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Abstract

Most of the current explainability techniques focus on capturing the importance
of features in input space. However, given the complexity of models and data-
generating processes, the resulting explanations are far from being ‘complete’,
in that they lack an indication of feature interactions and visualisation of their
‘effect’. In this work, we propose a novel surrogate-model-based explainabil-
ity framework to explain the decisions of any CNN-based image classifiers by
extracting causal relations between the features. These causal relations serve
as global explanations from which local explanations of different forms can be
obtained. Specifically, we employ a generator to visualise the ‘effect’ of interac-
tions among features in latent space and draw feature importance therefrom as
local explanations. We demonstrate and evaluate explanations obtained with
our framework on the Morpho-MNIST, the FFHQ, and the AFHQ datasets.

1 Introduction

Deep learning models have emerged as powerful tools for solving complex problems in diverse
domains in the past decade; however, they still remain black-boxes due to their lack of inter-
pretability. There is a consensus among researchers, ethicists, policymakers and the public on the
need for explainability of these models, especially in high-stake applications like bio-medicine and
autonomous driving [1, 2]. Explaining decisions made by deep learning classifiers cannot only help
us understand the underpinning mechanism but also uncover model biases [3], which helps in iden-
tifying issues in the data-generating process [4]. There are many different forms of explainability
techniques, including feature attribution methods [5], network dissection-based interpretability
[6], mechanistic approaches for understanding neural networks [7, 8], and causal/counterfactual
explanations [9, 10, 11]. In this paper, we contribute to this landscape by proposing a novel
method for obtaining concept-based explanations.
Interpretability can be divided into two categories [12]: transparency and post-hoc explanations;
most of the above mentioned techniques fall under the latter category, as does our proposed
framework. Many existing frameworks for post-hoc explainability do not reflect concept-based
thinking of the kind exhibited by humans [13], with a few recent exceptions. [14] shows
the existence of these concepts, while [15] uses the idea of both existence and interaction
between concepts to generate explanations. Our proposed framework generates concept-based
explanations using unobserved latent and observed context features as concepts and identifying
(causal) interactions between them.
Among the different forms of explanations, counterfactual explanations are recently gaining
attention [9, 10, 16, 17]. At the same time, the language of causality is advocated as a precise
and powerful way of extracting explanations [18]. Counterfactual explanations can be drawn by
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Figure 1: Overview of the proposed framework, in which the feature extractor (Φf ) and the
feature classifier (Φc) are blocks of a trained, given classifier model (ΦC). The alignment (Φad)
and generator (Φg) blocks are part of our proposed surrogate model. The causal graph extraction,
feature attribution blocks, and the generator provide our explanations.

intervening on the set of features in the data-generating process to construct hypothetical scenarios.
The effectiveness of counterfactual explanations solely depends on an intuitive difference between
original and intervened data. In this work, under mild assumptions, we show the existence of
implicit causal knowledge by generating causal graphs using unobserved latent features which may
or may not be human understandable and observed context features to model the data-generating
process as perceived by the underlying model. The causal graph then serves as the basis for
obtaining our explanations.
Our goal in this work is to explain what a given CNN-based classifier learns, rather than explaining
the true label. We achieve this by learning a ‘pseudo’ data-generating process along with a feature
interaction graph,1 which serves as a global ground for extracting our local explanations (for
given inputs). Note, we do not claim (nor require) any guarantees of this pseudo data-generating
process to converge to the true causal process. These feature attribution based explanations
respect the feature interactions in the extracted graph. The global and local explanations can be
seen as two layers in a hierarchy, with the local explanations providing finer-grained information
about the weight of features and their influence on the classifier’s prediction while reflecting the
interactions imposed by the global graph.
Our contribution in this work is threefold: (i) Surrogate model 2.1: we propose a novel
surrogate model, aligning latent features for generating the classifier perceived data-generation
process. (ii) Pseudo data generating process 2.2: we formalise a method to facilitate the causal
discovery of feature interactions among unobserved latent and context features. (iii) Explanations
2.3: we propose a novel form of explanation that follows hierarchical steps of (i) global graph
generation, capturing causal relationships as perceived by the model, and (ii) local feature
attributions for a given input image along with a way to visualise and analyse feature interactions
via counterfactuals.

2 GLANCE: Formalism

This section describes the methods underpinning our explainability framework, aiming to demystify
a given classifier by distilling its knowledge into a surrogate model, first learning to align features,
then causal discovery and generation of visual explanations. As illustrated in Fig. 1; the
proposed method involves the following blocks each responsible for: (i) aligning disentangled
features to observed context features, (ii) learning a generative decoder for visual explanations,
(iii) constructing a causal graph, and, finally (iv) deriving explanations.
Notations. Let D ⊆ X × Y be the dataset, such that elements of X ∈ RH×W ×C and
Y = {1, . . . , N}, where H × W × C and N correspond to image resolution and total number
of classes, respectively. Now, we define notations used to describe all the model components

1By pseudo we mean a data-generating process as perceived by the given classifier model.
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shown in Fig. 1: (i) the pre-trained classifier is denoted by ΦC : X → Y; that can be further
decomposed into the feature extractor Φf : X → E and the classifier Φc : E → Y, such that
ΦC(x) = (Φc ◦ Φf )(X) for all X ∼ X , (ii) the selective disentanglement and alignment block is
denoted by Φad : E → E ′ - this block aims to learn the distribution q(u, z | Φf (X)) 2, where
u ∈ E ′

u and z ∈ E ′
z correspond to observed ‘context’ variables and unobserved latent variables;

(iii) the generator block models p(X | u, z) is used to construct visual explanations from latent
space, denoted by Φg : E ′ → X ; (iv) the graph extraction block is used to estimate causal
interactions between the features over an entire dataset, described as ΦG : {E ′} → G, where
G is the space of all possible interactions and G is a specific instance of an estimated graph;
and finally; (v) explanations block Φexp : E ′ × G → A × X generates feature attribution and
counterfactual explanations, where A ⊆ R|E′| corresponds to feature attribution space.

