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Abstract

Single-positive multi-label learning (SPMLL) is a weakly supervised multi-label
learning problem, where each training example is annotated with only one positive
label. Existing SPMLL methods typically assign pseudo-labels to unannotated
labels with the assumption that prior probabilities of all classes are identical.
However, the class-prior of each category may differ significantly in real-world
scenarios, which makes the predictive model not perform as well as expected due to
the unrealistic assumption on real-world application. To alleviate this issue, a novel
framework named CRISP, i.e., Class-pRiors Induced Single-Positive multi-label
learning, is proposed. Specifically, a class-priors estimator is introduced, which can
estimate the class-priors that are theoretically guaranteed to converge to the ground-
truth class-priors. In addition, based on the estimated class-priors, an unbiased risk
estimator for classification is derived, and the corresponding risk minimizer can
be guaranteed to approximately converge to the optimal risk minimizer on fully
supervised data. Experimental results on ten MLL benchmark datasets demonstrate
the effectiveness and superiority of our method over existing SPMLL approaches.

1 Introduction

Multi-label learning (MLL) is a learning paradigm that aims to train a model on examples associated
with multiple labels to accurately predict relevant labels for unknown instances [43, 25]. Over the
past decade, MLL has been successfully applied to various real-world applications, including image
annotation [30], text classification [24], and facial expression recognition [2].

Compared with multi-class-single-label learning, where each example is associated with a unique
label, MLL involves instances that are assigned multiple labels. As the number of examples or
categories is large, accurately annotating each label of an example becomes exceedingly challenging.
To address the high annotation cost, single-positive multi-label learning (SPMLL) has been proposed
[5, 38], where each training example is annotated with only one positive label. Moreover, since
many examples in multi-class datasets, such as ImageNet [42], contain multiple categories but are
annotated with a single label, employing SPMLL allows for the derivation of multi-label predictors
from existing numerous multi-class datasets, thereby expanding the applicability of MLL.

To address the issue that model tends to predict all labels as positive if trained with only positive
labels, existing SPMLL methods typically assign pseudo-labels to unannotated labels. Cole et al.
updates the pseudo-labels as learnable parameters with a regularization to constrain the number of
expected positive labels [5]. Xu et al. recovers latent soft pseudo-labels by employing variational
label enhancement [38]. Zhou et al. adopts asymmetric-tolerance strategies to update pseudo-labels
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cooperating with an entropy-maximization loss [45]. Xie et al. utilizes contrastive learning to learn
the manifold structure information and updates the pseudo-labels with a threshold [33].

These approaches rely on a crucial assumption that prior probabilities of all classes are identical.
However, in real-world scenarios, the class-prior of each category may differ significantly. This
unrealistic assumption will introduce severe biases into the pseudo-labels, further impacting the
training of the model supervised by the inaccurate pseudo-labels. As a result, the learned model could
not perform as well as expected.

Motivated by the above consideration, we propose a novel framework named CRISP, i.e., Class-pRiors
Induced Single-Positive multi-label learning. Specifically, a class-priors estimator is derived, which
determines an optimal threshold by estimating the ratio between the fraction of positive labeled
samples and the total number of samples receiving scores above the threshold. The estimated class-
priors can be theoretically guaranteed to converge to the ground-truth class-priors. In addition, based
on the estimated class-priors, an unbiased risk estimator for classification is derived, which guarantees
the learning consistency [26] and ensures that the obtained risk minimizer would approximately
converge to the optimal risk minimizer on fully supervised data. Our contributions can be summarized
as follows:

• Practically, for the first time, we propose a novel framework for SPMLL named CRISP, which
estimates the class-priors and then an unbiased risk estimator is derived based on the estimated
class-priors, addressing the unrealistic assumption of identical class-priors for all classes.

• Theoretically, the estimated class-priors can be guaranteed to converge to the ground-truth class-
priors. Additionally, we prove that the risk minimizer corresponding to the proposed risk estimator
can be guaranteed to approximately converge to the optimal risk minimizer on fully supervised
data.

Experiments on four multi-label image classification (MLIC) datasets and six MLL datasets show the
effectiveness of our methods over several existing SPMLL approaches.

2 Related Work

Multi-label learning is a supervised machine learning technique where an instance is associated
with multiple labels simultaneously. The study of label correlations in multi-label learning has been
extensive, and these correlations can be categorized into first-order, second-order, and high-order
correlations. First-order correlations involve adapting binary classification algorithms for multi-label
learning, such as treating each label as an independent binary classification problem [1, 27]. Second-
order correlations model pairwise relationships between labels [7, 9]. High-order correlations take
into account the relationships among multiple labels, such as employing graph convolutional neural
networks to extract correlation information among all label nodes [3]. Furthermore, there has been an
increasing interest in utilizing label-specific features, which are tailored to capture the attributes of a
specific label and enhance the performance of the models [41, 11].

In practice, accurately annotating each label for every instance in multi-label learning is unfeasible
due to the immense scale of the output space. Consequently, multi-label learning with missing labels
(MLML) has been introduced [28]. MLML methods primarily rely on low-rank, embedding, and
graph-based models. The presence of label correlations implies a low-rank output space [25], which
has been extensively employed to fill in the missing entries in a label matrix [35, 40, 34]. Another
widespread approach is based on embedding techniques that map label vectors to a low-dimensional
space, where features and labels are jointly embedded to exploit the complementarity between the
feature and label spaces [39, 31]. Additionally, graph-based models are prevalent solutions for
MLML, constructing a label-specific graph for each label from a feature-induced similarity graph
and incorporating manifold regularization into the empirical risk minimization framework [28, 32].

In SPMLL, a specific case of multi-label learning with incomplete labels, only one of the multiple
positive labels is observed. The initial work treats all unannotated labels as negative and updates the
pseudo-labels as learnable parameters, applying a regularization to constrain the number of expected
positive labels [5]. A label enhancement process [37, 22, 21, 36, 16] is used to recover latent soft labels
and train the multi-label classifier [38]. The introduction of an asymmetric pseudo-label approach
utilizes asymmetric-tolerance strategies for pseudo-labels, along with an entropy-maximization loss
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[45]. Additionally, Xie et al. proposes a label-aware global consistency regularization method,
leveraging the manifold structure information learned from contrastive learning to update pseudo-
labels [33]. Liu et al. investigates the theoretical guarantee of pseudo-label-based methods for
SPMLL [23], proving the learnability of such methods and proposing a mutual label enhancement
approach that iteratively refines the label distributions [15, 17, 19, 18, 14] of samples and optimizes
the multi-label classifier.

3 Preliminaries

3.1 Multi-Label Learning

Let X = Rq denote the instance space and Y = {0, 1}c denote the label space with c classes. Given
the MLL training set D = {(xi,yi)|1 ≤ i ≤ n} where xi ∈ X is a q-dimensional instance and
yi ∈ Y is its corresponding labels. Here, yi = [y1i , y

2
i , . . . , y

c
i ] where yji = 1 indicates that the

j-th label is a relevant label associated with xi and yji = 0 indicates that the j-th label is irrelevant
to xi. Multi-label learning is intended to produce a multi-label classifier in the hypothesis space
h ∈ H : X 7→ Y that minimizes the following classification risk:

R(h) = E(x,y)∼p(x,y) [L(h(x),y)] , (1)

where L : X × Y 7→ R+ is a multi-label loss function that measures the accuracy of the model in
fitting the data. Note that a method is risk-consistent if the method possesses a classification risk
estimator that is equivalent to R(f) given the same classifier [26].

