
Self-Challenging Language Model Agents

Yifei Zhou∗

UC Berkeley
Sergey Levine
UC Berkeley

Jason Weston
FAIR, Meta

Xian Li†
FAIR, Meta

Sainbayar Sukhbaatar†
FAIR, Meta

Abstract

Large language models are quickly becoming the foundation for intelligent agents
that are capable of using tools. However, training such agents is challenging
because it requires human creation and annotation of a diverse set of tasks, tools,
and evaluation criteria. In this paper, we propose the Self-Challenging framework
for training an agent on high-quality tasks that are generated by itself. The agent
first plays the role of challenger and generates a task after interacting with the
given tools. The tasks take the form of a novel general class of problems termed
Code-as-Task, which are defined by an instruction, a verification function and
solution and failure cases which serve as tests, allowing to filter only for high-
quality tasks. The agent then takes an executor role and trains on those tasks with
reinforcement learning using the evaluation feedback as a reward. Evaluation on
two existing multi-turn tool-use agent benchmarks, M3ToolEval and TauBench,
shows the Self-Challenging framework achieves over a two-fold improvement in
Llama-3.1-8B-Instruct, despite using only self-generated training data.

1 Introduction
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of
complex tasks [20, 14, 43], positioning them as promising agents for autonomous decision-making
in open-ended environments, such as multi-turn tool use [46, 35] and GUI navigation [1, 41, 50].
Reinforcement learning (RL), which is already an integral part of post-training of LLMs, has emerged
as a powerful tool for enhancing multi-turn agentic capabilities for LLMs by directly optimizing the
final objective through interaction-based feedback [52, 53, 1, 24, 51].

An essential ingredient for applying RL to train a generally capable LLM agent is a large pool of high-
quality tasks for agents to learn by trial and error [51, 22]. However, relying on human annotators
for task creation is inherently costly, labor-intensive, and ultimately not scalable [51, 38, 47], thus
underscoring the need for an automatic and reliable pipeline for synthesizing tasks. While prior works
have built environment-specific pipelines for synthesizing tasks to perform RL, such as collaborative
designs [53], web navigation [51], and fixing Github issues [22, 14], a general task synthesis pipeline
for multi-turn LLM agents [37] in open-ended and tool-rich environments is still missing.

To come up with a synthetic task generation pipeline for general multi-turn tool-use LLM agents, we
can start by reflecting on how human annotators design tasks given access to a set of tools and the
environment. They will first try the tools and interact with the environment to see what kinds of goals
are possible to achieve and what would happen if these goals were achieved. The tasks would then be
sent to the LLM agent to see if it can achieve the goals set by the human annotators.

Motivated by this intuition, we propose a Self-Challenging Agent framework to construct synthetic
tasks for training general multi-turn LLM agents at scale. In this framework, shown in Figure 1,
the agent performs two distinct roles. In the challenger role, the agent first interacts in an unknown
environment with tools to gather information and generate possible tasks. Subsequently, these

∗Work done at FAIR, Meta. Correspondance to yifei_zhou@berkeley.edu.
†Equal advising.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Executor

Environment

Instruction

Verifier

Reward
0/1

Action
e.g. get_user_detail(“mia9”)

Observation
e.g. {“orders”: [“#1”, “#7”]}

Challenger

Your job is to play around
with the environment to
construct a task.
You have access to the
following tools: ……

 You need to complete the
goal: {instruction}
You have access to the
following tools: ……

e.g., Exchange the kettle in my
latest order to a glass material

General tools

Human
…

Web Browser
• Navigate the web to seek information

Custom Database
• Query the database through API’s
• Modify the database through API’s

User
• Ask for confirmations before actions
• Ask clarification questions

Action
e.g. get_user_detail(“mia9”)

Observation
e.g. {“orders”: [“#1”, “#7”]}

Code Interpreter
• Execution feedback for python code
• Access to API’s through function calls

Verification Function
• Access environment state
• Validate final answer

evaluate() == True ?

Figure 1: Overview of Self-Challenging Agent. The agent takes on two roles: task challenger, and
task executor. The task challenger proposes a task along with a verification method to verify the
solution to the task. The task executor generates a solution and obtains a reward from the environment
based on the verification method.

synthetic tasks are tackled by the agent in the executor role, who attempts to accomplish them by
interacting with the same environment. However, ensuring generated tasks are (1) feasible, (2)
verifiable, and (3) difficult becomes increasingly complex in such scenarios. If the challenger agent
inadvertently generates flawed or impractical tasks, it risks introducing substantial noise into the
training data, thereby contaminating and destabilizing the learning process of the executing agent.

To enable the creation of high quality generated tasks we introduce the “Code-as-Task” (CaT)
formalism, wherein each generated task comprises four explicitly defined components: an instruction,
a verification function, an example solution, and explicitly enumerated failure cases, where all
components except the instruction are expressed in code due to its generality and expressivity [44, 15,
37]. This structured representation ensures task feasibility, as exemplified by provided solutions, task
difficulty, as exemplified by typical failure cases, and task verifiability through rigorous, executable
verification criteria. By leveraging external code executors, our framework automatically filters out
erroneous or impractical tasks, significantly mitigating risks associated with low-quality tasks.

Our experiments are conducted in four different tool-use environments from M3ToolEval [37] and
Tau-Bench [46] spanning tool-based calculations, web browsing, retail services, and flight booking.
We apply our method to generate synthetic tasks and rely purely on these synthetic tasks to fine-tune
the LLM agent before evaluating on the existing out-of-distribution test tasks. Empirically, we
establish the advantages of our Self-Challenging Agent (SCA) framework in two important settings:
distillation, where the goal is to distill the expertise of a stronger model to a weaker model without
any existing tasks, and self-improvement, where in the absence of a stronger model the weaker
model needs to supervise itself to make progress. For distillation, we are able to improve the student
model Llama-3.1-8B-Instruct [34] by 20.2% in terms of absolute average success rate across all
4 environments without any existing tasks. Even in the absence of a stronger model, through RL
training on its own synthetic tasks and rollout trajectories, SCA training is able to double the success
rate from 12.0% to 23.5%, outperforming the prior state-of-the-art self-improvement method for
LLM agents by a wide margin.

2 Related Work
Self-Challenging agents. The idea of an agent self-synthesizing tasks has been explored before
the emergence of LLMs. Notably, Asymmetric Self-Play (ASP) [33, 21] lets one agent act in the
environment first, followed by the second agent who aims to reach the same end state. The adversarial
nature of their reward encourages the first agent to act in ways that are difficult to imitate. While

2

this self-play idea has been historically successful in relatively constrained domains like robotics
simulations [3, 33, 21], math reasoning [6], or even to single-turn instruction following tasks [4, 47],
it has not been studied in terms of how to generalize ASP to open-ended and partially observable
tool-use agent environments while preserving task quality. A concurrent work [49] adopted ASP
to generate coding tasks with execution verification. In this work, we propose the Code-as-Task
formalism and thus utilize external code executors to ensure the synthetic tool-using tasks are feasible,
verifiable, and difficult.

Autonomous improvement of LLM agents. Recent studies have found that LLMs can be prompted
to evaluate the outcomes of LLM agents by examining their trajectories [23, 9]. Using autonomous
LLM evaluations as reward feedback, RL [1, 36, 2] or hindsight relabeling [19, 18, 5] can be applied
to improve the performance of LLM agents without human supervision. This self-improvement
loop can be further enhanced through self-generated instructions [38] to enhance the diversity of
the skills acquired [51, 32, 10, 24, 48, 7, 11, 5]. However, while autonomous evaluations and task
proposers can work well for relatively basic tasks, they do not have explicit mechanisms to improve
task quality and ensure its verifiability. In contrast, our work introduces a novel framework for a
task challenger agent to explore the environment before generating tasks and grounds the tasks in the
Code-as-Task format to significantly improve the task quality by leveraging an external code executor.
In our experiments, we show that these design decisions lead to significant improvements in both the
distillation and self-improvement settings.

Code-as-action for tool-use LLM agents. Equipping LLMs with external tools can not only
augment text-generation and information-gathering capabilities [27, 25, 17, 8, 42, 30] but also enable
them to take actions in the real world [46, 35, 15, 37]. While early explorations have designed
heterogeneous interfaces for LLM agents to use tools such as JSON or text [16, 45, 25], recent
studies have found that code can be used as a unified general interface for LLM agents to interact
with API functions [35, 44, 37], navigate through the web [31], make travel plans [40], and even
control robots in the physical world [15, 12, 13]. However, using code as a universal interface for
LLMs to autonomously generate synthetic tasks has not been studied. Our work proposes a novel
Code-as-Task format that formalizes tasks consisting of instructions, verification functions, example
solutions, and failure cases, to ensure the quality of the tasks in open-ended, tool-rich LLM agent
environments.

3 Problem Setup
In the standard LLM agent setting, the agent has the goal of executing a given task. In this executor
role, the agent interacts with the environment that contains multiple tools, such as a code interpreter,
web browser, and even human users, as shown in Figure 1. Let us represent the agent by the executor
policy πexec. At step t, the policy will output an action at, which can be a piece of code calling a tool
API, or a question to the user. Then the response from the tool or the user ot+1 will be observed and
appended to the context of the LLM when sampling the next action

at+1 ∼ πexec(·|o0:t+1, a1:t), st+1 ← T (st, at). (1)

The action will also have an effect on the environment and change its state st (i.e. database entries),
represented by a transition function T here. Here the initial observation o0 can contain useful
information like API documentation. It can also contain instructions about the task c ∈ C, which
can be further clarified by conversing with the user. Once the agent completes the task after T
steps, a verification method, e.g. a function that checks the state of the environment and the solution
from the agent, will be executed to evaluate the success of the solution and issue a reward to the
agent: Rc(sT , aT) ∈ R. As in principle the interactions between a language model agent and any
external environment can be considered as a form of tool use, this formulation of multi-turn tool-use
language agents encompasses most LLM agent tasks [37], such as agentic coding [14, 22], web
browsing [31, 50], and even interactions with users [53, 46]. In this paper, however, we assume
an unsupervised training setup where we do not have access to the ground-truth task set C and its
verification functions R. Instead, Self-Challenging allows the LLM agent to construct its own tasks
and their evaluation functions for RL training. We will detail our method in the following section.

