Under review as submission to TMLR

Trading-off Statistical and Computational Efficiency
via IV-step MDPs: A Policy Gradient Approach

Anonymous authors
Paper under double-blind review

Abstract

In reinforcement learning, algorithm performance is typically evaluated along two dimensions:
computational and statistical complexity. While theoretical researchers often prioritize
statistical efficiency—minimizing the number of samples needed to reach a desired accuracy—
practitioners, in addition to the sample complexity, also focus on reducing computational costs,
such as training time and resource consumption. Bridging these two perspectives requires
algorithms able to deliver strong statistical guarantees while remaining computationally
efficient in practice. In this paper, we introduce MetaStep, a meta-algorithm designed to
enhance state-of-the-art RL algorithms by improving their computational efficiency while
maintaining competitive sample efficiency. MetaStep is based on the novel notion of W-
step Markov decision process (MDP), where, instead of performing a single action and
transitioning to the next state, the agent executes a sequence of W actions before observing
the resulting state and collecting the discounted W-step cumulative reward. First, we provide
a theoretical analysis of the suboptimality introduced in the optimal policy performance when
planning in a W-step MDP, highlighting the impact of the environment stochasticity. Second,
we apply MetaStep to GPOMDP, a well-known policy gradient method, and theoretically
investigate the advantages of learning in the W-step MDP in terms of variance reduction
and improved sample complexity. Finally, empirical evaluations confirm that MetaStep
reduces computational costs while preserving—and, in certain scenarios, improving—sample
efficiency.

1 Introduction

Reinforcement learning (RL, Sutton and Barto, 2018) has achieved remarkable success across a wide spectrum
of complex real-world control tasks, such as robotic manipulation (Peters and Schaal, 2006), autonomous
driving (Likmeta et al., 2020), game playing (Silver et al., 2018), and financial portfolio management (Jiang
and Liang, 2017). Among RL methods, policy gradient (PG, Sutton et al., 1999a) approaches have gained
significant popularity (Deisenroth et al., 2013) due to their simplicity (Silver et al., 2014), flexibility, and
effectiveness (Peters and Schaal, 2008) in handling high-dimensional continuous control problems, which are
prevalent in many real-world settings.

Despite these advances, implementing RL solutions in large-scale real-world control problems remains
challenging due to two main limitations: sample inefficiency and high computational cost. Indeed, RL
algorithms typically require extensive interaction with the environment to learn effective behaviors (Sutton
and Barto, 2018), making them expensive and often impractical in resource-constrained scenarios. While
theoretical research focuses on improving sample efficiency, practitioners often rely on simulated environments
where data is abundant (Silver et al., 2016) and where the use of computationally inefficient learning algorithms
to process the data may become the bottleneck.

One of the major challenges in RL is represented by the curse of horizon (Liu et al., 2018), which refers to the
exponential growth in complexity (both statistical and computational) w.r.t. the decision horizon. As the time
horizon extends, the estimation of future rewards becomes increasingly uncertain due to the accumulation of
errors. This uncertainty can result in suboptimal behavior, as the impact of distant future rewards diminishes

Under review as submission to TMLR

compared to immediate rewards, complicating the learning process (Liu et al., 2020). This phenomenon
impacts sample complexity, as longer horizons require more data to accurately estimate long-term returns
and reduce variance in gradient-based policy search. From a computational complexity perspective, longer
horizons demand more resources to simulate and backpropagate through lengthy decision sequences. This
represents a serious challenge for time- or budget-constrained applications. To address the curse of horizon,
several approaches have been explored from both perspectives. From a statistical complexity point of view,
Hierarchical RL (Sutton et al., 1999b; Barto and Mahadevan, 2003; Pateria et al., 2022) methods create
temporal abstractions in the action space, allowing for more structured decision-making and partitioning of
the time horizon. Instead, action-persistence (Metelli et al., 2020; Sabbioni et al., 2023) focuses on identifying
the best action to be repeated several times to reduce the effective planning horizon and consequently the
sample complexity. However, forcing the same action to be repeated can sometimes oversimplify the problem
and result in too much rigidity. Finally, open-loop approaches Bubeck and Munos (2010), which involve
executing a sequence of actions without intermediate feedback, simplify the decision process over long horizons
at the cost of poor performance in stochastic environments where reactive behavior is critical. Differently,
from the computational complexity perspective, approaches like frame skipping (Kalyanakrishnan et al., 2021)
and action persistence (Metelli et al., 2020), where an agent selects and repeats an action for several frames
or time steps without further decisions, have been shown to reduce inference overhead by decreasing the
number of decisions an agent must compute per episode. While effective in lowering computational demands,
these approaches may compromise precision in tasks requiring fine-grained control.

In this paper, we tackle the curse of horizon problem in order to reduce both the statistical and computational
complexity. Our goal is to bridge action-persistence and open-loop strategies to combine their complementary
advantages: reducing the effective horizon while alleviating the computation burden during training. Action
persistence offers various benefits, particularly in real-world control tasks where the optimal action evolves
smoothly across states, as is common in many physical systems. On the other hand, open-loop strategies
significantly reduce computational demands by eliminating the need for frequent state observations to influence
the action selection process.

Original Contribution. This paper introduces the novel framework of W-step Markov Decision Process
(W-MDP), where the agent plays sequences of W actions without observing intermediate states. We design
MetaStep, a meta-algorithm designed to be paired with other RL approaches, shifting the agent-environment
interaction in W-MDPs. Eventually, we adopt MetaStep on top of GPOMDP (Baxter and Bartlett, 2001),
presenting a statistically and computationally efficient variant to learn in this setting. The contributions of
this work are summarized in more detail below.

o In Section 2, we present W-step Markov Decision Processes (WW-MDPs). Then, we derive a novel result
upper bounding the performance difference in terms of optimal value functions between planning in
the original MDP and planning in the W-step MDP (Theorem 2.1), highlighting which features of the
environment are responsible for the performance loss.

e In Section 3, we present MetaStep, our meta-algorithm, and we discuss how it translates into mutating
the usual RL interaction protocol between agent and environment.

e In Section 4, we apply MetaStep on GPOMDP, a widely-adopted action-based policy gradient algorithm. We
study and discuss its theoretical guarantees in terms of smoothness properties of the objective function and
variance reduction, and show how these properties positively affect the convergence guarantees (Theorems
4.3 and 4.4).

e In Section 5, we numerically evaluate our solution over GPOMDP for different window sizes W and discuss
its empirical performance compared to the base implementation of GPOMDP both in terms of learning speed
and computation time.

Related works are discussed in Section 6. The proofs of all the statements are provided in Appendix A.
Additional experimental details are discussed in Appendix B.

Under review as submission to TMLR

2 Setting

In this section, we start by introducing the background notions on MDPs. Then, we present the W-MDP
framework and the learning problem (Section 2.2). Finally, we propose a novel result on the optimal
performance bias for W-MDPs (Section 2.3).

2.1 Preliminaries

Markov Decision Processes. A Markov Decision Process (MDP, Puterman, 1990) is defined as a
tuple M := (S, A, P,r,v,H, up), where S and A are the state and action spaces, respectively,
P:S8xA— A(S) is the transition model, where P(s’|s,a) specifies the probability of landing in state
s’ € S after having played action a € A in state s € S, 7 : § X A = [~ Rmax, Rmax| i$ the reward function,
where 7 (s, a) specifies the reward the agent gets by playing action a in state s and Ryax € R>g, v € [0, 1]
is the discount factor, H € NU {+o0} is the time horizon and pg € A(S) is the initial-state distribution.!
A trajectory 7 = (So, ag, ..., Sg—1,am—1) of length H is a sequence of H state-action pairs. The discounted
return of a trajectory 7 is R(7) := Zth_Ol Yir(sn, an).

