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Abstract

As the adoption of federated learning increases for learning from sensitive data local to user
devices, it is natural to ask if the learning can be done using implicit signals generated
as users interact with the applications of interest, rather than requiring access to explicit
labels which can be difficult to acquire in many tasks. We approach such problems with the
framework of federated contextual bandits, and develop variants of prominent contextual
bandit algorithms from the centralized seting for the federated setting. We carefully eval-
uate these algorithms in a range of scenarios simulated using publicly available datasets.
Our simulations model typical setups encountered in the real-world, such as various mis-
alignments between an initial pre-trained model and the subsequent user interactions due
to non-stationarity in the data and/or heterogeneity across clients. Our experiments reveal
the surprising effectiveness of the simple and commonly used softmax heuristic in balancing
the well-know exploration-exploitation tradeoff across the breadth of our settings.

1 Introduction

Federated learning (Konečnỳ et al., 2016; McMahan et al., 2017; Kairouz et al., 2021b) has emerged as
an important machine learning paradigm for settings where the raw training data remains decentralized
across a potentially heterogeneous collection of devices. A key motivation for cross-device federated learning
(henceforth FL) arises from scenarios where these devices belong to various users of a service, and the goal
is to learn predictive models from the data generated when the user interacts with the service. This has
benefits from a privacy perspective, and can also allow the development of more expressive models that
leverage contextual features that would be unavailable in the datacenter.

Federated learning directly encodes the data minimization privacy principle including focused collection and
ephemeral updates with immediate aggregation (Bonawitz et al., 2022), and much recent work has shown it
is possible to combine these benefits with data anonymization for the trained models via differential privacy
(McMahan et al., 2018; Kairouz et al., 2021a). Following standard terminology in this area, we refer to the
end devices as the clients, and the learning process is orchestrated by a centralized server.

From a machine learning perspective, the bulk of federated learning algorithms can be effectively seen as a
particular category of decentralized learning algorithms which aim to solve a loss minimization problem over
the entire dataset distributed across the clients, without explicitly performing such a data collection (Wang
et al., 2021). This is an attractive framework, as it captures many supervised machine learning settings,
such as classification and regression, as long as the label signal arises naturally from user interaction. This
is the case for example with next-word-prediction (Hard et al., 2018), where if the system does not correctly
predict the next word, it is reasonable to assume the user will simply tap/swipe the desired word without
using the next-word suggestions.

However, many real-world federated learning scenarios do not provide such a complete feedback signal. For
example, consider an application where we want to display a featured image from a user’s phone every time
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they open the photo gallery. Other applications could be to annotate each image and/or text message with
a label corresponding to its category from a predefined set, or to suggest emoji and stickers (where the
user does not know the full set of options) in a mobile keyboard. In all these examples, the underlying
training data for learning is highly sensitive to the user, and collecting ground truth labels from third-party
human labelers is not feasible. Furthermore, even if privacy allowed the use of human labelers, in the first
example of selecting a featured image, it is nearly impossible for a labeler to guess which image from a user’s
collection appeals to them, and it is impractical for a user to respond with the best choice of a featured
image from their entire collection. A much more natural feedback modality in all these settings is to make a
recommendation (of an image, label, emoji, or sticker) to the user, and observe and learn from their response
to that recommendation. Further, note that both user preferences and the set of available recommendations
may evolve over time. Supervised learning fails to properly capture such settings where we only observe
feedback on the choices driven by the learning algorithm, and reinforcement learning (RL) offers a much
better fit for these problems where we seek to learn from user feedback.

A particular subset of RL which is quite effective at capturing several recommendation settings is that of
contextual bandits (CB) (Langford & Zhang, 2007; Auer, 2002; Agarwal et al., 2014). A key difference
between RL/CB and more traditional supervised learning approaches is the explicit recognition that the
algorithm only collects feedback for the choices it presents to the user, and hence it is important to navigate
the exploration/exploitation tradeoff. That is, the algorithm should explore over a diverse set of plausibly
good choices in any situation, and use the feedback to further prune the set of plausible choices. Motivated by
the twin concerns of learning from user feedback in a decentralized and private manner, there is an emerging
literature on federated CB learning (Huang et al., 2021; Dai et al., 2022; Dubey & Pentland, 2020). However,
the bulk of the existing work is theoretical in nature, with a focus on simple models such as multi-armed
or linear bandits, with a key focus on exploration in the federated setting. An important aspect of several
works here is also developing the right notions of privacy suited to the interactive learning setting (Shariff
& Sheffet, 2018; Dubey & Pentland, 2020).

In this work, we study federated CB learning with a complementary focus to the aforementioned works.
We design federated adaptations of practical state-of-the-art CB algorithms from the centralized setting,
and conduct an extensive empirical evaluation in a range of realistic settings. Algorithmically, we focus
on a black-box approach, where we isolate a component of the centralized CB algorithms which relies on
solving a classification or regression problem, and replace this with a federated learning counterpart. This
is practically desirable, as it makes it easy to incorporate latest advances from federated optimization into
the CB algorithms as drop-in replacements. The isolated federated optimization can also be combined
with complementary privacy techniques such as secure aggregation (Bonawitz et al., 2017) and differential
privacy (McMahan et al., 2018; Kairouz et al., 2021a).