2.1 Surrogate Explainer Model

Our explainability framework involves learning a surrogate model with a definite set of properties:
(i) alignment and (ii) an ability to generate visual explanations. Selective feature disentanglement
and alignment help us construct a set of independent and dependent features responsible for the
data-generating process, an alignment property transforms those obtained dependent features
into semantically meaningful features (thickness and intensity), and the generator helps us to
obtain visual explanations, explaining the effect of these features. Due to feature disentanglement
and generator aspects, our implicit choice of model was reduced to variational auto-encoders [19]
or adversarial models [20]. In our case, as the objective is to learn perceived data distribution,
we condition our generator model with the classifier’s features inspired by [21].
Proposal 2.1. We propose an alignment block that aligns latent features and encodes them
into two different sets: (i) observed context features (E ′

u; i.e. observed, human-understandable
features in the data-generating process), and (ii) unobserved latent features (E ′

z) such that
E ′

u ⊂ E ′, E ′
z ⊂ E ′ and E ′ = E ′

u ∪ E ′
z.

Remark 2.2. When E ′
u = ∅, we treat all the latent features as unobserved and apply disentangle-

ment loss. Availability of |E ′
u| > 0, encourages identifiability of latent variables [22].

Now, we describe the properties and assumptions considered in constructing an alignment
block. Typically |E ′

u| < |E ′
z|, namely, the number of context features is less than the number of

unobserved latent features: this makes our alignment task a problem of subspace optimisation.
Based on E ′s information, we propose an alignment regularisation term with the following
properties:(i) Regularisation should involve subspace optimisation, which makes use of
observed ground-truth context features; this forces the model to encode relations between context
features and the morphology of an image, also encouraging identifiability of latent features. (ii)
Regularisation should impose orthogonality on features in E ′

z among each other and also
with respect to features in E ′

u; this helps in optimising all the parameters in our alignment block,
while just aligning a subset of features.
Definition 2.3. The alignment of latent subspace to observed context features can be achieved
by maximising the log-likelihood of estimated context distribution log(p(u | Φf (X))), while
maintaining the orthogonality of the style features (zi ⊥ zj , ∀zi, zj ∈ z ∋ i ̸= j).
Remark 2.4. Instead of applying disentanglement on all the latent features, the proposed alignment
regularisation helps in learning relations among some while separating the rest.

Orthogonality constraint. For this, we first compute and track the running mean of eigenvectors
and condition the output of the alignment block to move close towards the mean eigenvectors.
In practice, we use singular value decomposition (SVD) on matrix M , where M = M1

∣∣∣∣∣∣M2

is the batch output of aligned style features (Mz ∈ Rb×|E′
z|), where the alignment block with

M1 ∈ Rb×|E′
u|, M2 ∈ Rb×|E′

z|,
∣∣∣∣∣∣ is a concatenation operation, and b is the batch size used in

training3. The aim of the alignment block is to force E ′
zu to align towards the mean eigenvectors

of M1. The SVD decomposition of M2 can be described as UΣV ∗ = M2, where U, Σ, V ∗

2The elements of E are in Rl and elements of E ′ are in Rm, with m < l and, typically, l, m ≥ N -
here l, m corresponds to the dimension of the latent and encoded vector.

3We analyse the effect of batch size on alignment later in the appendix.
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correspond to left singular vectors, singular value matrix, and right singular vectors, respectively.
Eigenvectors of M2 can be computed by simply multiplying left singular vectors with a singular
value matrix. To control the maximum eigenvalue of unobserved latent features, we normalise the
eigenvector matrix (UΣ) with the Forbinious-norm ||.||f of the singular value matrix Σ. Equation
1, describes the proposed alignment loss mathematically, where ÛΣ corresponds to the running
mean of an eigenvector of matrix M2, λmax corresponds to a hyper-parameter to control the
maximum eigenvalue of M2, and α corresponds to weighage term of orthogonal conditioning. 4.

UΣV ∗ = SV D(M2), M2 ∈ Rb×|E′
u|; Lalign = ||M1 − C||22 + α

∥∥∥M2 − λmaxÛΣ
||Σ||f

∥∥∥2

2
(1)

Generative Block. As previously discussed, we train our generator model to distil the knowledge
from the feature extractor of the given classifier. This is done so that the generated images
are faithful to the classifier, it is important to note that our generator here is reconstructing
images as perceived by the classifier, not the original data distribution. The reconstructed images
only contain features that the classifier sees as important in making its decision. The joint
training objective corresponds to: Ltotal = Ladv + λ1Lalign + λ2Lrecon + λ3Lcls, where Lcls is
cross-entropy loss applied on the classifier’s prediction between original images and the classifier’s
perceived images, the aim of this is to distil the knowledge of classifier’s decision making features
in the generator. Instead of randomly sampling a noise vector for generating images, we sample
features from q(u, z | Φf (X)) and in addition to an adversarial loss Ladv, we also use Lrecon to
conditional the model to learn similar looking images. All λi are hyper-parameters to decide the
weight for each loss component. We provide hyperparameter details in appendix 4.