Policies, Value Functions, and Optimality. The agent’s behavior is governed by a (possibly stochastic)
Markovian policy 7 : § — A(A) where 7(als) is the probability to play action a € A when in state
s € §. The goal of an agent is to find the policy that maximizes the ezpected cumulative discounted reward
J(m) = Ergr [R(7)], where d™ is the distribution over trajectories induced by policy 7. Moreover, we define
the state value function (Sutton and Barto, 2018) as the expected discounted cumulative reward induced

by policy 7 in state s € S: V™ (s) = E, {Zf__ol Yr(sn, an)

S0 = s} . We define 7* as an optimal policy as a

policy maximizing the expected discounted reward for each state s € S: 7* € argmax, V7 (s), where II is
the set of Markovian policies. We denote with V*(s) = V™ (s) the value function of an optimal policy 7*.
We consider parametric policies 7y, i.e., policies characterized by a parameter vector §. We use the notation
J(0) to express the expected performance of policy g.

2.2 W-step Markov Decision Processes

Building on the definition of MDPs, we introduce the new concept of W-step Markov decision processes
(W-MDPs), which redefines MDPs to handle W-step actions.

Definition 2.1 (W-MDP). Let M be an MDP. For any W € N>1, the W-MDP is defined as My =
(S, AV Py, rw, H, 7, wo), where AW ={a = (a1,...,aw) : a; € AVi € {1,...,W}} is the space of W-step
actions, Py : Sx AW — A(S) is the W -step transition model recursively defined as Py = P and for W € N>,
s€S, and (a1,...,aw) € AV as:

Py (s, (al,...,aw)):/PW,1(5’|5,(a17...7aW,1))P(~|s',aW)ds',
s

riy Sx AV — [f 11__7,:‘/ Roaz, lfj,:v Rmaz} is the W -step reward function defined as r1 = r and for W € Nx>o,
s€S, and (a1,...,aw) € AV as:

/

rw (s, (a1,...,aw)) =r(s,a1) + 7/ P(s'|s,a1)rw_1(8', (ag,...,aw))ds’,
s
H = [H/W] is the time horizon, and 5 =¥V is the discount factor.

Therefore, this definition of W-MDP generalizes standard MDPs, as for W = 1 we recover the base MDP, i.e.,
M = Mj. In a W-step MDP, the policy is defined as function 7% : S — A(AW). At each decision step (i.e.,
when h mod W = 0), the agent samples a sequence of actions according to its policy and sequentially plays it
for the next W steps. The parameter W > 1 can be viewed as an environmental parameter (influencing P, r,
H, and «) that can be optimized to improve the agent’s learning process. Notably, the effective horizon in

My is reduced to 1—}YW < ﬁ The effect of open-loop actions is similar to reducing the planning horizon,

IWe admit H = oo only for v < 1.

Under review as submission to TMLR

either by explicitly reducing the task’s discount factor and the trajectory length. As presented in Sections 4
and 5, the reduced effective horizon provably brings improvements both in terms of sample and computational
complexity.

2.3 Performance bias on W-MDPs

The W-MDP allows for a lower effective horizon by aggregating steps. This aggregation is convenient
in environments with deterministic transition probabilities but may weaken the performance when the
environment is highly stochastic, as we operate partially open-loop, losing controllability. In this part, we
study how much we lose in terms of the optimal value function because we are not fully able to control what
happens in the intermediate steps and fully manage the environment’s stochasticity.

Before that, we introduce the W -step value function VV’{,W, which evaluates the performance of policy 7" in
the W-step MDP starting from any state s € S:

H-1
w
VV?} (S) = Eﬂw E Wh’r’w(SWh, (aWh, ce 7aWh+W—1)) So =S| . (1)
h=0

An optimal policy 7* is a policy maximizing the W-step value function from every state s € S, i.e.,
T € argmax,w cpw V‘Z{,W (s), where I is the set of Markovian policies for the W-MDP. We define the
optimal W -value function as Vyi,(s) = Vi (s). We are now ready to bound the difference in the optimal value
function when moving from the original MDP to the W-step MDP.

Theorem 2.1. Let M be an MDP, let W € N>1, and let My, be the corresponding W -step MDP. Then, for
every s € S, it holds that:
Wy
i g
V*S—V*s<2Rmaz(— >DP,
(s) w(s) 1I—7)2 (1-q7)2 (P)

where:

o ; _p(d
D(P) = s;relg);A{?elg{l P(s |s,a)}}.

Some comments are in order. As expected, for W = 1, the performance difference between the W-step
MDP and the normal MDP is equal to 0, i.e., V*(s) = V;*(s). Furthermore, we notice that the difference
gap increases linearly with D(P), which represents the index of stochasticity of the original transition
model P. When P is deterministic, D(P) = 0 and, consequently, no suboptimality is introduced, i.e.,
V*(s) = Vi3, (s). This is compliant with the known fact that open-loop control is optimal for deterministic
environments. Instead, when P is “maximally stochastic”, i.e., P(s'|s,a) = 1/5 for every s’ € S, we have
that D(P) =1 — 1/ taking its maximum value.

3 MetaStep

In this section, we present MetaStep, providing an overview of the meta-algorithm, how it interacts with the
environment, and showing the differences w.r.t. classic agent-environment interaction.

The classic RL agent-environment interaction follows a continuous loop. Initially, the agent observes the
current state s of the environment. Based on this observation, the agent selects a (single-step) action a
following policy 7 (i.e., a ~ 7(+|s)). Subsequently, the agent plays the action a, and the environment responds
by transitioning to a new state s’ and providing the agent with feedback in the form of a reward r, reflecting
the immediate benefit or cost of the action. This process repeats for a number of steps H, as the agent
attempts to adapt its behavior based on the environment’s responses.

Differently, in MetaStep, whose interaction protocol is presented in Algorithm 1, we redefine the communication
protocol between the agent and the environment, as the agent interacts with an W-MDP (as defined in
Definition 2.1). At each iteration, a sequence of W € N> actions is sampled from a policy 7"V observing
only the state at time step h when h mod W = 0. During the W sequence of steps, we collect the cumulative
discounted reward for W steps and evaluate it as a single-step reward signal. Compared to the classic

Under review as submission to TMLR

Algorithm 1: MetaStep — Interaction Protocol.

Input : Horizon H, parameter W, policy 7%V
for h € [[H/W]] do
Observe state s
Sample action @ = (a1, ...,aw) ~ 7V (-|s)
for w € [W] do
| Play action a,, and collect reward r,,
end

end

interaction protocol, MetaStep uses an inner loop of W iterations to manage the usage of actions and
the collection of associated rewards, the next state s’ is observed only after W steps and represents the
consequence of the W actions played in an open-loop sequence. This behavior implicitly brings a trade-off in
our approach. From one side, we do not have to observe the state at each interaction, reducing the effective
horizon of the task and lightening the computational burden during the training phase, as we will see in
Section 5 (the effective horizon of the task is inversely proportional to the parameter). On the other
hand, without observing the current configuration of the environment, we could end up obtaining suboptimal
performance, especially in highly stochastic environments, as detailed in Theorem 2.1.

4 MetaStep on GPOMDP

In this section, we investigate the performance of MetaStep when applied to GPOMDP (Baxter and Bartlett,
2001), which serves as a representative case due to its well-understood theoretical properties. We begin by
illustrating how our meta-algorithm (Algorithm 1) can be instantiated within the GPOMDP framework, and
then proceed to analyze its sample complexity.

Preliminaries on Policy Gradient and GPOMDP. Policy gradients are a class of RL algorithms for searching
the best-performing policy over a class of parametrized differentiable stochastic policies Ilg = {mp : S —
A(A) : 0 € © C R4}, where © is the parameter space. At each iteration k € [K], a dataset of N trajectories
TE = {r:}¥Y,, where N € N is the batch size, is collected using policy 7g,. Then, the policy parameter is
iteratively updated via gradient ascent:

Ops1 = O + 1V J (0x), (2)

where 17 > 0 is the step size and ﬁng(Hk) is an estimate of the policy gradient using the batch TE.
The most common policy gradient estimators are REINFORCE (Williams, 1992) and GPOMDP (Baxter and
Bartlett, 2001)) that can be expressed as V.J(6;) = + vazl g(7i|01) where 7; € TE for every i € [N] and
9(7i|0k) = Vo log p(7;|0k) R(7;), being p(-|6) the density function over trajetories induced by mp and R(7) the
trajectory return. In this work, g will refer to the GPOMDP estimator, which is preferred over REINFORCE due
to its smaller variance and is given by:

R | N H-l) h

Vo J(0) =N ; hz_;) Y7 (8i,n, @ih) 2

Vologmg(a;ulsiu), 7€ Th, i€[N]. (3)
0

Algorithm 2 reports the pseudocode of the GPOMDP in its base implementation.