We primarily consider cross-device FL (Kairouz et al., 2021b; Wang et al., 2021), which is typically more
challenging than cross-silo FL due to constraints such as limited computation resources, bandwidth, and client
availability; hence, our proposed framework and algorithms are also applicable to cross-silo FL, though more
sophisticated cross-silo algorithms can be possibly designed if we relax the on-device constraints and tackle
other challenges like feature alignment (Yang et al., 2019)

Even in the centralized setting, empirical evaluation of CB methods is limited to just a few works (Bietti
et al., 2021; Foster et al., 2020), and often ignores practical concerns such as data non-stationarity and the
impracticality of updating the CB model after each example. The federated setting adds further challenges
related to data heterogeneity across clients, greater delays in model updates on clients and configuring the
settings of the underlying federated optimization approach as some examples. Our work uses two popular FL
benchmarks, EMNIST and StackOverflow (SO for short), and turns them into simulators for the federated CB
setting by adapting and extending the ideas from the work of Bietti et al. (2021). Within this simulation,
we evaluate federated adaptations of several centralized CB algorithms in both stationary and realistic
simulations of non-stationary settings. We also study the influence of providing a small amount of labeled
data to create an initial model, which is typical in practice.
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Bietti et al. (2021) observed that the greedy approach offers an extremely strong baseline in stationary
centralized settings. We show this result can extend to the federated setting, and in particular that a greedy
strategy is highly effective when the problem is stationary and the model can be updated frequently. However,
exploration becomes critical under delayed updates and/or non-stationarity. The use of a strong initial model
can mitigate this to a reasonable degree, particularly in stationary settings. When exploration strategies are
necessary, we find federated versions of a simple softmax exploration strategy, and an adaptation of FALCON,
to be the best performing across the range of settings, with softmax being easier to tune than FALCON.

We emphasize our goal is not to show that bandit algorithms “win” against baselines. Rather, we hope that
this study can both provide a valuable resource in terms of a strong evaluation setup for future research on
federated CBs, as well as offer practical recipes for practitioners facing the federated CB setting and needing
to decide whether the additional complexity of deploying a bandit algorithm with an explicit exploration
strategy is likely to be beneficial.

2 Preliminaries

We begin by briefly recalling the federated learning and contextual bandit paradigms in this section. We
then build on these to set up the federated contextual bandit setting in the next section.

2.1 Federated Learning

In a federated learning problem, we are given a distribution p over a population C of clients. Client c ∈ C has
an associated data distribution Dc over samples z ∈ Z. The learning algorithm aims to find a good model
f ∈ F under some loss function ` : F × Z → R, so as to minimize the objective:

min
f∈F

Ec∼pEz∼Dc`(f, z). (1)

Like most learning algorithms, the objective (1) is optimized approximately using a sample-based approxima-
tion. Unique to federated learning, however, the datasets stay local to each client, while model updates from
each client are aggregated and applied on the central server. For intuition, a canonical federated learning
algorithm is FedAvg (McMahan et al., 2017), in which a random subset of the clients each use their local
data to compute an update to the shared model by performing a few stochastic gradient steps with the local
dataset. The updates are then communicated to the server which averages these local model changes and
uses this average to update the shared global model at the server.

2.2 Contextual Bandits

Contextual bandits are a paradigm to learn from interaction data where each interaction consists of observing
a context x ∈ Rd from some fixed and unknown distribution, choosing an action a ∈ A from some action set
A and observing some reward r(x, a) ∈ R specifying the quality of the action a for context x. Crucially, the
learner receives no signal on the quality of actions a′ 6= a which were not chosen. We let D represent the joint
distribution of (x, r), but also overload it to denote the marginal distribution over x, when it is clear from
the context. We view r as a random variable, where r(x, a) is the ath entry in the reward vector r ∼ D(·|x).
As mentioned above, the learner never observes the full reward vector r, but only the entry r(x, a) when it
chooses action a upon observing context x. The learner has access to a policy class Π ⊆ {X → A}, where a
policy is a mapping from contexts to actions. For deterministic policies we write π(x) ∈ A; we generalize this
to randomized policies where π(a|x) ∈ [0, 1] below. The goal of learning is to find a policy that maximizes
the expected reward, and the quality of some policy π is measured in terms of regret, defined as1

Regret(π) = E(x,r)∼D[r(x, π(x))]−max
π′∈Π

E(x,r)∼D[r(x, π′(x))]. (2)

1For a randomized policy, we can replace π(x) with an expectation over a ∼ π(·|x).
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For intuition, a deterministic policy class Π might be induced by a regression function class F as Π =
{πf : πf (x) = argmaxa∈A f(x, a), f ∈ F}, where the functions f are trained to predict the expected reward
using regression. That is, given a dataset (xs, as, rs)t−1

s=1 of historical examples (where rs ∈ R represent the
realization of the random variable r(xs, as)), we train the reward estimator ft = argminf∈F

∑t−1
s=1(f(xs, as)−

rs)2. A common choice we will use in most of our setup is when the functions f are parameterized as fθ
for some parameter θ ∈ Θ, where θ might denote the weights of a linear function or a neural network, for
instance.

There are several standard ways of extracting a randomized policy πt from ft, some of which we discuss
below.

• Greedy corresponds to the standard supervised learning approach, where we always choose the best
action according to ft,

Π =
{
πf : πf (a|x) = 1 if a = argmax

a′∈A
f(x, a′) and 0 otherwise, f ∈ F

}
(3)

(with ties broken arbitrarily).