2.2 Perceived data-generating Process

We analyse the aligned features (ie., the output of the alignment block) to extract the learned
relations among features represented as directed edges in a DAG. In this work, we do not assume
causal sufficiency on the observed context features (i.e.: the unobserved latent features can
cause or confound the observed context features). After training, we can access the pseudo
data-generating process (generator model) as an oracle and perform controlled interventional
queries. These amount to questions of the form “How would the generated image change if this
particular feature is changed?”. We determine the existence of directed edges between features
by comparing original and intervened latent feature values. Now, we define some graph specific
terms, which we use in our discovery step.
Definition 2.5. Node ni and node nj in a DAG are said to have a Direct Causal Path (DCP)
if there exists an edge between ni and nj (either ni → nj or nj → ni), and are said to
have an Indirect Causal Path (ICP) if their exists a trail from ni to nj via a third node nk

(either ni → nk → nj or nj → nk → ni). Finally, we define the edge-weight for an edge
between ni and nj as the ratio of treatment effect on a particular node lj ∈ u∥z with respect
to intervened variable li ∈ u∥z, is formally described as EW(li, lj) ≜

(
l̂j
l̂i

− lj
li

)
. where li,

l̂i indicate the ith element in vectors l, l̂, respectively (with position i corresponding to node
ni in the graph, similarly for j) and l̂ is the intervened latent vector, formally defined as
l̂ ∼ q(u, z | Φf (X)), X ∼ p(X | u, z; do(li = I)), for I an intervention on i.

Procedurally, for causal discovery via interventional queries, we propose the following steps (for
simplicity, we equate nodes and positions in vectors): 1. We extract the aligned feature vector
by passing a sampled feature vector through a composite function of encoder, disentanglement
and alignment, formally described as l = q(u, z | Φf (X)), where X ∼ X ; 2. Without loss of
generality we select, in turn, each feature li in l and perform a fixed intervention of ±p 5 to obtain
l̂ ∼ q(u, z | Φf (X)), X ∼ p(X | u, z; do(li = ±p)); we then find, in l̂, all other features affected

4The value of α is increased gradually from 0 to 1 with respect to training iterations (based on our
experiments, we found the step-based incremental function to work best)

5The parameter p is a function of latent feature, which is estimated by measuring the feature values
for all data points and setting its value based on individual feature statistics (in our case, p = standard
deviation of the selected feature w.r.t to the dataset). This ensures that the resulting generated image is
in-domain w.r.t the classifier.
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by this intervention and note the change in their value with respect to their original value in l;
3. Once we establish the change in value for feature l̂j with respect to lj as a result of intervention
on li, we perform a controlled intervention on feature lj with the observed change l̂j resulting in
l̂′ ∼ q(u, z | Φf (X)), X ∼ p(X | u, z; do(lj = l̂j)), and note changes in its descendent feature
values with respect to l̂; 4. We repeat the previous two steps until all the features are covered;
if the relative change before and after an intervention is greater than a given threshold in an
expectational sense, we establish an edge between (nodes corresponding to) those two features
(li → lj). Equation 2 describes this process, where 1 is an indicator function determining the
existence of a causal link between li and lj .

An edge exists between nodes li and lj only if there is a difference between lj and l̂j upon
intervention on li, conditioned on pali

(parent features of li). Let us consider an ICP (see
Definition 2.5) example, where n1 → n2 → n3 and the second step establishes causal relations
n1 → n2 and n1 → n3, with respect to some threshold τ and v1

2 , v1
3 corresponding to new

values of n2, n3, respectively, due to an intervention on n1. In the third step, when we perform
an intervention on n2 by setting its value to v1

2 , let the observed value of n3 be v2
3 ; then, if

|v2
3 − v1

3 | < ϵ we establish the correct edge n2 → n3 by removing the spurious edge n1 → n3. In
the case of loops, we use the edge weight to determine the prominent causal direction. If the
features are disentangled, intervening on li should not affect lj : we observe a similar effect in our
experiments, which we discuss later in section 3.

li → lj ≜ 1[El∼E′(EW (̂li, lj)|pâli)>τ ], l̂ ∼ q(u, z | Φf (X)), X ∼ p(X | u, z; do(li = li)) (2)

2.3 Explanations

The latent space feature vocabulary is much richer for extracting explanations beyond feature
attributions and saliency maps. In contrast to importance scores and attention maps in input
space, explanations based on latent features may help us analyse the model’s perception of
input features. Based on this, we generate globally-inspired local explanations using the feature
interaction graph (extracted as described in the previous sub-section) as a global form of
explanation. This feature interaction graph explains how the classifier perceives the relationships
between various semantically meaningful concepts, which can reveal biases and be used to debug
the classifier. For obtaining local explanations, we follow the LIME [23] feature attribution
method on the aligned latent features while preserving the feature interactions (respecting the
underlying global explanation), indicating the significance of all the latent features in classifying
an image into a specific class. The generator model helps us visualise the effect of significant
features and their interactions on a given image by constructing counterfactual samples. The
feature importance, along with the interaction graph, helps users to identify features and scale of
intervention to generate counterfactual images. Note that the proposed method can adapt any
feature attribution approaches for generating local explanations without loss of generality; we
select LIME in this work. Unlike global explanations, we do not possess any ground truths for the
generated explanations, making the evaluation quite challenging. Here, we measure stability and
faithfulness as a proxy for evaluating local explanations; we detail all the metrics in appendix ??.