4.1 Running MetaStep on GPOMDP

We now proceed to integrate GPOMDP (Algorithm 2) in the MetaStep procedure (Algorithm 1). The result is
presented in Algorithm 3. Here, each episode is divided into H/W steps. For each step, we observe the state
sp and we sample a sequence of W actions from the parametric ng . Each action in the sequence is played,
and the corresponding reward r,, is observed. These rewards are aggregated into a so-called W-reward, which
sums the rewards weighted by discount factors y*~1. The tuple (sp,aw,rw) is then added to the trajectory
7;. After data collection, the algorithm estimates the gradient of the objective function J(6) with respect

Under review as submission to TMLR

Algorithm 2: GPOMDP.

Input : Number of iterations K, batch size N, initial parameter vector 6y, environment M, horizon H,
discount factor v, learning rate n
Initialize 6 < 6y
for i € [K] do
Set the stochastic policy parameters: gy
for [€ [N] do
Initialize trajectory 7; as an empty tuple
for h € [H] do
Observe state sy,
Play action aj, ~ my(-|sp) and observe reward ry,
Add to 7 the tuple (sp,an,Th)
end

end

Estimate the gradient according to Equation (3)
Update the policy parameter vector: 0 < 6 + 77@9 J(0)
end

Return ¢

to 0, using an estimator based on the observed trajectories and discounted rewards, following the standard
GPOMDP estimator, applied to the W-MDP.

This new structure has several effects from both the computational and the statistical perspectives.

Computational Complexity. From a computational perspective, the proposed approach offers two key
advantages. First, recalling the GPOMDP estimator function (Equation 3), adopting MetaStep makes the
estimation faster as one of the summations is over H/W terms instead of H. Second, we reduce the number
of times we query the policy by a factor W. While the single queries may be more costly due to the extended
temporal abstraction of the action, the overall reduction in query frequency leads to an improvement in
the training phase, especially in settings where the policy evaluation might be a bottleneck. An extensive
empirical evaluation of this phenomenon is provided in Section 5, where we examine the computational
aspects across tasks of increasing complexity.

Statistical Complexity. Here, we analyze the statistical complexity of MetaStep over GPOMDP. The smaller
discount factor v and the reduced effective horizon H/W lower the variance caused by the long horizon,
even if the single rewards are larger and the problem’s scale does not change.

Let K € N be the number of iterations and N € N the batch size; given an accuracy threshold ¢ > 0, our
objective is to bound the sample complexity NK. We use J*(W) to refer to the optimal performance with
parameter W, i.e., J*(W) = supyeg,, J(0; W), and with J(0; W) the performance obtained by the policy
parametrization 6 using parameter W.

To support the theoretical analysis, we present the following assumptions on the smoothness of the performance
function, which are standard in the study of sample complexity (Yuan et al., 2022).

Assumption 4.1 (Bounded Gradient). There exist G > 0 such that YW € [H] the expected norm squared
of the gradient of logmy (-|s) satisfies:

Eonri¥ (15) [HV@ logwgv(a|s)”2} <G? VseS.
Assumption 4.2 (Bounded Hessian). There exist F' > 0 such that YW € [H] the expected spectral norm of
the Hessian of logm)’ (+|s) satisfies:

E [HV% logwgv(a|s)”] <F, VseSs.

arll (-1s)

Intuitively, these assumptions ensure that the effect on the environment dynamics and reward (and on their
gradient), after playing an action, is controllable. Given Assumptions 4.1 and 4.2, we can now state a bound

Under review as submission to TMLR

Algorithm 3: MetaStep on GPOMDP.

Input : Number of iterations K, batch size N, initial parameter vector 6y, parameter W, environment
My, horizon H/W , original discount factor v, discount factor vV, learning rate n
Initialize 6 < 6
for i € [K] do
Set the stochastic policy parameters: gy
for I € [N] do
Initialize trajectory 7; as an empty tuple
for h € [H/W] do
Observe state sy,
Sample action sequence ay ~ 7 (+|sy)
for w € [W] do
Play action a,, and observe reward r,
Update the W-reward ryw < mw +7* " (841w, Q)
end
Add to 7; the tuple (sp,aw,rw)
end

end
Compute the gradient estimator:

H_q h
~ 1 v
VoJ(0) + N Z Z (Vo log we(a7i7u|smu)> AWV (87, 1y s, 1)
i=1 h=0 \u=0
Update the policy parameter vector: 6 < 6 + 77@9 J(0)
end
Return 0

on the variance of the gradient estimators and on the smoothness of the performance function for W-step
MDPs.

Lemma 4.1. Under Assumption 4.1, the variance of the GPOMDP estimator with batch size N is bounded for
every W € [H] as:
S Rhax G*(1-17") [
Var[VoJ(0; W)] < max 1-—
Vel OIS T N

Lemma 4.2. Under Assumptions 4.1 and 4.2, VW € [H], it holds that:

Ropaz (G*+ F) H
[v200)] < s S o =gy o]

Lemmas 4.1 and 4.2 are needed in the analysis of sample complexity to guarantee a structure on the MDP
(Yuan et al., 2022). We refer to Appendix A for the proof of Lemmas 4.1 and 4.2.

We highlight that the bound described in Lemma 4.1 does not grow as W, demonstrating how the usage of
W-MDPs helps reduce the effective horizon of the task and consequently also the variance of the gradient
estimates. In Figure 1, we show the bias variance trade-off as a function of W. We notice how the bias on the
performance (stated in Theorem 2.1) follows a sublinearly increasing trend with . Differently, the variance
of the gradient estimation (Lemma 4.1) shows a descending trend as W increases. These effects result in a
U-shaped behavior, highlighting the trade-off between estimation accuracy and stability when we are in noisy
environments. This highlights the importance of selecting an appropriate W, as for stochastic environments,
it trades off bias and variance.

Below, we state the convergence on a stationary point.

Under review as submission to TMLR

16 2.0

141 1.8

121 1.6
0 —— Bias (Thm. 2.1) g
8 g . r1.2 ©
) Variance (Lemma 4.1) B
6 1.0°

4 r0.8

2 r0.6

0 L 0.4

Figure 1: Trend of the variance of the gradient estimator as the parameter W changes.

Theorem 4.3. Consider an algorithm using the update rule of Eq. (2). Under Assumptions 4.1 and 4.2,
with a suitable step size to guarantee E[||VJ(0; W)||] < ¢, the sample complexity is at most:

3 _ ~H 2
NKSO(Rmax(l i) 1_H(,YH_,YH+W)_,YH:|)

(1 =731 —~")? w

This result follows the analysis by Papini (2020). Here, the first term dominates, yielding the well-known
Q(e2) rate. To also provide a global convergence result, we enforce the following assumption.

Assumption 4.3 (Weak gradient domination for J(W)). There exists o > 0 and § > 0 such that for every
0 € Ow, and for every W € [H], it holds that:

JHW) = J(O: W) < af[VoJ(6; W) + B.

Assumption 4.3 is a standard for global convergence analysis of stochastic optimization (Yuan et al., 2022).
The weak gradient domination (WGD) assumption admits that the performance function J(0x; W) has local
maxima as long as its performance is S-close to the globally optimal one. Given Assumption 4.3 and the
results provided by Montenegro et al. (2024), we can now state the global convergence result.

Theorem 4.4. Under Assumptions 4.1, 4.2 and 4.3, with a suitable step size to guarantee
E[J*(W) — J(0r; W)] < €+ 8, the sample complexity of Algorithm 8 is at most:

~(R3. (1—~") H g mww ul’
< max = _ _)
ies O s s [t 07 =) =])

This result establishes a convergence of order (5(6*3) to the last-iterate global optimum convergence of
stochastic policies in accordance with state-of-the-art PG analysis (Yuan et al., 2022)%. We notice in the
sample complexity how the usage of W-step MDPs manages to attenuate the curse of horizon by reducing
the effective horizon by defining a new discount factor, ¥V > ~, which results in a lower sample complexity.
The proofs of Theorems 4.3 and 4.4 are presented in Appendix A.

