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Abstract

The information within Large Language Mod-001
els (LLMs) quickly becomes outdated, prompt-002
ing the development of various techniques to003
perform knowledge editing with new facts.004
However, existing knowledge editing methods005
often overlook the interconnected nature of006
facts, failing to account for the ripple effects007
caused by changing one piece of information.008
In our research, we introduce GMeLLo (Graph009
Memory-based Editing for Large Language010
Models), a straightforward memory-based ap-011
proach. GMeLLo stores all relevant facts exter-012
nally in a Knowledge Graph (KG) and directs013
the language model to engage in semantic pars-014
ing. This involves translating natural language015
questions into formal queries to extract infor-016
mation from the KG. Notably, our method elim-017
inates the need to fine-tune LLMs, ensuring that018
edited facts do not corrupt other information. In019
our experimental findings, we noted a notewor-020
thy enhancement of GMeLLo in comparison to021
state-of-the-art model editors on the MQuAKE022
benchmark—a dataset tailored for multi-hop023
question answering, particularly evident when024
editing multiple facts simultaneously.025

1 Introduction026

As the widespread deployment of Large Language027

Models (LLMs) continues, the imperative to main-028

tain their knowledge accuracy and currency, with-029

out incurring extensive retraining costs, becomes030

increasingly evident (Sinitsin et al., 2020). Several031

approaches have been proposed in prior works to032

address this challenge, with some focusing on the033

incremental injection of new facts into language034

models (Rawat et al., 2020; De Cao et al., 2021;035

Meng et al., 2022; Mitchell et al., 2022a). Inter-036

estingly, certain methodologies in the literature di-037

verge from the conventional path of updating model038

weights, opting instead for an innovative strategy039

involving the use of external memory to store the040

edits (Mitchell et al., 2022b; Zhong et al., 2023).041

As LLMs operate as black boxes, modifying one 042

fact might inadvertently alter another, making it 043

challenging to guarantee accurate revisions. In 044

light of this challenge, opting for an external mem- 045

ory system, rather than directly editing the LLMs, 046

emerges as a prudent choice. On a different note, 047

even though information undergoes rapid evolution, 048

the patterns of sentences—various ways to con- 049

vey meaning—tend to change at a comparatively 050

slower rate. LLMs, trained on an extensive corpus 051

of sentences (Brown et al., 2020; Rae et al., 2022; 052

Chowdhery et al., 2023), are expected to encapsu- 053

late a diverse range of commonly used sentence 054

structures. As such, they prove to be invaluable 055

tools for analyzing intricate relation chains within 056

sentences. 057

This paper introduces GMeLLo, an innovative 058

approach designed to synergize the strengths of 059

LLMs and KG in addressing the multi-hop ques- 060

tion answering task after knowledge editing (Zhong 061

et al., 2023). An illustrative example is presented 062

in Figure 1. Following an update regarding the in- 063

formation of the British Prime Minister, it becomes 064

evident that the corresponding spouse information 065

should also be modified. 066

Specifically, we utilize LLMs to analyze ques- 067

tion sentences, extracting the underlying relation 068

chain. Simultaneously, we employ the KG as an 069

external memory to maintain up-to-date informa- 070

tion, encompassing both the modified and unaltered 071

facts. Ultimately, we translate the relation chain 072

into a formal query using heuristic rules and search 073

for information within the KG. Using LLMs for 074

question analysis ensures coverage of diverse pat- 075

terns, thanks to their extensive training on large 076

datasets, enabling them to understand various rep- 077

resentations of the same meaning. Once the correct 078

relation chain is returned, using a formal query to 079

interrogate the KG ensures precision. Through ex- 080

perimentation, GMeLLo demonstrates significantly 081

enhanced performance compared to current base- 082
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Figure 1: Dynamic nature of information: Changes over time may trigger subsequent modifications. For instance, a
transition in the British Prime Minister, such as from Boris Johnson to Rishi Sunak, necessitates corresponding
adjustments, like the change in the British Prime Minister’s spouse.