3 Results

We evaluate the performance of our proposed framework for both causal discovery and expla-
nations; we use classifiers trained on two different datasets with observed context features,
namely Morpho-MNIST[24] and FFHQ[25]. As the focus in this work is to use the discoveries for
explaining the reasoning process followed by a given classifier. We compare our graph generation
technique against two standard methods for causal discovery, Linear Non-Gaussian Acyclic Model
(LiNGAM) with latent confounders [26] and Greedy Equivalence Search (GES) [27]. We compare
our explanations against saliency-based methods, LIME [5], DeepSHAP [28], deepLIFT [29], and
gradCAM [30]. All the graph comparisons are described in the appendix.
In the case of Morpho-MNIST, we tested our framework on four different synthetically generated
datasets by varying causal relationships among features; all four data-generating processes are
described in the appendix. Fig. 5 and 2 indicate a qualitative difference between our method
and the other standard methods mentioned above. Existing explanations cannot understand the
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(a) (b) (c)

Figure 2: GLANCE explanations on the Morpho-MNIST-IT dataset. (a) Estimated global DAG
with < SHD >= 0.03, CI = 0.96; (b) the first row indicates the original image and the image
perceived by the classifier; the second row indicates aligned features’ importance scores and
effect on confidence scores with original, perceived, and intervened (w.r.t the thickness attribute)
images. (c) The first column shows interventional images, and the second column shows the
effect of an intervention (difference between perceived and intervened images).

(a) (b) (c)

Figure 3: GLANCE explanation on FFHQ dataset: (a) Estimated global DAG withwith <
SHD >= 6.4, CI = 0.53; (b) the first row indicates the original and the perceived images; the
second row indicates feature importance scores and effect on confidence scores with original,
perceived, and intervened ( w.r.t the smile attribute) images. (c) The first column shows
interventional images, and the second column shows the effect of an intervention.

effect of intermediate features or cannot differentiate the effect of multiple features involved in
making specific predictions. For example, these methods cannot differentiate between the effect
of thickness and intensity or geometric features. The global feature interaction graph generated
by our method addresses this issue to an extent, as it captures complex feature interactions
among aligned, semantically meaningful features. Qualitative results are shown in Fig. 2, 3, and
4. To quantitatively compare explanations, we make use of the faithfulness index (FI) and of the
stability index (SI) described in Section 2.3. Table 1 shows the average faithfulness and stability
obtained for 1000 generated explanations.
In the case of the high-resolution human faces dataset (FFHQ) [25], we explain the classifier
trained to classify gender. For causal discovery, we only consider ten observed features out of
forty given attributes in the dataset, selected based on the frequency of values of these features
and their extent of being independent of each other (subjectively selected). A detailed list of
selected features, along with additional examples, are described in appendix. Fig. 3(a) describes
the generated causal structure on ten observed context features, Fig. 3(b) demonstrates a given
image as perceived by the classifier along with importance scores for observed context features
and the effect on confidence scores due to an intervention on the smile attribute, and Fig. 3(c)
describes the effect of an intervention on the smile attribute.
In case of E ′

o = ∅, we consider AFHQ [31] dataset, where the objective is to segregate images
into three different classes. We train our surrogate model with classifier’s latent features to
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(a) (b) (c)

Figure 4: (a) Demonstrates causal DAG generated by our proposed framework. (b) GLANCE
explanations: the first row indicates the original image and the image perceived by the classifier;
the second row indicates feature importance scores and effect on confidence scores with original,
perceived, and intervened ( w.r.t the C5 attribute) image. (c) The first column demonstrates
an intervention on the perceived image and the second column corresponds to the effect of an
intervention.

generate global and local explanations. Here, as there are no observed context variables, the
estimated pseudo data-generating process may not be human understandable, we just denote
them as concepts Ci, and select the concepts based on its node-degree and feature importance to
generate counterfactual explanations. Fig. 4 demonstrates the qualitative results of the proposed
framework. Additional results and ablations w.r.t different classifiers are detailed in appendix.
We also layout few limitations and possible future directions in the appendix.

4 Conclusion

We present GLANCE, a novel explanation framework that uses latent space vocabulary to
generate global explanations in terms of graphs and local explanations in terms of feature
importance scores; then, a generator can be used to visualise the effect of feature importance
and interactions. We validate both causal discovery and GLANCE explanations both qualitatively
and quantitatively against existing standard explanations methods. The proposed method for
extraction of global explanations (in the form of DAGs) follows carefully constructed steps using
the ideas of intervention, indicating the causal interaction and influence among features in latent
space. The quantification of faithfulness helps us consider explanations more carefully, and this
helps us differentiate between explanations obtained from the underlying classifier model and
explanations generated from data alone.
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Supplementary Material

A Related work

Our method falls within an active field of research on post-hoc explainability for deep learning
models. Most post-hoc explainability methods can be categorized as (local or global) feature
attribution-based or counterfactual explanations. Both feature attribution [23, 28] and coun-
terfactual explanations [32, 33] have proved to be useful methods to interpret the reasons for
models decisions. Feature attribution mainly focuses on estimating the importance weight for
input features, indirectly indicating how features influence final decisions. In the case of images,
features correspond to parts or patches of images responsible for the classifier’s decisions [23].
On the other hand, counterfactual explanations are influenced mainly by hypothetical “what-if”
scenarios. In case of generating counterfactual explanations for images, black-box models are
usually explained via surrogate models to provide visual explanations with desired latent proper-
ties [34, 33, 32, 35, 36, 17]. Most of these methods train generators from scratch, leading to
explanations that are more faithful to the given dataset than to the trained classifier. Some of
these methods aim to generate samples that affect the classifier’s decision [34, 35], while others
work on changing the latent space and observing the classifier’s decision change [33]. The main
focus in the case of surrogate model based explanations is to extract disentangled representations
[37]. As there exist infinitely many possibilities to disentangle features, it has been shown that
disentanglement without supervision is a challenging problem [38]. Recent findings suggest that
limited supervision can restrict the search space and can be used on a subset of latent features to
optimize them to align towards desired properties [39]. Another parallel line of research focusing
on concept based explanations involves [40, 41], these approaches focus on learning prototype
concepts during training categorizing them into ante-hoc class of explanations.
Our work focuses on both feature attribution and the use of surrogate models to derive faithful
explanations. Instead of training surrogate models from data, we distill knowledge from the
pre-trained classifier, making use of a generator to depict the classifier’s perceived data-generating
process. We use the latent features from a the distilled model to determine the feature interactions,
which is used to obtain counterfactual visual explanations and feature attributions indicating the
contribution of each latent feature in towards the classifiers output.