5 Experimental Validation

In this section, we show how MetaStep is effective in optimizing both the statistical and the computational
complexity. We evaluate MetaStep applied to GPOMDP on three progressively complex domains to analyze
its performance under different settings. For each environment, we test our approach with several values of
W e {1,2,3,5,10}, where W = 1 represents the standard version of GPOMDP. We adopt a stochastic Gaussian
policy where the means for each action are parameterized using a neural network. Thus, we have a network

2The 5() notation hides logarithmic factors.

Under review as submission to TMLR

-40 -40{
140
—60 % 130 —60 1
g
c 120 €
S -80 S 5 —801
3 o 3
-4 w=1 £ 110 < — Ww=1
-100 w=2 3 ~1001 w=2
w=3 = 100 — w-=3
-120 W=5 90 -120 = W=5
W =10 — W=10
‘ | | |] 80 ‘ ‘ : ‘ ! | |]
0 10 20 30 40 50 2 4 6 8 10 0 20 40 60 80
Iteration w Time (s)
(a) Performance over iterations. (b) Running time for K = 100. (¢) Performance over time.

Figure 2: Learning curves and training time for the dam control task (10 runs, mean + 95% C.1.).

whose input is the state s and the output is an action composed of Wd 4 elements. The standard deviation is
fixed and tuned for each task.?

For each task, we will present three plots. The first (denoted with (a)) examines statistical complexity by
illustrating the number of iterations (and thus the number of samples) required to achieve convergence for
different values of W. The second plot (denoted with (b)) reports the training time as a function of the
window size W. Lastly, the third plot (denoted with (c)) displays the learning curves relative to training
time, offering insight into the computational complexity. We refer the reader to Appendix B for additional
results and more detailed ablation study.

Dam Control. We first consider the water resource management task described in (Castelletti et al., 2010).
The agent learns a water release policy balancing external demand D (e.g., for a town) while preventing floods
by keeping the water level below a threshold F. The dam experiences a stochastic daily inflow, representing
external factors such as rainfall, which follow a periodic yearly pattern. The demand remains constant. The
system’s state evolves according to the mass balance equation s;41 = max{s; — a; + 4,0} where a; is the
water released on day ¢. The reward function, R(s, at), is a convex combination of two objectives: flooding
control, —c; max(0, s, — F'), and demand satisfaction, —cp max(0, D — a;)?, with ¢1, co > 0 as domain-specific
constants. The action space is scalar (d4 = 1), while the state space has dimension ds = 7. The discount
factor is v = 0.999. We train our agent for H = 1825 steps (equivalent to 5 years of data) with batch size
N =10.

From the learning curves in Figure 2a, we observe that all approaches converge to the optimal value, regardless
of the choice of W. Furthermore, Figure 2b shows how larger values of W imply reduced training time,
highlighting the computational advantages of our method. In the third view, presented in Figure 2c, we
observe that the impact of wider windows over the training time is clear, and the improvement with W € {2, 3}
is more evident w.r.t. the base algorithm (W = 1).

Swimmer. The Swimmer environment in MuJoCo (Todorov et al., 2012) is a continuous control problem
where a multi-jointed agent must move itself forward in a simulated fluid environment. The action space
dimension d4 = 2, while the state space dimension ds = 8. We train our agent for H = 700 steps, using a
batch size N = 100 and a discount factor v = 0.995.

Figure 3a shows the learning curve over samples. We observe that larger values of W lead to faster convergence
and higher final performance. this phenomenon is due to the search in the space of II"
policies, which induces a different manifold that might avoid plateaus during optimization. In Figure 3b,
we appreciate the analysis of the computation time needed for the training as a function of W, highlighting
its descending trend w.r.t. higher values of W. Finally, in Figure 3c, we present the performance over the
training time required, highlighting the benefits of using a higher value of W.

3Appendix B provides additional experimental details and results. The code to reproduce the experiments is available in the
supplementary material.

Under review as submission to TMLR

2201
—~ 2001
o
[
£
= 180+
o
[=4
c
©
F 1604
140
0 100 200 300 400 500 2 4 6 8 10 0 100 200 300 400
Iteration w Time (s)
(a) Performance over iterations. (b) Running time for K = 500. (¢) Performance over time.

Figure 3: Learning curves and training time for Swimmer (10 runs, mean + 95% C.I.).

(s

N N
N w
o o

Return
N
=
o

Return

Training Time
N
o
o

190

180
0 100 200 300 400 500 2 4 6 8 10 0 100 200 300 400 500
Iteration w Time (s)

(a) Performance over iterations. (b) Running time for K = 500. (c) Performance over time.

Figure 4: Learning curves and training time for Half-Cheetah (10 runs, mean + 95% C.I.).

Half-Cheetah. The Half-Cheetah environment in MuJoCo (Todorov et al., 2012) is a continuous control
benchmark where a bipedal robot with a torso and two legs must learn to move forward efficiently. The
action space has dimension d 4 = 6, while the state space has dimension ds = 17. We train the agent for
H = 200 steps, using a batch size N = 10 and a discount factor v = 0.999. The lower batch size, which leads
to a noisy estimate of the gradients—especially in this high-dimensional scenario—is intended to evaluate the
performance of MetaStep in this challenging situation.

In Figure 4a, we empirically validate Lemma 4.1, as with a smaller batch size, we manage to estimate a less
noisy gradient and consequently reach better performances w.r.t. the single-step approach. Moreover, for
farsighted problems (i.e., high values of), we enjoy a better sample complexity (as shown in Theorem 4.4).
From the computational perspective, Figure 4b, also in this environment, demonstrates a clear reduction in
training time as W increases. Finally, in Figure 4c, we observe how, looking at the computational complexity,
W = 2 presents a significantly faster convergence.

Overall Results. The experimental campaign demonstrates the effectiveness of the MetaStep approach in
enhancing both statistical and computational efficiency. The results highlight a fundamental trade-off linked
to the choice of the window parameter W. On the one hand, increasing W reduces the problem’s effective
horizon. This leads to a decrease in the variance of the gradient estimate, as theorized in Lemma 4.1, and a
significant reduction in training time. This often results in faster convergence, both in terms of wall-clock
time and, in some cases, sample efficiency, as observed in the Swimmer and Half-Cheetah experiments.
On the other hand, larger W values increases the size of the action space, making the learning problem
substantially more complex. The experiments show that while moderate values of W (e.g., 2, 3) yield clear
benefits, excessively high values (e.g., 10) can degrade final performance. This occurs because the difficulty of
optimizing a policy in such a vast action space outweighs the advantages of a shorter horizon. The choice of
W represents a critical balance. An optimal value must shorten the horizon sufficiently to gain computational
and stability benefits without expanding the action space to a point where learning becomes ineffective.

10

Under review as submission to TMLR

6 Related Works

In this section, we discuss the relevant literature for this work. First, we present closed-loop policy gradient
approaches. Then, we discuss open-loop learning solutions and action persistence methods. Finally, we
present temporal abstraction methods.

Policy Gradient Methods. Policy gradient (PG) methods constitute a fundamental class of reinforcement
learning (RL) algorithms that directly optimize a parameterized policy by following the gradient of an
expected performance measure. Early work by Williams (1992) introduced the REINFORCE algorithm,
which laid the foundation for policy gradient techniques. Subsequent advancements, such as the GPOMDP
algorithm (Baxter and Bartlett, 2001) and actor-critic approaches (Sutton et al., 1999a), addressed the high
variance of gradient estimates by incorporating reward-to-go and baseline subtraction. In general, the problem
of variance reduction in policy gradient estimation has attracted the attention of many researchers (Kakade,
2001; Schulman et al., 2015; Papini et al., 2018). Despite these advancements, computational efficiency
remains challenging, as policy gradient methods typically require frequent updates and high sample complexity.
Our work introduces a novel approach that mitigates these issues by leveraging open-loop sequences of actions,
effectively reducing the number of required policy updates while maintaining competitive sample efficiency.