4 Self-Challenging Agents
We now describe our Self-Challenging framework for training LLM agents. Different from the
standard LLM agent setting, our method enables agents with two roles: (1) As a task challenger, it

3

Verification function

Example Solution

Failure case (one of three)

assert
True

assert
False

Ensures the task is feasible and
the verification function works

Ensures the task is non-trivial and
the verification can detect failures

Instruction (to user)

Your name is Olivia Nguyen and your email is olivia4794@example.com.
For #W112, return the Skateboard via paypal 77.

Code-as-Task (CaT)

Figure 2: An example of a synthetic Code-as-Task (CaT) generated by the task challenger, in a
TauBench-based environment [46]. The task challenger interacts with the environment taking a series
of actions calling different tools to gather information, before generating the synthetic task, consisting
of an instruction, verification function, example solution and failure cases (shortened in the figure for
brevity). Automatic filtering is applied to CaTs to keep only valid tasks where the example solution
can pass the verification function and the failure cases cannot.

interacts with the environment and self-synthesizes tasks in our novel Code-as-Task format in order
to make high quality and challenging tasks for training. (2) As a task executor, it is trained on these
self-synthesized tasks in order to learn to solve real tasks at test time, for which there is less available
annotated data. We will describe each in turn.

4.1 Task Challenger

In the task challenger role, the agent interacts with the environment with the end goal of constructing
a viable task. Accessing the tools in the environment allows the challenger to gather information
about available tools and probe what type of tasks can be performed. Let πtask be the policy of
the task challenger. Similar to πexec, the challenger takes a series of actions calling different tools:
at+1 ∼ πtask(·|o0:t+1, a1:t). At the end, however, it must output a task specification that includes a
verification function: ĉ, R̂ĉ ∼ πtask(·|o0:T , a0:T−1). In this manner, we collect a set of synthetic tasks
Ĉ = {ĉi}Ni=1, on which we can train the executor agent. While the distribution of the generated tasks
Ĉ might not exactly match the real-world tasks C, training on Ĉ could lead to improved performance
on C as long as there are common similarities and shared skill-sets. In the next section, we will
explain how the class of tasks are structured, and how evaluation is done to obtain rewards.

4.2 Code-as-Task (CaT) Class of Tasks

As described in the previous section, in order for the task challenger policy πtask to generate high-
quality tasks, πtask itself also needs to be a reliable agent to take a series of actions to gather more
information about the environment and the unobserved states. As this is not trivial especially if the
tasks need to be challenging, we expect πtask to sometimes generate tasks that are either infeasible or
ambiguous. Incorporating these tasks for training the executor policy πexec will reduce the signal-to-
noise ratio and contaminate the training process.

We thus propose the “Code-as-Task” (CaT) class of tasks which can help in filtering out such low
quality tasks. As depicted in Figure 2, CaTs leverage code as an interface to automatically evaluate
the quality of synthetic tasks. The basic components of a CaT synthetic task include an instruction and
a verification function. The verification function R̂ will provide a sparse 0/1 outcome reward based
on whether the final state sT and answer aT passes the verification function. However, false negatives
(i.e. the agent gets a reward of 0 without doing anything wrong) and false positives (i.e. the agent
gets a reward of 1 without actually fulfilling the request) can easily occur when πtask hallucinates
during task proposals. To address these issues, we introduce additional components: an example
solution and three failure cases. These are automatically checked against the verification function to
ensure that tasks are feasible yet non-trivial and the verification function works properly. We observe
in experiments that this makes our proposed tasks significantly higher quality. We include a specific
prompt (see Appendix Figure 9 for an example) as an input to πtask so that it will adhere to CaT and
output all four components. A full output example of CaT is provided in Appendix Figure 15.

4

4.3 Task Executor
Once high quality tasks for the open-ended environment are generated via the CaT formalism, they
can then be directly used for training the task executor. We explore two possibilities in how these
tasks can be helpful for training the executor agent. We first discuss the self-improvement setting
where πexec improves itself with its own rollout trajectories through RL. We also explain an additional
possibility of distillation in the presence of a stronger teacher model via the synthetic tasks.

Self-improvement. We consider the self-improvement setting where both πexec and πtask are the same
LLM. In this setting, after deriving a set of high-quality tasks Ĉ through CaT generation, we use the
same LLM πexec to collect trajectories and annotate them with rewards calculated from verification
functions R̂ included in the tasks and apply RL for optimizing the policy. In particular, we applied
one-step REINFORCE [39], the most basic RL optimization method, that minimizes:

L = −
∑
ĉ∈Ĉ

Ea1:T∼πexec

[
R̂ĉ(sT , aT)

T∑
t=0

log πexec(at|o0:t, a0:t−1)

]
. (2)

Because of our reward structure with 0/1 outcome reward, this RL optimization objective is essentially
equivalent to performing supervised finetuning (SFT) on successful trajectories (i.e. R̂ĉ(sT , aT) = 1)
only, i.e. Rejection Fine-Tuning.

Distillation. We then consider an additional possible use of the synthetic tasks to distill the domain-
specific knowledge of a stronger LLM into a weaker LLM in a specific open-ended environment
without any additional human data. This setting could be particularly useful when we have a larger
generalist LLM that would be too costly or too slow to deploy, so we would like an automatic process
to distill the capability of the larger model in this environment to a smaller LLM that would be
cheaper and faster to deploy. In this setting, after creating a set of high-quality tasks Ĉ through CaT
generation, we use the stronger LLM to sample a dataset D̂ containing trajectories {o0:T , a0:T } on
those tasks. We then apply SFT with the cross entropy loss for training the weaker student LLM:

L = −
∑

{o0:T ,a0:T }∈D̂

[
T∑

t=0

log πexec(at|o0:t, a0:t−1)

]
. (3)

While one alternative is to train only on successful trajectories, our preliminary experiment results
show that even failed trajectories from a stronger model can be beneficial for a weaker model to learn
from, such as reflections on mistakes.

5 Experiments
We evaluate the Self-Challenging Agent (SCA) framework in actual tool-rich and open-ended LLM
agent environments. Specifically, we use it to train an agent in four different environments and in
both self-improvement and distillation settings using synthesized data only. The performance is then
measured on actual real test tasks, and compared against baselines. Finally, we provide ablation and
analysis experiments including data scaling results.

5.1 Environments
Our experiments are conducted in two multi-turn tool-use LLM agent benchmarks, featuring tasks
from four different environments that come equipped with functional verifiers for reliable evaluations.
In both environments, we instruct the agent to first output its thoughts and then follow them with
a block of executable Python function calls or a response to a simulated human user within the
environment. The execution results of the executable code or the simulated response from the
user serve as the observations for the next step. We limit the maximum number of steps in each
environment to be 15. The prompts used to apply our method to these environments are included in
Appendix D and more details about the environments can be found in Appendix A.

M3ToolEval [37] is a multi-turn function-calling benchmark where the success of each task is
determined by pattern-matching the agent’s final answer with the reference solution. We report
the performance in both the Calculation and Web Browsing environments with existing test tasks
from M3ToolEval. The Calculation environment involves using tools from a Travel Planner, DNA
Sequencer, Message Decoder, and Trade Calculator (approximately six tools in each domain) to
perform calculations. To use SCA in this environment, the task challenger applies the given tools to
create new tasks, generates the verification function to be pattern-matching with a reference solution,

5

Table 1: Main results. We validate the effectiveness of Self-Challenging Agents (SCA) in both the
distillation and self-improvement settings compared to zero-shot LLMs and PAE [51] baselines. For
both settings, we generate 800 synthetic tasks and 12k offline rollout trajectories. Pass@1 results are
averaged over four independent trials, and pass@4 is calculated from the same four trials. The best
results in each setting are in bold.

M3ToolEval Tau-Bench Average
Calculation Web Browsing Retail Airline

Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4

Zero-Shot
GPT-4o 72.4 85.4 52.9 70.6 18.7 37.4 15.8 36.7 40.0 57.5
Llama-3.1-70B 57.3 79.2 64.0 79.4 34.6 56.5 9.2 20.0 41.3 58.8
Llama-3.1-8B 20.3 43.8 16.2 42.1 8.9 15.7 2.5 10.0 12.0 27.9

Distillation
Llama-3.1-8B-PAE 44.3 77.1 45.6 76.5 23.7 40.9 6.7 13.3 30.1 52.0
Llama-3.1-8B-SCA 43.2 72.9 50.0 82.4 28.9 48.7 6.7 23.3 32.2 56.8

Self-Improve
Llama-3.1-8B-PAE 27.6 54.2 14.0 38.2 9.8 18.3 0.0 0.0 12.9 27.7
Llama-3.1-8B-SCA 31.8 62.5 44.9 67.6 13.0 25.2 4.2 10.0 23.5 41.3

provides an example solution as a series of operations that can arrive at the reference solution, and
defines failure cases as incorrect answers.

Tau-Bench [46] is a multi-turn customer service environment where the LLM agent needs to interact
with a user (simulated by GPT-4o [20]), query the database, and make corresponding modifications to
fulfill the user requests. It is composed of Retail and Airline environments corresponding to customer
support for E-commerce service and flight booking services. Around 15 tools such as “book_flight”
and “exchange_order_items” are available for each environment. When a user response is needed,
we use the same model as the backbone of the agent (Llama-3.1-8B-Instruct) to simulate the user
instead of GPT-4o as used at final evaluation time.

5.2 Main Comparisons
Experiment Setup. We conduct our experiments by RL fine-tuning Llama-3.1-8B-Instruct (“Llama-
3.1-8B” for short) [34] as the base model πexec. In both distillation and self-improvement settings, we
use the same fixed Llama-3.1-8B model as the task challenger πtask. In the self-improvement setting,
all training tasks and trajectories are generated by Llama-3.1-8B itself. In the distillation setting,
we use larger Llama-3.1-70B-Instruct (“Llama-3.1-70B” for short) as the stronger model to sample
demonstration trajectories. We compare SCA with several baselines in different settings. Firstly,
we include the zero-shot performance of Llama-3.1-8B and Llama-3.1-70B to study how much
performance gain SCA can produce from the pre-trained checkpoint, and the zero-shot performance
of GPT-4o as a reference for advanced proprietary models. We also compare to the Proposer-
Agent-Evaluator (PAE) [51] baseline, a prior state-of-the-art for task synthesis and autonomous
improvement, which has been shown to be effective for open-ended GUI navigation agents. In PAE,
instructions are proposed autonomously by prompting Llama-3.1-8B with the initial observation, such
as the API documentation of available tools or the initial web page for web browsing. Success is also
judged by prompting the same model, Llama-3.1-8B, with the instruction and the rollout trajectory.
The prompts for both the PAE task proposer and evaluator are included in Appendix D. The crucial
differences between PAE and SCA are: (1) the task proposer in PAE generates tasks directly from API
documentation and the initial observation instead of serving as an agent that actively interacts with
the environment to gather information before creating the task; (2) PAE only generates instructions
while our CaT tasks contain instructions, verification functions, example solutions, and failure cases;
and (3) PAE prompts the same model to serve as the judge instead of relying on verification functions
as in SCA. Note that the third point only makes a difference in the self-improvement setting because
all demonstration trajectories, regardless of success or failure, are used for the distillation setting.