line models on the MQuAKE benchmark-multi-083

hop question answering dataset for knowledge edit-084

ing, affirming its effectiveness.085

2 Related Work086

The primary focus of this paper is on knowledge087

editing for multi-hop question answering, with our088

predominant methodology being semantic pars-089

ing. Consequently, we delve into the related work090

within both research domains.091

2.1 Knowledge Editing092

As highlighted in Yao et al. (2023), two paradigms093

exist for editing LLMs: preserving model parame-094

ters and modifying model parameters. In the case095

of preserving model parameters, the introduction of096

additional parameters or external memory becomes097

necessary. The paradigm of additional parameters,098

as presented in (Dong et al., 2022; Hartvigsen et al.,099

2022; Huang et al., 2022), incorporates extra train-100

able parameters into the language model. These101

parameters are trained on a modified knowledge102

dataset, while the original model parameters re-103

main static. On the other hand, memory-based104

models (Mitchell et al., 2022b; Zhong et al., 2023)105

explicitly store all edited examples in memory and106

employ a retriever to extract the most relevant edit107

facts for each new input, guiding the model in gen-108

erating the edited output.109

In the case of modifying model parameters, this 110

can be further categorized into meta-learning or 111

locate-and-edit approaches. Meta-learning meth- 112

ods, as discussed in (De Cao et al., 2021; Mitchell 113

et al., 2022a), utilize a hyper network to learn 114

the necessary adjustments for editing LLMs. The 115

locate-then-edit paradigm, as demonstrated in (Dai 116

et al., 2022; Meng et al., 2022, 2023; Li et al., 2023; 117

Gupta et al., 2023), involves initially identifying 118

parameters corresponding to specific knowledge 119

and subsequently modifying them through direct 120

updates to the target parameters. 121

While previous evaluation paradigms have pri- 122

marily focused on validating the recall of edited 123

facts, Zhong et al. (2023) proposed MQuAKE, a 124

benchmark dataset comprising multi-hop questions. 125

This dataset assesses whether edited models cor- 126

rectly answer questions where the response should 127

change as a consequence of edited facts. 128

2.2 Semantic Parsing 129

Semantic parsing involves the conversion of natu- 130

ral language utterances into task-specific meaning 131

representations. Recently, there has been a grow- 132

ing reliance on LLMs to facilitate semantic parsing 133

in scenarios with limited data availability. Certain 134

studies impose constraints on the output of LLMs 135

to generate canonical representations that can be 136

seamlessly mapped back to meaning representa- 137

tions (Shin et al., 2021). Others investigate the 138
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technique of prompt tuning to enhance semantic139