3.2 Single-Positive Multi-Label Learning

For single-positive multi-label learning (SPMLL), each instance is annotated with only one positive
label. Given the SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤ n} where γi ∈ {1, 2, . . . , c} denotes
the only observed single positive label of xi. For each SPMLL training example (xi, γi), we use
the observed single-positive label vector li = [l1i , l

2
i , . . . , l

c
i ]

⊤ ∈ {0, 1}c to represent whether j-th
label is the observed positive label, i.e., lji = 1 if j = γi, otherwise lji = 0. The task of SPMLL is to
induce a multi-label classifier h ∈ H : X 7→ Y from D̃, which can assign the unknown instance with
a set of relevant labels.

4 The Proposed Method

4.1 The CRISP Algorithm

In this section, we introduce our novel framework, CRISP, i.e., Class-pRiors Induced Single-Positive
multi-label learning. This framework alternates between estimating class-priors and optimizing an
unbiased risk estimator under the guidance of the estimated class-priors.

Firstly, we introduce the class-priors estimator for SPMLL, leveraging the blackbox classifier f to
estimate the class-prior of each label. The class-priors estimator exploits the classifier f to give each
input a score, indicating the likelihood of it belonging to a positive sample of j-th label. Specifically,
the class-priors estimator determines an optimal threshold by estimating the ratio between the fraction
of the total number of samples and that of positive labeled samples receiving scores above the
threshold, thereby obtaining the class-prior probability of the j-th label.

Motivated by the definition of top bin in learning from positive and unlabeled data (PU learning)
[10], for a given probability density function p(x) and a classifier f , define the threshold cumulative
density function qj(z) =

∫
Sz

p(x)dx where Sz = {x ∈ X : f j(x) ≥ z} for all z ∈ [0, 1].
qj(z) captures the cumulative density of the feature points which are assigned a value larger than
a threshold z by the classifier of the j-th label. We now define an empirical estimator of qj(z) as
q̂j(z) =

1
n

∑n
i=1 1(f

j(xi) ≥ z) where 1(·) is the indicator function. For each probability density
function ppj = p(x|yj = 1), pnj = p(x|yj = 0) and p = p(x), we define qpj =

∫
Sz

p(x|yj = 1)dx

and qnj =
∫
Sz

p(x|yj = 0)dx respectively.
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Algorithm 1 CRISP Algorithm

Input: The SPMLL training set D̃ = {(xi, γi)|1 ≤ i ≤ n}, the multi-label classifier f , the number
of epoch T , hyperparameters 0 ≤ δ, τ ≤ 1;

1: for t = 1 to T do
2: for j = 1 to c do
3: Extract the positive-labeled samples set SLj = {xi : l

j
i = 1, 1 ≤ i ≤ n}.

4: Estimate q̂j(z) =
1
n

∑n
i=1 1(f

j(xi) ≥ z) and q̂pj (z) =
1
np
j

∑
x∈SLj

1(f j(x) ≥ z) for all

z ∈ [0, 1].
5: Estimate the class-prior of j-th label by π̂j =

q̂j(ẑ)
q̂pj (ẑ)

with the threshold induced by Eq. (2).
6: end for
7: Update the model f by forward computation and back-propagation by Eq. (7) using the

estimated class-priors.
8: end for

Output: The predictive model f .

The steps involved in the procedure are as follows: Firstly, for each label, we extract a positive-
labeled samples set SLj

= {xi : lji = 1, 1 ≤ i ≤ n} from the entire dataset. Next, with SLj
,

we estimate the fraction of the total number of samples that receive scores above the threshold
q̂j(z) = 1

n

∑n
i=1 1(f

j(xi) ≥ z) and that of positive labeled samples receiving scores above the
threshold q̂pj (z) =

1
np
j

∑
x∈SLj

1(f j(x) ≥ z) for all z ∈ [0, 1], where np
j = |SLj

| is the cardinality
of the positive-labeled samples set of j-th label. Finally, the class-prior of j-th label is estimated by
q̂j(ẑ)
q̂pj (ẑ)

at ẑ that minimizes the upper confidence bound defined in Theorem 4.1.

Theorem 4.1. Define z⋆ = argminz∈[0,1] q
n
j (z)/q

p
j (z), for every 0 < δ < 1, define ẑ =

argminz∈[0,1]

(
q̂j(z)
q̂pj (z)

+ 1+τ
q̂pj (z)

(√
log(4/δ)

2n +
√

log(4/δ)
2np

j

))
. Assume np

j ≥ 2 log 4/δ
qpj (z

⋆)
, the estimated

class-prior π̂j =
q̂j(ẑ)
q̂pj (ẑ)

satisfies with probability at least 1− δ:

πj −
c1

qpj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np

)
≤ π̂j ≤ πj + (1− πj)

qnj (z
⋆)

qpj (z
⋆)

+

c2
qpj (z

⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np

)
,

where c1, c2 ≥ 0 are constants and τ is a fixed parameter ranging in (0, 1). The proof can be found
in Appendix A.1. Theorem 4.1 provides a principle for finding the optimal threshold. Under the
condition that the threshold ẑ satisfies:

ẑ = arg min
z∈[0,1]

(
q̂j(z)

q̂pj (z)
+

1 + τ

q̂pj (z)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

))
, (2)

the estimated class-prior π̂j of j-th category will converge to the ground-truth class-prior with enough
training samples. Practically, to determine the optimal threshold in Eq. (2), we conduct an exhaustive
search across the set of outputs generated by the function f j for each class. The details can be found
in Appendix A.2.

After obtaining an accurate estimate of class-prior for each category, we proceed to utilize these
estimates as a form of supervision to guide the training of our model. Firstly, the classification risk
R(f) on fully supervised information can be written as 1:

R(f) = E(x,y)∼p(x,y) [L(f(x),y)] =
∑
y

p(y)Ex∼p(x|y) [L(f(x),y)] . (3)

1The datail is provided in Appendix A.3.
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In Eq. (3), the loss function L(f(x),y) is calculated for each label separately, which is a commonly
used approach in multi-label learning:

L(f(x),y) =
c∑

j=1

yjℓ(f
j(x), 1) + (1− yj)ℓ(f

j(x), 0). (4)

By substituting Eq. (4) into Eq. (3), the classification risk R(f) can be written as follows with the
absolute loss function2:

R(f) =

c∑
j=1

2p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+
(
Ex∼p(x)

[
f j(x)

]
− p(yj = 1)

)
. (5)

The rewritten classification risk comprises two distinct components. The first component computes the
risk solely for the positively labeled samples, and the second component leverages the unlabeled data
to estimate difference between the expected output of the model f and the class-prior πj = p(yj = 1)
to align the expected class-prior outputted by model with the ground-truth class-prior.