Open-loop Approaches. Open-loop planning in sequential decision problems refers to decision-making
strategies where a sequence of actions is planned entirely in advance without incorporating immediate feedback
from the environment at each step (Bubeck and Munos, 2010). This approach is particularly useful in domains
where the real-time evaluation of actions is computationally expensive or in settings where the state of the
environment is not (completely) observable (Yu et al., 2005). However, open-loop planning performs poorly
in stochastic settings and non-generative models. To overcome this limitation, an approach of mixed planning
has been proposed in literature (Hansen et al., 1996), mixing open-loop and closed-loop feedback planning.
However, it provides only a value-based solution, which scales poorly with the dimensionality of the state
and action space, with relevant limitations on the environment exploration. More recent solutions involve
the mixed use of open-loop and closed-loop techniques constrained to specific operational regions of the
task (Kolter et al., 2010). In our work, we propose a task-agnostic solution that embraces open-loop control
methodologies but provides the agent with feedback after a fixed number of decision-making steps.

Action Persistence. Action persistence in sequential decision problems is a technique where an agent
commits to executing the same action over multiple time steps. This approach has been shown to reduce
the complexity of decision-making and improve learning efficiency in specific environments. Prior work has
explored the effects of persistent actions in both value-based (Metelli et al., 2020; Sabbioni et al., 2023)
and policy-based RL (Lee et al., 2020). More complex approaches have been proposed in the literature,
which involve actor-critic structures (Yu et al., 2021) or Deep RL for policy approximation (Tong et al.,
2023). However, these approaches tend to be too rigid and require properly setting the task control frequency.
Furthermore, they poorly scale with the increase in dimensionality of the action space. Our work aligns with
the philosophy of action persistence but provides more flexibility to the framework.

Temporal Abstraction. Temporal abstraction in RL aims to improve sample efficiency and planning
capabilities by structuring decision-making at multiple time scales. Options (Sutton et al., 1999b) and
macro-actions (McGovern and Barto, 2001) provide a hierarchical framework in which temporally extended
actions facilitate long-term reasoning and efficient exploration.

11

Under review as submission to TMLR

state in a predefined number of steps. More recently, meta-learning and learned subroutines (Bacon et al.,
2017; Harb et al., 2018) have been employed to autonomously discover useful action sequences, reducing
the complexity of long-horizon tasks. Specifically, Option Critic (OC, Bacon et al., 2017), let the agent use
the sub-tasks (options) from the initial episode of learning. The solution proposed by OC allows to learn
the options along with the entire hierarchy structure from the beginning of the learning process without
the necessity of defining the hierarchical problem beforehand. In (Harb et al., 2018), a refinement of the
OC, Asynchronous Advantage Option Critic (A20C), has been proposed, introducing a regularizer cost that
penalizes the high-level policy upon switching options, encouraging the retention of each option for a longer
horizon. This approach proved empirically to have better performance than the frequently switching options.
Other works, like (Barreto et al., 2019) adopts pseudo-rewards (e.g., cumulants) to represent option which
can be combined linearly to synthesize new options without requiring additional learning.

While these methods effectively address long-term credit assignment, they often require significant compu-
tational resources and complex architectures. Our work aligns with temporal abstraction by introducing
W-step action sequences that effectively function as macro-actions. However, unlike standard hierarchical
RL methods, our approach does not require hierarchical structures or additional meta-learning components,
making it a more lightweight and easily integrable enhancement to existing state-of-the-art algorithms. For a
complete discussion on temporal abstraction, we refer the reader to (Pateria et al., 2022).

7 Discussion and Conclusions

In this paper, we introduced the novel concept of W-step Markov Decision Processes, which mixes open-loop
and closed-loop interaction, and designed MetaStep a meta-algorithm exploiting the W-MDPs framework.
In this framework, we observe a state and execute a sequence of W actions in an open-loop fashion. We
formalized the W-MDP framework and we define the notions of value function and optimality. Then, we
showed how we may experience a suboptimality bias for highly stochastic environments. Building on this,
we proposed a meta-algorithm, MetaStep, which redefines the agent-environment interaction by applying it
over W-MDPs. MetaStep is designed to be used on top of standard RL approaches, and, in this paper, we
adopted GPOMDP as a base learning algorithm. We discussed the improvement of the solution from both the
computational and the statistical perspectives. Finally, we proposed an extensive experimental evaluation to
empirically validate our results. Such results demonstrate the capability of our approach to keep competitive
statistical performances while reducing the computational complexity.

Limitations and Future Works. While the use of the W-MDPs framework shows promising results both
theoretically (Sections 2 and 4) and empirically (Section 5), the approach still has some limitations. First, it
currently supports only fixed values of W leaving the choice of this hyperparameter to human expertise. The
window size must balance several factors, such as the bias—variance trade-off (Figure 1), which is particularly
important in highly stochastic environments (or where the level of stochasticity is unknown), and the trade-off
between a shorter effective horizon and an expanded action space. Future works may explore adaptive window
sizes, as relying on a fixed open-loop window can be overly restrictive in tasks requiring finer control. Another
direction is to study the applicability of MetaStep to other state-of-the-art policy search methods, including
actor—critic approaches. Finally, extending the framework to large-scale or real-world domains (e.g., robotics
or control of complex systems) would offer valuable insights into its practical impact.

12

Under review as submission to TMLR

References

P.-L. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Proceedings of the AAAI conference
on artificial intelligence, volume 31, 2017.

A. Barreto, D. Borsa, S. Hou, G. Comanici, E. Aygiin, P. Hamel, D. Toyama, S. Mourad, D. Silver, D. Precup,
et al. The option keyboard: Combining skills in reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

A. G. Barto and S. Mahadevan. Recent advances in hierarchical reinforcement learning. Discrete event
dynamic systems, 13:341-379, 2003.

J. Baxter and P. L. Bartlett. Infinite-horizon policy-gradient estimation. journal of artificial intelligence
research, 15:319-350, 2001.

S. Bubeck and R. Munos. Open loop optimistic planning. In COLT 2010 - The 23rd Conference on Learning
Theory, Haifa, Israel, June 27-29, 2010, pages 477-489. Omnipress, 2010.

A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa. Tree-based reinforcement learning for optimal
water reservoir operation. Water Resources Research, 46(9), 2010.

M. P. Deisenroth, G. Neumann, and J. Peters. A survey on policy search for robotics. Foundations and
Trends in Robotics, 2(1-2):1-142, 2013.

T. G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposition. Journal
of artificial intelligence research, 13:227-303, 2000.

E. Hansen, A. Barto, and S. Zilberstein. Reinforcement learning for mixed open-loop and closed-loop control.
Adwvances in Neural Information Processing Systems, 9, 1996.

J. Harb, P.-L. Bacon, M. Klissarov, and D. Precup. When waiting is not an option: Learning options with a
deliberation cost. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Z. Jiang and J. Liang. Cryptocurrency portfolio management with deep reinforcement learning. In Intelligent
systems conference (IntelliSys), pages 905-913. IEEE, 2017.

S. M. Kakade. A natural policy gradient. Advances in neural information processing systems, 14, 2001.

S. Kalyanakrishnan, S. Aravindan, V. Bagdawat, V. Bhatt, H. Goka, A. Gupta, K. Krishna, and V. Piratla.
An analysis of frame-skipping in reinforcement learning. arXiv preprint arXiv:2102.038718, 2021.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015.

J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y. Ng, and S. Thrun. A probabilistic approach to mixed open-
loop and closed-loop control, with application to extreme autonomous driving. In 2010 IEEE International
Conference on Robotics and Automation, pages 839-845. IEEE, 2010.

G. Konidaris and A. Barto. Skill discovery in continuous reinforcement learning domains using skill chaining.
Advances in neural information processing systems, 22, 2009.

T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. Advances in neural information processing
systems, 29, 2016.