• ε-Greedy chooses the greedy action with probability 1 − ε, and with probability ε, picks an action
uniformly from A. The extra exploration helps in collecting a more diverse dataset to train ft,
with the parameter ε providing a tradeoff between exploration and exploitation. For any data
distribution D, the regret of ε-Greedy is known to be bounded, whenever the class F is sufficiently
expressive (Langford & Zhang, 2007; Agarwal et al., 2012).

• Softmax is another variant of Greedy, where the policy uses a softmax distribution on the predicted
rewards by the underlying model: πt(a|x) ∝ exp(f(x, a)/β). When β approaches zero, the πt
approaches the greedy policy, and diffuses to a uniform exploration for β = ∞. In general, this
strategy does not have theoretical guarantees on the regret, but is often practically used owing to
its simplicity.

• FALCON is provably optimal in the worst-case (Simchi-Levi & Xu, 2022; Foster & Rakhlin, 2020) and
uses a more carefully crafted distribution over actions, given ft (see line 6 in Algorithm 2). The
degree of exploration is governed by two hyperparameters γ and µ, which makes this strategy a
little harder to tune in practice. For setting these hyperparameters, we depart from the theoretical
recommendation in Simchi-Levi & Xu (2022) of using a careful schedule and use a best constant set-
ting closer to Foster & Rakhlin (2020), as some of the quantities in the theoretical recommendations
depending on the function class complexity and failure probability are unknown in practice.

3 Federated Contextual Bandits

We begin with the high-level problem setting and the algorithmic framework. We then present detailed
federated variants of popular CB algorithms.

3.1 Problem Setting

With both the FL and CB settings defined individually, we now describe the federated CB setting. The high-
level framework for the algorithms and the interaction with the environment is presented in Algorithm 1.
In a federated CB problem, there is a distribution p over clients c ∈ C, with each client having a joint
distribution Dc over context and reward pairs. The server maintains a global policy π ∈ Π, which is now
learned in a federated manner. That is, each client maintains some (potentially stale) version of the server’s
policy locally, which we denote as πc.2 Each client c collects data by choosing actions on observed contexts

2Federated learning makes the possibility of learning a personalized policy πc much easier, but we focus on global policies in
this work. Note that even with a global policy, the contextual features x can be used to encode substantial information about
the particular client c, and hence can lead to strongly personalized recommendations.
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Algorithm 1 Federated Contextual Bandits
Require: Communication rounds T per period; training periods I ≥ 1; initial inference model θ0

1: for i = 1, 2, . . . , I do
2: Deploy inference policy π parameterized by θi−1 to all clients C
3: for each c ∈ C in parallel do
4: Bc ← BanditInference(π, θi−1) . Algorithm 2
5: end for
6: . In a real deployment, training and inference might occur in parallel, but we simulate sequentially:
7: Initialize optimization θ(0) ← θi−1
8: for t = 1, 2, . . . , T do
9: θ(t) ← FederatedRound(θ(t−1)) . Algorithm 3

10: end for
11: θi ← θ(T )

12: end for

according to πc and logs the reward received (lines 3-5 in Algorithm 1), and we call this operation bandit
inference. Some subset of the clients periodically participate in federated training to update the policy π
at the server, using their local data (lines 7-11). We explain the details of inference and training rounds in
detail below.

Bandit inference. Bandit inference refers to the user-visible use of the policy πc locally at a client,
whenever it is queried for an action with a context. For instance, this might correspond to choosing a
featured image or an emoji recommendation upon observing the user’s photo album or text message in
our previous examples. Formally, at an inference step, a client c observes a context x ∼ Dc, chooses an
action a ∼ πc(·|x) and observes the reward r ∼ D(·|x, a). The inference steps happen asynchronously at
the clients and do not require any communication, since the client only invokes a locally stored version
of the policy to choose actions. The agent also maintains an internal log of inference tuples of the form
(x, a, r, πc(a|x)) ∈ (Rd,A,R, [0, 1]), which are saved in data cache (Hard et al., 2018) and later used to
update the server policy in the training rounds which we describe next.

Federated training. Periodically, the server polls a subset of the clients to participate in federated train-
ing. Roughly, this corresponds to using the inference logs across the participating clients to improve the
regression model f(·, ·; θ). However, this federated training for policy improvement happens in a decentral-
ized manner with no explicit data pooling. For instance, each participating client c downloads the current
server regression parameters θ(t) and uses its local logs to compute a local gradient direction, which is com-
municated to the server. The server then accumulates the gradients across the clients to update θ(t) to form
θ(t+1). After several communication rounds,the training period concludes and the server can broadcast the
updated regression parameters (and hence updated policy) to all the clients, or rely on the clients to pull an
updated policy periodically.

Federated regret. The typical performance metric in a centralized CB setting is regret, which measures
the average performance of a policy π when we perform inference according to it, relative to the best possible
policy in some class Π as in Eq. (2). Analogously in the federated CB problem, we seek to control the bandit
inference regret. Informally, federated regret is the average expected regret that is incurred across the client
population, during the bandit inference process. To define the metric formally, let us consider a policy
π which is used simultaneously by a population of clients distributed according to p. Then the average
federated inference regret of this policy π, relative to a policy class Π is given by:

Fed-Regret(π) = Ec∼pE(x,r)∼Dc,a∼π(·|x)[r(x, a)]−max
π′∈Π

Ec∼pE(x,r)∼Dc,a∼π′(·|x)[r(x, a)]. (4)
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We evaluate a common policy π at all the clients, instead of allowing a separate policy πc at each client,
because we do not consider client-specific policies in this work. The client policies might further differ in
practical settings, where the client might poll parameters from the server asynchronously, and we omit such
generalizations here to focus on the key ideas in the presentation.