During the training process, the prediction of model can be unstable due to insufficiently labeled
data. This instability may cause a large divergence between the expected class-prior E[f j(x)] and
the ground-truth class-prior πj , even leading to a situation where the difference between E[f j(x)]
and πj turns negative [44]. To ensure non-negativity of the classification risk and the alignment of
class-priors, absolute function is added to the second term. Then the risk estimator can be written as:

Rsp(f) =

c∑
j=1

2πjEx∼p(x|yj=1)

[
1− f j(x)

]
+

∣∣∣∣Ex∼p(x)

[
f j(x)

]
− πj

∣∣∣∣. (6)

Therefore, we could express the empirical risk estimator via:

R̂sp(f) =

c∑
j=1

2πj

|SLj |
∑

x∈SLj

(
1− f j(x)

)
+

∣∣∣∣ 1n ∑
x∈D̃

(
f j(x)− πj

)∣∣∣∣. (7)

The proposed equation enables the decomposition of the risk over the entire dataset into terms that
can be estimated using both labeled positive and unlabeled samples.

In MLL datasets, where the number of negative samples for each label significantly exceeds that of
positive samples, there is a tendency for the decision boundary to be biased towards the center of
positive samples, especially for rare classes. This bias is further exacerbated in SPMLL due to the
common strategy of assuming unobserved labels as negative [5, 38, 33] to warm up the model. To
alleviate the issue, we propose a modification of Eq. (7):

R̂sp(f) =

c∑
j=1

2πj

|SLj
|
∑

x∈SLj

(
1− 1

1 + e−(gj(x)+λπj)

)
+

∣∣∣∣ 1n ∑
x∈D̃

(
f j(x)− πj

)∣∣∣∣. (8)

where λ is a hyper-parameter and gj(x) represents the logit of j-th label outputted by the network
for instance x and f j(x) = σ(gj(x)) where σ(·) denotes the sigmoid function.

The algorithmic description of CRISP is shown in Algorithm 1.

4.2 Estimation Error Bound

In this subsection, an estimation error bound is established for Eq. (7) to demonstrate its learning
consistency. Firstly, we define the function spaces as:

GL
sp =

{
(x, l) 7→

c∑
j=1

2πj lj
(
1− f j(x)

)
|f ∈ F

}
,GU

sp =
{
(x, l) 7→

c∑
j=1

(
f j(x)− πj

)
|f ∈ F

}
,

and denote the expected Rademacher complexity [26] of the function spaces as:

R̃n

(
GL
sp

)
= Ex,y,σ

[
sup
g∈GL

sp

n∑
i=1

σig (xi, yi)

]
, R̃n

(
GU
sp

)
= Ex,y,σ

[
sup
g∈GU

sp

n∑
i=1

σig (xi,yi)

]
,
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Table 1: Predictive performance of each comparing method on four MLIC datasets in terms of mean
average precision (mAP) (mean ± std). The best performance is highlighted in bold (the larger the
better).

VOC COCO NUS CUB

AN 85.546±0.294 64.326±0.204 42.494±0.338 18.656±0.090
AN-LS 87.548±0.137 67.074±0.196 43.616±0.342 16.446±0.269
WAN 87.138±0.240 65.552±0.171 45.785±0.192 14.622±1.300
EPR 85.228±0.444 63.604±0.249 45.240±0.338 19.842±0.423

ROLE 88.088±0.167 67.022±0.141 41.949±0.205 14.798±0.613
EM 88.674±0.077 70.636±0.094 47.254±0.297 20.692±0.527

EM-APL 88.860±0.080 70.758±0.215 47.778±0.181 21.202±0.792
SMILE 87.314±0.150 70.431±0.213 47.241±0.172 18.611±0.144

PLC 88.021±0.121 70.422±0.062 46.211±0.155 21.840±0.237
LL-R 87.784±0.063 70.078±0.008 48.048±0.074 18.966±0.022
LL-CP 87.466±0.031 70.460±0.032 48.000±0.077 19.310±0.164
LL-CT 87.054±0.214 70.384±0.058 47.930±0.010 19.012±0.097

BOOSTLU+LL-R 89.224±0.017 73.272±0.006 49.590±0.021 19.136±0.009
BOOSTLU+LL-CP 88.358±0.212 70.820±0.030 47.810±0.166 18.166±0.063
BOOSTLU+LL-CT 88.528±0.053 71.742±0.006 48.216±0.021 17.952±0.007

CRISP 89.820±0.191 74.640±0.219 49.996±0.316 21.650±0.178

where σ = {σ1, σ2, · · · , σn} is n Rademacher variables with σi independently uniform variable
taking value in {+1,−1}. Then we have:

Theorem 4.2. Assume the loss function LL
sp =

∑c
j=1 2πj lj

(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =

supx∈X ,f∈F,y∈Y max(LL
sp(f(x),y),LU

sp(f(x),y)), with probability at least 1− δ, we have:

R(f̂sp)−R(f⋆) ≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

where C is a constant, f̂sp = minf∈F R̂sp(f), f⋆ = minf∈F R(f) are the empirical risk minimizer
and the true risk minimizer respectively and ρ = maxj 2πj , Hj =

{
h : x 7→ f j(x)|f ∈ F

}
and

Rn (Hj) = Ep(x)Eσ

[
suph∈Hj

1
n

∑n
i=1 h (xi)

]
. The proof can be found in Appendix A.5.

Theorem 4.2 shows that, as n → ∞, f̂sp would converge to f⋆ with an intrinsic error quantified by
the Rademacher complexity terms, reflecting the complexity of the hypothesis space. Note that the
error is a fundamental aspect of the learning problem and remains even in a fully supervised scenario
[26].

5 Experiments

5.1 Experimental Configurations

Datasets. In the experimental section, our proposed method is evaluated on four large-scale
multi-label image classification (MLIC) datasets and six widely-used multi-label learning (MLL)
datasets. The four MLIC datasets include PSACAL VOC 2021 (VOC) [8], MS-COCO 2014 (COCO)
[20], NUS-WIDE (NUS) [4], and CUB-200 2011 (CUB) [29]; the MLL datasets cover a wide range
of scenarios with heterogeneous multi-label characteristics. For each MLIC dataset, 20% of the
training set is withheld for validation. Each MLL dataset is partitioned into train/validation/test sets at
a ratio of 80%/10%/10%. One positive label is randomly selected for each training instance, while
the validation and test sets remain fully labeled. Detailed information regarding these datasets can
be found in Appendix A.7. Mean average precision (mAP) is utilized for the four MLIC datasets
[5, 33, 45] and five popular multi-label metrics are adopted for the MLL datasets including Ranking
loss, Hamming loss, One-error, Coverage and Average precision [38].

2The detail is provided in Appendix A.4.
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Table 2: Predictive performance of each comparing method on MLL datasets in terms of Ranking
loss (mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.432±0.067 0.321±0.113 0.383±0.066 0.140±0.000 0.125±0.002 0.131±0.000
AN-LS 0.378±0.041 0.246±0.064 0.365±0.031 0.186±0.003 0.163±0.006 0.213±0.007
WAN 0.354±0.051 0.216±0.023 0.212±0.021 0.129±0.000 0.121±0.002 0.126±0.000
EPR 0.401±0.053 0.291±0.056 0.208±0.010 0.139±0.000 0.119±0.001 0.126±0.000

ROLE 0.340±0.059 0.174±0.028 0.213±0.017 0.259±0.004 0.182±0.014 0.336±0.007
EM 0.471±0.044 0.322±0.115 0.261±0.030 0.155±0.002 0.134±0.004 0.164±0.001

EM-APL 0.508±0.028 0.420±0.069 0.245±0.026 0.135±0.001 0.138±0.003 0.163±0.003
SMILE 0.260±0.020 0.161±0.045 0.167±0.002 0.125±0.003 0.120±0.002 0.126±0.000

LL-R 0.346±0.072 0.155±0.021 0.227±0.001 0.114±0.001 0.123±0.003 0.129±0.002
LL-CP 0.329±0.041 0.148±0.017 0.215±0.000 0.114±0.003 0.124±0.003 0.160±0.001
LL-CT 0.327±0.019 0.180±0.038 0.238±0.001 0.115±0.001 0.124±0.002 0.160±0.000

CRISP 0.164±0.027 0.112±0.021 0.164±0.001 0.113±0.001 0.118±0.001 0.122±0.000
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Figure 1: Predicted class-prior of AN[5], AN-LS[5], WAN[5], EPR[5], ROLE[5], EM[5], EM-APL[45],
SMILE[38] and CRISP on the 3-rd (left), 10-th (middle), and 12-th labels (right) of the dataset Yeast.