parsing with LLMs (Schucher et al., 2022; Drozdov140

et al., 2022).141

In a novel approach, Yang et al. (2022) breaks142

down canonical utterance generation into subclause143

generation and integrates the generated subclauses144

to form a canonical utterance. Additionally, Ru-145

bino et al. (2022) introduces a cross-schema parser146

designed for various tasks within a specific vertical.147

This is achieved by incorporating schema-specific148

context into the input alongside the utterance. An-149

other unique perspective is presented by Zhao et al.150

(2022), who decompose parsing into abstractive151

Question-Answering (QA) tasks, generating an-152

swers to construct a meaning representation.153

In contrast to these methods, which typically154

assume access to data from the same domain, in155

a consistent format from a different domain, or156

synthetically generated from a synchronous gram-157

mar, ZERO-TOP (Mekala et al., 2023) proposes158

a zero-shot task-oriented parsing method, which159

dissects a semantic parsing problem into a series160

of abstractive and extractive question-answering161

problems.162

3 GMeLLo: Graph Memory-based163

Editing for Large Language Models164

In this section, we explore the intricacies of our165

innovative knowledge editing method, GMeLLo,166

leveraging the combined strengths of LLMs and167

KGs. Drawing inspiration from memory-based168

knowledge-editing approaches (Mitchell et al.,169

2022b; Zhong et al., 2023), GMeLLo preserves170

the foundational language model in a frozen state171

while storing all edits in an explicit memory. Figure172

2 provides a visual representation of the GMeLLo173

framework.174

3.1 Extracting the Relation Chain of a175

Question Sentence Using LLMs176

Given the rapid pace of change in the world, LLMs’177

training data may become quickly outdated. There-178

fore, we recommend employing LLMs for sentence179

analysis rather than relying on them for direct an-180

swers. This approach is justified by the relatively181

slower evolution of patterns compared to the in-182

tricate details. In this paper, we employ LLMs to183

extract the relation chain from a sentence, encom-184

passing the mentioned entity and relations with185

other unidentified entities. To mitigate varied repre-186

sentations of the same relation, we task LLMs with187

selecting a relation from a predefined list. Take a 188

question sentence from the MQuAKE dataset as an 189

example, 190

• Question: What is the capital of the country 191

of citizenship of the child of the creator of 192

Eeyore? 193

• Relation Chain: Eeyore->creator->?x->child- 194

>?y->country of citizenship->?z->capital- 195

>?m 196

The presented question necessitates a 4-hop reason- 197

ing process. With "Eeyore" as the known entity in 198

focus, the journey to the final answer involves iden- 199

tifying its creator, moving on to the creator’s child, 200

obtaining the child’s country of citizenship, and 201

culminating with the retrieval of the country’s cap- 202

ital. The relation chain encapsulates all essential 203

information for arriving at the conclusive answer. 204

To ensure that LLMs comprehend the task of ex- 205

tracting the relation chain and generate output in a 206

structured template, we employ in-context learning 207

(Dong et al., 2023). This technique involves pro- 208

viding LLMs with a set of examples in the prompt, 209

guiding them through the desired output format. 210

3.2 Utilizing KGs for Storing Correlated 211

Facts to Enhance Multi-hop Reasoning 212

KGs play a pivotal role in enhancing the capabil- 213

ities of LLMs by offering external knowledge for 214

improved inference and interpretability, as demon- 215

strated by recent studies (Pan et al., 2023; Rawte 216

et al., 2023). Unlike conventional approaches 217

that rely on question templates for each relation 218

type (Petroni et al., 2019; Meng et al., 2022), and 219

then store the updated information in an external 220

memory as a list of separated sentence statements 221

(Zhong et al., 2023), we represent information as a 222

graph to preserve inherent connections. 223

In our approach, we consolidate all relevant in- 224

formation within a KG. Rather than constructing a 225

new external memory specifically for updated data, 226

we opt for a more efficient strategy—directly up- 227

dating the existing KG. This not only simplifies the 228

information storage process but also leverages the 229

inherent connectivity within the graph, providing a 230

more cohesive and context-rich representation of 231

correlated facts. 232

Our mechanism offers an additional advantage 233

by storing both updated and unchanged facts. This 234

approach facilitates the identification of conflicts 235

between facts. In contrast, if only updated facts 236
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PREFIX ent: <http://www.kg/entity/>
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Figure 2: The illustration delineates our proposed method, GMeLLo. Commencing the process, we establish a KG
either by extracting information from the QA dataset or by utilizing an existing KG as the foundational external
memory. If there are updates to the information, we directly modify the KG. Simultaneously, we leverage LLMs to
extract the primary relation chain from a given multi-hop question, capturing the known entity and its relationships
with other unidentified entities. Following the acquisition of the relation chain, we transform it into a formal
query format, such as SPARQL. Armed with the KG and the formal query, we employ Knowledge-based Question
Answering (KBQA) (Lan et al., 2022) to deduce the final answer.

are explicitly stored, detecting inconsistencies be-237

tween updated facts and unchanged ones becomes238

challenging, as the latter are not explicitly recorded.239

We provide further details on this matter in Section240

4.5.2.241

3.3 Converting the Relation Chain into a242

Formal Query for Retrieving Updated243

Information from KGs244

Once the relation chain is obtained, the next step245

involves extracting the known entity and the re-246

lations from the relation chain, integrating them247

into a formal query template. To optimize the re-248

trieval process from a KG, we enhance efficiency249

by initially mapping entity and relation strings to250

their corresponding identifiers within the KG. This251

mapping information is conveniently stored in a252

separate file.253

For instance, consider a KG represented in RDF1254

format and a corresponding SPARQL2 query. The255

relation chain elucidated in Section 3.1 should be256

represented as follows, underscoring the seamless257

integration of the obtained information into a struc-258

tured query framework.259

1https://www.w3.org/RDF/
2https://www.w3.org/TR/sparql11-query/

PREFIX ent: <http://www.kg/entity/> 260

PREFIX rel: <http://www.kg/relation/> 261

SELECT DISTINCT ?ml WHERE { 262

ent:E0 rel:R0 ?x. 263

?x rel:R1 ?y. 264

?y rel:R2 ?z. 265

?z rel:R3 ?m. 266

?m rdfs:label ?ml. 267

} 268

In this context, "ent" and "rel" serve as prefixes 269

for entity and relation, respectively. The identifier 270

"E0" uniquely represents "Eeyore" within the KG, 271

while the identifiers for "creator," "child," "country 272

of citizenship," and "capital" are denoted as "R0", 273

"R1", "R2", and "R3" respectively. After identify- 274

ing the entity "?m", we retrieve its string label "ml" 275

as the final answer. 276

In conclusion, we harness the powerful capa- 277

bilities of LLMs to analyze the question sentence 278

and extract the relation chain—the foundation of 279

a formal query. We systematically store all perti- 280

nent information, encompassing both updated and 281

unchanged facts, within a KG. Armed with the for- 282

mal query and the KG, our approach empowers 283

us to conduct multi-hop question answering in a 284

Knowledge-based Question Answering (KBQA) 285
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(Lan et al., 2022) fashion. Beyond efficiency, our286