Distillation Results. The main results in the distillation setting are presented in Table 1. We first note
the surprising generalization to out-of-distribution test tasks entirely through training on synthetic
tasks. Both PAE and SCA are able to achieve more than 18% and 20% absolute improvement in the
average success rate, respectively. This is especially noteworthy given the striking difference between
synthetic tasks and real tasks. However, we also observe major limitations of PAE. For example,

6

PAE can only propose very ambiguous tasks based on the limited initial information it gathers from
the environment. While PAE works with distillation, particularly in more straightforward and fully
observable environments such as Calculation with an average improvement of +23% Pass@1 success
rate, its tasks are mostly limited to the information from the initial observation and do not incentivize
the teacher model to provide demonstrations with a wide coverage over the environments when it is
partially observable. In these environments, we find the task challenger agent in SCA to be superior
where it can actively explore the environment to generate more precise tasks that incentivize the
teacher model to sufficiently explore the environment. We find that this leads to better performance
compared to PAE in all 3 partially observable environments, with the performance gain as large as
5.2% in terms of Pass@1 success rate in Retail. As we will see in the next section, these weaknesses
in PAE’s proposed tasks are a larger problem in the self-improvement setting, when a stronger teacher
model is not available.

Self-improvement Results. The main results for the self-improvement setting are also presented in
Table 1. We find that the quality of synthetic tasks matters much more in this setting compared to
the distillation setting. While PAE is still effective in the fully observable Calculation environment,
achieving +7.3% improvement in Pass@1 success rate, it can only achieve marginal improvements
or even decreased performance compared to the baseline in the other three partially observable
environments. In particular, the autonomously proposed tasks from PAE in Airline actually result in a
-10% drop to 0% Pass@4. In contrast, thanks to the diversity and preciseness of the tasks generated
by the task challenger agent and the accurate reward feedback from the Code-as-Task formulation,
SCA is able to achieve better performance both in the fully observable Calculation environment
and the other three partially observable environments, with an average of +11.5% gain compared
to the base model and a +10.6% advantage compared to PAE in terms of Pass@1. This shows the
advantage of SCA in general tool-rich and open-ended environments, over the prior state-of-the-
art PAE, whose utility crucially depends on the fully observable assumption of the environment.

5k 10k 15k
Number of Trajectories

0

10

20

30

40

Su
cc

es
s R

at
e

M3ToolEval Calculations

Zeroshot
Rejection Fine-Tuning
DPO
PPO
GRPO

Figure 3: Ablation studies of different RL
algorithms with synthetic tasks generated
from SCA, in the Calculation environment
from M3ToolEval. Pass@1 success rates are
reported. We find that online RL algorithms
in general attain even better performance
on out-of-distribution test sets, but they are
more unstable and require more careful tun-
ing.

5.3 Analysis and Ablations
How do different RL algorithms work with SCA?
While the main self-improvement results in Table 1
are achieved through simple Rejection Fine-Tuning
on successful offline rollout trajectories as described
in Section 4.3, in principle the design of SCA should
be compatible with any RL algorithm, even the state-
of-the-art online RL algorithms for LLM such as
PPO [28] and GRPO [29]. We investigate the ef-
fectiveness of SCA when training with different RL
algorithms and report the results in Figure 3, includ-
ing offline methods such as Rejection Fine-Tuning
and DPO [26] and online methods such as GRPO
and PPO. While offline methods such as Rejection
Fine-Tuning and DPO can already achieve significant
self-improvements from 20.3% to 31.8% Pass@1 suc-
cess rate, online RL on the same tasks can push the
performance to another level of 43.2% Pass@1. How-
ever, the additional performance gain comes at the
cost of increased infrastructure complexity to accom-
modate efficient on-policy sampling and instability to
hyperparameters, as we observe that the performance
of GRPO suddenly drops to 0% at the end of training
when it is not tuned carefully.

What is the impact of the different components in CaT? We perform human annotation experi-
ments to understand the importance of different components in CaT. Specifically, we compare four
different variants for generating tasks, including the PAE baseline, CaT w/ Instruction + Verifica-
tion Function Only, CaT w/ Instruction + Verification Function + Solution, and CaT (Instruction +
Verification Function + Solution + Failure Cases), all using Llama-3.1-8B. For CaT w/ Instruction +
Verification Function Only, we perform an automatic filtering to only keep tasks where the verification
function is runnable Python code. After filtering, 47.7% of tasks remain with this variant. For CaT w/
Instruction + Verification Function + Solution, we perform an automatic filtering to keep only tasks

7

TP TN FP FN
0

20

40

60

Pe
rc

en
ta

ge
 %

(a) PAE
 (100%)

TP TN FP FN

(b) Verification Only
 (47.7%)

TP TN FP FN

(c) + Solution
 (9.5%)

TP TN FP FN

(d) CaT (+ Failure Cases)
 (5.2%)

Figure 4: Human annotations of synthetic task qualities. 50 rollout trajectories from Llama-3.1-8B
in the Retail environment from attempted synthetic tasks from each variant are manually labeled to
fall into one of the four categories including False Negative (FN), False Positive (FP), True Negative
(TN), and True Positive (TP). The pass rates of the task challenger generating a task passing all filters
for each category are shown in parentheses. We observe that CaT can significantly reduce both FN
and FP, which are invalid tasks or wrongly labeled trajectories.

where the solution can pass the verification function. The percentage of passing tasks for this variant
is 9.5%. For CaT (Instruction + Verification Function + Solution + Failure Cases), we perform all
automatic filtering steps to keep only tasks where the solution can pass the verification functions
while none of the failure cases can pass. The percentage of passing tasks for full CaT is 5.2%.

For each variant, we obtain 50 passing synthetic tasks and collect 50 rollout trajectories from Llama-
3.1-8B in the Retail environment. For each rollout trajectory, one of the authors manually inspects the
trajectory and the task to classify it into one of the four categories: (1) False Negative (FN), where
the agent gets a reward of 0 because the task is impossible to be complete. For example, the agent
fails the task of “return order #W000001” but it is impossible because this order does not exist. (2)
False Positive (FP), where the agent gets a reward of 1 but does not actually fulfill the instruction.
For example, the agent might return an order instead of exchanging the order. (3) True Negative
(TN), where the agent gets a reward of 0 because it indeed makes a mistake in attempting the task.
(4) True Positive (TP), where the agent gets a reward of 1 and it indeed fulfills the instruction. The
statistics from human annotations are presented in Figure 4.

Firstly, we notice that tasks from PAE result in a significant fraction of FN, with the main failure
mode of generating ambiguous and impossible tasks for the agent to complete. Explicitly asking the
task challenger to interact with the environment to gather more information and generate a verification
function along with the instruction in Verification Only amounts to marginal improvements. We
find that asking the task challenger to generate an example solution and enforce the requirement of
the example solution passing the verification function can significantly reduce FN by eliminating
impossible tasks, but it increases FP. The main failure mode is that the verification function is too
lenient and sometimes even no actions can pass the verification function. While these overly lenient
verification functions do not account for a large percentage initially, the filtering mechanism based on
the example solution passing verification functions tends to amplify this distribution. Fortunately, we
can apply a simple fix by adding another filtering mechanism based on failure cases to completely
remove FP in CaT. However, there is still a large percentage of FN even in CaT. The main failure
mode of FN in CaT is incomplete instructions where the instruction does not contain all necessary
information to complete the task. For example, the instruction may be “Help me return one of my
latest orders” without specifying which order needs to be returned. As this group of FN involves
nuanced semantic dependencies, we leave it as an open question for future research.

How does the automatic filtering mechanism in CaT affect task diversity and difficulty? One
possible concern is that the heavy automatic filtering mechanism might collapse the distribution of
tasks and make them less diverse. To investigate this concern, we analyze the distribution of task
difficulty before and after the filtering step of CaT in the Retail environment, where we measure task
difficulty using the length of the example solution. As presented in Figure 5 (a), we have found that
for Llama-3.1-8B, the distribution of task difficulty before the filtering step is more spread out, while
after the filtering step it tends to be more homogeneous. However, the distribution after filtering
remains similar with the stronger model Llama-3.1-70B shown in Figure 5 (b), where CaT merely
refines the task distribution instead of collapsing it. This suggests that CaT filtering only removes
poor generations typically found in weaker models while preserving the diversity of the distribution
of valid tasks.

8

0 50 100 150 200 250 300+
Difficulty

0%

2%

5%

8%

Pe
rc

en
ta

ge

(a) Llama-3.1-8B CaT (5.3%)

0 50 100 150 200 250 300+
Difficulty

(b) Llama-3.1-70B CaT (34.4%)

Before Filtering After Filtering

Figure 5: Analysis of the distribution of task difficulty before and after the filtering step of CaT
in the Retail environment. The task difficulty is represented by the length of the example solution.
The percentages of passing tasks after filtering are included in parentheses. We observe that CaT
filtering can result in a less diverse task distribution for the less capable Llama-3.1-8B but preserves
the original task distribution for the stronger Llama-3.1-70B model.

0 500 1k 3k 9k 12k
Number of Trajectories

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

Su
cc

es
s R

at
e

Train

0 500 1k 3k 9k 12k
Number of Trajectories

20.0

30.0

40.0

50.0

60.0
Test (Out-Of-Distribution)

Pass@1 (800 tasks)
Pass@4 (800 tasks)
Pass@1 (400 tasks)
Pass@4 (400 tasks)
Pass@1 (200 tasks)
Pass@4 (200 tasks)

Figure 6: Scaling analysis for SCA with different number of tasks in M3ToolEval Calculation. The
results show that scaling the number of synthetic tasks is more effective compared to scaling the
number of trajectories per task on the test data. In contrast, on the train data a smaller number of
tasks but more trajectories gives a higher success rate, but this does not generalize out-of-distribution.