3.2 Federated CB algorithms

Algorithm 2 Bandit Inference on Client c
Require: Model parameters θ; number of actions K = |A|; data cache size M ; exploration parameter

ε for ε-Greedy , β for Softmax , µ, γ for FALCON
1: (Optional) initialize data cache Bc = ∅ . The cache can be reset for simplicity in simulation
2: for j = 1, . . . ,M do . We only simulate sufficient user interactions to fill the cache
3: Observe xj ∼ Dc. Let ajθ = argmaxa∈A fθ(xj , a)
4: π(a|xj) = 1− ε+ ε/K if a = ajθ else ε/K . ε-Greedy

5: π(a|xj) = exp(fθ(xj , a)/β)/
∑
b exp(fθ(xj , b)/β) . Softmax

6: π(a|xj) = 1/
(
µ+ γ(fθ(xj , ajθ)− fθ(xj , a))

)
if a 6= ajθ) else 1−

∑
b 6=aj

θ
π(b|xj) . FALCON

7: Sample aj ∼ π(·|xj) and observe rj for aj
8: Bc ← Bc ∪ {(xj , aj , rj , π(aj |xj))}
9: end for

10: return Bc

Algorithm 3 One Round of Federated Optimization
Require: Global model θ(t−1) from the previous round; subset of clients S(t) ⊂ C

1: Broadcast θ(t−1) from server to clients S(t)

2: for each c ∈ S(t) in parallel do
3: ∆(t)

c = ClientUpdate(θ(t−1), Bc)
4: end for
5: ∆(t) = aggregate(∆(t)

c ) . Compatible with SecAgg and DP
6: return θ(t) = server-optimizer(θ(t−1), ∆(t))

7: function ClientUpdate(ω0, Bc)
8: for k = 1, . . . , N do
9: Sample a minibatch G ⊂ Bc

10: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2 (f(x, a)− r)2 . Regression-based loss

11: Compute gradient g = ∂
∂θ

∑
(x,a,r,ρ)∈G

1
2ρ (f(x, a)− r)2 . Importance weighting loss

12: ωk = client-optimizer(ωk−1, g)
13: end for
14: return ∆(t)

c ← ωN − ω0

15: end function

In this section, we describe the federated CB algorithms that are developed and studied in this paper. The
federated CB algorithms that we design are federated versions of the centralized CB algorithms described in
Section 2.2. Recalling the general framework of Algorithm 1, we consider a meta iterator in the outer-loop
named period, which can possibly run forever in an online setting, i.e., I = ∞. Each period simulates the
deployment of a machine learning model parameterized by some parameters θi−1, which can be less frequent
for on-device applications compared to a web service. We focus on regression-based CB algorithms as in
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Section 2.2, where the parameters θ induce a regression model which predicts the expected reward of actions
a, given context x. Each period i consists of some number of bandit inference steps followed by a training.
At the beginning of each period, an inference model is deployed to all clients, and the model is trained with
bandits data generated by a (delayed) inference model from the last period. For simplicity of presentation,
we use the same number of examples at each client in inference, and do not incorporate heterogeneous delays
in model deployment across clients as mentioned before.

Algorithm 2 describes the details of the inference procedure that happens asynchronously at each client.
Client c observes a context x ∼ Dc. Given the current model parameters θ = θi−1, we use fθ to refer to
the induced reward predictor. This reward predictor fθ is used to define a probability distribution over
the actions as described in lines 4-6. The Greedy strategy is implemented by setting ε = 0 in ε-Greedy.
The chosen action a is subsequently drawn from this probability distribution, and the observed reward is
logged along with the context, action and sampling probability in a local data log Bc (line 8). In practice,
where the number of inference examples handled at a client is exogenously determined, each client observes a
potentially different number of inference examples in a period, Bc is maintained locally on client and can be
configured with suitable cap M on the size of the local data log to respect memory and system constraints.
Local cache Bc potentially contains inference examples predicted by multiple previous model θ0, . . . , θi−1
due to heterogeneous delays of model deployment. When the deployment period is large, most of the clients
participate in training contain lcoal cache of examples predicted by the most recent inference model θi−1,
and hence we reset Bc every round for simplicity in simulation when used Algorithm 4.

Next, we discuss the algorithmic details of the training period, described in Algorithm 3. At a high-level,
this procedure boils down to identifying an appropriate optimization objective on the local data logs of all
the clients, which can then be optimized by any standard federated optimization algorithm. We consider
two optimization objectives, motivated by the two predominant algorithmic settings in centralized CB.
We describe their expected versions here, with the understanding that actual implementations use sample
averages. The simplest objective is a regression on observed rewards as described before (Agarwal et al.,
2012; Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2022):

Regression: min
f∈F

Ec∼p
∑

(x,a,r,ρ)∈Bc

(f(x, a)− r)2. (5)

When the class F is rich enough to satisfy E[r|x, a] ∈ F , this objective is natural, as the minimizer converges
to the true expected rewards. However, if this assumption is grossly violated, then the regression objective can
learn an unreliable predictor. A potentially preferable objective in such contexts is the following importance
weighted regression variant (Bietti et al., 2021):

