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ABSTRACT

Over the past decade, advancements in neural networks have outpaced human-
level performance in a wide range of domains, including but not limited to natural
language understanding and image generation. This progress has led to signifi-
cantly larger networks with hundreds of billions of parameters, creating substan-
tial computational demands. We propose the re-introduction of ReLU activation
function to replace gradient-smooth alternatives during inference. We show that
this can reduce computational costs while achieving minimal accuracy degrada-
tion with the help of specialized knowledge distillation training. The effectiveness
of the proposed method is demonstrated by a wide variety of network architec-
tures, covering popular applications such as image classification, object detection,
and language modelling. We observed FPS improvement of 2-10% for Convolu-
tion based neural networks while observing only 1.8-2.6% accuracy degradation.
The different Transformer networks demonstrated accuracy difference of approx-
imately 1% between proposed ReLU and original GeLU networks with compara-
ble QPS. The improvement in performance is significantly noticeable on AI accel-
erators like ours, with ReLU based convolution networks showcasing theoretical
improvement of 41-74% compared to its SiLU based counterpart.

1 INTRODUCTION

In the past decade, neural networks have enjoyed unprecedented popularity and growth. Thanks to
investments in data collection, hardware improvements, and architecture design, their capabilities
have grown to match, and in some cases exceed that of humans in areas of natural language un-
derstanding, image generation, and more Bahrini et al. (2023)Rombach et al. (2022)Touvron et al.
(2023). These growing capabilities have come with significant increases in network size and num-
ber of parameters - in some cases, exponential Thompson et al. (2023)Hoffmann et al. (2022)Bender
et al. (2021). In an effort to balance these increasing computational demands, there have been signif-
icant investments in areas such as dedicated hardware (a.k.a AI accelerators), quantization, network
distillation, and more.

In this paper, we propose a simple method for reducing computational cost, while observing minimal
accuracy degradation, and which can be combined with quantization and hardware acceleration.
Specifically, we show that though the deep learning community has largely moved away from the
use of the ReLU activation function, it can be nonetheless be used as effectively, and more cheaply,
as its more complicated cousins such as ELU Clevert et al. (2016), GeLU Hendrycks & Gimpel
(2016), SiLU Elfwing et al. (2018), Swish Ramachandran et al. (2017), Mish Misra (2019), etc.

The ReLU activation function was a mainstay of the early- and mid-2010s deep learning network
design. However, it presents some challenges during training due to its gradient discontinuity at 0,
and its lack of a gradient in the negative domain. As such, many alternatives have been proposed
over the past years that aim to address these by smoothing the gradient at values ≤ 0. In particular,
the GeLU and SiLU activation functions have seen tremendous popularity due to their use in trans-
formers Devlin et al. (2019), Dosovitskiy et al. (2021) and the YOLO family of object detection
networks Ge et al. (2021), Wang et al. (2023), respectively.

Activation functions are applied element-wise to the result of a linear operation, typically a matrix-
matrix (GEMM) or matrix-vector (GEMV) multiplication. As such, they can be parallelized, and do
not generally dominate the compute, which is mostly taken by the matrix operations. However, they
still contribute some overhead. While not computationally intensive, alternative activation functions
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are nonetheless more costly than the humble ReLU, requiring the calculation of exponentials, divi-
sions, and multiplications. When viewed through the hardware acceleration lens, this can contribute
a non-trivial amount of computation to a layer. For example, on our own harware, which is capable
of executing a 512× 512 matrix-vector multiplication (GEMV) in 512 cycles, a SiLU computation
would add 10 − 15% additional cycles. In contrast, due to the use of quantization and dedicated
hardware, ReLU activation is effectively free.

Many applications would benefit greatly from throughput or latency improvements, while being
robust to small accuracy degradation through clever system design. For example, object detection on
streaming videos Li et al. (2020a) requires real time processing. Throughput increases can translate
directly to reduce costs in power consumption, amount of hardware required, and maintenance.
In contrast, small accuracy differences are easily mitigated by post-processing and use of object
permanence across frames.