Comparing methods. In this paper, CRISP is compared against nine state-of-the-art SPMLL
approaches including: 1) AN [5] assumes that the unannotated labels are negative and uses binary
cross entropy loss for training. 2) AN-LS [5] assumes that the unannotated labels are negative and
reduces the impact of the false negative labels by label smoothing. 3) WAN [5] introduces a weight
parameter to down-weight losses in relation to negative labels. 4) EPR [5] utilizes a regularization
to constrain the number of predicted positive labels. 5) ROLE [5] online estimates the unannotated
labels as learnable parameters throughout training based on EPR with the trick of linear initial. 6) EM
[45] reduces the effect of the incorrect labels by the entropy-maximization loss. 7) EM-APL [45]
adopts asymmetric-tolerance pseudo-label strategies cooperating with entropy-maximization loss and
then more precise supervision can be provided. 8) PLC [33] designs a label-aware global consistency
regularization to recover the pseudo-labels leveraging the manifold structure information learned
by contrastive learning with data augmentation techniques. 9) SMILE [38] recovers the latent soft
labels in a label enhancement process to train the multi-label classifier with binary cross entropy loss.
Additionally, since the SPMLL problem is an extreme case of the MLML problem, we employ a
state-of-the-art MLML methods as comparative methods: 1) LL [12] treats unobserved labels as noisy
labels and dynamically adjusts the threshold to reject or correct samples with a large loss, including
three variants LL-R, LL-CT and LL-CP. 2) BOOSTLU [13] apply a BoostLU function to the CAM
output of the model to boost the scores of the highlighted regions. It can be integrated with LL. The
implementation details are provided in Appendix A.6.

5.2 Experimental Results

Table 1 presents the comparison results of CRISP compared with other methods on VOC, COCO, NUS,
and CUB. The proposed method achieves the best performance on VOC, COCO, and NUS. Although it
does not surpass the top-performing method on CUB, the performance remains competitive. Table
2 record the results of our method and other comparing methods on the MLL datasets in terms of
Ranking loss respectively. Similar results for other metrics can be found in Appendix A.8. Note
that due to the inability to compute the loss function of PLC without data augmentation, we do not
report the results of PLC on MLL datasets because data augmentation techniques are not suitable
for the MLL datasets. Similarly, since the operations of BOOSTLU for CAM are not applicable to
the tabular data in MLL datasets, its results are also not reported. The results demonstrate that our
proposed method consistently achieves desirable performance in almost all cases (except the result of
Mirflickr on the metric Average Precision, where our method attains a comparable performance
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Figure 2: (a) Parameter sensitivity analysis of δ (parameter τ is fixed as 0.01); (b) Parameter sensitivity
analysis of τ (parameter δ is fixed as 0.01); (c) The initial data point represents the performance of
the proposed CRISP (with class-priors estimator). The others are the performance with a fixed value
for all class-priors gradually increasing from 0.001 to 0.3.

against SMILE). Table 12 in Appendix A.10 reports the p-values of the wilcoxon signed-ranks test
[6] for the corresponding tests and the statistical test results at 0.05 significance level, which reveals
that CRISP consistently outperforms other comparing algorithms (49 out of 55 test cases score win).
These experimental results validate the effectiveness of CRISP in addressing SPMLL problems.

5.3 Further Analysis

5.3.1 Class-Prior Prediction

Figure 1 illustrates the comparison results of the predicted class-priors of CRISP with other methods
on the 3-rd (left), 10-th (middle), and 12-th labels (right) of the dataset Yeast. Compared with
other approaches, whose predicted class-priors p(ŷj = 1), which represents the expected value of
the predicted, significantly deviate from the true class-priors, CRISP achieves consistent predicted
class-priors with the ground-truth class-priors (black dashed lines). Without the constraint of the
class-priors, the predicted class-prior probability diverges from the true class-prior as epochs increase,
significantly impacting the model’s performance. In this experiment, the true class-priors are derived
by calculating the statistical information for each dataset. More experimental results about the
convergence analyses of estimated class-priors of all classes on MLIC datasets are recorded in
Appendix A.9. These results demonstrate the necessity of incorporating class-priors in the training of
the SPMLL model.

5.3.2 Sensitivity Analysis

The performance sensitivity of the proposed CRISP approach with respect to its parameters δ and τ
during the class-priors estimation phase is analyzed in this section. Figures 2a and 2b illustrate the
performance of the proposed method on VOC and COCO under various parameter settings, where δ and
τ are incremented from 0.001 to 0.1. The performance of the proposed method remains consistently
stable across a wide range of parameter values. This characteristic is highly desirable as it allows for
the robust application of the proposed method without the need for meticulous parameter fine-tuning,
ensuring reliable classification results.

5.3.3 Ablation Study

Table 3: Predictive perfor-
mance comparing CRISP with
CRISP-VAL.

Dataset CRISP-VAL CRISP

VOC 89.585±0.318 89.820±0.191
COCO 74.435±0.148 74.640±0.219
NUS 49.230±0.113 49.996±0.316
CUB 19.600±1.400 21.650±0.178

Figure 2c depicts the results of the ablation study to investigate
the impact of the class-priors estimator by comparing it with a
fixed value for all class-priors. The initial data point represents the
performance of the proposed CRISP (with class-priors estimator).
Subsequently, we maintain a fixed identical class-priors, gradually
increasing it from 0.001 to 0.3. As expected, our method exhibits
superior performance when utilizing the class-priors estimator, com-
pared with employing a fixed class-prior proportion. The ablation
results demonstrate the significant enhancement in CRISP perfor-
mance achieved through the proposed class-priors estimator.
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Table 4: Time cost of class-priors estimation and
the whole training time of one epoch.

VOC COCO NUS CUB

Time of class-priors estimation (min) 0.24 3.47 6.4 0.45
Whole training time of one epoch (min) 2.19 27.29 49.09 3.89

Table 5: Predictive performance with different
updating frequency of class-priors estimation.

VOC COCO NUS CUB

CRISP-3EP 89.077±0.251 73.930±0.399 49.463±0.216 19.450±0.389
CRISP 89.820±0.191 74.640±0.219 49.996±0.316 21.650±0.178

Original
image

Attention map Original
image

Attention map
Observed label Identified labels Observed label Identified labels

dog cat sofa banana apple bottle

cat person bottle bowl cake fork

bus airplane person laptop bottle cup

Figure 3: Visualization of attention maps on VOC (left) and COCO (right).