J. Lee, B.-J. Lee, and K.-E. Kim. Reinforcement learning for control with multiple frequencies. Advances in
Neural Information Processing Systems, 33:3254-3264, 2020.

A. Likmeta, A. M. Metelli, A. Tirinzoni, R. Giol, M. Restelli, and D. Romano. Combining reinforcement
learning with rule-based controllers for transparent and general decision-making in autonomous driving.
Robotics Auton. Syst., 131:103568, 2020.

13

Under review as submission to TMLR

Q. Liu, L. Li, Z. Tang, and D. Zhou. Breaking the curse of horizon: Infinite-horizon off-policy estimation. In
Advances in Neural Information Processing Systems (NeurIPS), pages 5361-5371, 2018.

Y. Liu, P. Bacon, and E. Brunskill. Understanding the curse of horizon in off-policy evaluation via conditional
importance sampling. In Proceedings of the International Conference on Machine Learning (ICML), volume
119 of Proceedings of Machine Learning Research, pages 6184-6193. PMLR, 2020.

A. McGovern and A. G. Barto. Automatic discovery of subgoals in reinforcement learning using diverse
density. In Proceedings of the Eighteenth International Conference on Machine Learning, pages 361-368,
2001.

A. M. Metelli, F. Mazzolini, L. Bisi, L. Sabbioni, and M. Restelli. Control frequency adaptation via action
persistence in batch reinforcement learning. In Proceedings of the International Conference on Machine
Learning (ICML), volume 119 of Proceedings of Machine Learning Research, pages 6862—-6873. PMLR,
2020.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. nature, 518
(7540):529-533, 2015.

A. Montenegro, M. Mussi, A. M. Metelli, and M. Papini. Learning optimal deterministic policies with
stochastic policy gradients. In International Conference on Machine Learning (ICML), 2024.

M. Papini. Safe policy optimization. PhD thesis, Politecnico di Milano, 2020.

M. Papini, D. Binaghi, G. Canonaco, M. Pirotta, and M. Restelli. Stochastic variance-reduced policy gradient.
In International conference on machine learning, pages 4026-4035. PMLR, 2018.

M. Papini, M. Pirotta, and M. Restelli. Smoothing policies and safe policy gradients. Machine Learning, 111
(11):4081-4137, 2022.

S. Pateria, B. Subagdja, A. Tan, and C. Quek. Hierarchical reinforcement learning: A comprehensive survey.
ACM Computing Survey, 54(5):109:1-109:35, 2022.

J. Peters and S. Schaal. Policy gradient methods for robotics. In IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 2219-2225. IEEE, 2006.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural Networks, 21(4):
682-697, 2008.

M. L. Puterman. Markov decision processes. Handbooks in operations research and management science, 2:

331-434, 1990.

L. Sabbioni, L. A. Daire, L. Bisi, A. M. Metelli, and M. Restelli. Simultaneously updating all persistence
values in reinforcement learning. In AAAI Conference on Artificial Intelligence, pages 9668-9676. AAAI
Press, 2023.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous control using
generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. A. Riedmiller. Deterministic policy gradient
algorithms. In Proceedings of the International Conference on Machine Learning (ICML), volume 32 of
JMLR Workshop and Conference Proceedings, pages 387-395. JMLR.org, 2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, H. Kumaran,
T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play. Science, 362(6419):1140-1144, 2018.

14

Under review as submission to TMLR

R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. The MIT Press, Cambridge, 2018.

R. S. Sutton, D. A. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforcement
learning with function approximation. In Advances in Neural Information Processing Systems (NIPS),
pages 1057-1063. The MIT Press, 1999a.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal abstraction
in reinforcement learning. Artificial intelligence, 112(1-2):181-211, 1999b.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems, pages 5026-5033. IEEE, 2012.

J. Tong, D. Shi, Y. Liu, and W. Fan. Gldap: Global dynamic action persistence adaptation for deep
reinforcement learning. ACM Transactions on Autonomous and Adaptive Systems, 18(2):1-18, 2023.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine learning, 8:229-256, 1992.

C. Yu, J. Chuang, B. Gerkey, G. Gordon, and A. Ng. Open-loop plans in multi-robot pomdps. Technical
report, Stanford CS Dept, Tech. Rep., 2005.

H. Yu, W. Xu, and H. Zhang. Taac: Temporally abstract actor-critic for continuous control. Advances in
Neural Information Processing Systems, 34:29021-29033, 2021.

R. Yuan, R. M. Gower, and A. Lazaric. A general sample complexity analysis of vanilla policy gradient. In
International Conference on Artificial Intelligence and Statistics, pages 3332-3380. PMLR, 2022.

15

Under review as submission to TMLR

A Omitted Proofs

In this appendix, we provide the proofs of all the theorems presented in the main paper.
Theorem 2.1. Let M be an MDP, let W € N>1, and let My, be the corresponding W -step MDP. Then, for
every s € S, it holds that:

v W
(1=7)2 @@-7")?

V*(s) = Vi (5) < 2Rpnaa () D(P),

where:

$,a€ESXA | s’€S

D(P) = max {mln{l— (s'|s,a)}}.

Proof. Let us first introduce state-action value function as the expected discounted cumulative reward in
state s € S when we chose action a € A and then follow policy 7
H—-1

> A r(sn,an)

h=0
For a W-MDP, the definition of Q’T follows directly.

We start the proof by observing that, for every MDP and corresponding W-MDP, we have Q7 (s,a) > Qjy (s, a).

Qﬂ(sv a) = Eﬂ'

8028,610:@] . (4)

Then, we consider the non-stationary transition model defined as follows for every h:

, P(s'|s,a) if hmod W =0
W(s |57 a, h) — .
1 {argmax . sP(5|s,a)} otherwise

We now highlight the dependence on the W and on the used transition model P in the Q as Q’;Vﬁ(s, a). Tt is
trivial to observe that for this non-stationary deterministic value function, we have:
L (5:0) = Qi (520),

as where we are not able to take action, we have deterministic transitions. This is equal to say that in the
MDP with Py, we have:

]

h
max E r,| = max E
mS—A [;7 h‘| aW:S— AW "

Now the goal is to try to bound the difference between Q7 p and @y, p. This is equal to:
Qip— Qivp=Qir — Qivp+ Qyp,
<SQip—Qip, T Q;Vp - Qw,p
1x —W %
<Qip-— 71TP +Q » — Qwp

Since we are to bound the difference between two Q-functions of the same policy under different transition
models, we proceed by analyzing the first term only, as the second one is analogous:

Z V' (se, ar) Z“W(Stv at)] (5)

o}

o0
/ (H (S141s1, a1)m ™ (ay]s)) H (514151, ar,)™ (ay] 1) > Z'y r(s¢,ar)d (6)
T \i=0 1=0 t=0
oo
>
t=0 T

P T Pw _
1 - Q1 = IEP —Ep

t
(H P(sl+1|sl,al)7r1*(al|sl HPW Si+1|s, an)m al|sl) r(s¢, a)d (7)

=0 =0

16

Under review as submission to TMLR

[e’e) t—1v—1
= Z"Yt / Z H P 5l+1|3laal (al‘sl)(P(5v+l|5v7amU) - FW(SU—H‘SMQv))ﬂl*(av|5v)

t=0 T =0 1=0
(8)

H JR—
H Py (s)41]s1, a) " (ai|si)r(se, ar)dr (9)
l=v+1

[e%} t—1
= Ruax »_7'> Dy = (%) (10)

t=0 v=0

where:
D, == max;, ||P(~|s,a,v) — ?W(.|s,a)||1 (11)
= maXS)a/ (P(-|s,a,v) — Pw(:|s,a))ds’ (12)
s/
< DI1{v mod W # 0}. (13)
Eventually, we have:
= DRmax Z vy Z 1{v mod W # 0} (14)
t=0 v=0
w
ol W >

= DRax — . 15
(w2~ asowp t5)
O

Lemma 4.1. Under Assumption 4.1, the variance of the GPOMDP estimator with batch size N is bounded for
every W € [H] as:
R G2(1—A") |
Var VgJ 4 max 1—
Vel OIS T N)

Proof. Starting from Lemma A.1, recalling the Assumption A.2 and A.3, we transpose the lemma in W-step
MDPs, applying Definition 2.1 and Assumption 4.1, thus H «+ %, v+ YW and Rpax ¢ Rumaxw, as
R G*(1—7")

max

Var[VJ (0)] < T N7 {1 _ % (FH — A HHWY ,YH]

O
Lemma 4.2. Under Assumptions 4.1 and 4.2, VW € [H], it holds that:
vt < e GED [y X —qrewy o] - 1
Proof. Recalling Assumption 4.1 and 4.2 and given Lemma A.2 applying Definition 2.1, thus H <« %,
v = 7W and Rpax < Rmax,w, We get,
7270 < s S 1= = ey =]
O

Theorem 4.3. Consider an algorithm using the update rule of Eq. (2). Under Assumptions 4.1 and 4.2,
with a suitable step size to guarantee E[||VJ(8; W)||] < e, the sample complexity is at most:
Ry (1 =79") H g H ’
NK<O max 1— — (yF —AHW) 4 H1).
- (iy [w0

17

Under review as submission to TMLR

Proof. We first apply Theorem A.3 under Assumptions A.1, A.2 and A.3.