Here, we show that while alternative activation functions are critical during training to achieve high
network accuracy, they are less critical during inference. With the use of knowledge distillation Hin-
ton et al. (2015), it is possible to train an equivalent network, changing the activation, and recovering
most or all of the accuracy. In contrast, training a network from scratch using the ReLU activation,
will typically not perform as well.

2 BACKGROUND

2.1 ACTIVATION FUNCTIONS

Neural networks are often formed by a combinations of a parameterized linear transformation fol-
lowed by a non-linear activation function to create a Universal Function Approximators Cybenko
(1989), Hornik et al. (1989), Funahashi (1989), Hornik (1991). Characterising the properties of
”good” activation functions is an imprecise science, there is no one-size-fits-all solution. In the
early days, the activation functions were usually modelled as approximation of the biological neu-
rons. The firing of the neurons inspired the use of Sigmoid and Tanh as network activation functions.
The main problem with these activation functions is their saturation with both higher and lower in-
puts leading to vanishing gradients problem Pascanu et al. (2013) hurting the speed of gradient-based
training of the network.

During the early- and mid-2010s, the ReLU became the most preferred activation functions in the
neural network architectures due to its simplicity, sparsity and better training convergence compared
to other activation functions like Sigmoid, Tanh, etc. However, the gradient discontinuity at 0 and
non-existent gradients for the negative values can lead to problems like dying neuron problem, where
the output of the neuron remains negative for most inputs leading to effectively zero gradient and no
learning. It has been shown that the dying neuron problem significantly affects deep networks, with
the proposed solution being to introduce a randomize, asymmetric initialization scheme to the neural
network’s weights Lu (2020). Before initialization was widely adopted, the LeakyReLU activation
function was created to allow a small, non-zero gradient when the input neuron was inactive Maas
(2013). LeakyReLU sacrifices the sparsity gained from ReLU for an escape from the dying ReLU
problem.

Another commonly used ReLU variant is the Exponential Linear Unit (ELU) Clevert et al. (2016).
The authors explain that LeakyReLU and PReLU He et al. (2015) should be preferred to ReLU for
training deep neural networks to avoid dying ReLU problem and also that the presence of negative
values yields a mean activation value near zero. However, one drawback to these activation functions
is their undesired ability to produce large negative values. ELU combats this effect by saturating
large negative values so it has the benefit of both worlds. Klambauer et al. (2017) introduce the
Scaled Exponential Linear Unit (SELU) which has self-normalizing properties with a special choice
of weight initialization. SELU neural networks automatically push the means and variances of
activation distributions to 0 and 1 respectively. SELU-wielding neural networks outperforms many
other activation functions on very deep constructions. Hendrycks & Gimpel (2016) introduce a new
function called the Gaussian Error Linear Unit (GELU) which is a Gaussian cumulative distribution
function. At the time of its introduction, GELU outperformed ReLU and ELU across many computer
vision, natural language processing (NLP) and speech tasks. Today, GELU is the state of the art
(SOTA) activation function for most transformer-based models.
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Lastly, Ramachandran et al. (2017) automatically searched for activation functions using their Re-
current Neural Network Controller. Their search yielded the Swish function defined as f(x) =
xσ(βx) where β can be chosen arbitrarily. Note that when β = 1, the function is called the sig-
moid linear unit (SiLU). Swish consistently shows comparable or improved performance compared
to ReLU, LeakyRelu, PReLU, ELU, SELU, and GELU. The advancements of activation functions
has brought higher model accuracy at the cost of extra computation.

2.2 KNOWLEDGE DISTILLATION (KD)

In the context of machine learning, knowledge distillation (KD) is the process of using a teacher
model to transfer knowledge to a student model. The most common example of KD describes the
teacher model to be a wider or deeper model with the student model being narrower or shallower. KD
attempts to transfer the teacher’s knowledge to the student model Hinton et al. (2015), by using the
prediction of the teacher model as a ”soft” training label for the student. The method was evaluated
using image classification task on the MNIST dataset, Deng (2012) and demonstrated promising
results. Romero et al. (2015) propose a two-stage training strategy, where a hint/guided layer pair
is chosen from the middle of the teacher and student models respectively. The first training stage
performs KD on the hint/guided pair such that intermediate representations from the teacher are
distilled to the student. The second stage of KD is performed like Hinton et al. (2015).