Furthermore, we conduct experiments comparing the performance of CRISP with the approach that
estimating the class-priors with the full labels of validation set (CRISP-VAL). Table 3 shows that the
performance of CRISP is superior to CRISP-VAL. It is indeed feasible to estimate the class-priors
using the validation set. However, the size of validation set in many datasets is often quite small,
which can lead to unstable estimation of the class-priors, thus leading to a suboptimal performance.
Similar results are observed in Table 13 of Appendix A.11 for the MLL datasets.

5.3.4 Time Cost of Class-Priors Estimation

In Eq. (2), we have adopted an exhaustive search strategy to find an optimal threshold for estimating
class-priors in each training epoch, which may introduce additional computational overhead to the
algorithm. We conducted experimental analysis on this aspect. As illustrated in the Table 4, the time
for class-priors estimation is short compared to the overall training time for an epoch, ensuring that
our method remains practical for use in larger datasets. Additionally, to further enhance the speed
of our algorithm, we have experimented with updating the class-priors every few epochs instead of
every single one in Table 5. The variant of our method, denoted as CRISP-3EP, updates the priors
every three epochs and our experiments show that this results in a negligible loss in performance.

5.3.5 Attention Map Visualization

Figure 3 is utilized to visually represent attention maps on COCO, elucidating the underlying mecha-
nism responsible for the efficacy of CRISP in discerning potential positive labels. Specifically, for
each original image in the first column, attention maps corresponding to the single observed positive
label and identified positive labels are displayed in the subsequent three columns. As evidenced by
the figures, given the context of a single positive label, the proposed method demonstrates the ability
to identify additional object labels within the image, even for relatively small objects such as the
bottle in the first row, the fork in the second row, and the cup in the final row. These observations
indicate that the proposed method can accurately detect small objects with the aid of class-priors.
This insight further suggests that the proposed method substantially enhances the model’s capacity to
pinpoint potential positive labels.

6 Conclusion

In conclusion, this paper presents a novel approach to address the single-positive multi-label learning
(SPMLL) problem by considering the impact of class-priors on the model. We propose a theoretically
guaranteed class-priors estimation method that ensures the convergence of estimated class-prior to
ground-truth class-priors during the training process. Furthermore, we introduce an unbiased risk
estimator based on the estimated class-priors and derive a generalization error bound to guarantee
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that the obtained risk minimizer would approximately converge to the optimal risk minimizer of
fully supervised learning. Experimental results on ten MLL benchmark datasets demonstrate the
effectiveness and superiority of our method over existing SPMLL approaches.
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A Supplementary Material

A.1 Proof of Theorem 4.1

Proof. Firstly, we have:∣∣∣ q̂j(z)
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where z is an arbitrary constant in [0, 1]. Using DKW inequality, we have with probability 1 − δ:

|q̂j(z)− qj(z)| ≤
√

log 2/δ
2n and |q̂pj (z)− qpj (z)| ≤

√
log 2/δ
2np

j
. Therefore, with probability 1− δ:

∣∣∣ q̂j(z)
q̂pj (z)

− qj(z)

qpj (z)

∣∣∣ ≤ 1

q̂pj (z)

(√
log 4/δ

2n
+

qj(z)

qpj (z)

√
log 4/δ

2np
j

)
. (10)

Then, we define:
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z ∈ [0, 1], by the DWK inequality, we have with probability 1− δ:

q̂pj (z)−

√
log 4/δ

2np
j

≤ qpj (z),

qj(z)−
√

log 4/δ

2n
≤ q̂j(z).

(11)

Since qj(z
⋆)

qpj (z
⋆)

≤ qj(z)
qpj (z)

, we have:

q̂j(z) ⩾ qpj (z)
qj (z

⋆)

qpj (z
⋆)

−
√

log(4/δ)

2n
⩾

(
q̂pj (z)−

√
log(4/δ)

2np
j

)
qj (z

⋆)

qpj (z
⋆)

−
√

log(4/δ)

2n
. (12)

Therefore, we have:

q̂j(z)

q̂pj (z)
≥ π⋆

j − 1

q̂pj (z)

(√
log(4/δ)

2n
+ π⋆

j

√
log(4/δ)

2np
j

)
. (13)
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Furthermore, the upper confidence bound at z is lower bounded by:
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Moreover from Eq. (15) and using definition of ẑ, we have:
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and hence ẑ ≤ z′.

We now establish an upper and lower bound on ẑ. By definition of ẑ, we have:
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q̂pj (ẑ)
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Using Eq. (10) at z⋆, we have:

q̂j(z
⋆)

q̂pj (z
⋆)

≤ qj(z
⋆)

qpj (z
⋆)

+
1

q̂pj (z
⋆)

(√
log(4/δ)

2n
+ π⋆

j

√
log(4/δ)

2np
j

)
. (19)

Then, we have:

π̂j =
q̂j(ẑ)

q̂pj (ẑ)
≤ π⋆

j +
2 + τ

q̂pj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

)
. (20)

Assume np
j ≥ 2 log 4/δ

qpj
2(z⋆)

, we have q̂pj (z
⋆) ≥ qpj (z

⋆)/2 and hence:

π̂j ≤ π⋆
j +

4 + 2τ

qpj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

)
. (21)
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From Eq. (10) at ẑ, we have:

qj(ẑ)

qpj (ẑ)
≤ q̂j(ẑ)

q̂pj (ẑ)
+

1

q̂pj (ẑ)

(√
log(4/δ)

2n
+

qj(ẑ)

qpj (ẑ)

√
log(4/δ)

2np
j

)
. (22)

Since π⋆
j ≤ qj(ẑ)

qpj (ẑ)
, we have:

π⋆
j ≤ qj(ẑ)

qpj (ẑ)
≤ q̂j(ẑ)

q̂pj (ẑ)
+

1

q̂pj (ẑ)

(√
log(4/δ)

2n
+

qj(ẑ)

qpj (ẑ)

√
log(4/δ)

2np
j

)
. (23)

Using Eq. (21) and the assumption that n ≥ np
j ≥ 2 log 4/δ

qpj
2(z⋆)

, we have:

π̂j =
q̂j(ẑ)

q̂pj (ẑ)
≤ π⋆

j +
4 + 2τ

qpj (z
⋆)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

)
≤ π⋆

j + 4 + 2τ ≤ 1 + 4 + 2τ = 5 + 2τ.

(24)

Using this in Eq. (23), we have:

π⋆
j ≤ q̂j(ẑ)

q̂pj (ẑ)
+

1

q̂pj (ẑ)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
. (25)

Since ẑ ≤ z′, we have q̂pj (ẑ) ≥ q̂pj (z
′) = τ

2+τ q̂
p
j (z

⋆). Therefore, we have:

π⋆
j − 2 + τ

τ q̂pj (z
⋆)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
≤ q̂j(ẑ)

q̂pj (ẑ)
= π̂j . (26)

With the assumption that np
j ≥ 2 log 4/δ

qpj
2(z⋆)

, we have q̂pj (z
⋆) ≥ qpj (z

⋆)/2, which implies:

π⋆
j − 4 + 2τ

τqpj (z
⋆)

(√
log(4/δ)

2n
+ (5 + 2τ)

√
log(4/δ)

2np
j

)
≤ π̂j . (27)

Note that since πj ≤ π⋆
j , the lower bound remains the same as in Theorem 4.1. For the upper bound,

with qj(z
⋆) = πjq

p
j (z

⋆) + (1− πj)q
n
j (z

⋆), we have π⋆
j = πj + (1− πj)

qnj (z⋆)

qpj (z
⋆)

. Then the proof is
completed.