Importance-weighted regression: min
f∈F

Ec∼p
∑

(x,a,r,ρ)∈Bc

1
ρ

(f(x, a)− r)2, (6)

where ρ is the recorded probability of choosing a given x in the local data log. Importance-weighting ensures
that the objective is an unbiased estimator of Ec∼pE(x,r)∼Dc

∑
a∈A(f(x, a)− r)2, so that the learned reward

estimator is uniformly good for all the actions. This leads to strong guarantees for any function class F ,
at the cost of a harder to optimize and higher variance training objective. We note that the application
of FALCON with importance weighted updates is not considered in the original paper (Simchi-Levi & Xu,
2022). For our experiments, we primarily focus on the regression version as it displays superior empirical
performance.

For either objective, we note that the underlying optimization problem clearly fits the form of the standard
federated learning objective (1), meaning that off-the-shelf federated optimization algorithms can be readily
applied. Federated Averaging (FedAvg) (McMahan et al., 2017) is a popular choice in pracitce, as it achieves
both communication efficiency and fast convergence under heterogeneity (Wang et al., 2022). In Algorithm 3,
we adopt the generalized FedAvg algorithm (Reddi et al., 2021; Wang et al., 2021), which views FL algorithms
as two stage optimization: clients perform local training to compute model update ∆c, and the server uses
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the averaged ∆ as a pseudo gradient to update the global model θ. The server performs such updates
for T rounds, sampling a fresh subset of clients at each round. Subsequently, the updated parameters are
communicated to the clients for bandits inference, as mentioned earlier.

The updates on client and server require the specification of optimizers to be used. We follow standard
practice and use stochastic gradient descent (SGD) as the client-optimizer as it works well and incurs no
additional memory or computation overhead. We use Adam (Kingma & Ba, 2014) as the server-optimizer
following Reddi et al. (2021).

Differential privacy (DP). The privacy properties of Algorithm 3 can be further improved via techniques
like secure aggregation (Bonawitz et al., 2017) for the model updates, and by replacing FedAvg with variants
that offer differential privacy (McMahan et al., 2018; Kairouz et al., 2021a; Choquette-Choo et al., 2022).
We apply adaptive clipping (Andrew et al., 2021) with zero noise in aggregation as this has been shown to
improve robustness with minimal computation and communication cost (Charles et al., 2021) in the bulk
of our evaluation. In some of our experiments, we show the easy composition with differential privacy
by introducing two additional operations for DP-FedAvg (McMahan et al., 2018): clip the model update
∆̃(t)
c = min

(
1, C

||∆(t)
c ||

)
∆(t)
c with clip norm C estimated by adaptive clipping (Andrew et al., 2021); add

Gaussian noise with standard deviation σC to ∆(t) = aggregate(∆̃(t)
c ), where σ is noise multiplier and C is

the clip norm.

4 Simulation Setup

In this section, we describe the setup used for our simulations of real-world federated CB problems. We
describe the datasets used in our simulation, a detailed specification of the algorithms in the simulation
setting, and the various settings that we simulate. Our code will be open-sourced.

4.1 Datasets for Simulating Federated CB

The methods that we evaluate roughly correspond to those outlined in Sections 2.2 and 3. Concretely,
we evaluate the Greedy, ε-Greedy, Softmax and FALCON strategies described above. For each strategy, we
consider a few choices of the hyperparameters and mainly show the results for the best choice in a particular
experimental condition. Details of the hyperparameters used can be found in Appendix A.

We use two datasets two evaluate these methods across a range of simulation settings in this work. The
datasets are EMNIST and StackOverflow (SO), both of which have been used in prior works on federated
learning. EMNIST is a handwritten character recognition dataset, comprising of digits (0-9) and letter (a-z,
A-Z) inducing a multi-class classification problem with 62 labels. The dataset consists of characters written
by different individuals, which are mapped to the different clients in the federated setting. We use the
EMNIST dataset of 3400 clients provided by Tensorflow Federated (TFF Authors, 2022a) to train a two-
layer convolutional neural network (CNN) (McMahan et al., 2017; Reddi et al., 2021). In bandit interaction,
the learner predicts a class label upon seeing a character, and only gets a feedback about the correctness
of this prediction, but does not observe the ground-truth label when this prediction is wrong, following the
setup from prior works (Dudík et al., 2014; Bietti et al., 2021).

SO (TFF Authors, 2022b) is a language dataset of processed question and answer text with additional
metadata such as tags. The dataset contains 342,477 unique users as training clients. We consider the tag
prediction task and use a linear model based on the bag of words features for the sentences in each client.
A vocabulary of 10,000 most frequent words is used. To make exploration feasible, we limit the tag set to
the 50 most frequent tags. The original tag prediction is a multi-label and multi-class classification problem,
and similar to EMNIST in bandit interaction, the learner will only get feedback about the correctness of a
single predicted tag without observing the ground-truth label.
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Next we discuss the various simulation setups used in this work.

Algorithm 4 Federated Contextual Bandits in Simulations
Require: Communication rounds T per period; training periods I; initial inference model θ0; bandits infer-

ence algorithm and hyparameters in Algorithm 2; federated optimization algorithms and hyparameters
in Algorithm 3.