2.2.1 OBJECT DETECTION NETWORKS

These two strategies of mimicking features and soft labels guided KD for object detection models.
Chen et al. (2017) incorporated a class-weighted cross entropy loss to address class imbalance issue,
and adopted the teacher regression output as an upper threshold for the student to attain, rather than
adhering to a rigid target. It also employed feature learning from intermediate layers to improve
the training process. Guo et al. (2021) empirically validated that imitating feature maps from the
Feature Pyramid Network (FPN) yields better results than feature maps from the model backbone.
Li et al. (2021) demonstrated large feature map differences between student and teacher network
with similar output predictions suggesting imitating complete feature map can lead to unexpected or
wasted gradients. The problem of weaker anchor-object relationship especially for hard examples
is addressed by Li et al. (2021) by proposing a novel, rank mimicking process to match multiple
positive anchors to a certain instance and prediction guided feature imitation to focus on regions
with large prediction differences. Another prominent issue with many detector is formulating the
object detection multi-class classification as multiple binary classifications [Lin et al. (2017), Li et al.
(2020b), Tian et al. (2019), Zhang et al. (2020)], disregarding the structural relationship between
different categories. While most methods focus either on logit mimicking or feature imitation, Zheng
et al. (2022) presented a novel localization distillation method inspired by viewing the bounding box
regression as a probability distribution.

2.2.2 TRANSFORMER NETWORKS

Transformer networks are typically computationally intensive, prompting the adoption of KD as a
technique for model compression. In order to reduce the size of the language model, Sanh et al.
(2020) leveraged KD during pre-training phase by adopting three different losses consisting of lan-
guage modeling-, KD- and cosine-distance loss. Instead of employing KD during pre-training, Sun
et al. (2019) introduced Patient Knowledge Distillation (PKD) approach for task-specific training
utilizing the output from the last layer as well as multiple intermediate layers of the teacher model
for incremental knowledge extraction. Extending these approaches, Jiao et al. (2020) proposed a
new Transformer distillation method comprising of three distillations: Transformer-layer distillation
(feature mimicking for a layer’s attention and hidden state outputs), Embedding-layer distillation
(hidden state distillation for the embeddings), and Prediction-layer distillation (teacher prediction
logits imitation). All three distillations are applied with a two-stage learning framework, during pre-
training followed by task-specific fine-tuning. As the KD for transformers evolved, Lu et al. (2022)
proposed a best-practice guideline based on empirical analysis of the different components like size
of the student model, hyperparameters of the KD loss etc.
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3 FORMULATION

3.1 RECTIFIED LINEAR ACTIVATION (RELU)

Activation functions play a pivotal role in introducing essential non-linearity to neural networks, en-
abling them to effectively learn an extensive array of functions. The pursuit of refining a network’s
capacity to model complex data patterns has led to the exploration of a diverse variety of activa-
tion functions. Among these, Rectified Linear Unit (ReLU) has been a popular choice, defined by
equation 1.

f(x) =

{
0, x < 0

x, if x ≥ 0
(1)

Its mathematical simplicity, coupled with its semblance to biological neurons, has made it a popular
selection over the years. This simplicity has also an added advantage during quantized inference,
particularly for energy-efficient AI hardware.

However, ReLU is a non-smooth function and its derivative is undefined around the zero. This
characteristic can lead to the ’dying ReLU’ problem, wherein certain neurons effectively ’die’ as
they consistently output zeros. The absence of gradients for inputs less than zero prevents weight
updates during training, causing these neurons to remain unchanged. This limitation has encouraged
the investigation of alternative activation functions such as LeakyReLU, Exponential Linear Unit
(ELU), Sigmoid Linear Unit (SiLU), Gaussian Error Linear Unit (GeLU), and others. These non-
linear functions maintain smoothness and have the potential to enhance the modeling capabilities of
the network. While these activation functions offer substantial advantages during network training,
they can noticeably decelerate the inference process.