A.2 The details of the optimization of Eq. (2)

In practice, to determine the optimal threshold, we conduct an exhaustive search across the set of
outputs generated by the function f j for each class. For instance, for a given class j, and a set
of instances x1,x2,x3 in our dataset, we compute the corresponding outputs z1 = f j(x1), z2 =
f j(x2), z3 = f j(x3).

The optimal threshold ẑ is then selected by identifying the value of z ∈ {z1, z2, z3} that minimizes
the objective function specified in Equation (2):

ẑ = arg min
z∈{z1,z2,z3}

(
q̂j(z)

q̂pj (z)
+

1 + τ

q̂pj (z)

(√
log(4/δ)

2n
+

√
log(4/δ)

2np
j

))
This approach ensures that we find the optimal threshold that minimizes the given expression, as per
Eq. (2), across all available output values from the function f j .
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A.3 Details of Eq. (3)

R(f) = E(x,y)∼p(x,y) [L(f(x),y)]

=

∫
x

∑
y

L(f(x),y)p(x|y)p(y)dx

=
∑
y

p(y)

∫
x

L(f(x),y)p(x|y)dx

=
∑
y

p(y)Ex∼p(x|y) [L(f(x),y)] .

(28)

A.4 Details of Eq. (5)

The absolute loss function is ℓ(f j(x), yj) = |f j(x)− yj |, when yj = 1, ℓ(f j(x), 1) = |1− f j(x)|,
and when yj = 0, ℓ(f j(x), 0) = f j(x). Then:

R(f) =
∑
y

p(y)Ex∼p(x|y)

 c∑
j=1

yjℓ(f
j(x), 1) + (1− yj)ℓ(f

j(x), 0)


=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
ℓ(f j(x), 1)

]
+ p(yj = 0)Ex∼p(x|yj=0)

[
ℓ(f j(x), 0)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ (1− p(yj = 1))Ex∼p(x|yj=0)

[
f j(x)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1)Ex∼p(x|yj=1)

[
f j(x)

]
=

c∑
j=1

p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1)Ex∼p(x|yj=1)

[
f j(x)− 1 + 1

]
=

c∑
j=1

2p(yj = 1)Ex∼p(x|yj=1)

[
1− f j(x)

]
+ Ex∼p(x)

[
f j(x)

]
− p(yj = 1).

(29)

A.5 Proof of Theorem 4.2

In this subsection, an estimation error bound is established for Eq. (7) to demonstrate its learning
consistency. Specifically, The derivation of the estimation error bound involves two main parts, each
corresponding to one of the loss terms in Eq. (7). The empirical risk estimator according to Eq. (7)
can be written as:

R̂sp(f) =

c∑
j=1

2πj

|SLj
|
∑

x∈SLj

(
1− f j(x)

)
+

1

n

∑
x∈D̃

(
f j(x)− πj

)
= R̂L

sp(f) + R̂U
sp(f),

(30)

Firstly, we define the function spaces as:

GL
sp =

{
(x, l) 7→

c∑
j=1

2πj lj
(
1− f j(x)

)
|f ∈ F

}
,GU

sp =
{
(x, l) 7→

c∑
j=1

(
f j(x)− πj

)
|f ∈ F

}
,
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and denote the expected Rademacher complexity [26] of the function spaces as:

R̃n

(
GL
sp

)
= Ex,l,σ

[
sup
g∈GL

sp

n∑
i=1

σig (xi, li)

]
,

R̃n

(
GU
sp

)
= Ex,l,σ

[
sup
g∈GU

sp

n∑
i=1

σig (xi, li)

]
,

where σ = {σ1, σ2, · · · , σn} is n Rademacher variables with σi independently uniform variable
taking value in {+1,−1}. Then we have:

Lemma A.1. We suppose that the loss function LL
sp =

∑c
j=1 2πj lj

(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =

supx∈X ,f∈F,l∈Y max(LL
sp(f(x), l),LU

sp(f(x), l)), and for any δ > 0, with probability at
least 1− δ, we have:

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤
2

C
R̃n

(
GL
sp

)
+

M

2minj |SLj
|

√
log 2

δ

2n
,

sup
f∈F

|RU
sp(f)− R̂U

sp(f)| ≤ 2R̃n

(
GU
sp

)
+

M

2

√
log 2

δ

2n
,

where RL
sp(f) =

∑c
j=1 2πjEx∼p(x|yj=1)

[
1− f j(x)

]
, RU

sp(f) = Ex∼p(x)

∑c
j=1

[
f j(x)

]
−πj and

C = minj ED̃

[∑n
i=1 l

j
i

]
is a constant.

Proof. Suppose an example (x, l) is replaced by another arbitrary example (x′, l′), then the change
of supf∈F RL

sp(f)− R̂L
sp(f) is no greater than M

2nminj |SLj
| . By applying McDiarmid’s inequality,

for any δ > 0, with probility at least 1− δ
2 ,

sup
f∈F

RL
sp(f)− R̂L

sp(f) ≤ E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
+

M

2minj |SLj |

√
log 2

δ

2n
.

By symmetry, we can obtain

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤ E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
+

M

2minj |SLj |

√
log 2

δ

2n
.
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Next is to bound the term E
[
supf∈F RL

sp(f)− R̂L
sp(f)

]
:

E

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]
= ED̃

[
sup
f∈F

RL
sp(f)− R̂L

sp(f)

]

= ED̃

[
sup
f∈F

ED̃′

[
R̂′L

sp(f)− R̂L
sp(f)

]]

≤ ED̃,D̃′

[
sup
f∈F

[
R̂′L

sp(f)− R̂L
sp(f)

]]

= ED̃,D̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

′j
i

l′
j
i

(
1− f j(x′

i)
)
− 2πj∑n

i=1 l
j
i

lji
(
1− f j(xi)

))
≤ ED̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

′j
i

l′
j
i

(
1− f j(x′

i)
))

+ ED̃,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj∑n
i=1 l

j
i

lji
(
1− f j(xi)

))
≤ 1

C
ED̃′,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj l

′j
i

(
1− f j(x′

i)
))

+
1

C
ED̃,σ

sup
f∈F

n∑
i=1

c∑
j=1

σi

(
2πj l

j
i

(
1− f j(xi)

))
=

2

C
R̃n

(
GL
sp

)
,

where C is a constant that C = minj ED̃

[∑n
i=1 y

j
i

]
. Then we have:

sup
f∈F

|RL
sp(f)− R̂L

sp(f)| ≤
2

C
R̃n

(
GL
sp

)
+

M

2minj |SLj
|

√
log 2

δ

2n
.

Similarly, we can obtain:

sup
f∈F

|RU
sp(f)− R̂U

sp(f)| ≤ 2R̃n

(
GU
sp

)
+

M

2

√
log 2

δ

2n
,

Lemma A.2. Define ρ = maxj 2πj , Hj =
{
h : x 7→ f j(x)|f ∈ F

}
and Rn (Hj) =

Ep(x)Eσ

[
suph∈Hj

1
n

∑n
i=1 h (xi)

]
. Then, we have with Rademacher vector contraction inequality:

R̃n

(
GL
sp

)
≤

√
2ρ

c∑
j=1

Rn(Hj), R̃n

(
GU
sp

)
≤

√
2

c∑
j=1

Rn(Hj),

Based on Lemma A.1 and Lemma A.2, we could obtain the following theorem.