1: for t = 1, 2, . . . , IT do
2: i = dt/T e
3: Send training model θ(t−1), inference model θi−1 from server to a subset clients S(t)

4: for each c ∈ S(t) in parallel do
5: Bc ← BanditInference(π, θi−1) . Algorithm 2
6: ∆(t)

c = ClientUpdate(θ(t−1), Bc) . Algorithm 3
7: end for
8: ∆(t) = aggregate(∆(t)

c )
9: θ(t) = server-optimizer(θ(t−1), ∆(t))

10: if t mod T == 0 then
11: θi ← θ(t)

12: end if
13: end for

4.2 Simulation Scenarios

We consider three simulation scenarios in this paper. They roughly correspond to the scenarios where the
CB agent starts from scratch, as is typically assumed in theory, as well as two settings where it starts from
an initial model pre-trained with supervised data from a small number of clients, before being deployed in
the CB setting. In the first pre-training setting, the reward distribution is the same in the pre-training and
deployment phases, while the second one considers a distribution shift on the rewards. We begin with the
high-level details of mapping the abstract federated CB framework of Algorithm 1 into a simulation setting,
before describing the 3 variants below.

Simulated federated CB: When simulating a federated CB problem from a supervised dataset like
EMNIST or SO, we need to choose the inference and training periods. For simplicity, we consider each period i
in Algorithm 1 to consist of T communication rounds in Algorithm 4, which contains detailed implementation
of the simulation framework. In each round t ∈ [T ] of a period i ∈ [I], we choose a subset S(t) of the client
population. This represents the clients which participate in federated training at round t in period i in
Algorithms 1 and 3. We limit the inference to only happen at the clients selected for training at this round,
since the inference data generated at the other clients does not matter for model updates. While the inference
rewards at all the clients are needed for measuring the performance of the deployed model, the average over
the selected clients provides an unbiased approximation and makes the simulation computationally more
tractable. Upon generating the inference data log Bc at all the selected clients Bc, we then perform N local
updates, followed by an aggregated update of the server parameters. Upon the completion of T such rounds,
the client parameters are updated at each client and a new period starts. In this manner, each client has
parameters delayed by up to T rounds relative to the server. Note that a minor mismatch between the
descriptions of Algorithms 1 and 4 is that if a client is selected at two different rounds within a period, then
it uses an identical data log Bc at both the periods in Algorithm 1, but samples a fresh log Bc in Algorithm 4.

Next we describe how the client distributions are simulated using the supervised learning datasets in multiple
ways below.

Training from scratch with no initial model (scratch) This scenario is the closest to the federated
generalization of the standard CB setting studied in most papers. The server and clients start with some
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randomly initialized model θ0. The model is used to choose actions for the inference period. The rewards of
chosen actions are based on the classification loss, namely 1 for the action corresponding to a correct label
and 0 otherwise.

Initial model on a subset of clients (init) This scenario roughly captures a common practice in the
industry where some small number of users (say employees of the organization) might try the application
before broader deployment. In such cases, these initial users might even supply a richer feedback on the
algorithm’s chosen actions, an extreme case of which is providing the ground-truth label on each example,
which allows the instantiation of rewards of all the actions. We model this by selecting a small number
of clients for pre-training, and use supervised learning to minimize the squared loss across all the actions
for each x, given the full reward vector. With this initial model, we then deploy to a broader client pool.
Subsequently, the model is again updated in every training period in the same manner as the scratch
scenario. We choose the number of initial clients to be 100 for both EMNIST and SO.

Initial model on a subset of clients with reward distribution shift (init-shift) In practice, it
is often unrealistic to assume that the reward distribution for model pre-training will match that during
deployment due to a number of factors. The distribution of best actions within a subset of initial users (such
as within an organization) might be heavily skewed relative to the general population. If the supervision
for the initial model is instead obtained by third-party labelers, then there can be a mismatch between
their preferences and those of the users. Finally, even beyond these, most practical problems exhibit non-
stationarity (Wang et al., 2021; Zhu et al., 2021; Wu et al., 2022; Jiang & Lin, 2022) due to seasonal or other
periodic effects, drifts in user preferences over time, changes in the action set etc. For example, emoji and
users’ preference can gradually change in an emoji recommendation application (Ramaswamy et al., 2019).
In a way, some distributional mismatch between initial and deployment phases is likely most representative
of the current practical scenario, and we treat this as our default scenario.

In EMNIST, we simulate this distribution shift by setting the reward in the initial training to be 1 if the label
is correct, 0.5 if the true label is an upper-case letter and we predict its lower-case version and 0 otherwise.
During the subsequent bandit simulation, we use the 0-1 valued rewards for exact match with the label,
causing a label distribution shift.

In SO, we model distribution shift from two sources. The initial training only gets a multilabel 0/1 feedback
based on tags in the 10 most frequent tags. That is, the learner sees a vector of labels of size 10, which has
value 1 for all the tags in which are present in the example and 0 otherwise. However, the tag-set is expanded
to the top 50 tags in the deployment phase, where the reward of a tag is defined as inversely proportional
to the frequency of the tag in the corpus. Thus, the algorithm gets a higher reward for correctly predicting
rare tags, which are not likely to be observed in the pre-training phase.