Neural network inference is frequently performed on energy-efficient hardware, employing data
types of reduced precision. Among these, Int8 (8-bit integer) is one of the most popular data types.
The precision of neural network parameters and activations are reduced to 8-bit integers, which helps
save memory and computation resources while still maintaining reasonable accuracy.

The formula for quantized ReLU under INT8 quantization can be expressed as follows:

xqReLU =

{
0, if x < 0

⌊255 · x/max {Xc}⌋, x ≥ 0
(2)

where x is the float input to the quantized ReLU and Xc is the calibration dataset. The scale factor
255/max {Xc} is usually combined with previous or next linear layer and the resulting function
for ReLU maps to max {0, x}. The quantization process clips values to a specified maximum or
minimum value, leading to no extra operations required for ReLU activation function. On the other
hand, the other activation functions may require additional operations such as exponentiation, mul-
tiplication, etc. Some low bit quantization schemes can use more efficient approaches, such as
precomputed lookup tables, but all these approaches result in larger latency and higher memory
consumption.

3.2 METHOD

We propose a strategy in which intricate activation functions within a network can be substituted with
ReLU. By incorporating knowledge distillation during the training of the ReLU-based network, the
accuracy of the original model can be retained. The proposed algorithm is described as follows:

1. Begin by training a network employing arbitrary activation functions for the designated
task. Alternatively, select a pre-trained network that already uses complex activation func-
tions. This network is effectively considered as a teacher model.

2. Transition by replacing the intricate activation functions with ReLU, effectively designating
this transformed network as the student model.

3. Initialize both the teacher and student models using the trained weights of the teacher
model.

4. Employ task-specific loss functions and introduce distillation loss during the training of the
student model. This combination of loss functions enables the student model to not only
learn from the original task but also leverage insights distilled from the teacher model.

4



Under review as a conference paper at ICLR 2024

By following this sequence of steps, we can effectively replace complex activation functions with
ReLU while maintaining the accuracy of the network. A diverse array of distillation loss functions is
available, tailored to various models and tasks. Next, we describe three different distillation losses,
each aligned with a different task.

3.2.1 IMAGE CLASSIFICATION

For image classification networks built upon transformer architectures, we employed the distillation
loss introduced by Touvron et al. (2021) as formulated by the following equation 3.

LhardDistill
global =

1

2
LCE(ψ(Z

s), y) +
1

2
LCE(ψ(Z

s), yt) (3)

Where:

• Zs is the logits of the student model, y is ground truth label and yt = argmaxc Z
t(c) be

the hard decision of teacher model with Zt representing logits of teacher model.

• ψ is softmax function and LCE is cross-entropy loss.

3.2.2 OBJECT DETECTION

CNN based object detection networks are trained using channel-wise knowledge distillation loss
described by equation 4 adopted from Shu et al. (2021).

LDistill =
1

C

C∑
c=1

W ·H∑
i=1

ψ(f tc,i) log

[
ψ(f tc,i)

ψ(fsc,i)

]
(4)

Where:

• fs and f t are the feature activation maps of the student and teacher models respectively.

• c = 1, 2, ..., C indexes the channel and i indexes the spatial location of the channel.

• ψ is softmax function.

3.2.3 LANGUAGE MODEL

KL-Divergence loss is employed for Distillation of language models and it is defined by equation 5

LDistill
KLD = ψ(Zt) log

[
ψ(Zt)

ψ(Zs)

]
(5)

where Zs and Zt are the logits of the student and teacher model respectively.

3.2.4 SMOOTH ACTIVATION TRANSITION (SAT)

While ReLU demonstrates benefits during the inference process, it often falls behind during training
of modeling intricate data patterns. We recognise that many of the complex activation functions
like SiLU or GeLU are largely similar to ReLU while differing around the zero-point as shown by
figure 1. This similarity can help in transitioning smoothly from complex activation function to
simpler efficient activation function. We proposed to modify the original activation function to be a
combination of original function as well ReLU activation function with a weighted sum defined by
equation 6.

fSAT (x) = γf(x) + (1− γ)max(0, x) (6)

f(x) is the original activation function and γ is a hyper-parameter modified from 1 to 0 during the
course of the training.