NEK =2(J*(W) — J(60; W) (@ + %)

We redefine V < v; and L < Z, applying Lemma 4.2 and 4.1. Then, neglecting constants, we obtain

. RmaxN _ E H __H+W\ __H
NK‘eu—v)(l—vW)[w (07— = }
anax(l—”YH) _E H _ H+W\ _ . H ’
= !)=

O

Theorem 4.4. Under Assumptions 4.1, 4.2 and 4.8, with a suitable step size to guarantee
E[J*(W) — J(0x; W)] < €+ 3, the sample complezity of Algorithm 3 is at most:

~ R3 1—~H H 2
weo{ ey g or-])

Proof. We first apply Theorem A.4, under Assumptions A.5, A.6 and A.7.
16a* LoV max{0, J*(W) — J(0,) — B}
€3 log €
We redefine V <— V4 and L < Ly 4, applying Lemma 4.2 and 4.1. Then, neglecting logarithmic values and
constants, we obtain

NK =

R?nx (1—’YH) H y H+W H ?
NK = g2 aq—wys |1 07 =) -9

A.1 Technical Lemmas and Theorems used in the Analysis

In this part, we report assumptions, theorems, and lemmas from other works we used for the analysis.

Assumption A.1 (Papini et al. 2022, Definition 1). Let llg = {mg | 6 € O} be a class of twice-differentiable
parametric stochastic policies, where © C R? is convex. There exist a constant & > 0 such that for every
state s € S is defined as,

Eonrmo(ls) [HVQ log 779(a|s)||} < &,

Assumption A.2 (Papini et al. 2022, Definition 1). Let Ilg = {my | 6 € O} be a class of twice-differentiable
parametric stochastic policies, where © C R is convex. There exist a constant &, > 0 such that for every
state s € S is defined as,

anm(.b){HVglogﬂ'g(a‘S)Hﬂ < &, (16)

Assumption A.3 (Papini et al. 2022, Definition 1). Let llg = {my | 6 € O} be a class of twice-differentiable
parametric stochastic policies, where © C R? is convex. There exist a constant &3 > 0 such that for every
state s € S is defined as,

Eonrmo(ls) [HV% logﬁe(a|8)|” < &, (17)

Assumption A.4 (Yuan et al. 2022, Assumption 3.1). There exists L > 0 such that, for all 0,0' € R?, it
holds:

() = 7(0) ~ (T0),6 ~0)] < |10/ 0]

Assumption A.5 (Montenegro et al. 2024, Assumption 6.1). There exist & > 0 and > 0 such that for
every 0 € © it holds that
Jg — J(0) < a||VeJ(0)| + 5.

18

Under review as submission to TMLR

Assumption A.6 (Montenegro et al. 2024, Assumption 6.2). Jy is Lo ,-Lipschitz smooth w.r.t. parameters
0, i.e., for every 0,0 € ©:
IV J(0) = Vo (6)]| < La,ull6 — 6.

Assumption A.7 (Montenegro et al. 2024, Assumption 6.3). For every 6 € O, the stochastic gradient ﬁgJ(G)
computed with batch size N has bounded variance, i.e.,

E[|VeJ(8) — VeI (0)]?] < %

Lemma A.1 (Papini et al. 2022, Lemma 29). Given Assumptions A.2 and A.3 and a task horizon H. for
every 0 € O, the variance of the GPOMDP estimator is upper-bounded as follows:

R 2 _H
Var(00(6)) < 22— [1 - HOy = 1) <] =

Proof. The result follows the one of (Papini et al., 2022) Lemma 29, stopping one step before on line D82. [

Lemma A.2 (Yuan et al. 2022, Lemma 4.4). Under Assumptions A.2 and A.3 J(-) is L-smooth, namely
HV2J(9)H < L for all 6 which is a sufficient of Assumption A.4 with
Rmaz
= ——F
(1 — ,72) (62 + 53)

Theorem A.3 (Papini 2020, Theorem 7.1). Under Assumptions A.1, A.2 and A.3, running an algorithm with
N

the update rule of Eq. (3) with initial policy parameters 0y, batch size N, and a step size n = min{%, VAT
e2N
guarantees E[||VoJ(0)||]] < € for a k wuniformly sampled from {0,1,..,K — 1}, where Z =
2
Ry (2751 + &+ 53) and v follows the definition of Lemma A.1.

NEK =2(J(67) ~ J(60)) (f " ZV)

(1=7)? \ 1—v

Theorem A.4 (Montenegro et al. 2024, Theorem F.1). Under Assumptions A.5, A.6 and A.7, running
Algorithm 2 for K > 0 iterations with a batch size of N > 0 trajectories in each iteration with the constant
learning rate n fulfilling:

1 1 N \Y?
< min ¢ —,)
= Ly’ pmax{0, J* — J(0o) — B} (LgvAu>

where | = % Then, it holds that:

K
1 3L,V L.V
J* —E[J(0K)] < B+ <1 -3 M) max{0, J* — J(0p) — B} + ZZ\/TW

In particular, for sufficiently small € > 0, setting n = Z?;I‘\;, the following total number of samples is sufficient

to ensure that J(0*) —E[J (0] < B+ ¢
16L2V4 logmaw{o, J*—J(0y) — B}

€32 €

NK >

We refer to (Montenegro et al., 2024) for the formal definition of Ly and Vj.

19

Under review as submission to TMLR

B Experimental Settings and Additional Results

In this appendix, we discuss the experimental setting for the simulations provided in the main paper, and we
provide further results.

B.1 Experimental setting
Algorithm Settings. To further reduce the variance in estimating the gradients, we adopt a version of
GPOMDP with the optimal baseline (Peters and Schaal, 2008):

T-1 j
vgt Jot = EPG(T)
7=0 t=0

E,, () {(J_ Vo, log g (as | st))Q rj]

Vologmg (as | s¢) (rj —bj) |,

(18)

= Epo(7) {(Zi—o Vo, logmo (a | 3t)>2}

The policy adopted for the experiments has been parametrized using a neural network with 2 hidden layers,
composed of 50 and 25 parameters each.

We tested our algorithm on 3 environments of increasing complexity. Dam control (Castelletti et al., 2010);
Swimmer-v4, HalfCheetah-v4 from the MuJoCo suite (Todorov et al., 2012). Details on the environmental
parameters are shown in Table 1. We adopted different learning rates n and exploration parameters, depending
on the task we were observing, employing in some cases Adam (Kingma and Ba, 2015) to adaptively set the
step size. The exact method adopted for each environment is shown in Table 2.

Computational Resources. All the experiments are run on a MacBook Pro. The machine is equipped as
follows:

o CPU: Apple M2 Pro (10 cores, 3.4 GHz);
« RAM: 16 GB;
e GPU: 16-core GPU.

All the performances are run over 8 CPU cores. Refer to Figures 2b, 3b and 4b for the computational times
for each environment for relevant experiments.