B Assumptions

Assumption B.1. In the case of aligned features, we assume that the observed context features
follow a Directed Acyclic Graph (DAG) structure.
Remark B.2. Here, in this work, we do not consider the data-generating processes with loops. In
practice, we only consider the direction with higher edge weightage (refer 2.5).
Assumption B.3. The correctness of the entire generated graph is proportional to the correctness
of the estimated subgraph with observed context features. We quantify the correctness of the
subgraph by comparing it against the known ground-truth subgraph, along with stability and
consistency properties.
Remark B.4. As |E ′

u| < |E ′
z| generally, a direct way to validate a generated graph would be via

visual inspection, which may prove to be challenging in case of large graphs; in that case, we can
use the subgraph of observed features and compare against ground-truth.

C Metrics

Graph correctness: To measure the correctness of the estimated graph (Gest), we measure the
structural hamming distance (SHD) [42] between the estimated graph with respect to the truth
graph. Along with the SHD scores we measure the properties like consistence and stability with
respect to the true graph(Ggt). In this case the notion of stability captures the variation of a
generated graph when the method is applied to different subsets of a dataset, while consistency
captures the variation in the generated graph when the method is applied to the same data
multiple times.
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As the classifiers are trained to select minimal feature set required for estimating decision boundary,
due to this the interactions between features represent perceived data generating process rather
than actual data generating process. To capture the graph properties of perceived data generating
process we define the different variant of SHD score, not penalising for the missing edges, formally
described in C.1.
In practice, to capture both stability and consistency properties, We sample P random subsets
with repetition from the test dataset and run Q iterations of graph generation on each set. These
properties are analogous to aleatoric and epistemic uncertainties [43]. The behaviour of the
estimated graphs along Q iterations measures the consistency of our method also capturing the
notion of epistemic uncertainty, while graph generation behaviour across all P subsets of data
measures the stability or captures the notion of aleatoric uncertainty. We measure average SHD
over all PQ iterations, denoted by < SHD >.
Definition C.1. Graph Correctness Index: To quantify the correctness of the perceived data
generating process, we compare the edges in the generated subgraph with the known ground-truth
graph and consider the average over all PQ graphs. correctnessIndex(CI) is formally defined in
3:

CI(Gest, Ggt) ≜
1

PQ

∑
P

∑
Q

#CE − #AE

#TE
(3)

where #CE, #AE, and #TE correspond to the total number of correct edges predicted in
a subgraph, wrong edges predicted in a subgraph and total number of ground-truth edges,
respectively.
Remark C.2. An edge with a wrong direction is considered as an additional edge, so the defined
metric accounts for both wrong directions and additional edges, while not penalising for missing
edges. Both CI and < SHD > are inversely related, i.e., higher the value of CI better the
estimated discoveries, while its otherway around for < SHD >. Both < SHD > and CI are
unnormalised, < SHD >∈ [0, 2K ] and CI ∈ [− 2K

#T E , 1.0], where K corresponds to the total
number of nodes in a graph.
Definition C.3. Stability: We consider explanations to be stable if they are consistent across
multiple iterations for the same image. To quantify stability, we perturb an image sample with
Gaussian noise generating P samples to obtain Q local explanations, one for each sample. We
then consider a negative average of the variance in all the local explanations as stability. Formally,

SI(exps) ≜ − 1
P

∑
Ex∼exps((x − E(x))2)

Where exps ∈ A or exps ∈ X is a set of Q explanations for one of the P samples. The negative
sign makes the metric directly proportional to the stability of explanations.

As our method follows the surrogate model, explanations are a function of both data and classifier.
We characterise explanations to be faithful if the contribution of the classifier is higher than the
contribution of data in generating a particular explanation. We follow an information-theoretical
approach to measure the flow of information [18] to quantify faithfulness. Proposition C.5
provides a quantitative metric.
Definition C.4. Information Flow: The information flow between two independent sets of
nodes A and B (I(A → B)) [44] is:∫ ∫

P(a)P(b | do(a)) log P(b | do(a))∫
a′ P(a′)P(b | do(a′))da′ dbda (4)

where do(v) represents an intervention that fixes the value of a variable to v irrespective to its
parents and P is a probability distribution.
Proposition C.5. Based on the above Definition C.4, and with the reference to framework
DAG in Figure ??, we show that the bounded mutual information between E ′ and Exps is
the same as the information flow from the classifier to the generated explanations. Due to
this, we consider the normalised mutual information as the ‘faithfulness’ metric, given by(

FI(Exps, E ′) = I(E′;exps)√
H(exps)H(E′)

)
, where H(.) corresponds to entropy.

12



Figure 5: Demonstrates the obtained explanations from existing standard approaches, LIME,
DeepSHAP, GradCAM, and DeepLIFT explanations from left to right respectively.

Proof. Here, we show the bounded mutual information (normalized mutual information) can
be considered as a ‘faithfulness’ metric to quantify the classifier’s contribution to generating
explanations.
Let us consider the feature attribution based method, probability of generating explanation
Exp ∈ Exps can be formally described by a conditional P(Exp | l), l ∈ E ′.