This method of smooth transitioning from original function to ReLU can help the network to stay
around the local optimal point while moving to a new and efficient non-linear activation function.
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Figure 1: Activation functions: ReLU, SiLU and GeLU

4 RESULTS

This section demonstrate accuracy and inference speed impact of ReLU based networks for different
networks performing distinct tasks.

4.1 IMPLEMENTATION DETAILS

We made modifications to the original code by replacing the activation function with ReLU and
introduced knowledge distillation where it was not initially implemented. We trained ReLU-based
networks using two distinct sets of initial weights: one with the original baseline model weights,
and the other with randomly initialized weights. Throughout this process, we maintained the origi-
nal network training parameters and augmentation techniques, with adjustments made solely to the
learning rate, batch size, and the number of epochs as necessary. Subsequently, we carried out an
inference acceleration analysis on RTX-4090 GPUs for the trained networks by converting them into
INT8 TensorRT engines.

4.2 PERFORMANCE COMPARISON

We present a comparative analysis of speed and accuracy between ReLU-based networks and the
original SiLU model for single-stage object detectors DamoYolo1, YoloXL2, and YoloV73, as shown
in Table 1. The networks are trained using knowledge distillation loss described in section 3.2.2
Accuracy was measured on the MSCOCO validation set using the FP32 data type, while FPS was
measured using TensorRT INT8 engines. In the table, ’B’ represents baseline models with pretrained
weights, whereas ’KD’ and ’B+KD’ represent trained networks using knowledge distillation, start-
ing from randomly initialized and baseline model weights, respectively. Our observations indicate
that while the accuracy of the network decreased by 1.8-2.6%, the FPS improved by 2-10%.

In order to further improve accuracy of the relu based model, we trained the models using smooth
activation transition method described in section . The models are trained by starting from the base-
line SiLU model weights and modifying the γ value from 1 to 0 with the interval of 0.1. The results
are presented in table with almost equivalent or slightly poor performance compared to simply train-

1https://github.com/tinyvision/DAMO-YOLO
2https://github.com/Megvii-BaseDetection/YOLOX
3https://github.com/WongKinYiu/yolov7
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Method Activation FPS AP AP 50 AP 75 APS APM APL

DamoYolo(M)-B SiLU 968 50.0 66.9 54.7 30.5 54.8 67.6

DamoYolo(M)-KD ReLU 999 44.3 60.8 48.4 25.2 48.5 62.4

DamoYolo(M)-B+KD ReLU 999 48.7 65.8 53.2 29.7 53.5 65.9

DamoYolo(M)-B+KD-SAT ReLU 999 48.5 65.6 52.8 29.2 53.3 65.9

YoloX(L)-B SiLU 802 49.7 68.0 54.0 32.3 54.9 65.1

YoloX(L)-KD ReLU 844 45.9 64.4 49.8 28.1 50.4 60.0

YoloX(L)-B+KD ReLU 844 48.9 67.5 53.1 31.6 53.5 64.2

YoloX(L)-B+KD-SAT ReLU 844 48.5 67.1 52.5 30.9 52.1 63.6

YoloV7-B SiLU 742 51.2 69.7 55.9 31.8 55.5 65.0

YoloV7-KD ReLU 810 46.4 64.2 50.6 30.0 51.1 60.2

YoloV7-B+KD ReLU 810 50.3 68.6 54.6 33.3 54.9 66.0

Table 1: Performance comparison of ReLU vs SiLU networks for state-of-the-art object detectors
on COCO validation dataset. B indicates baseline weights, KD is used for training from random
weights with knowledge distillation, B+KD indicates training from pre-trained weights with knowl-
edge distillation, and B+KD-SAT denotes object detectors trained using smooth activation transition
method. FPS is measured using TensorRT engine in INT8 on RTX 4090 GPUs.