Simulation durations Throughout the experiments, we use a total of 800 communication rounds (corre-
sponding to IT in Algorithm 4) for EMNIST and 1600 communication rounds for the larger SO benchmark,
and randomly sample 64 clients in each round. The number of training periods T is set to 4 for EMNIST and
8 for SO unless otherwise specified, corresponding to the deployment of a new model every 200 communi-
cation rounds. For init and init-shift, where we train an initial model for 100 iterations of supervised
training, we only perform 700 (respectively 1500) rounds in the bandit phase for EMNIST (respectively SO).
The comparison across settings at the end of training is not completely fair, however, as 100 rounds of
supervised training provide significantly more information than 100 rounds of bandit interactions, since we
observe feedback on all the actions in the supervised setup. We note that the scale of rewards also changes
due to the rewards configuration in the init-shift setting.
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Figure 1: EMNIST experiments, without importance weighting. The y-axis gives running average reward,
with different scales for each plot. While the regression model is the same for the first 200 rounds of each
scenario, cumulative rewards are different depending on the amount of exploration done by the policy. The
“Init” lines correspond to the greedy policy on the initial model, with no additional training. All the plots
use the exploration parameters β = 0.05 and ε = 0.05 for Softmax and ε-Greedy respectively. Learning rate
and exploration parameter values for each algorithm are detailed in Tables 1-4 for Figures 1a-1d respectively.

5 Empirical Evaluation Results

We begin with an evaluation of the baselines mentioned in the previous section across all the different
experimental settings, before studying the effect of changing some important aspects of the setup as well as
algorithmic choices.

5.1 Results for the three simulation settings

In Figures 1 and 2, we show a comparison of the different bandit algorithms on the EMNIST and SO bench-
marks, respectively, across a range of experimental settings. In most of the experiments, we deploy a new
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Figure 2: StackOverflow experiments. Note the different y-axis reward scales on the different plots. Learn-
ing rate and exploration parameter values for each algorithm are detailed in Tables 5-8 for Figures 2a-2d
respectively.

model every 200 communication rounds, while the settings vary in {scratch, init, init-shift}, with the
results summarized in Figures 1a-1c and 2a-2c for the two benchmarks.

As a first takeaway, we note that exploration almost always helps relative to the baseline Greedy strategy, and
never hurts, even as the extent of gains can be dependent on the setting. When starting without an initial
model in the scratch setting, exploration is typically crucial since the initial model can arbitrarily prefer
certain actions. This is most clearly reflected in Figure 1a for the EMNIST benchmark, although the absolute
reward is quite low in both EMNIST and SO at the end of the experiment in both the cases for this setting,
meaning that the regime might be less relevant practically. While exploration is generally helpful, it is critical
to balance the explore-exploit tradeoff, and best performance is generally achieved for parameter settings
that result in fairly aggressive exploration early on, before converging closer to a greedy choice towards the
end of training in both FALCON and Softmax algorithms. In Section 5.3, we quantify this phenomenon for
Softmax in Figs. 4b and 4d while also showing noise added for differential privacy also has an effect.

In the init setting, the results are more mixed since the algorithms start with an initial model which already
has a strong performance. For instance, the initial model has a higher reward than the performance at the
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Figure 3: Variance across 5 trials of Softmax in the init-shift setting for EMNIST and SO

end of training from scratch in both Figures 1b and 2b. Consequently, there is little benefit from additional
learning, and we find that the best results are attained for hyperparameters that favor little exploration,
and small optimization updates through small learning rates. This is also reflected in the nearly identical
behavior as Greedy for most exploration strategies other than FALCON for SO in Figure 2b. We expect that
the performance of Greedy deteriorates with respect to the initial model, because a smaller learning rates
close to zero outside our search grid can be preferable when initial model is very strong. Nevertheless, the
overarching conclusion we draw here is that even small amounts of high quality fully supervised data can be
very powerful, when the downstream model does not encounter any subsequent distribution shift.

Expecting stationarity after deployment, or fully representative labeled set in training the initial model,
however, is an unrealistic assumption, which is the reason we focus on the init-shift setting as our
primary one. Here, we again find that exploration helps substantially, and the preferred hyperparameters
result in more aggressive exploration as well as larger optimization steps. This is particularly pronounced
in Figure 2c, where the initial model is quite poor, Greedy gets a middling improvement on it while the
exploration algorithms all reach significantly larger rewards. For Figure 1c, the preferred exploration param-
eters are comparitively less aggressive, and this is also reflected in a smaller edge over Greedy. Overall, this
reinforces the intuition that some amount of persistent exploration is beneficial in dynamic, non-stationary
environments.

Given this evaluation across settings and algorithms, we are ready to present the first high-level takeaway
from our experiments for practitioners:

Takeway 1: Effectiveness of Softmax.

We find that the Softmax approach, while being a simple modification of the Greedy strategy, has a re-
markably strong performance across benchmarks and experimental settings, always either performing
the best or close to it. While FALCON performs comparably well, the fact that getting strong explo-
ration performance requires tuning two unrelated hyperparameters is a serious practical drawback.
Consequently, we recommend Softmax as an effective default strategy for practitioners.

Variance across repeated trials. All our algorithms are randomized due to the random sampling in-
volved in exploration. The simulation itself has many random choices such as the choice of which clients
participate in a training round and example selection in each mini-batch. The conclusions discussed so far
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are remarkably robust to this randomness, and we show the stability in our results for the recommended
Softmax strategy in the init-shift setting in Figure 3. As we see, the variation in rewards across repeated
trials is negligible.