I(E ′ → Exps) =∫ ∫
P(l)P(Exp|do(l)) log P(Exp|do(l))∫

P(l′)P(Exp|do(l′))dl′ dExpdl

As integrals are applied over entire space, intervention can be replaced by conditionals which
simplifies the above equation as:

I(E ′ → Exps) =∫
l

∫
Exp

P(l)P(Exp | l) log P(Exp | l)∫
l′ P(l′)P(Exp | l′)dl′ dExpdl

⇒
∫

l

∫
Exp

P(l, Exp) log P(Exp | l)
P(Exp) dExpdl

⇒
∫

l

∫
Exp

P(l, Exp) log P(Exp, l)
P(Exp)P(l)dExpdl

∴ I(E ′ → Exps) = I(E ′; Exps) ∝ I(E ′; Exps)√
H(Exps)H(E ′)

In the case of a counterfactual method, explanations Exps are a part of input data (Exps ∈ X ).
Without loss of generality, we can apply the same metric to quantify the explanation’s faithfulness
to a classifier.

D Network Architectures

In this work, we mainly use three different types of architectures as a pre-trained classifier/feature-
extractor for GLANCE framework. We use standard DenseNet-121 [], ResNet-18 [], and Vanil-
laCNN. For VanillaCNN we use 7 convolutional blocks, where each block is a sequence of 3 × 3
convoltuional layer followed by batch normalisation layer and ReLU non-linearity. To reduce
dimensionality we apply max pooling layer after the first, third, and fifth layers. The final
convolutional layer activations are further global average pooled and projected on to appropriate
vector space for generating class probabilities using a single densely connected linear layer followed
by softmax non-linearity.
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Table 1: Quantitative comparison between multiple explanation methods with respect to faithful-
ness and stability properties.

Metrics ↓
Methods → LIME Deep

SHAP
Deep
LIFT

Grad-
CAM Ours

FI(Exps, E ′) 0.22 0.67 0.92 0.22 0.97
SI(Exps) -1.40 -0.07 -0.04 -2.53 -0.02

E Case Study 1: Morpho-MNIST

Here, we consider explaining a model trained on synthetic data based on MNIST digits [24].
We define multiple data-generating process with four different variables thickness, width, slant,
and intensity, and observe how our proposed method retrieves this causal structure using latent
information via controlled interventions. In this setup thickness corresponds to the stroke thickness
of a digit, width corresponds to the total width of a written digit, slant corresponds to the shear
factor along a horizontal direction, and intensity corresponds to the average intensity of pixels in a
digit. Functions SetIntensity(ů; i), SetSlant(ů; s), SetWidth(ů; w), and SetThickness(ů; t)
refer to the operations applied to original MNIST digit to generate new image x with desired
properties by controlling image morphology. Below we formally define 4 different data-generating
senarios, Fig. 6 pictorially demonstrates causal structure used in data-generating performance
and our model performance.
Morpho-MNIST-TI: In this setting we consider two causal variables thickness and intensity,
where thickness causes intensity. Mathematically the functional relationship between variables
are defined as described in equation 5.

t := ft ≜ 0.5 + ϵt ϵt ∼ Γ(10, 5)
i := fi ≜ 64 + 191 ∗ σ(2 ∗ w + 5) + ϵi ϵi ∼ N(0, 1)
x := fx = SetIntensity(SetThickness(X; t); i)

(5)

Morpho-MNIST-IT: In this experiment we inverted a directionality from previous setting
resulting in intensity to cause thickness, which is mathematically described in equation 6

i := fi ≜ ϵi ϵi ∼ U(60, 255)
t := ft ≜ 3 + σ(i/255) + ϵs ϵs ∼ N(0, 0.5)
x := fx = SetThickness(SetIntensity(X; i); t)

(6)

Morpho-MNIST-TS: In this setup we use thickness and slant as causal attributes, where
thickness causes digit slantness, which is formally described in equation 7

t := ft ≜ ϵt ϵt ∼ Γ(0, 5)
s := fs ≜ 10 + 5 ∗ σ(2 ∗ t − 5) + ϵs ϵs ∼ N(0, 0.5)
x := fx = SetSlant(SetThickness(X; t); s)

(7)

Morpho-MNIST-TSWI: In this setup we increased a complexity by using intensity, thickness,
slant, and digit width as a causal attributes, where thickness causes slant, thickness and slant
causes width, and width causes intensity. This data-generating process is formally described in
equation 8
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(a) (b) (c) (d)

Figure 6: Causal discoveries on various different data-generating processes. Top row describes
the causal relationships followed in data-generating process, second row shows the discoveries
made by our proposed method, third row shows the cluster formed by a feature disentanglement
block to describe an alignment effect, fourth row describes the effectiveness of our alignment
block in aligning model latent features to observed context features. In (a) thickness causes
intensity and both thickness and intensity causally affects image, the same behaviour can
be observed in generated causal graph with graph correctnessIndex=1.0. In (b) intensity
causes thickness, we selected this example to examine algorithms behaviour in the case of a
reversed causal link(w.r.t (a)), and the correct behaviour is observed in the generated graph with
correctnessIndex=1.0. In (c) thickness causes slant, again the generated graph shows similar
behaviour with correctnessIndex=0.98. In (d) we tried adding multiple causal variables with
higher relationship depth, and our proposed method was able to reconstruct these relationships
with correctnessIndex=0.94.

t := ft ≜ ϵt ϵt ∼ Γ(0, 5)
s := fs ≜ 10 + 20 ∗ t + ϵs ϵs ∼ N(0, 5)
w := fw ≜ 10 + 15 ∗ σ(0.5 ∗ t) − 0.25 ∗ s + ϵw

ϵw ∼ N (0, 1)
i := fi ≜ 64 + 191 ∗ σ(w/25) + ϵi ϵi ∼ N(0, 1)
x := fx = SetIntensity(SetWidth(

SetSlant(SetThickness(X; t); s); w); i)

(8)
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(a) First row shows an original image, second row describes reconstructed images, while third shows the
effect of intervention (intervention on thickness t node), followed by difference between intervention and
perceived images, and feature importance as perceived by classifier. Last row corresponds to feature
attribution explanations on extracted features in latent space.