Environment Epoch N H y ds da

Dam control 100 10 1825 0.999 7 1
Swimmer 500 10, 100 200, 500, 700 0.995, 0.999 8
Half-Cheetah 500 10, 100 200, 500, 700 0.995, 0.999 17

Table 1: Parameters of the environments.

Environment o n Type
Dam control 0.5 0.005 Adam
Swimmer 1 0.001 Constant

Half-Cheetah 0.1 0.001 Adam

Table 2: Training Parameters for the environments.

20

Under review as submission to TMLR

B.2 Additional Results

In the following, we present the entire experimental campaign not present in the main paper.

Swimmer. The additional results presented on the Swimmer environment demonstrate the impact of the
parameter W w.r.t. longer horizons, higher discount factors and batch size. As shown in Figures 5, 6 and 7,
for H € {200,500, 700} independently from the batch size, we can appreciate how higher values of W bring an
improvement in terms of sample complexity converging faster to the optimal behavior, especially with higher
values of . This result supports the statements of Theorem 4.4, giving a practical example of the benefits of
a reduced effective horizon. Moreover, we can appreciate how searching in the space of W policies induces a
different manifold which is shown to help prevent plateau on the optimization phase (Figures 6 and 7).

25 A > A . 304
f‘;j“'f‘ NI 0 ,; ey 25 1
20
20
151
& 10 &
—_ W=1 101 W=1
—_— W=2 W=2
51 w=3 5 w=3
— W=5 W=5
0+ — W=10 01 w=10
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N = 10, v = 0.995. (b) N = 10, 7 = 0.999.
25 25
20 20
¢ 151 ¢ 157
2 2
< 10 € 10
—_ W=1 W=1
— w=2 — w=2
5 — W=3 5 — W=3
— w=5 — w=s
ol — Ww=10 ol — W=10
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(¢c) N = 100, 5 = 0.995. (d) N =100, v = 0.999.

Figure 5: Learning curves for Swimmer with H = 200 (10 runs, mean £ 95% C.I.).

21

Under review as submission to TMLR

30 70
60
25 1
50
20 N
€ £ 40
ERRE o E /
e & 30
— w=1 — w=1
101 — w=2 | 201 — w=2
51 — W=3 | — W=3
— w=s 10 — w=s
0 — W=10 | 0 — W=10 |
l- T T 1. T T
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N =10, v = 0.995. (b) N =10, v = 0.999.
35
30 /
- /?fc
€20 /
2 /
& 154
/' — w=1 — w=1
10 —_— W=2 | 204 —w=2 |
5] — w=3 | — W=3
— W=5 — W=5
0 — W=10 | 0 — W=10 |
1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(¢) N =100, v = 0.995. (d) N =100, v = 0.999.

Figure 6: Learning curves for Swimmer with H = 500 (10 runs, mean £ 95% C.I.).

22

Under review as submission to TMLR

\ 100
35
30 80) il
A A i
25 v N P it 24 WW
E 20 IM g 60
=1 v 3
gl [A | g . ”‘/
— W=1 — W=1
10+ — W=2 — W=2
— W=3 204 — W=3
51 — W=5 | — W=5
0 — W=10 | 0 — W=10
,[T T I T T
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N =10, v = 0.995. (b) N =10, v = 0.999.

40 ‘ “4
35 it o 100
IS o g "
30 %M mM /""M orrntren
801
25 s //’""r
c r/ c 4
£ 20 £ 60
L1/
151 — w=1 | 40— — w=1
10 — w=2 | — W=2
5] —_ W=3 | 201 — W=3
— W=5 — W=5
0 — W=10 | 0 — W=10 |
1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(¢) N =100, v = 0.995. (d) N =100, v = 0.999.

Figure 7: Learning curves for Swimmer with H = 700 (10 runs, mean £+ 95% C.I.).

23

Under review as submission to TMLR

Half-Cheetah. The additional results presented on the Half-Cheetah environment demonstrate the impact
of the parameter W w.r.t. longer horizons, higher discount factors and batch size. We mostly appreciate
how with small a small batch size (N = 10) we are able to estimate less noisy gradient, thus providing more
accurate policy updates. We see in Figure 8, 9 and 10, how, regardless of the discount factor, values of
W > 1 manage to obtain comparable performance to the closed-loop approach. Moreover, when the discount
factor is higher (v = 0.999) higher values of W manages also to converge faster w.r.t. W = 1, with the
benefits of a reduced computational complexity (Figure 4b). These results prove practically what is stated
in Lemma 4.1, showing how the adoption of W-MDPs can effectively reduce the variance of the gradient
estimator. Moreover, in Figures 9 and 10, we can observe how for longer horizons and high discount factors,
values of W > 1 not only converge faster w.r.t the closed-loop approach, but in certain setting also outperform
the W =1 solution, providing an empirical demonstration of the benefits of a reduced effective horizon.

250 400
2004 300 1
1501
£ £
5 52001
& 100 &
w=1 wW=1
- 100 =
. w=2 w=2
w=3 — w=3
w=5 — W=5
01 W=10 0 W=10
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N = 10, v = 0.995. (b) N = 10, v = 0.999.
350 350 1
3001 300 1
250 250
£ 2001 £ 2001
E £
& 1501 & 150
w=1 w=1
100+ w=2 1001 w=2
50 1 w=3 504 w=3
W=5 w=5
01 W=10 01 W=10
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(c) N = 100, v = 0.995. (d) N = 100, v = 0.999.
Figure 8: Learning curves for Half-Cheetah with H = 200 (10 runs, mean + 95% C.I.)

24

Under review as submission to TMLR

350 ‘ 700
300 W 600
250 /,IM B "_%-‘W 500 o . T
raasl AMWM ¥ v
£ 200 ! £ 400 w T
5 W i W 2
F/‘//M 3 300 ,I'/

—
S

§ 150 I/
100 /-‘

— w=1 — w=1
I/ =l | 1l/ il
50 W=3 | 100 w=3 |
— W=5 — W=5
’ — W=10]| 0 — w=10 |
1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N =10, v = 0.995. (b) N =10, v = 0.999.
1200 [‘
500
P el 1000
™
400 P
/ / 800
c ﬂ% S el -
£ 300 > o £
E 3 6001
g /ot g
200 — Ww=1 | 4001 — w=1 |
I/ / — w=2 — w=2
100 W/ — W=3 | 2004 — W=3 |
— W=5 — W=5
0 ! — W=10 | 0 I — W=10 |
1 1 1 1
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(c) N =100, v = 0.995. (d) N =100, v = 0.999.

Figure 9: Learning curves for Half-Cheetah with H = 500 (10 runs, mean + 95% C.L.).

25

Under review as submission to TMLR

400 1000
ot ™ 800
300 MMM-M
3 200 e e s 5 o
& gV 2 400
Padi il — w=1 — W=1
100 — w=2 500 — w=2 |
— w=3 — w=3
— w=5 — w=5
° — W=10]| 0 — w=10 |
]] I I
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(a) N = 10, v = 0.995. (b) N =10, v = 0.999.
600
1500
500 Mﬁ ﬂwﬁ"—/ﬁ
S e 1250 o . s
400 /’I’/f;MM ‘
1000 T
g 300 ///—‘//f”ww/ g o -
S i
200 — w=1 | 500 — w=1 |
l// — we2 — we2
100 — w=3 | 2504 | — w=3 |
W/ — w=5 — w=5
0 ! — W=10 | 0 { — W=10 |
0 100 200 300 400 500 0 100 200 300 400 500
Iteration Iteration
(c) N =100, = 0.995. (d) N =100, 7 = 0.999.

Figure 10: Learning curves for Half-Cheetah with H = 700 (10 runs, mean + 95% C.I.).

26

	Introduction
	Setting
	Preliminaries
	W-step Markov Decision Processes
	Performance bias on W-MDPs

	MetaStep
	MetaStep on GPOMDP
	Running MetaStep on GPOMDP

	Experimental Validation
	Related Works
	Discussion and Conclusions
	Omitted Proofs
	Technical Lemmas and Theorems used in the Analysis

	Experimental Settings and Additional Results
	Experimental setting
	Additional Results

