn-

ing, which concentrates on deploying end-to-end framework to generate pos-

sible mapping translation and finalizing the sentences with the largest prob-

abilities. Actually, translation is also a kind of classification issue. The
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encoder structure in transformer framework analyze each tokens and pro-

duce a score matrix [35], [36], [37]. The score matrix go into the decoder

attention layer [38],[39] which searches for the best match for each token.

The ”searching” process is to employ softmax function to look for the token

with highest probability to target tokens [40].

As what we have mentioned in sequence to sequence learning system, whole

sentences are split into a series tokens and the tokens are loaded into the

sequential neutral units to be processed and trained in its order. The trans-

formers framework totally abandon the structure to pay attention to the

whole sentence analysis [41]. The complete sentences are projected but lack

the long-dependency generality, which is implemented by Transformer XL

architecture. Nevertheless, according to the experiments performed by [42],

the medium and short length exactly demonstrated the good performance

and even outperform the sequence to sequence learning framework. As a

consequence, the sequence to sequence learning and the multi-head atten-

tion learning have their own advantages in machine translation domain and

the step-by-step learning framework is much better in long-dependency sit-

uations.

4.3 Knowledge Graph

[43] introduces the application of transformer framework in knowledge graph

generations. In this paper, the author proposes to utilize Transformer to au-

tomatically generate commonsense, which is similar to the function of knowl-

edge graph construction. Transformer is a multi-head attention mechanism
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to take care of the semantic relationship and investigate its contextual mean-

ing. To be specific, authors apply K,Q,V trainable matrices to do projection

on the word and obtain the possibilities of certain words in commonsense

meaning. It could be explained as a mapping relationship from specific word

to matched knowledge generation.

To be detailed, multiple pair of commonsense work as training set, which

are be in respect to encoder inputs and decoder output respectively. Similar

to the machine translation or text classification mask in transformers, the

training pairs serve as mapping words/sentences from encodes and decoder

in Transformer architecture and encoder pairs pass the transformer and gen-

erate the mapping words. The mapping words is computed probabilities and

obtain the loss to do gradient descent. In this process, mask is a hard part

to process because the same token position in one sentence does not mean

the same semantic representation.

The paper process it randomly mask the same presentation in both encoding

information and decoding information before training. After that, author

utilize multiple dataset to test the performance of Transformer in common-

sense knowledge representation. The results demonstrate that Transformer

is capable of processing mapping representation in the commonsense graph

system.
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4.4 Speech Recognition

Speech recognition [44] is an aspect in traditional signal processing and re-

cently also apply multiple deep model to analysis specific sound source and

signal pattern. In general, speech recognition [45] is focused on the timbre

recognition and classification, blind source separations as well as sound gen-

eration. No matter what kind of topics or pattern, the signal or sound [46]

is also a kind of time series data and the end-to-end framework [47] is able

to process it [48].

Figure 15: Speech Recognition Using Transformer

[49] illustrates the application of Transformer and Transformer XL in speech
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recognition, which process the sound frame as tokens. Similar as the sen-

tence token concept in natural language processing. As what show in Figure

15, the chunks are correlated with each other in multi-head attention system

and they are parallel to be processed. The chunk is the audio frame for split

speech inputs.

Another issue in speech recognition-based transformer is the chunk mask-

ing mechanism. As what describes in the literature, ASR systems [50] are

usually deployed in the streaming fashion which produces real-time speech

transcription with certain latency constraint. In other words, the streaming

features are likely to disable the possibility of contextual analysis for the

whole sentence projection and mapping space, which causes great difficul-

ties in head-based scoring mechanism.

Regarding the issue, the author design another system to tackle the stream-

ing ASR in speech recognition. To be specific, they constrain the available

feature context for training and evaluation period. Usually, other people

prefer to take actions on considering lookahead with an attention mask,

enabling every node to be accessed with small amount of activiation from

from both the future and the past timesteps. Nevertheless, the method ex-

periences risky context expansion, which means that the size of context will

explode with the sample going into deeper architecture. As a result, the

paper imposes the limitation on the number of feature that can enter each

layer via small context window for fitting into the latency constraints.
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4.5 Computer Vision

Deep learning model has achieved great success in computer vision tasks, in-

cluding object detection, image recognition and image segmentation. Figure

15 is an example for object detection regarding one example image, which

navigates the cars and traffic signs.