Figure 7: Following figure demonstrates the effectiveness of our proposed explanations and other
standard existing explanation frameworks

Fig. 6 row 2 describes the explicit graph generated as a result of our framework. In all the
cases subgraph with nodes ∈ {t, i, w, s, x} matches precisely with the causal structure followed
in our data-generating process, with a graph correctnessIndex close to 1.0. This indicates the
existence of implicit mechanisms and causal structures, providing global explanations for a given
data-generating process.
To explain the importance of each feature for a classifier, we perform a LIME feature attribution
while preserving the causal structure. We perform a fixed interventional study on all the features
by constructing multiple counterfactual images and observing the shift in confidence scores
predicted by the classifier with respect to the original image, indicating the effect of features on
the given classifier. If confidence increases, we claim that a specific feature has a positive effect
on a classifier; otherwise, it negatively affects a classifier.
As interventions may not have a monotonic effect, we conduct two specific queries, one positively
increasing feature value while the other reducing the feature value. Fig. 7 shows the generated
counterfactual and the classifier probability describing the importance of a specific positively
intervened feature. Based on the extracted graph, an interventional behaviour of a feature on an
image, and each feature’s contribution to the final classifier’s decision, we get a comprehensive
idea of the classifier’s reasoning.

E.1 Pre-trained Classifiers

For MNIST case study we use custom architecture consisting 7 convolutional layers with 3 × 3
kernels followed by batch normalisation layer and ReLU non-linearity. The final layer logits are
further global average pooled and projected on to appropriate vector space for generating class
probabilities using a single densely connected linear layer followed by softmax non-linearity. To
reduce dimensionality we apply max pooling layer after the first, third and fifth layers. We
train this classifier for 50 epochs with a batch size of 64. We use Adam optimizer with an
initial learning rate of 0.001 and weight decay of 0.001. We achieve 99.3% accuracy with this
pre-trained classifier.
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Datasets ↓ \
Methods →

LinGAM
Based [26]

GES
Based [27] Ours

Morpho-MNIST (TI) 0.84 0.66 1.0
Morpho-MNIST (IT) 0.66 0.66 1.0
Morpho-MNIST (TS) 0.82 0.66 0.98
Morpho-MNIST (TSWI) 0.58 0.42 0.94

Table 2: Table describes quantitative comparison between causal multiple causal discovery
methods on four different versions of Morpho-MNIST dataset as described in 6 using graph
correctnessIndex.

(a) Ground-truth sub
graph

(b) GES (c) LiNGAM (d) Proposed

Figure 8: (Quantitative and qualitative) Comparison of causal discovery methods. The scores
for GES, LiNGAM, and Proposed method are (CI = 0.66, < SHD >= 3.24), (CI = 0.66, <
SHD >= 1.17), and (CI = 0.96, < SHD >= 0.03) respectively.

E.2 Comparative study

E.2.1 Graph Generation

Most of the existing causal discoveries method try to extract relationships between nodes by
assuming a particular structure of models. However, in our case, since we have access to an
implicit causal model, we consider trained models as an oracle to perform specific interventions.
As we observe feature behaviour against an actual cause rather than a model hypothesis, we
have the flexibility to extract feature relations without any explicit assumptions. Fig. 8, describes
the discoveries made by these two methods using latent features obtained from a model trained
using Morpho-MNIST data, where intensity causes thickness. We use the graph correctness index
defined in 2.2 to quantify the performance difference between all three methods; table 2 describes
the results.

E.2.2 Explanation

As previously mentioned, In this study we compare our method against standard saliency based
explanation methods, we consider LIME [5], DeepSHAP [28], deepLIFT [29], and gradCAM [30]
explanation and compare them against our explanations. These methods generate an attention
map for an input image given the model’s prediction confidence on that image. These explanations
can provide a simple understanding of what the network is looking at in making certain decisions,
but they fail to understand complex feature interactions or even fail to capture relations between
pixels in input space. These explanation methods do not yield a way to quantify the faithfulness
of their generated explanations, which raises the question of trust in the explanations themselves.
Explanations generated using our method can overcome this kind of issue. Fig. 7, demonstrates
our framework performance on multiple images, while Fig. 6 shows the behavior of intermediate
latent features.

F Case Study 2: FFHQ

For the second case study, we consider the high resolution human faces dataset (FFHQ) [25],
this dataset consists of approximately 200k images of 128x128 resolution with 40 different binary
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Figure 9: Assumed true causal structure between attributes and image.