GMeLLo approach stands out by offering explain-287

ability, a facet that will be elaborated upon in the288

next section.289

4 Experiment290

Within our GMeLLo framework, we harness the291

analytical capabilities of LLMs to interpret sen-292

tences rather than tasking them with direct question-293

answering. In the upcoming section, we will con-294

duct experiments to demonstrate the effectiveness295

and superiority of employing our GMeLLo method-296

ology.297

4.1 Experiment Setup298

4.1.1 Dataset299

Our experiment centers on the multi-hop question-300

answering dataset, MQuAKE (Zhong et al., 2023).301

This dataset comprises MQuAKE-CF3, designed302

for counterfactual edits, and MQuAKE-T, tailored303

for temporal knowledge updates. These datasets304

enable the evaluation of model editors under sce-305

narios involving counterfactual changes and real-306

world temporal updates.307

Table 2 provides a summary of the statistics for308

the MQuAKE-CF and MQuAKE-T datasets. The309

MQuAKE-CF dataset comprises 3,000 N-hop ques-310

tions (N ∈ {2, 3, 4}), each linked to one or more311

edits. This dataset functions as a diagnostic tool312

for examining the effectiveness of knowledge edit-313

ing methods in handling counterfactual edits. The314

MQuAKE-T dataset consists of 1,868 instances,315

each associated with a real-world fact change. Its316

purpose is to evaluate the efficacy of knowledge317

editing methods in updating obsolete information318

with contemporary, factual data.319

4.1.2 Language Models320

Similar to MeLLo, we broaden our investigation321

by integrating three robust language models into322

our framework. This expansion allows for a com-323

prehensive comparison with baseline models, pro-324

viding a more nuanced evaluation of our approach.325

Specifically, we leverage GPT-J (6B) (Wang and326

Komatsuzaki, 2021), vicuna-7B (Chiang et al.,327

2023), and text-davinci-003 (Ouyang et al., 2022).328

3Due to constrained computational resources, our experi-
ments on MQuAKE-CF are carried out on a randomly sam-
pled subset of the complete dataset, comprising 3000 instances
(1000 instances for each of 2, 3, 4-hop questions), aligning
with the experiments outlined in Zhong et al. (2023).

4.1.3 Baseline Models 329

To demonstrate the effectiveness of our approach, 330

we conduct comparisons with the following state- 331

of-the-art knowledge editing methodologies. 332

• MEND (Mitchell et al., 2022a). It trains a 333

hypernetwork to generate weight updates by 334

transforming raw fine-tuning gradients based 335

on an edited fact. 336

• MEMIT (Meng et al., 2023). It updates feed- 337

forward networks across various layers to in- 338

corporate all relevant facts. 339

• MeLLo (Zhong et al., 2023). It employs a 340

memory-based approach for multi-hop ques- 341

tion answering, storing all updated facts in an 342

external memory. In contrast to our GMeLLo, 343

their approach retains only the updated facts, 344

with each fact stored as a separate sentence. 345

4.1.4 Evaluation Metric 346

Building upon the framework proposed by Zhong 347

et al. (2023), our evaluation employs the following 348

metrics to assess the effectiveness of edits: 349

• Edit-wise success rate: gauging the successful 350

recall of facts. 351

• Instance-wise accuracy: assessing the model’s 352

ability to recall all individual single-hop facts 353

within multi-hop instances. 354

• Multi-hop accuracy: evaluating the model’s 355

accuracy in answering multi-hop questions. 356

Given our paper’s primary focus on multi-hop ques- 357

tion answering, we employ "multi-hop accuracy" 358

as the main metric to assess the accuracy of both 359

the original and edited language models in handling 360

multi-hop questions. 361

4.2 Implementation Details and Key Findings 362

Due to constrained computational resources, we 363

opted to evaluate only the first multi-hop question 364

in the MQuAKE dataset for our GMeLLo, rather 365

than testing all three. To improve the understanding 366

of this task by LLMs and ensure outputs conform 367

to a specified format, we default to employing a 368

3-shot learning approach. This involves presenting 369

the model with one 2-hop question sample, one 370

3-hop question sample, and one 4-hop question 371

sample. To achieve comparable performance, we 372

supplied Vicuna-7B with an additional set of 4- 373

hop question sample. The reason will be discussed 374
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#Edited instances
MQuAKE-CF MQuAKE-T