Should we scale the number of tasks or the number of trajectories per task? In order to further
improve performance with more synthetic data, there are two axes along which we can generate more
rollout trajectories: 1) generating more synthetic tasks to collect rollout trajectories, or 2) collecting
more rollout trajectories for each synthetic task. Figure 6 presents our findings in investigating these
two scaling axes in M3ToolEval Calculation. Firstly, we notice that scaling the number of interactions
always results in improvements in Pass@1 and Pass@4 success rates in the train set for all three
different train set sizes. However, such improvements in the train set do not necessarily translate
to improvements in the out-of-distribution test set. In particular, training on 200 tasks even slightly
degrades the test set Pass@1 and Pass@4 performance, and training on 400 tasks only leads to
marginal improvements. Only when the training set has sufficient diversity and coverage, as in the
case of 800 tasks, can we see a steady improvement in terms of test performance as we collect more
rollout trajectories. This result underscores the requirement of a large set of training tasks for general
LLM agents and the promise of SCA to automate the process of large-scale task creation.

6 Broader Impact

The objective of this project is to empower LLM agents with the ability to autonomously enhance
their capabilities through interactions with the environment, thereby reducing reliance on costly
human supervision. Although the models trained in this paper exhibit inadequate performance and
struggle with relatively simple tasks, such as booking flight tickets and processing returns, future
self-improvement methods leveraging more advanced pre-trained LLMs may potentially yield models
with superhuman capabilities. To mitigate potential risks, it is essential to conduct thorough research
on aligning strong models with human values, ensuring that these values are preserved even as the
models improve themselves to achieve superhuman performance levels.

7 Limitations
While our work shows the promise of an LLM agent generating high-quality tasks to improve
itself, there are still limitations, which are also future research opportunities. First, despite the CaT
formalism, there is still a non-trivial percentage of False Negative examples as shown in Figure 4.

9

The main failure mode is semantic nuances such as ambiguity or missing information that can be
difficult to distinguish. This results in the suboptimality gap between RL training with SCA tasks
and oracle tasks as shown in Appendix B. Additionally as detailed in Appendix B, because of the
distinctions between different environments studied in this paper, the LLM agent tends to mostly
improve its environment-specific skills instead of overall agentic capabilities. It remains an open
research problem on how to enhance the environment-general agentic capabilities of LLM agents.

8 Conclusion
In this paper, we present the Self-Challenging Agent (SCA) method for self-improvement of general
multi-turn tool-use LLM agents. SCA can create its own tasks to challenge itself and learn from them.
To do this, it utilizes the Code-as-Task (CaT) formulation which ensures high quality synthetic tasks.
Through RL on these self-generated synthetic tasks, SCA can be used to train a Llama-3.1-8B model
to achieve an average relative success rate improvement of 95.8% on existing test tasks across four
different multi-turn tool-use environments. Our results show the promise of self-improvement for
general multi-turn tool-use LLM agents, without reliance on the manual process of creating a diverse
set of tasks, tools, and evaluation criteria. While SCA serves as a preliminary step, there remains
many research questions for building an effective self-improvement flywheel for general LLM agents.

References
[1] Hao Bai, Yifei Zhou, Mert Cemri, Jiayi Pan, Alane Suhr, Sergey Levine, and Aviral Kumar.

Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning,
2024. URL https://arxiv.org/abs/2406.11896.

[2] Hao Bai, Yifei Zhou, Li Erran Li, Sergey Levine, and Aviral Kumar. Digi-q: Learning q-value
functions for training device-control agents, 2025. URL https://arxiv.org/abs/2502.
15760.

[3] Adrien Baranes and Pierre-Yves Oudeyer. Active learning of inverse models with intrinsically
motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1):49–73, January
2013. ISSN 0921-8890. doi: 10.1016/j.robot.2012.05.008. URL http://dx.doi.org/10.
1016/j.robot.2012.05.008.

[4] Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024.

[5] Cédric Colas, Laetitia Teodorescu, Pierre-Yves Oudeyer, Xingdi Yuan, and Marc-Alexandre
Côté. Augmenting autotelic agents with large language models, 2023. URL https://arxiv.
org/abs/2305.12487.

[6] Kefan Dong and Tengyu Ma. Stp: Self-play llm theorem provers with iterative conjecturing and
proving, 2025. URL https://arxiv.org/abs/2502.00212.

[7] Maxence Faldor, Jenny Zhang, Antoine Cully, and Jeff Clune. Omni-epic: Open-endedness
via models of human notions of interestingness with environments programmed in code, 2025.
URL https://arxiv.org/abs/2405.15568.

[8] Zhicheng Guo, Sijie Cheng, Hao Wang, Shihao Liang, Yujia Qin, Peng Li, Zhiyuan Liu,
Maosong Sun, and Yang Liu. Stabletoolbench: Towards stable large-scale benchmarking on
tool learning of large language models, 2025. URL https://arxiv.org/abs/2403.07714.

[9] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal
models, 2024. URL https://arxiv.org/abs/2401.13919.

[10] Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Hongming Zhang, Tianqing Fang, Zhen-
zhong Lan, and Dong Yu. Openwebvoyager: Building multimodal web agents via iterative
real-world exploration, feedback and optimization, 2024. URL https://arxiv.org/abs/
2410.19609.

10

https://arxiv.org/abs/2406.11896
https://arxiv.org/abs/2502.15760
https://arxiv.org/abs/2502.15760
http://dx.doi.org/10.1016/j.robot.2012.05.008
http://dx.doi.org/10.1016/j.robot.2012.05.008
https://arxiv.org/abs/2305.12487
https://arxiv.org/abs/2305.12487
https://arxiv.org/abs/2502.00212
https://arxiv.org/abs/2405.15568
https://arxiv.org/abs/2403.07714
https://arxiv.org/abs/2401.13919
https://arxiv.org/abs/2410.19609
https://arxiv.org/abs/2410.19609

[11] Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jianguang Lou, Qingwei Lin, Ping Luo,
Saravan Rajmohan, and Dongmei Zhang. Agentgen: Enhancing planning abilities for large
language model based agent via environment and task generation, 2024. URL https://arxiv.
org/abs/2408.00764.

[12] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents, 2022. URL https:
//arxiv.org/abs/2201.07207.

[13] Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu Li, Jiajun Wu, and Li Fei-Fei. Voxposer:
Composable 3d value maps for robotic manipulation with language models, 2023. URL
https://arxiv.org/abs/2307.05973.

[14] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.
URL https://arxiv.org/abs/2310.06770.

[15] Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control, 2023. URL
https://arxiv.org/abs/2209.07753.

[16] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents, 2023. URL https://arxiv.org/abs/2308.03688.

[17] Dheeraj Mekala, Jason Weston, Jack Lanchantin, Roberta Raileanu, Maria Lomeli, Jingbo
Shang, and Jane Dwivedi-Yu. Toolverifier: Generalization to new tools via self-verification,
2024. URL https://arxiv.org/abs/2402.14158.

[18] Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel:
Bootstrapping agents by guiding exploration with language, 2024. URL https://arxiv.org/
abs/2403.08140.

[19] Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsu-
pervised learning of browser agents through environment interaction in the wild, 2025. URL
https://arxiv.org/abs/2410.02907.

[20] OpenAI. Gpt-4 technical report, 2024. URL https://arxiv.org/abs/2303.08774.

[21] OpenAI OpenAI, Matthias Plappert, Raul Sampedro, Tao Xu, Ilge Akkaya, Vineet Kosaraju,
Peter Welinder, Ruben D’Sa, Arthur Petron, Henrique P. d. O. Pinto, Alex Paino, Hyeonwoo
Noh, Lilian Weng, Qiming Yuan, Casey Chu, and Wojciech Zaremba. Asymmetric self-play
for automatic goal discovery in robotic manipulation, 2021. URL https://arxiv.org/abs/
2101.04882.

[22] Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe
Zhang. Training software engineering agents and verifiers with swe-gym, 2024. URL https:
//arxiv.org/abs/2412.21139.

[23] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Au-
tonomous evaluation and refinement of digital agents, 2024. URL https://arxiv.org/abs/
2404.06474.

[24] Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue
Yang, Jiadai Sun, Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and Yuxiao Dong. Webrl:
Training llm web agents via self-evolving online curriculum reinforcement learning, 2025. URL
https://arxiv.org/abs/2411.02337.

[25] Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong,
Xiangru Tang, Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, Ruobing Xie, Jie Zhou, Mark
Gerstein, Dahai Li, Zhiyuan Liu, and Maosong Sun. Toolllm: Facilitating large language models
to master 16000+ real-world apis, 2023. URL https://arxiv.org/abs/2307.16789.

11

https://arxiv.org/abs/2408.00764
https://arxiv.org/abs/2408.00764
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2201.07207
https://arxiv.org/abs/2307.05973
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2209.07753
https://arxiv.org/abs/2308.03688
https://arxiv.org/abs/2402.14158
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2403.08140
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2101.04882
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2412.21139
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2411.02337
https://arxiv.org/abs/2307.16789

[26] Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model,
2024. URL https://arxiv.org/abs/2305.18290.

[27] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach
themselves to use tools, 2023. URL https://arxiv.org/abs/2302.04761.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[29] Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

[30] Zhengliang Shi, Shen Gao, Lingyong Yan, Yue Feng, Xiuyi Chen, Zhumin Chen, Dawei Yin,
Suzan Verberne, and Zhaochun Ren. Tool learning in the wild: Empowering language models
as automatic tool agents, 2025. URL https://arxiv.org/abs/2405.16533.

[31] Yueqi Song, Frank Xu, Shuyan Zhou, and Graham Neubig. Beyond browsing: Api-based web
agents, 2025. URL https://arxiv.org/abs/2410.16464.

[32] Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö. Arık. Learn-
by-interact: A data-centric framework for self-adaptive agents in realistic environments, 2025.
URL https://arxiv.org/abs/2501.10893.

[33] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play, 2018. URL
https://arxiv.org/abs/1703.05407.

[34] Llma3 Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

[35] Harsh Trivedi, Tushar Khot, Mareike Hartmann, Ruskin Manku, Vinty Dong, Edward Li,
Shashank Gupta, Ashish Sabharwal, and Niranjan Balasubramanian. Appworld: A controllable
world of apps and people for benchmarking interactive coding agents, 2024. URL https:
//arxiv.org/abs/2407.18901.