Theorem A.3. Assume the loss function LL
sp =

∑c
j=1 2πj lj

(
1− f j(x)

)
and LU

sp =
∑c

j=1

(
f j(x)− πj

)
could be bounded by M , i.e., M =
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Table 6: Characteristics of the MLIC datasets.
Dataset #Training #Validation #Testing #Classes

VOC 4574 1143 5823 20
COCO 65665 16416 40137 80
NUS 120000 30000 60260 81
CUB 4795 1199 5794 312

Table 7: Characteristics of the MLL datasets.
Dataset #Examples #Features #Classes #Domain

Image 2000 294 5 Images
Scene 2407 294 6 Images
Yeast 2417 103 14 Biology

Corel5k 5000 499 374 Images
Mirflickr 24581 1000 38 Images
Delicious 16091 500 983 Text

supx∈X ,f∈F,l∈Y max(LL
sp(f(x), l),LU

sp(f(x),y)), with probability at least 1− δ, we have:

R(f̂sp)−R(f⋆) ≤ 4

C

c∑
j=1

R̃n

(
GL
sp

)
+

M

minj |SLj |

√
log 4

δ

2n
+ 4R̃n

(
GU
sp

)
+M

√
log 4

δ

2n

≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

Proof.

R(f̂sp)−R(f⋆) = R(f̂sp)− R̂sp(f̂) + R̂sp(f̂)− R̂sp(f
⋆) + R̂sp(f

⋆)−R(f⋆)

≤ R(f̂sp)− R̂sp(f̂) + R̂sp(f
⋆)−R(f⋆)

= RL
sp(f̂sp)− R̂L

sp(f̂) + R̂L
sp(f

⋆)−RL
sp(f

⋆)

+RU
sp(f̂sp)− R̂U

sp(f̂) + R̂U
sp(f

⋆)−RU
sp(f

⋆)

≤ 2 sup
f∈F

|RL
sp(f)− R̂L

sp(f)|+ 2 sup
f∈F

|RU
sp(f)− R̂U

sp(f)|

≤ 4

C
R̃n

(
GL
sp

)
+

M

minj |SLj |

√
log 4

δ

2n
+ 4R̃n

(
GU
sp

)
+M

√
log 4

δ

2n

≤ 4
√
2ρ

C

c∑
j=1

Rn(Hj) +
M

minj |SLj
|

√
log 4

δ

2n
+ 4

√
2

c∑
j=1

Rn(Hj) +M

√
log 4

δ

2n
.

A.6 Implementation Details

During the implementation, we first initialize the predictive network by performing warm-up training
with AN solution, which could facilitate learning a fine network in the early stages. Furthermore,
after each epoch, the class prior is reestimated via the trained model. The code implementation is
based on PyTorch, and the experiments are conducted on GeForce RTX 3090 GPUs. The batch size
is selected from {8, 16} and the number of epochs is set to 10. The learning rate and weight decay
are selected from {10−2, 10−3, 10−4, 10−5} with a validation set. The hyperparameters δ and τ are
all fixed as 0.01. All the comparing methods run 5 trials on each datasets. For fairness, we employed
ResNet-50 as the backbone for all comparing methods.
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Table 8: Predictive performance of each comparing method on MLL datasets in terms of Average
Precision (mean ± std). The best performance is highlighted in bold (the larger the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.534±0.061 0.580±0.104 0.531±0.079 0.217±0.003 0.615±0.004 0.317±0.002
AN-LS 0.574±0.037 0.631±0.072 0.538±0.044 0.230±0.002 0.587±0.006 0.261±0.006
WAN 0.576±0.041 0.661±0.033 0.698±0.017 0.241±0.002 0.621±0.004 0.315±0.000
EPR 0.539±0.028 0.597±0.062 0.710±0.008 0.214±0.001 0.628±0.003 0.314±0.000

ROLE 0.606±0.041 0.700±0.040 0.711±0.013 0.203±0.003 0.516±0.027 0.130±0.003
EM 0.486±0.031 0.549±0.103 0.642±0.029 0.294±0.002 0.614±0.003 0.293±0.001

EM-APL 0.467±0.026 0.448±0.049 0.654±0.040 0.275±0.003 0.589±0.007 0.311±0.001
SMILE 0.670±0.021 0.722±0.071 0.751±0.004 0.295±0.004 0.629±0.003 0.318±0.001

LL-R 0.605±0.058 0.714±0.035 0.658±0.006 0.268±0.002 0.625±0.001 0.296±0.004
LL-CP 0.595±0.031 0.735±0.028 0.700±0.000 0.259±0.004 0.621±0.007 0.251±0.007
LL-CT 0.600±0.012 0.669±0.052 0.629±0.007 0.258±0.004 0.619±0.004 0.253±0.004

CRISP 0.749±0.037 0.795±0.031 0.758±0.002 0.304±0.003 0.628±0.003 0.319±0.001

Table 9: Predictive performance of each comparing method on MLL datasets in terms of Coverage
(mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.374±0.050 0.279±0.094 0.707±0.045 0.330±0.001 0.342±0.003 0.653±0.001
AN-LS 0.334±0.033 0.217±0.052 0.703±0.012 0.441±0.009 0.433±0.015 0.830±0.016
WAN 0.313±0.040 0.192±0.019 0.512±0.045 0.309±0.001 0.334±0.002 0.632±0.001
EPR 0.352±0.043 0.254±0.046 0.506±0.011 0.328±0.001 0.332±0.002 0.637±0.001

ROLE 0.306±0.049 0.157±0.023 0.519±0.026 0.551±0.007 0.448±0.028 0.887±0.004
EM 0.407±0.036 0.281±0.096 0.575±0.042 0.382±0.005 0.359±0.010 0.753±0.004

EM-APL 0.438±0.022 0.360±0.057 0.556±0.045 0.335±0.005 0.369±0.005 0.765±0.006
SMILE 0.242±0.014 0.146±0.037 0.462±0.003 0.308±0.007 0.328±0.004 0.628±0.003

LL-R 0.311±0.059 0.141±0.017 0.512±0.002 0.274±0.002 0.335±0.006 0.622±0.001
LL-CP 0.296±0.031 0.136±0.016 0.518±0.001 0.272±0.008 0.337±0.005 0.708±0.004
LL-CT 0.297±0.017 0.161±0.031 0.509±0.001 0.277±0.005 0.335±0.003 0.708±0.002

CRISP 0.164±0.012 0.082±0.018 0.455±0.002 0.276±0.002 0.324±0.001 0.620±0.001

Table 10: Predictive performance of each comparing methods on MLL datasets in terms of Hamming
loss (mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.229±0.000 0.176±0.001 0.306±0.000 0.010±0.000 0.127±0.000 0.019±0.000
AN-LS 0.229±0.000 0.168±0.004 0.306±0.000 0.010±0.000 0.127±0.000 0.019±0.000
WAN 0.411±0.060 0.299±0.035 0.285±0.016 0.156±0.001 0.191±0.006 0.102±0.000
EPR 0.370±0.043 0.220±0.026 0.234±0.007 0.016±0.000 0.136±0.002 0.020±0.000

ROLE 0.256±0.018 0.176±0.017 0.279±0.010 0.010±0.000 0.128±0.000 0.019±0.000
EM 0.770±0.001 0.820±0.003 0.669±0.025 0.589±0.003 0.718±0.010 0.630±0.005