1 100 1000 3000 1 100 500 1868

Base Model Method

GPT-J MEMIT 12.3 9.8 8.1 1.8 4.8 1.0 0.2 0.0
GPT-J MEND 11.5 9.1 4.3 3.5 38.2 17.4 12.7 4.6
GPT-J MeLLo 20.3 12.5 10.4 9.8 85.9 45.7 33.8 30.7
GPT-J GMeLLo 30.0 30.0 30.0 30.0 74.3 74.3 74.3 74.3

Vicuna-7B MeLLo 20.3 11.9 11.0 10.2 84.4 56.3 52.6 51.3
Vicuna-7B GMeLLo 30.4 30.4 30.4 30.4 65.6 65.6 65.6 65.6

GPT-3 MeLLo 68.7 50.5 43.6 41.2 91.1 87.4 86.2 85.5
GPT-3 GMeLLo 67.6 67.6 67.6 67.6 85.7 85.7 85.7 85.7

Table 1: Performance results of GMeLLo (ours) on MQuaKE-CF and MQuaKE-T using GPT-J, Vicuna-7B, or
GPT-3 (text-davinci-003) as the base language model. Following the approach of Zhong et al. (2023), we group
instances in batches of size k, where k takes values from 1, 100, 1000, 3000 for MQuaKE-CF and 1, 100, 500, 1868
for MQuaKE-T. The metric is multi-hop accuracy.

#Edits 2-hop 3-hop 4-hop Total

MQuaKE-CF

1 513 356 224 1,093
2 487 334 246 1,067
3 - 310 262 572
4 - - 268 268
All 1,000 1,000 1,000 3,000

MQuaKE-T 1 (All) 1,421 445 2 1,868

Table 2: Data statistics of MQuAKE

in Section 4.5.1. Due to GPT-J and Vicuna-7B’s375

limitation in adhering to the desired output format,376

we establish a heuristic rule to extract essential377

information, outlined as follows:378

• Narrow the attention to the output sentence379

containing the "->" indicator.380

• Divide the sentence based on the "->" delim-381

iter.382

• Consider the initial segment as the predicted383

entity, and subsequently, process the follow-384

ing segments sequentially if they correspond385

to relations in the predefined relation list.386

As illustrated in Table 1, our GMeLLo demon-387

strates significantly superior performance com-388

pared to state-of-the-art models on the MQuAKE-389

CF dataset, exhibiting an approximately 20% im-390

provement when editing 3000 instances simultane-391

ously. The sole source of error stems from the392

extraction of relation chains using LLMs. The393

0

5

10

15

20

25

30

35

1 100 1000 3000

MEMIT MEND MeLLo GMeLLo

Figure 3: Multi-hop performance comparison of GPT-
J before and after editing on MQuAKE-CF, utilizing
different knowledge editing methods. The evaluation is
conducted with varying numbers of edited instances (k)
selected for editing, where k ranges from 1 to 3000.

recording of all fact edits in the KG eliminates 394

the possibility of errors during fact retrieval. It is 395

important to note that the relation chain remains 396

consistent regardless of information updates. This 397

confers a distinct advantage to our GMeLLo. As 398

depicted in Figure 3, the integration of the latest in- 399

formation into our KG allows GMeLLo to sustain 400

a consistent performance, even with an increasing 401

number of edits. Nevertheless, in MeLLo, the ex- 402

pansion of external memory alongside a growing 403

number of edited facts may result in slower and 404

less accurate comparisons with the retriever (Izac- 405

ard et al., 2022). 406

4.3 Breakdown Results on MQuAKE-CF 407

Tables 3 and 4 display the detailed results for 408

MQuAKE-CF when employing GPT-J as the foun- 409
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2-hop 3-hop 4-hop All

MEND 13.9 11.3 9.5 11.5
MEMIT 22.5 6.0 8.4 12.3

GMeLLo 54.8 27.0 8.2 30.0

Table 3: Multi-hop performance breakdown on
MQuAKE-CF for 2,3,4-hop questions using GPT-J as
the base model.