[36] Taiyi Wang, Zhihao Wu, Jianheng Liu, Jianye Hao, Jun Wang, and Kun Shao. Distrl: An
asynchronous distributed reinforcement learning framework for on-device control agents, 2025.
URL https://arxiv.org/abs/2410.14803.

[37] Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji.
Executable code actions elicit better llm agents, 2024. URL https://arxiv.org/abs/2402.
01030.

[38] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi,
and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instruc-
tions, 2023. URL https://arxiv.org/abs/2212.10560.

[39] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8:229–256, 2004. URL https://api.semanticscholar.
org/CorpusID:19115634.

[40] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao,
and Yu Su. Travelplanner: A benchmark for real-world planning with language agents, 2024.
URL https://arxiv.org/abs/2402.01622.

[41] Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao,
Toh Jing Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan
Zhou, Silvio Savarese, Caiming Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking
multimodal agents for open-ended tasks in real computer environments, 2024. URL https:
//arxiv.org/abs/2404.07972.

12

https://arxiv.org/abs/2305.18290
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2405.16533
https://arxiv.org/abs/2410.16464
https://arxiv.org/abs/2501.10893
https://arxiv.org/abs/1703.05407
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2407.18901
https://arxiv.org/abs/2410.14803
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2402.01030
https://arxiv.org/abs/2212.10560
https://api.semanticscholar.org/CorpusID:19115634
https://api.semanticscholar.org/CorpusID:19115634
https://arxiv.org/abs/2402.01622
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2404.07972

[42] Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello,
Misha Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, Chi Jin, Tong Zhang, and
Tianqi Liu. Building math agents with multi-turn iterative preference learning, 2025. URL
https://arxiv.org/abs/2409.02392.

[43] Frank F. Xu, Yufan Song, Boxuan Li, Yuxuan Tang, Kritanjali Jain, Mengxue Bao, Zora Z.
Wang, Xuhui Zhou, Zhitong Guo, Murong Cao, Mingyang Yang, Hao Yang Lu, Amaad Martin,
Zhe Su, Leander Maben, Raj Mehta, Wayne Chi, Lawrence Jang, Yiqing Xie, Shuyan Zhou,
and Graham Neubig. Theagentcompany: Benchmarking llm agents on consequential real world
tasks, 2024. URL https://arxiv.org/abs/2412.14161.

[44] Ke Yang, Jiateng Liu, John Wu, Chaoqi Yang, Yi R. Fung, Sha Li, Zixuan Huang, Xu Cao,
Xingyao Wang, Yiquan Wang, Heng Ji, and Chengxiang Zhai. If llm is the wizard, then code is
the wand: A survey on how code empowers large language models to serve as intelligent agents,
2024. URL https://arxiv.org/abs/2401.00812.

[45] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models, 2023. URL https:
//arxiv.org/abs/2210.03629.

[46] Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark
for tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

[47] Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing
Xu, and Jason Weston. Self-rewarding language models, 2024. URL https://arxiv.org/
abs/2401.10020.

[48] Jenny Zhang, Joel Lehman, Kenneth Stanley, and Jeff Clune. Omni: Open-endedness via models
of human notions of interestingness, 2024. URL https://arxiv.org/abs/2306.01711.

[49] Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi
Wang, Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play
reasoning with zero data, 2025. URL https://arxiv.org/abs/2505.03335.

[50] Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/
2307.13854.

[51] Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
and Erran Li. Proposer-agent-evaluator(pae): Autonomous skill discovery for foundation model
internet agents, 2024. URL https://arxiv.org/abs/2412.13194.

[52] Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training
language model agents via hierarchical multi-turn rl, 2024. URL https://arxiv.org/abs/
2402.19446.

[53] Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar,
and Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks, 2025.
URL https://arxiv.org/abs/2503.15478.

13

https://arxiv.org/abs/2409.02392
https://arxiv.org/abs/2412.14161
https://arxiv.org/abs/2401.00812
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2306.01711
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2412.13194
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2402.19446
https://arxiv.org/abs/2503.15478

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper addresses the challenge of generating synthetiic tasks for LLm
agents.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a dedicated section in the main text discussing limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

14

Justification: No theoretical results provided in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The appendix includes all the prompts that we have used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [No]
Justification: N/A
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have included the choices of hyperparameters in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Because of constraints of computational resources, we are unable obtain
statistical evidence for our experiments. However, we do have scaling experiments in
Figure 6 that contain repeated experiments with different amount of data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This will be included in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms with the NeurIPS code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There is a dedicated appendix section for discussing broader impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our experiments are conducted under constrained environments and thus do
not have high risks for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: They creators have been properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: No new asset is released
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have included a screenshot of the annotation page in the appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Does not involve crowdsourcing, labeling is done by the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Additional Environment Details

Due to space constraints of the main text, we provide additional details of the environment in this
sections.

M3ToolEval: an example task in this environment is: “Decode a message that went through three
steps: first, a Caesar cipher with a shift of 3; then reversed; and finally, encoded to hexadecimal. The
final hex-encoded message is ‘726f77746e6153794d’.” Compared to other environments, Calculation
is fully observable, and almost all information about this environment is encoded in the initial
observation containing the API documentation of each tool. The Web Browsing environment involves
text-based navigation through a set of synthetic web pages to find specific information. Initial
observable information in only contains the landing web page and the tools that the agent can use
to navigate the website; more information must be gathered through explicit interaction with the
environment.

Tau-Bench: an example task in this environment is “You are Fatima Johnson in 78712. You want
to cancel all pending orders (since they are no longer needed) and return the watch you have received
(but nothing else), and you want to know the total amount you can get back. You are a private person
that does not want to reveal much about yourself,”. In that case, the ground-truth verifier checks
if the desired changes have been actually made in the database. When we apply our method to
generate synthetic tasks for the tools and setting of this benchmark, we set the verification function
to a python function that performs database queries to verify desired effects, the example solution
to be a series of database modification calls, and the failure cases to be some close attempts. The
initial observations for both environments only contain the API documentations for each tool, and
any information regarding the database is only available to the agent through explicit function calling
such as “get_reservation_details”. We noticed 40% of the tasks in Airline are considered successful
when no actions are taken so we removed them from our experiments to reduce noise.

Environment modifications for task challenger: each time when the task challenger tries to
synthesize a task in CaT format, we will reset the hidden states of the environment (e.g. the flight and
retail database) and run an automatic checker. The automatic checker verifies 1) all code is runnable,
2) the example solution can pass the verification function, and 3) the failure cases cannot pass the
verification. If the automatic checker fails, it will return its error traceback to the task challenger to
revise the task.

B Additional Discussions

In this section, we present additional experiment results and analysis to understand the limitations of
Self-Challenging Agent (SCA) and possibility for future research.

How does the improvements from SCA transfer between multiple environments? To under-
stand whether the improvements from SCA can generalize across different environments, we compare
the performance of training separate models for each individual environment and that of training a
joint model with aggregate data from all environments. As shown in Table 2, we found marginal im-
provements, or even worse performances, of training a joint model on the data from all environments.
By inspecting the trajectories from pretrained Llama-3.1-8B-Instruct and Llama-3.1-8B-SCA, we
found that the main challenges faced by the agent in those environments are environment-specific
e.g. a “book_hotel” tool in Calculation does not take position arguments or the agent should first ask
for the user emails and zip code before checking the account details, and Self-Challenging Agent
mainly improved the LLM agents’ capabilities to get around these environment-specific challenges.
It remains an open research problem if we can design a self-improvement method that enhances the
environment-general agentic capabities.

How does the task quality from SCA compare with oracle tasks? We conduct additional
experiments to investigate how tasks generated by SCA compare with high-quality oracle tasks
in M3ToolEval Calculation. To construct oracle tasks, we manually create 5 seed tasks for each
domain in Calculation that resemble existing test tasks and prompt Llama-3.1-8B to generate similar
tasks with detailed documentation describing the implementation of each tool. We then prompt

21

Table 2: Cross-environment transfer analysis where we compare the performance of training a separate
model for each environment with that of training the same model with aggregate data from all environments. We
found marginal, if not worse, benefits from aggregate training for all 4 environments.

M3ToolEval Tau-Bench Average
Calculation Web Browsing Retail Airline

Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4

Self-Improve
Llama-3.1-8B-SCA 31.8 62.5 44.9 67.6 13.0 25.2 4.2 10.0 23.5 41.3
Llama-3.1-8B-SCA-Cross-Task 30.7 58.3 45.6 67.6 11.3 23.5 4.2 10.0 23.0 39.8

5k 10k 15k
Number of Trajectories

20

30

40

50

Su
cc

es
s R

at
e

M3ToolEval Calculation PPO
Zeroshot
SCA
Oracle Tasks

Figure 7: Comparison with oracle tasks in M3ToolEval Calculation with PPO policy optimization. Both
training set contains 800 tasks. While training on synthetic tasks generated from SCA can result in significant
improvements on out-of-distribution test tasks, there is still a gap compared to training on oracle tasks.

Llama-3.1-8B 16 times to generate a Python expression to solve each task and retain only those
with a consensus rate between 25% to 50%. The consensus results serve as reference solutions.
Throughout this process, we manually inspect the generated tasks to ensure quality. This approach
yields a training set containing 800 tasks for Calculation. We run PPO with identical hyperparameters
on both the 800 tasks generated by SCA and the 800 oracle tasks, and report the comparison results
in Figure 7. Our findings indicate that while SCA can generate high-quality tasks that facilitate
self-improvement, there remains a sub-optimality gap compared to using oracle tasks, suggesting
opportunities for future research to further refine the quality of synthetic tasks.

Table 3: Ablation on distillation where we considered the role of unsuccessful trajectories in the
distillation. We found that when the performance of the teacher model is significantly better than the
student model, distillation using both successful and unsuccessful trajectories tend to work better
than using only successful trajectories.

M3ToolEval Tau-Bench Average
Calculation Web Browsing Retail Airline

Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4 Pass@1 Pass@4

Distillation
Llama-3.1-8B-SCA 43.2 72.9 50.0 82.4 28.9 48.7 6.7 23.3 32.2 56.8
Llama-3.1-8B-SCA-Only-Success 33.3 50.0 41.2 79.4 28.7 49.6 7.5 13.3 27.8 48.1

22

Table 4: Ablation study on the effectiveness of the
filtering step in SCA. Pass@1 is averaged across four
independent runs. We generate 800 tasks and rollout
12K agent trajectories for each method.