Method Activation QPS % Exact Match % F1

Bert(Base-SQuAD)-B GeLU 2003 81.48 88.69

Bert(Base-SQuAD)-KD ReLU 1977 82.47 89.39

Bert(Base-SQuAD)-B+KD ReLU 1977 82.51 89.41

Table 2: Comparison of ReLU vs SiLU network performance for the BERT-Base Model SQuAD
task. FPS is measured using TensorRT engine in INT8 on RTX 4090 GPUs

ing ReLU model with baseline weight. The different variations of hyperparameters may result into
better accuracy which could not be explored due to limited time and resources.

We also conducted an evaluation on the impact of replacing GeLU activation with ReLU activation
in transformer-based networks. Specifically, we trained a Bert-Base4 network with ReLU activation
for the SQuAD task, employing knowledge distillation loss as described in the section 3.2.3. The
results, as presented in Table 2, demonstrate that the ReLU-based network outperforms the original
GeLU-based network in terms of both exact match and F1 score.

Furthermore, we extended our analysis by training another transformer-based network, DeiT5, with
ReLU activation for an image classification task, utilizing knowledge distillation loss as described
in the section 3.2.1. The results, showcased in Table 3, reveal comparable performance between the
baseline and ReLU-based networks.

4.2.1 AI ACCELERATOR SPEED COMPARISON

In order to analyse the impact of the simplified computation of ReLU activation on dedicated AI
hardware, we theorize the performance on one of hardware for popular object detection networks
DamoYolo and YoloXL. The results presented in table 4 demonstrates significant FPS improvement
of 41-74% and latency reduction of 37%. We observed the cycle count difference between ReLU
and SiLU can be of the order of 100x validating higher inference of ReLU networks.

4https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/LanguageModeling/BERT
5https://github.com/facebookresearch/deit
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Method Activation Acc1 Acc@5

DeiT(Small)-B GeLU 81.2 95.4

DeiT(Small)-KD ReLU 80.5 95.0

DeiT(Small)-B+KD ReLU 81.0 95.3

DeiT(Base)-B GeLU 83.4 96.5

DeiT(Base)-KD ReLU - -

DeiT(Base)-B+KD ReLU 82.9 96.2

Table 3: Comparison of ReLU vs SiLU network performance for the transformer based image clas-
sifier DeiT models on ImageNet dataset.

Method Activation Latency FPS

DamoYolo(M)-B SiLU 9.05 320

DamoYolo(M)-B+KD ReLU 5.69 559

YoloXL-B SiLU 15.04 221

YoloXL-B+KD ReLU 9.42 313

Table 4: Comparison of ReLU vs SiLU network inference speed on dedicated AI Accelerator

5 SUMMARY

In this study, we demonstrated the effectiveness of ReLU based networks on variety of applications
and network architecture with minimum accuracy degradation. For convolution networks, when em-
ploying pre-trained baseline weights, the observed accuracy degradation ranged from 1.8% to 2.6%,
significantly outperforming the 7.6% to 11.4% degradation experienced when initializing with ran-
dom weights. The minor accuracy degradation of ReLU network with baseline weights brought
2-10% FPS improvements on GPU and 41-74% FPS improvements on our dedicated AI hardware.
In case of transformer network, Bert-Base, ReLU network has shown accuracy improvement of 1.2%
when starting from baseline pre-trained as well as random initial weights. However, considering the
modern GPU performance is highly optimized for transformers, transitioning to the ReLU activation
function can reduce the level of optimization, resulting in a 1.3% reduction in QPS when compared
to the GeLU network on GPU. Additionally, DeiT networks exhibited only a slight accuracy drop of
less than 1% when using both baseline and randomly initialized weights.With comparable accuracy
achieved by ReLU and GELU-based transformer networks, along with only minor accuracy degra-
dation observed in Convolution-based networks, it becomes evident that ReLU-based networks offer
a viable option for the inference accelerators, offering significant speedup benefits.
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