Figure 10: First row shows an original image, second row describes reconstructed images, while
third shows the effect of intervention (intervention on open mouth o node), followed by difference
between interventional and perceived images, and feature importance as perceived by classifier.
Last row corresponds to feature attribution explanations on extracted features in latent space
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attributes, and the task is to categorize images based on gender (0 = male; 1=female). As the
causal structure is unknown, we consider only ten significantly present attributes in the dataset.
In our experiment, these attributes are subjectively based on their interactions with respect to
other attributes. We pick features that are seemingly orthogonal to one another because that
helps us to assume ground-truth causal structure to follow naive Bayes structure with all the
selected features. The ten attributes which we used in our experiment include (sh: straight-hair,
wh: wavy-hair, y: young, m: mustache, b: beard, hc: high-cheekbones, hm: heavy-makeup, s:
smiling, l: lipstick, o: open-mouth), and the structure of assumed ground truth DAG is described
in Fig. 9.
For causal discovery and explanations, we consider 512 latent features to capture all the information
in the data distribution. Obtained explanations from our method for the classifiers trained on
this dataset are described in Fig. 10. Here, we consider ‘smile’ as an interventional attribute; the
higher attention around the mouth region can be easily seen in different images, indicating the
effect of smile intervention. In this current work, we faced challenges with generating high quality
counterfactuals. In the future, we are planning to extend this work with auxiliary modules to
learn and associate causal attributes with generating high quality and meaningful counterfactuals.

F.1 Pre-trained Classifier

For evaluating our framework on high resolution images, we consider the standard DenseNet-121
[45] architecture and train the model on FFHQ dataset, with the aim of gender classification.
The training utilizes Adam optimizer with an initial learning rate of 0.001 and weight decay of
0.005. The model is trained for 64 epochs achieving 98% accuracy.
To validate the framework behavior on different feature extractors we consider, three different pre-
trained classifiers (i) vanilla feature extractor, (ii) DenseNet-121 architecture, and (iii) ResNet-18
architecture. All the models were trained with previously defined hyperparameters. Table 3
describes the classifier performance and the resulting evaluation metrics.

Table 3: Here, we describe the accuracy of the pre-trained classifier, FID measuring the generator
quality (we report mean and variance across 5 random seeds), faithfulness index, and stability
index for evaluating generated explanations for FFHQ dataset.
Feature Extractor(↓),

Metrics(→) Accuracy (↑) FID(↓) Faithfulness (FI ↑) Stability (SI ↑)
Vanilla-CNN 91.37 ± 0.87 34.82 ± 2.69 0.61 -0.012
ResNet-18 94.80 ± 0.22 24.67 ± 1.43 0.71 -0.008

DenseNet-121 96.87 ± 0.38 22.51 ± 1.41 0.70 -0.005

G Case Study 3: AFHQ

G.1 Pre-trained Classifier

In case of AFHQ all the images were resized to the dimension of 128x128, we made use of
DenseNet-121 [45] architecture and train the model on AFHQ dataset, with the aim of classifying
images into ‘cat’, ‘dog’, and ‘wild’ category. The training utilizes Adam optimizer with an initial
learning rate of 0.001 and weight decay of 0.005. The model is trained for 64 epochs achieving
97% accuracy.
To validate the framework behavior on different feature extractors we consider, three different pre-
trained classifiers (i) vanilla feature extractor, (ii) DenseNet-121 architecture, and (iii) ResNet-18
architecture. All the models were trained with previously defined hyperparameters. Table 4
describes the classifier performance and the resulting evaluation metrics.

H Training

We trained all our models on a system with GPU: Nvidia Telsa T4 16GB, CPU: Intel(R) Xeon(R)
Gold 6230, and RAM of 384GB. In case of Morpho-MNIST, images were resized to 32 × 32 and
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Figure 11: First row shows an original image, second row describes reconstructed images, while
third shows the effect of intervention (intervention on C3 node, seems to be like a contrast change),
followed by difference between interventional and perceived images, and feature importance as
perceived by classifier. Last row corresponds to feature attribution explanations on extracted
features in latent space

Table 4: Here, we describe the accuracy of the pre-trained classifier, FID measuring the generator
quality (we report mean and variance across 5 random seeds), faithfulness index, and stability
index for evaluating generated explanations for AFHQ dataset.
Feature Extractor(↓),

Metrics(→) Accuracy (↑) FID(↓) Faithfulness (FI ↑) Stability (SI ↑)
VanillaCNN 88.86 ± 0.66 46.50 ± 2.05 0.66 -0.03
ResNet-18 98.78 ± 0.27 34.33 ± 1.67 0.71 -0.04

DenseNet-121 99.11 ± 0.13 28.38 ± 1.39 0.72 -0.01

models were trained with batchsize of 32 with learning rate = 1e-3, λ1 = 10., λ2 = 30., λ3 =
30.0, &λ4 = 1.0. In case of AFHQ, images were resized to 128 × 128 and models were trained
with batchsize of 16 with learning rate = 2e-4, λ1 = 10.0, λ2 = 40.0, λ3 = 80.0, and λ4 = 1.0.

I Future Work

This paper opens several avenues for future work. Differently from [14], we do not consider
assigning semantic meaning to unobserved aligned features: careful investigation can bring out
interesting evidences on the learned latent representation. Also, our framework depends on context
features for extracting human understandable data-generating process: it would be interesting
to perform unsupervised or weekly supervised causal representation learning [46] to estimate
the causal dependencies among latent variables. The extension of GLANCE to accommodate
unsupervised causal representations and assigned semantic meaning to latent features would
effectively allow communicating the decision making parameters in classifiers to humans, thereby
increasing the quality of explanations. Finally, extending the framework to explain other models
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Table 5: Ablation results by varying loss coefficients on MorphoMNIST-IT dataset.
λ1

(alignment loss) 0 1.0 1.0 10.0 10.0
λ2

(recon. loss) 1.0 0 1.0 50.0 40.0
λ3

(cls loss) 1.0 1.0 0 100.0 80.0
λ4

(pl in adv loss) 1.0 1.0 1.0 1.0 1.0
FID 10.21 13.63 7.30 5.46 3.33

beyond classifiers for visual data, such as time series, text, or tabular data, can broaden the
impact of our framework.
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