Model pass@1 pass@4
Llama-3.1-8B-Instruct 8.9 15.7
PAE 9.8 18.3
SCA (no filtering) 8.9 20.8
SCA 13.0 25.2

Should we use unsuccessful trajectories
for distillation? To ablate on the best
strategy in the distillation setting, we con-
duct additional ablation study and report
the results in Table 3. We have observe
that distillation on both successful and un-
successful trajectories tend to yield better
results compared to successful trajectories
only across the board. This is probably be-
cause when the capability of the teacher is
significantly better than the student model,
even unsuccessful trajectories can contain
useful experience such as reasoning about mistakes for the student model to learn from.

How effective is the automatic filtering step in SCA? While Figure 4 has shown that automatic
filtering can significantly improve the quality of synthetic tasks, we carry out additional ablation
experiments to verify that the improvements in the task quality indeed result in an improved policy.
Specifically, we considered the ablation SCA (no filtering) that prompts the task challenger to
interact with the environment and directly generate the instruction and evaluation function. The
only difference of SCA (no filtering) from SCA is the lack of the CaT filtering mechanism. As
presented in Table 4, while SCA no filtering might have got some positive learning signals from
the synthetic tasks to improve pass@4 performance, we found that the generated instructions and
evaluation functions are quite noisy without filtering (as shown in the human analysis in Figure 4)
and resulted in sub-optimal performance compared to SCA, e.g. pass@1 drops from 13.0 to 8.9. This
ablation provides direct evidence of the effectiveness of the automatic filtering step in SCA.

C Details for Human Annotations

For completeness, we have included in Figure 8 an illustration of the annotation interface that we
have built for the authors to annotate the results presented in Figure 4. For each trajectory, the author
will see the initial instruction, the entire interaction history, the reward predicted by the verification
function, and the verification function to classify each trajectory into the following four categories
with descriptions provided as:

1. True Positive (Agent actually completes the task and the reward is 1)

2. True Negative (Agent actually failed the task with a reward of 0 and the task is feasible)

3. False Positive (Agent did not complete the task but reward is 1)

4. False Negative (Agent got a reward of 0 but it is because the task is ambiguous or verification
function is wrong).

In total 200 trajectories are annotated for each variant presented in Figure 4, and it took in total 8
human-hours.

D Prompts

For completeness and reproducibility, we include all major prompts that we have used in our
experiments in this section. In particular, the prompt for the autonomous evaluator in the PAE
baseline is provided in Figure 13 and the prompt for the user simulator for Retail and Airline
environments is provided in Figure 14. We have also provided the prompts for task challengers in
Figure 9, 10, 11, and 12. We observe that stronger LLMs such as Llama-3.1-70B are relatively
robust to the prompts while weaker LLMs such as Llama-3.1-8B are sometimes sensitive to the
prompts, mainly because of the length of the instruction required to specify the environment and
action space and the suboptimal instruction-following capabilities of weaker LLMs for long prompts.

23

Figure 8: Annotation interface that we have build for human annotation results presented in Figure 4.

E Compute Usage

For reproducibility, we include the compute usage in Table 5. We find the main bottlenecks to
be challenges generation and rollouts generations where the agent needs to engage in multi-turn
interactions with the environment, whereas Rejection Fine-Tuning and evaluation take much less
time.

Table 5: Compute Usage for our main experiments in the self-improvement setting. All experiments
are conducted on 8xA100 80G. The unit is the number of hours on 8xA100 80G.

Environment Challenges Generation Rollouts Generation Rejection Fine-Tuning Evaluation
Calculation 8 24 3 0.5

Web Browsing 8 24 3 0.5
Retail 32 24 3 2
Airline 32 24 3 1

F Hyperparameters

For reproducibility, we have included the hyperparameters for different RL algorithms as used in
Table 1 and Figure 3. We found that Rejection Fine-Tuning and DPO are relatively stable with
respect to hyperparameter choices while online RL methods PPO and GRPO require more careful
hyperparameter tuning.

G Qualitative Examples for Synthetic Tasks

To give more details for CaT, we provide a full example in Figure 15. Figure 16, 17, 18, and
19 qualitative examples of the main failure modes of different variants discussed in Figure 4. In
particular, the main failure mode for PAE task generation is that most of the tasks are ambiguous
and non-verifiable. The main failure mode for only introducing a verification function is that the

24

Figure 9: Example prompt for task challenger in Retail environment. After the tasks are generated, we redact
the order number from the instruction to prevent the agent from knowing the order number before logging into
the user’s account.

You are a helpful agent. Your task is to generate a synthetic instruction given the
user id and the solutions and evaluation functions for this user id.
Your instructions, solutions and evaluations can be based on the following tools.
You can also interact with the environment to try to complete the task yourself to
gather more information for writing evaluation functions and solutions.
The agent should be able to use the following tools (expressed in python functions) along with the defined fileds
in those tools:
{tool_desc}

Your final answer is expected to follow the format below:

<instruction>
Your name is Sophia Jackson and your email is sophia.jackson9875@example.com.
You are pessimistic, outgoing, sad.
For order #W3977493, first say that
you want to cancel the order but when the agent asks for confirmation, say that you want to
instead exchange Water Bottle {'capacity': '500ml', 'material': 'stainless steel', 'color': 'green'}
to {'material': 'glass'}; via credit_card_6748580.
For order #39884393, cancel it because of "order by mistake".
</instruction>
<evaluation_function>
def evaluate():

success = True
order = get_order_details("#W3977493")
success = success and (order["status] == "exchange requested")
success = success and (order["exchange_items"][0] == "7533802601") and len(order["exchange_items"]) == 1
success = success and (order["exchange_new_items"][0] == "5758737025") and len(order["exchange_new_items"]) == 1
success = success and order["exchange_payment_method_id"] == "credit_card_6748580"
success = success and get_order_details("#39884393")["status"] == "cancelled"
return success

</evaluation_function>
<solution>
exchange_delivered_order_items(order_id = "#W3977493",
item_ids = ["7533802601"], new_item_ids = ["5758737025"], payment_method_id="credit_card_6748580")
</solution>

<failure_case>
#an example edge-case solution that should not pass the evaluation function
exchange_delivered_order_items(order_id = "#W3977493",
item_ids = ["7533802601"], new_item_ids = ["575873716"], payment_method_id="credit_card_6748580")
</failure_case>

<failure_case>
#an example edge-case solution that should not pass the evaluation function
exchange_delivered_order_items(order_id = "#W3977493",
item_ids = ["7533802601"], new_item_ids = ["575873716"], payment_method_id="credit_card_6748522")
</failure_case>

At each step, your generation should have exactly the following format:
THOUGHT:
<Reasoning to process the context and inform the decision making.>
END THOUGHT
ACTION:
python code for calling the tools
print(xx(abc))
END ACTION

Or if you have already obtained the information you need, you can directly answer.
THOUGHT:
I have obtained the weather information through the tool call.
Now I can proceed to making the evaluation function, solution, and failure cases
END THOUGHT
ANSWER:
<instruction>xxx</instruction>
<evaluation_function>
def evaluate():

xxx
</evaluation_function>
<solution>xx</solution>
<failure_case>xx</failure_case>
<failure_case>xx</failure_case>
<failure_case>xx</failure_case>
END ANSWER

The action and response should be wrapped in ACTION:...END ACTION, ANSWER:...END ANSWER respectively.
Only output one action or answer, not both.
ONCE YOU HAVE SUBMITTED YOUR ANSWER YOU CANNOT REDO IT,
SO MAKE SURE YOUR CODE IS RUNNABLE AND CORRECT BEFORE ANSWERING.

=======NOW YOUR TURN=======
Make sure to name the evaluation function "evaluate()",
and provide a solution after executing which the evaluation function should return True.
You should write at least 3 failure cases.
TRY RUNNING THE SOLUTION AND EVALUATION FUNCTION FIRST TO SEE IF IT IS CORRECT,
ANSWER AFTER YOU HAVE MADE SURE THEY ARE RUNNABLE AND CORRECT.
You should come up with your own instruction with the user id: {user_id},
AFTER CHECKING THE USER DETAILS AND THEIR ORDER DETAILS.
DO NOT MAKE UP ANY FIELD (E.G. USER ID, ORDER ID, ITEM ID, etc.),
THAT IS NOT PROVIDED IN THE USER DETAILS OR ORDER DETAILS.
DO NOT ASSUME WHAT THE COMMAND WILL RETURN, ONLY USE THE TOOLS TO GET THE INFORMATION.

25

Figure 10: Example prompt for task challenger in Airline environment.

You are a helpful agent. Your task is to generate a synthetic instruction given the user id
and the solutions and evaluation functions for this user id.
Your instructions, solutions and evaluations can be based on the following tools.
You can also interact with the environment to try to complete the task yourself to gather more information
for writing evaluation functions and solutions.
The agent should be able to use the following tools (expressed in python functions) along with the defined fileds in those tools:

{toold_desc}

Your final answer is expected to follow the format below:

<instruction>
Your user id is aarav_garcia_1177.
For your upcoming trip from ATL to PHL,
you want to change for the cheapest economy flight and for the day after the original reservation.
You are happy with original payment for refund.
</instruction>
<evaluation_function>
def evaluate():

success = True
num_founds = 0
reservation = get_reservation_details(reservation_id = "M05KNL")
for f in reservation["flights"]:

if f["flight_number"] == "HAT110" and f["date"] == "2024-05-24":
num_founds += 1

if f["flight_number"] == "HAT172" and f["date"] == "2024-05-25":
num_founds += 1

success = success and (num_founds == 2)
success = success and (reservation["payment_history"][-1]["payment_id"] == "gift_card_8887175")
success = success and (reservation["cabin"] == "economy")
return success

</evaluation_function>
<solution>
update_reservation_flights(reservation_id = "M05KNL", cabin = "economy",
flights = [{"flight_number": "HAT110", "date": "2024-05-24"},
{"flight_number": "HAT172", "date": "2024-05-24"}], payment_id = "gift_card_8887175")
</solution>

<failure_case>
#an example edge-case solution that should not pass the evaluation function,
e.g. it cancels the reservation instead of updating the flight
cancel_reservation(reservation_id = "M05KNL")
</failure_case>

<failure_case>
#an example edge-case solution that should not pass the evaluation function,
e.g. it updates the flight with the wrong payment method
update_reservation_flights(reservation_id = "M05KNL", cabin = "economy",
flights = [{"flight_number": "HAT110", "date": "2024-05-24"},
{"flight_number": "HAT172", "date": "2024-05-24"}], payment_id = "credit_card_8887175")
</failure_case>

At each step, your generation should have exactly the following format:
THOUGHT:
<Reasoning to process the context and inform the decision making.>
END THOUGHT
ACTION:
python code for calling the tools
print(xx(abc))
END ACTION

Or if you have already obtained the information you need, you can directly answer.
THOUGHT:
I have obtained the weather information through the tool call.
Now I can proceed to making the evaluation function, solution, and failure cases
END THOUGHT
ANSWER:
<instruction>xxx</instruction>
<evaluation_function>
def evaluate():

xxx
</evaluation_function>
<solution>xx</solution>
<failure_case>xx</failure_case>
<failure_case>xx</failure_case>
<failure_case>xx</failure_case>
END ANSWER

The action and response should be wrapped in ACTION:...END ACTION, ANSWER:...END ANSWER respectively.
Only output one action or answer, not both.
ONCE YOU HAVE SUBMITTED YOUR ANSWER YOU CANNOT REDO IT, SO MAKE SURE YOUR CODE IS RUNNABLE AND CORRECT BEFORE ANSWERING.