EM-APL 0.707±0.088 0.780±0.082 0.641±0.032 0.648±0.006 0.754±0.017 0.622±0.006
SMILE 0.219±0.009 0.182±0.021 0.208±0.002 0.010±0.000 0.127±0.001 0.081±0.008

LL-R 0.220±0.013 0.162±0.005 0.312±0.001 0.015±0.001 0.124±0.002 0.019±0.000
LL-CP 0.218±0.016 0.164±0.002 0.306±0.000 0.016±0.001 0.126±0.001 0.019±0.000
LL-CT 0.246±0.031 0.176±0.019 0.321±0.001 0.018±0.001 0.124±0.001 0.019±0.000
CRISP 0.165±0.023 0.140±0.013 0.211±0.001 0.010±0.000 0.121±0.002 0.019±0.000

A.7 Details of Datasets

The details of the four MLIC datasets and the five MLL datasets are provided in Table 6 and Table 7
respectively. The basic statics about the MLIC datasets include the number of training set, validation
set, and testing set (#Training, #Validation, #Testing), and the number of classes (#Classes). The
basic statics about the MLL datasets include the number of examples (#Examples), the dimension of
features (#Features), the number of classes (#Classes), and the domain of the dataset (#Domain).

A.8 More Results of MLL Datasets

Table 8, 9, 10 and 11 report the results of our method and other comparing methods on five MLL
datasets in terms of Average Precision, Coverage, Hamming loss and One Error respectively.
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Table 11: Predictive performance of each comparing methods on MLL datasets in terms of One-error
(mean ± std). The best performance is highlighted in bold (the smaller the better).

Image Scene Yeast Corel5k Mirflickr Delicious

AN 0.708±0.096 0.626±0.123 0.489±0.194 0.758±0.002 0.358±0.005 0.410±0.012
AN-LS 0.643±0.052 0.578±0.111 0.495±0.130 0.736±0.009 0.360±0.015 0.454±0.013
WAN 0.670±0.060 0.543±0.060 0.239±0.002 0.727±0.012 0.352±0.010 0.404±0.002
EPR 0.703±0.046 0.615±0.090 0.240±0.003 0.764±0.000 0.362±0.015 0.441±0.008

ROLE 0.605±0.041 0.507±0.066 0.244±0.005 0.705±0.016 0.525±0.072 0.594±0.006
EM 0.769±0.036 0.681±0.119 0.326±0.079 0.656±0.009 0.365±0.008 0.446±0.009

EM-APL 0.773±0.045 0.812±0.059 0.341±0.109 0.690±0.007 0.434±0.023 0.405±0.006
SMILE 0.533±0.036 0.466±0.117 0.250±0.012 0.650±0.008 0.340±0.010 0.402±0.005
LL-R 0.597±0.084 0.490±0.054 0.436±0.087 0.715±0.006 0.342±0.016 0.543±0.041
LL-CP 0.629±0.043 0.450±0.051 0.240±0.000 0.731±0.016 0.357±0.016 0.490±0.028
LL-CT 0.616±0.019 0.574±0.074 0.552±0.097 0.726±0.022 0.375±0.012 0.475±0.019

CRISP 0.325±0.026 0.311±0.047 0.227±0.004 0.646±0.006 0.295±0.009 0.402±0.003

Table 12: Summary of the Wilcoxon signed-ranks test for CRISP against other comparing approaches
at 0.05 significance level. The p-values are shown in the brackets.

CRISP against AN AN-LS WAN EPR ROLE EM EM-APL SMILE LL-R LL-CP LL-CT

Coverage win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0431] win[0.0431] win[0.0431]
One-error win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0431] tie[0.625] win[0.0313] win[0.0313]

Ranking loss win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313] win[0.0313]
Hamming loss tie[0.0679] tie[0.0679] win[0.0313] win[0.0313] tie[0.0679] win[0.0313] win[0.0313] tie[0.0796] win[0.0313] win[0.0313] win[0.0313]

Average precision win[0.0313] win[0.0313] win[0.0313] win[0.0431] win[0.0313] win[0.0313] win[0.0313] tie[0.0938] win[0.0313] win[0.0313] win[0.0313]

Table 13: Predictive performance of CRISP compared with the approach of estimating priors from the
validation set (CRISP-VAL) on the MLL datasets for five metrics.

Metrics Image Scene Yeast Corel5k Mirflickr Delicious

CRISP

Coverage 0.164±0.012 0.082±0.018 0.455±0.002 0.276±0.002 0.324±0.001 0.620±0.001
Ranking Loss 0.164±0.027 0.112±0.021 0.164±0.001 0.113±0.001 0.118±0.001 0.122±0.000

Average Precision 0.749±0.037 0.795±0.031 0.758±0.002 0.304±0.003 0.628±0.003 0.319±0.001
Hamming Loss 0.165±0.023 0.140±0.013 0.211±0.001 0.010±0.000 0.121±0.002 0.019±0.000

OneError 0.325±0.026 0.311±0.047 0.227±0.004 0.646±0.006 0.295±0.009 0.402±0.003

CRISP-VAL

Coverage 0.193±0.009 0.109±0.012 0.456±0.004 0.280±0.002 0.330±0.001 0.623±0.002
Ranking Loss 0.198±0.016 0.116±0.013 0.165±0.001 0.114±0.002 0.120±0.001 0.122±0.000

Average Precision 0.725±0.004 0.790±0.028 0.753±0.006 0.294±0.008 0.622±0.001 0.319±0.001
Hamming Loss 0.180±0.006 0.141±0.014 0.216±0.000 0.010±0.000 0.124±0.001 0.019±0.000

OneError 0.395±0.071 0.359±0.050 0.246±0.021 0.666±0.008 0.314±0.003 0.444±0.001
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Figure 4: Convergence of π̂ on four MLIC datasets.

A.9 More Results of MLIC Datasets

Figure 4 illustrates the discrepancy between the estimated class-prior π̂j and the true class-prior
πj in every epoch on four MLIC datasets. During the initial few epochs, a significant decrease
in the discrepancy between the estimated class-prior and the true class-prior is observed. After
several epochs, the estimated class prior tends to stabilize and converges to the true class-prior. This
result provides evidence that our proposed method effectively estimates the class-prior with the only
observed single positive label.

A.10 p-values of the wilcoxon signed-ranks test

Table 12 reports the p-values of the wilcoxon signed-ranks test [6] for the corresponding tests and the
statistical test results at 0.05 significance level.
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A.11 Ablation results of MLL datasets

Table 13 reports the predictive performance of CRISP compared with the approach of estimating
priors from the validation set (CRISP-VAL) on the MLL datasets for five metrics. The results show
that CRISP outperforms CRISP-VAL on almost all the five metrics.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See the abstract and the penultimate paragraph in introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the potential time complexity issues of the proposed algorithm
in the Experiment Section 5.3.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: In Theorem 4.1 and Theorem 4.2, we have comprehensively presented the
corresponding assumptions and proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See the Section A.6 in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code is currently proprietary and not publicly available. However, we
have provided detailed information necessary for replicating the experiments.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See the Experiment Section and Section A.6 in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For each set of experiments, we conducted five trials. In Table 12, we also
performed a significance analysis.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See the Experiment Section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See the Section Impact Statements in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: This paper does not directly release the model, and the training data used does
not contain any sensitive content.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: See the Experimtent Section.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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