Figure 16: Object Detection in Computer Vision

For the most beginning boosting of computer vision via deep learning frame-

work, convolution neutral network is the pioneering model in this task. The

layer of convolution effectively grasp the pixel-based matrix via convolution

computation and then the feature matrices are conveyed into pooling layer

to further the feature compression as well as extraction. However, the recur-

rent neutral network and transformer framework [51], [52], [10] is developed

from sequential information processing, which is not very suitable for pro-

cessing the static feature without ordered sequence.

[53] makes investigation on deploying transformers for computer vision tasks.

Generally, researchers propose to combine the attention mechanism with
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convolution neutral networks. For more details, we can assume that there

is a input image waiting to be processed, it will firstly to go thorough the

convolution layer and then pooling layer as common CNN pipeline. After

that, the compressed feature vectors will enter the multi-head attention layer

for scoring analysis as what normal natural language processing do without

the positional encoding. According to the experimental results, the network

combination is able to outperform the vanilla convolution neutral network

in multiple computer vision tasks.

Diving into the reason for the improvement, we can find that the attention

mechanism takes into consideration that the whole configurations. For the

image processing, it is definitely that the object in the picture is not sequen-

tial and they are in specific time order [54]. Nevertheless, like the object

detection task, the object are also related to each other. For example, in

Figure 30 we can clearly see that it is to analyze the traffic-related object

and they are around a busy road. The attention mechanism is able to ma-

nipulate some unrelevant object with target object, which means that even

through the road and walkers are not what we would like to recognize but

they are valuation to enable the analysis to obtain more meaningful infor-

mation. The traffic signs are always around the road side and it is much

easier for the convolution networks to rapidly grasp these features.

On the other hand, the visual transformers are not bound to enhance the

classification or recognition performance. And as well, the additional at-

tention network escalate the overcomplete model issues, which means the
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deeper layer are overfitted and then play very trivial roles in the whole task

recognition. Although the residual connections are widely applied, the large

computing consumption are another great concerns.

5 Conclusions

This literature survey comprehensively summarizes the architecture of trans-

former framework, the statistical inference of its multi-head attention mech-

anism and clarify its wide applications in machine translation, text classi-

fication, knowledge graph, speech recognition and computer visions. Mant

related and enlightening literatures are cited to enhance the acknowledge-

ment on this state-of-art architectures.

Based on the three pipelines, we can clearly see that current efforts made

to elaborate transformer architectures are concentrated on improving its

performance on target task and its efficiencies. Regarding the concrete ap-

proach, the layer dynamics centralized on decreasing the total number of

layers, head dynamics centralized on masking or pruning specific heads,

attention dynamics centralized on elaborating the attention space for dif-

ferent heads are three main tendencies. The elaboration methodology can

be roughly split to direct statistical observation and reinforcement learning

based on indirect observation from network training as well as inference.

For our analysis on the statistical mechanism of transformers, we mainly

compare it with another popular framework: Recurrent Neutral Network
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and its sequence-to-sequence learning design. We clearly demonstrate that

what is the differences between these two mechanisms and how it can be

shown the closed capabilities of processing token in timestamps. We also

discuss some new developments on the architecture to tackle long depen-

dency issue and the model pre-trained strategy for wider industrialized ap-

plication.

When it comes to the applications, we have discussed how transformer is

employed for specific tasks and how the features are extracted though multi-

head attention mechanism. It is obvious that transformer become more and

more general architecture and capable of processing many types of tasks

with less computational costs and high recognition performance.

References

[1] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence

learning with neural networks, 2014.

[2] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang,

Deming Chen, Marianne Winslett, Hassan Sajjad, and Preslav Nakov.

Compressing large-scale transformer-based models: A case study on bert,

2020.

[3] Betty van Aken, Benjamin Winter, Alexander Löser, and Felix A. Gers.
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