# Edits= 1 2 3 4 All

MEND 16 11 7.3 4.4 11.5
MEMIT 20.5 9.8 5.5 2.6 12.3

GMeLLo 34.5 34.4 24.8 5.2 30.0

Table 4: Breakdown of multi-hop performance on
MQuAKE-CF for questions with 1, 2, 3, 4 edits, utiliz-
ing GPT-J as the base model in this experiment.

dational model. Our analysis reveals that410

• In 2-hop and 3-hop question answering, our411

method, GMeLLo, demonstrates twice the412

performance of the next best baseline. Fur-413

thermore, in 4-hop question answering, our414

method achieves comparable performance415

with the other two baseline models.416

• In question answering with various edits, our417

model, GMeLLo, significantly outperforms418

the other two baseline models.419

4.4 Performance in Addressing Single-Hop420

Questions421

Although GMeLLo is primarily tailored for multi-422

hop question answering, it is adept at handling423

single-hop questions as well. As evidenced in Ta-424

ble 5, GMeLLo attains performance levels compa-425

rable to those of other approaches, even under the426

rigorous evaluation criteria of an exact match. In427

future iterations, we plan to implement semantic428

matching instead of relying on exact matches to429

extract more correct responses from LLMs. This430

involves identifying semantic equivalences, such431

as recognizing that "founder" which conveys the432

same meaning as "founded by" as correct output.433

4.5 Futher Analyais434

This subsection presents additional analyses con-435

ducted to identify errors in our experiments, show-436

case the advantages of employing GMeLLo, and437

explore potential applications.438

Base Model Method Edit-wise Instance-wise

GPT-J
MEND 72.8 59.6

MEMIT 97.4 94.0
GMeLLo 87.7 69.6

Vicuna-7B
MEND 65.2 47.6

MEMIT 96.6 84.0
GMeLLo 95.4 84.9

Table 5: Performance results for both edit-wise and
instance-wise evaluations on MQuAKE-CF (with a max-
imum of 4 edits) are presented for baseline knowledge
editing methods and our GMeLLo, utilizing two base
models: GPT-J and Vicuna-7B. Each instance’s associ-
ated edits are considered independently.

4.5.1 Error Analysis 439

Through our comprehensive comparative analysis, 440

it became evident that GMeLLo consistently out- 441

performs existing models in this specific task, es- 442

pecially when editing multiple instances. Among 443

the three base models, Vicuna-7B demonstrates 444

inferior performance compared to the other two, 445

despite being provided with an additional 4-hop 446

question answering sample in the prompt. 447

Following an in-depth error analysis, we iden- 448

tified that Vicuna exhibits more unconventional 449

behavior. Instead of selecting a relation from the 450

predefined list, it tends to create its own defined 451

relations. For instance, it prefers using "citizen" 452

to convey meaning rather than simply outputting 453

"country of citizenship." This highlights the im- 454

portance of prioritizing the consideration of mean- 455

ing over strict exact matches in the mapping pro- 456

cess—an aspect we plan to address in our future 457

work. Another concern arises from the fact that, 458

while Vicuna consistently identifies relations ac- 459

curately—examples include "head of state" and 460

"country of citizenship"—it frequently makes er- 461

rors in their sequencing. 462

Moreover, our analysis uncovered some incon- 463

sistencies in the MQuAKE dataset. For instance, 464

• Question_1: Who founded The Christian Sci- 465

ence Monitor? 466

• Multi-hop Relation in MQuAKE-CF: The 467

Christian Science Monitor->headquaters 468

location->?x->founded by->?y 469

• Prediction of Multi-hop Relations by Vicuna- 470

7B: The Christian Science Monitor->founded 471

by->?x 472
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• Question_2: Who is the head of state of the473