=======NOW YOUR TURN=======
Make sure to name the evaluation function "evaluate()",
and provide a solution after executing which the evaluation function should return True.
You should write at least 3 failure cases.
TRY RUNNING THE SOLUTION AND EVALUATION FUNCTION FIRST TO SEE IF IT IS CORRECT,
ANSWER AFTER YOU HAVE MADE SURE THEY ARE RUNNABLE AND CORRECT.
You should come up with your own instruction with the user id: {user_id}
AFTER CHECKING THE USER DETAILS AND THEIR ORDER DETAILS.
DO NOT MAKE UP ANY FIELD (E.G. USER ID, ORDER ID, ITEM ID, etc.)
THAT IS NOT PROVIDED IN THE USER DETAILS OR ORDER DETAILS.
DO NOT ASSUME WHAT THE COMMAND WILL RETURN, ONLY USE THE TOOLS TO GET THE INFORMATION.
BE CREATIVE AND COME UP WITH AN INSTRUCTION THAT IS REASONABLY DIFFERENT FROM THE EXAMPLE INSTRUCTIONS.

26

Figure 11: Example prompt for task challenger in Calculation environment.

You are a helpful assistant that tries to come up with a task to be given to an agent,
where the goal is to check if the agent can correctly use the tools to look for information.
The task contains both an instruction and an expected output, and an example solution.
Both you and the agent have access to the same set of tools.
{tool_desc}
You should come up with a task that is around the similar level of difficulty
as the example solution for the agent to solve by using the information you have obtained from the tools.
You can use the tools by outputing a block of Python code that invoke the tools.
You may use for-loops, if-statements, and other Python constructs when necessary.
Be sure to print the outcome at the end of your code to be able to see it.
You should first express output your thought in terms of,
what kind of task you are imagining and then think about what information is needed to validate if the task is feasible
You should begin your tool invocation with 'Action:' and end it with 'End Action'.
Example: Action:\ntool_name(argument_1)\nEnd Action\n

When you are done, output the result using 'Answer xxx End Answer', where xxx is your construction of a task including the instruction,
the example solution, and the expected output.
Wrap your instruction in <instruction>, </instruction>, the example solution in <example_solution>, </example_solution>,
and the expected output in <expected_output>, </expected_output>.
The example solution should be a valid Python code block that can be executed and save the result to a variable called 'result'.
The value of the result after execution should be the same as the expected output.
Here is an example:
Answer:
<instruction>
Given the DNA sequences ['AGCTAG', 'XYZABC', 'GTCAGT'], check which are valid and find the longest valid DNA sequence.
</instruction>
<expected_output>
GTCAGT
</expected_output>
<example_solution>
valid_sequences = [seq for seq in dna_sequences if is_valid_dna_sequence(seq)]
result = max(valid_sequences, key=len) if valid_sequences else "No valid DNA sequences"
</example_solution>
End Answer

Here is another example:
Answer:
<instruction>
You are at B. Find the most economical flight and hotel for a business trip to D on 2023-08-15 for 4 nights,
with only a wifi requirement.
Give me the total budget for the trip.</instruction>
<expected_output>
112.71
</expected_output>
<example_solution>
result = min(

[
budget_calculator(flight_price=flight["price"], hotel_price_per_night=hotel["price_per_night"], num_nights=4)
for flight in find_flights(from_location="B", to_location="D",date="2023-08-15")
for hotel in book_hotel("D", "wifi")

])
</example_solution>

End Answer

Now your turn.
First come up with a candidate instruction that is of similar difficulty as the example solution,
it should use 1-4 tools from above.
Then interact with the tools to try to solve the task to see if it is feasible,
and if not, modify the instruction to make it feasible.
After you have a feasible task, output the result using 'Answer xxx End Answer',
where xxx is your construction of a task including the instruction, the example solution, and the expected output.
Make sure that the expected output is either a single number,
or a single string answer so it can be checked by string matching,
in your instruction be clear what the format of the answer should be.
REMEMBER: YOU NEED TO PRINT THE VALUE IN EACH PYTHON COMMAND TO SEE THE RESULTS.
REMEMBER: YOU NEED TO GIVE ALL INFORMATION NECESSARY FOR THE TASK IN THE INSTRUCTION.
USE CONCRETE INPUT SUCH AS ['AGCTAG', 'XYZABC', 'GTCAGT'] INSTEAD OF PLACEHOLDERS LIKE A LIST OF DNA SEQUENCES.

27

Figure 12: Example prompt for task challenger in Web Browsing environment.

You are a helpful assistant that tries to come up with a task to be given to an agent,
where the goal is to check if the agent can correctly use the tools to look for information.
The task contains both an instruction and an expected output.
Both you and the agent have access to the same set of tools.
{tool_desc}
You should come up with a task that is challenging for the agent to solve by using the information you have obtained from the tools.
You can use the tools by outputing a block of Python code that invoke the tools.
You may use for-loops, if-statements, and other Python constructs when necessary.
Be sure to print the outcome at the end of your code to be able to see it.
You should begin your tool invocation with 'Action:' and end it with 'End Action'.
Example: Action:\ntool_name(argument_1)\nEnd Action\n

When you are done, output the result using 'Answer xxx End Answer',
where xxx is your construction of a task including the instruction and the expected output.
Wrap your instruction in <instruction>, </instruction>
and your expected output in <expected_output>, </expected_output>.
Here is an example:
Answer:
<instruction>
Find the department of Kimberly Dudley.
</instruction>
<expected_output>
engineering
</expected_output>
End Answer

Here is another example:
Answer:
<instruction>
Find the current price of Legendary Wand.
</instruction>
<expected_output>
68.71
</expected_output>

End Answer

Now your turn. First interact with the tools for 10 back and forths to see what information you can get.
Then you use creativity to construct a task for the agent to solve by using the information you have obtained from the tools,
but still possible to be solved.
Your constructed task should be similar to the examples above but more diverse.
Make sure that the expected output is either a single number or a single string answer
so it can be checked by string matching.
REMEMBER: YOU NEED TO PRINT THE VALUE IN EACH PYTHON COMMAND TO SEE THE RESULTS.

Figure 13: Example prompt for autonomous evaluator in PAE baseline.

You are an LLM judge that decides whether the request of an user has been correctly handled by an agent.
You will be provided the goal of the user, and the interaction history between the user and the agent.

=======NOW YOUR TURN=======
Here is the goal of the user:
{instruction}
Here is the interaction history between the user and the agent:
{dialogue_history}
When outputting your judgement, first output your thought process in <thought> and </thought> tags,
and then output your verdict in <verdict> and </verdict> tags.
PLEASE BE GENEROUS IN YOUR RATING AS LONG AS THE AGENT HAS MADE REASONABLE ATTEMPTS, EVEN IF THE REQUEST IS ONLY PARTIALLY COMPLETED.
Your verdict should be one of the following:
- "SUCCESS"
- "NOT SUCCESS"

Figure 14: Example prompt for user simulator in Retail and Airline.

You are a user interacting with an agent.{instruction_display}
Rules:
- First, generate a Thought about what to do next (this message will not be sent to the agent).
- Then, generate a one line User Response to simulate the user's message (this message will be sent to the agent).
- Do not give away all the instruction at once. Only provide the information that is necessary for the current step.
- Do not hallucinate information that is not provided in the instruction.
For example, if the agent asks for the order id but it is not mentioned in the instruction,
do not make up an order id, just say you do not remember or have it.
- If the instruction goal is satisified, generate '###STOP###' as the User Response without anything else to end the conversation.
- Do not repeat the exact instruction in the conversation. Instead, use your own words to convey the same information.
- Try to make the conversation as natural as possible, and stick to the personalities in the instruction.

Format:

Thought:
<the thought>

User Response:
<the user response (this will be parsed and sent to the agent)>

28

Table 6: Hyperparameters for different RL algorithms.
All Environments

Rejection
Fine-Tuning

learning rate 1e-5
batch size 8

epochs 6
context length 16192

DPO

learning rate 2e-7
batch size 8

epochs 6
context length 16192

beta 0.1

PPO

learning rate 1e-6
critic learning rate 1e-5

batch size 256
ppo epochs 1

context length 16192
clip ratio 0.1

number of tasks each iteration 32
number of rollouts each task 8

kl coefficient 0.001

GRPO

learning rate 1e-6
batch size 256

ppo epochs 1
context length 16192

clip ratio 0.1
number of tasks each iteration 32
number of rollouts each task 8

kl coefficient 0.001

verification function is often infeasible. The main failure mode for only including a verification
function and an example solution is that the verification function can often be fulfilled by even
unsuccessful attempts. Finally, the main failure mode for CaT is that sometimes the instruction
does not contain enough information to solve the task. Eliminating this type of task failures require
examining semantic nuances and we leave it as an important direction for future research.

H Example Interaction of Task Challenger

To better understand the role of task challenger, we include a visualization of an example trajectory
of the task challenger in Retail. As shown in Figure 20, thanks to the instruction-following and
reasoning capabilities of LLMs, the task challenger has a very good prior for taking reasonable
actions to adequately explore relevant task information in environment and generate a high-quality
task.

29

Code-as-Task (CaT)

Instruction: (To User) Your name is Olivia Nguyen and your email is olivia4794@example.com. For
#W112, return the Skateboard via paypal 77.

Verification Function:
def evaluate ():

success = True
order = get_order_details("#W112")
success = success and \

order["return_items"][0] == "6843647669"
success = success and \

order["return_payment_method_id"] == "paypal_77"
return success

Example Solution:
after interacting with the environment to gather information
return_delivered_order_items(order_id = "#W112",

item_ids = ["6843647669"],
payment_method_id="paypal_77")

Failure Cases:
Failure Case 1, wrong payment method
return_delivered_order_items(order_id = "#W112",

item_ids = ["6843647669"],
payment_method_id="credit_card_77")

Failure Case 2, wrong item id
return_delivered_order_items(order_id = "#W00 `",

item_ids = ["6123456789"],
payment_method_id="paypal_77")

Failure Case 3, canceling instead of returning
cancel_order(order_id = "#W112",

item_ids = ["6843647669"])

Figure 15: An example of high-quality Code-as-Task (CaT) in TauBench. The instruction is first sent to an
LLM-simulated user to generate the initial message. Automatic filtering will be applied to CaT’s to only keep
valid tasks where the example solution can pass the verification function and the failure cases cannot.

Main Failure Mode of PAE

Instruction: (To User) As noah_brown_6181, I’d like to find my user id first and see if I have any
pending orders. If I do, please check the status of each order and if any of them are delivered, I’d like to
request a return for some items. Then, I’m interested in exchanging the remaining items in those orders
to new items of the same product type. After that, if I have any pending orders left, can you please
cancel them all due to a mistake? Make sure to follow up with me via email to confirm the status of
each step and keep me updated.

Figure 16: Main failure mode of PAE task generations in TauBench Retail as presented in Figure 4. The task
is ambiguous and non-verifiable.

30

Main Failure Mode of Verification Function Only

Instruction: (To User) Your name is Noah Brown and your email is noah.brown8382@example.com.
You are modlmy29zyd8701. For one of your latest order with Sabotta Degree Tea Series For Tea
Drinkers and Chamber Stick , first say that you want to cancel the order but when the agent asks for
confirmation, say that you want to instead return product; via gift_card_2157039. For the other order,
cancel it because of "order by mistake".

Verification Function:
def evaluate ():

success = True
user_id = find_user_id_by_name_zip(first_name="Noah", last_name="Brown", zip="

12345")
result = get_order_details(order_id="#1 W3993322")
success = success and result["status"] == "returned"
result = get_order_details(order_id="#1 W7112346")
success = success and result["status"] == "cancelled"
return success

Figure 17: Main Failure Mode of Verification-Only task generations in TauBench Retail as presented in
Figure 4. The task is not feasible because the order in the verification function does not exist.

Main Failure Mode for Verification Only + Solution

Instruction: (To User) Your name is Noah Brown and your email is noah.brown8382@example.com.
For your latest order, I want to exchange Water Bottle ’capacity’: ’500ml’, ’material’: ’stainless steel’,
’color’: ’green’ to ’material’: ’glass’; via paypal_5796936.

Verification Function:
def evaluate ():

Get the order details
order = get_order_details("#W1787190")

Check if the order was modified successfully
success = order["status"] == "pending (item modified)"
return success

Example Solution:
modify_pending_order_items(order_id="#W1787190", item_ids =["7533802601"],

new_item_ids =["5758737025"], payment_method_id="paypal_5796936")

Figure 18: Main failure mode of Verification + Solution task generations in TauBench Retail as presented in
Figure 4. The verification can be easily fulfilled even exchanging the wrong item.

31

Main Failure Mode of CaT

Instruction: (To User) Return the Smart Thermostat with item id 4983901480 from the order via
paypal_3820631.

Verification Function:
def evaluate ():

success = True
order = get_order_details("#W7895761")
success = success and order["status"] == "return requested"
success = success and len(order["return_items"]) == 1
success = success and order["return_items"][0] == "4983901480"
success = success and order["return_payment_method_id"] == "paypal_3820631"
return success

Example Solution:

return_delivered_order_items(order_id = "#W7895761", item_ids = ["4803681337"],
payment_method_id="paypal_3820631")

Failure Cases:
Failure Case 1, wrong item id
return_delivered_order_items(order_id = "#W7895761", item_ids = ["4983901480"],

payment_method_id="paypal_3820631")
Failure Case 1, wrong item id
return_delivered_order_items(order_id = "#W7895761", item_ids = ["4983901481"],

payment_method_id="paypal_3820631")
Failure Case 1, wrong payment method
return_delivered_order_items(order_id = "#W7895761", item_ids = ["4983901480"],

payment_method_id="credit_card_3820632")

Figure 19: Main failure mode of CaT task generations with verification functions, example solutions, and
failure cases in TauBench Retail as presented in Figure 4. The instruction does not contain enough inforation for
the task to be completed because it does not mention any relevant information about the user account.

32

Example Trajectory for Task Challenger

Environment:

instructions......

=======NOW YOUR TURN=======
You should come up with your own instruction with the user id: noah_brown_6181 AFTER CHECKING THE USER DETAILS AND

THEIR ORDER DETAILS.↪→

Task Challenger:

ANSWER never arrives as information was never obtained through the tools provided

Environment:

Reminder: Only output one action or answer, not both.Invalid format. Please include either ACTION:...END ACTION or
ANSWER:...END ANSWER.↪→

Task Challenger:

ACTION:
get_user_details(user_id="noah_brown_6181")
END ACTION

Environment:

{'name': {'first_name': 'Noah', 'last_name': 'Brown'}, 'address': {'address1': '986 Sunset Drive', 'address2':
'Suite 259', 'city': 'Denver', 'country': 'USA', 'state': 'CO', 'zip': '80279'}, 'email':
'noah.brown7922@example.com', 'payment_methods': {'paypal_5727330': {'source': 'paypal', 'id':
'paypal_5727330'}, 'credit_card_7815826': {'source': 'credit_card', 'brand': 'mastercard', 'last_four': '9212',
'id': 'credit_card_7815826'}}, 'orders': ['#W7678072']}

↪→
↪→
↪→
↪→

Task Challenger:

ACTION:
get_order_details(order_id="#W7678072")
END ACTION

Environment:

{'order_id': '#W7678072', 'user_id': 'noah_brown_6181', 'address': {'address1': '986 Sunset Drive', 'address2':
'Suite 259', 'city': 'Denver', 'country': 'USA', 'state': 'CO', 'zip': '80279'}, 'items': [{'name': 'Electric
Kettle', 'product_id': '1075968781', 'item_id': '2323972008', 'price': 146.98, 'options': {'capacity': '1L',
'material': 'glass', 'color': 'black'}}, {'name': 'Gaming Mouse', 'product_id': '5713490933', 'item_id':
'2193628750', 'price': 162.15, 'options': {'color': 'black', 'sensor type': 'laser', 'connectivity': 'wired'}},
{'name': 'Backpack', 'product_id': '2524789262', 'item_id': '3557711149', 'price': 205.35, 'options': {'color':
'green', 'size': 'small', 'material': 'polyester', 'compartment': 'laptop'}}], 'fulfillments': [{'tracking_id':
['517177699738'], 'item_ids': ['2323972008', '2193628750', '3557711149']}], 'status': 'delivered',
'payment_history': [{'transaction_type': 'payment', 'amount': 514.48, 'payment_method_id': 'paypal_5727330'}]}

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

Task Challenger:

ACTION:
get_product_details(product_id="1075968781")
END ACTION

Environment:

{'name': 'Electric Kettle', 'product_id': '1075968781', 'variants': {'1240311797': {'item_id': '1240311797',
'options': {'capacity': '1L', 'material': 'glass', 'color': 'silver'}, 'available': True, 'price': 137.17},
'9132333852': {'item_id': '9132333852', 'options': {'capacity': '1L', 'material': 'plastic', 'color':
'silver'}, 'available': False, 'price': 139.47}, '9472539378': {'item_id': '9472539378', 'options':
{'capacity': '1.5L', 'material': 'glass', 'color': 'white'}, 'available': True, 'price': 143.72}, 'options':
{'capacity': '1L', 'material': 'stainless steel', 'color': 'black'}, 'available': True, 'price': 153.25}}}

↪→
↪→
↪→
↪→
↪→

Task Challenger:

ANSWER:
<instruction>
Your name is Noah Brown and your email is noah.brown7922@example.com.
You are pessimistic and outgoing.
For order #W7678072, first say that you want to return the items but when the agent asks for confirmation, say that

you want to instead exchange Electric Kettle {'capacity': '1L', 'material': 'glass', 'color': 'black'} to
{'capacity': '1.5L', 'material': 'glass', 'color': 'white'}; via paypal_5727330.

↪→
↪→
For order modification or cancellation, say you are not interested in any further changes.
</instruction>
<evaluation_function>
def evaluate():
success = True
order = get_order_details("#W7678072")
success = success and (order["status"] == "exchange requested")
success = success and (order["exchange_items"][0] == "2323972008") and len(order["exchange_items"]) == 1
success = success and (order["exchange_new_items"][0] == "9472539378") and len(order["exchange_new_items"]) == 1
success = success and order["exchange_payment_method_id"] == "paypal_5727330"
return success
</evaluation_function>
<solution>
exchange_delivered_order_items(order_id = "#W7678072", item_ids = ["2323972008"], new_item_ids = ["9472539378"],

payment_method_id="paypal_5727330")↪→
</solution>

<failure_case>
[omitted because of space]
</failure_case>
END ANSWER

Figure 20: Example challenger trajectory using Llama-3.1-70B-Instruct in Retail.

33

	Introduction
	Related Work
	Problem Setup
	Self-Challenging Agents
	Task Challenger
	Code-as-Task (CaT) Class of Tasks
	Task Executor

	Experiments
	Environments
	Main Comparisons
	Analysis and Ablations

	Broader Impact
	Limitations
	Conclusion
	Additional Environment Details
	Additional Discussions
	Details for Human Annotations
	Prompts
	Compute Usage
	Hyperparameters
	Qualitative Examples for Synthetic Tasks
	Example Interaction of Task Challenger