country where the child of Kyle Reese has474

citizenship?475

• Multi-hop Relation in MQuAKE-T: Kyle476

Reese->Spouse->?x->child->?y->country of477

citizenship->?z->head of state->?m478

• Prediction of Multi-hop Relations by Vicuna-479

7B: Kyle Reese->child->?x->country of480

citizenship->?y->head of state->?z481

While LLMs may accidentally provide correct482

answers, discerning the "headquarters location"483

from the first question and the "spouse" relation484

from the second question based solely on the ques-485

tion sentences is challenging.486

4.5.2 Detection of Factual Inconsistencies487

Throughout our experiments, we observed that si-488

multaneous editing of numerous instances could489

lead to factual inconsistencies. For instance, the490

capital relationship might be exist in multiple ques-491

tions. In a scenario from the counterfactual dataset,492

an edit changes the capital of one country to another493

city. However, to accurately answer the subsequent494

question, knowledge of the correct capital for that495

country is essential.The utilization of explicit ex-496

ternal memory for storing all pertinent information,497

encompassing both updated and unchanged facts,498

clearly underscores these issues. Moreover, estab-499

lishing rules, such as defining that a country should500

only have one capital, proves effective in prevent-501

ing and addressing these types of inconsistencies.502

4.5.3 Explainability503

Illustrated by the yellow node path in Figure 2, our504

GMeLLo not only delivers answers but also offers505

traceability. This implies that we can retrieve the506

path leading to the obtained answer. Utilizing the507

clarity inherent in KG, GMeLLo is interpretable508

to a certain degree, providing a transparent under-509

standing of the basis behind its responses.510

4.5.4 Domain-specific Application511

In the MQuAKE dataset, we establish direct con-512

nections among all triples to construct the KG. In513

cases where no triples are available, we can lever-514

age the capabilities of LLMs to map diverse sen-515

tence representations into relation triples, as illus-516

trated in Table 6. This process aligns with our517

endeavors in extracting relation chains.518

Questions Relation

Where did x graduate from?
educated_at(x,y)In which university did x study?

What is x’s alma mater?

What did x do for a living?
occupation(x, y)What is x’s job?

What is the profession of x?

Who is x’s spouse?
spouse(x, y)Who did x marry?

Who is x married to?

Table 6: Mapping natural language sentences to
knowledge-base relations, illustrating the inverse pro-
cess discussed by Levy et al. (2017) and Zhong et al.
(2023), which can be implemented similarly to the rela-
tion chain extraction in our GMeLLo.

Although LLMs contain a wealth of informa- 519

tion, they may not be privy to certain domain- 520

specific confidential details. Moreover, the avail- 521

able domain-specific data might fall short for 522

training an LLM from the ground up, adding to 523

the substantial resources required. Nevertheless, 524

domain-specific databases should be able to sup- 525

port knowledge graph construction. In such cases, 526

our GMeLLo approach serves as a crucial bridge, 527

allowing the harnessing of LLMs’ formidable capa- 528

bilities without the necessity of revealing sensitive 529

information. 530

5 Conclusion 531

In this paper, we present a memory-based knowl- 532

edge editing approach tailored for multi-hop ques- 533

tion answering. This method leverages the capa- 534

bilities of LLMs to analyze question sentences and 535

generate a relation chain, rather than providing 536

direct answers to the questions. The rationale be- 537

hind this lies in the observation that linguistic pat- 538

terns change more slowly than specific information. 539

We construct the KG directly from the dataset and 540

transform the relation chain, extracted by LLMs, 541

into a formal query to retrieve information from 542

the KG. This approach capitalizes on the strengths 543

of both LLMs and KGs—leveraging the high cov- 544

erage of LLMs and the precision of using KGs. By 545

utilizing LLMs to comprehend most sentences and 546

KBQA to provide accurate and explainable results, 547

we achieve a synergy between the two methodolo- 548

gies. 549
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Limitations550

Nevertheless, it’s important to note that this inves-551

tigation is still in its early stages. Although our552

performance surpasses that of baseline approaches,553

especially the multi-hop question answering when554

editing multiple facts simultaneously, we recognize555

the potential for further improvement. Looking556

ahead, our future plans involve enhancing GMeLLo557

in the following key areas:558

• Experiment with more sophisticated prompts,559

such as Chain of Thought (CoT) (Wei et al.,560

2022), to elevate performance.561

• Emphasize the identification of semantically562

similar relations, aiming to mitigate potential563

confusion between them and thereby enhance564

overall performance.565

• Contrast the output of LLMs with the golden566

relations in terms of semantics, prioritiz-567

ing meaningful matches over exact verbatim568

matches, to yield more correct responses.569

• Pioneering the integration of the strengths in-570

herent in both LLMs and KGs, we aim to571

extend their application to diverse research572

endeavors.573
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