5.2 A Closer look at some choices in the algorithms and setup

We now take a deeper look into some of the choices both in our setup and the design and implementation
of the algorithms which can lead to a significant change in the results, and hence are important to be aware
of in practice. We start with a common practical question of the effect of model deployment frequency,
corresponding to the number of model updates and training rounds that the algorithm faces.

Effect of deployment frequency. So far, we have discussed results where new models are deployed
once every 200 communication rounds. The choice of deployment frequency is itself a tunable parameter
in practice, although very small frequencies are typically infeasible from system considerations, and often
undesirable from a stability perspective. In Figures 1d and 2d, we investigate the performance of algorithms
in the init-shift setting, when the deployment frequency is reduced to just 40 rounds. This means that we
get a total of 20 training periods in EMNIST and 40 periods in SO. The first observation is that the absolute
performance of all the methods improves over the corresponding Figures 1c and 2c with a frequency of 200
in the same setting. This is not surprising as better models are deployed early with a smaller deployment
frequency, giving a longer time to effectively exploit the gains from exploration. This confirms the intuition
that smaller deployment frequencies are preferable from a learning perspective, as long as the rest of the
system architecture allows it.

Next we study the effect of varying some important elements in Algorithm 4.

Effect of optimizer choice. Algorithm 3 allows us to choose different client and server optimizers. We
fix client optimizer to SGD throuhgout, but use ADAM (Kingma & Ba, 2014) as the default choice for server
optimizer, consistent with prior works on supervised federated learning (Reddi et al., 2021). We test the
effectiveness of this choice by changing the server optimizer to SGD for Softmax in the init-shift setting
in both SO and EMNIST. While there is no change in the final performance at tuned hyperparameters for
EMNIST, the average bandit reward at the end of 1500 communication rounds drops from 0.81 to 0.62. This
mirrors prior results in the supervised setting (Reddi et al., 2021), where ADAM is found to be superior for
the SO task, due to the presence of sparse, high-dimensional features.

Effect of importance sampling. As we discuss in Section 3.2, several prior works train an importance
weighted regressor (Bietti et al., 2021) to form the underlying greedy policy in ε-Greedy, while we adopt
an unweighted regression. This is due to the destabilizing effects of the variance from importance weighting
on the learning process. Indeed, we find that changing the ε-Greedy approach to use weighted regression
worsens the performance in the init-shift setting from 0.71 to 0.6 for EMNIST and from 0.72 to 0.47 for
SO. There is a wealth of literature on variance reduction techniques with importance weighting, such as the
doubly robust methods (Dudík et al., 2014). However, given the strong performance of unweighted methods
here, we do not investigate these additional techniques due to added challenges with hyperparameters and
learning complexity in practice. While the theoretical foundations of the unweighted approach here rely on
an expressivity assumption on the underlying function class as we discuss in the next section, we find that
this is less of a concern in modern systems with powerful, over-parameterized regression models.

Takeaway 2: Importance of variance control.

Both the choice of ADAM versus SGD as server optimizer and the use or not of importance weights
eventually control the variance in the training process, and crucially modulate the sample efficiency
in our experiments. We find the choices of ADAM and regression-based loss to be effective across
settings, and recommend them to practitioners.
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Figure 4: Differential privacy for Softmax variations in the scratch setting. Hyperparameters are detailed
in Table 9

Choosing hyperparameters. While hyperparameter choice is a process fraught with some overhead in
all learning pipelines, it is particularly challenging in bandit settings, where each hyperparameter drives
different data collection and hence tuning is not so straightforward. Unfortunately, we find that while the
exploration parameters show remarkable stability for most approaches and regimes, the optimization learning
rates are more sensitive. For Softmax, a temperature parameter of 0.05 performs the best in all regimes other
than init-shift, where a slightly higher choice of 0.1 does somewhat better, though 0.05 is still reasonably
good. Similarly ε = 0.05 works best in most cases for ε-Greedy. FALCON, in contrast, requires very different
choices across datasets and settings, explaining our preference of Softmax over FALCON. For optimization
parameters, we find that higher learning rates are preferred in scratch and init-shift settings, while
init prefers smaller learning rates due to the high-quality initial model. Since practical setups typically
use fairly large deployment frequencies, it is reasonable to pick the optimization hyperparameters through
offline off-policy evaluation style approaches (Dudík et al., 2014) from the accumulated training data. See
Appendix A for hyperparameter tuning details.

5.3 Incorporating differential privacy.

We provide preliminary results on adding differential privacy to the federated CB experiments by applying
DP-FedAvg (McMahan et al., 2018) in Algorithm 3, as discussed in Section 3. We consider the scratch
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setting in Fig. 4, but same approach can be applied in the init and init-shift settings after accounting
the privacy budget for pretraining or pretraining on public data. We follow the strategy in Xu et al. (2022)
to tune the hyperparameters: we first estimate an (aggressive) clip norm with adaptive clipping (Andrew
et al., 2021) of target quantile 0.5 and noise multiplier 0, and a small grid of learning rates around the best
learning rates tuned in no DP settings; we fix the clip norm to 0.1 for EMNIST and 0.8 for StackOverflow and
then choose a small and large noise multiplier respectively for EMNIST and SO; we further tune the learning
rates in a small grid based on the learning rates chosen for adaptive clipping experiments, and select the
best hyperparameters based on the final (averaged) reward.

Fig. 4 compares four approaches:

• No DP shows vanilla FedAvg with adaptive clipping of to a large target quantile (0.8) that clips
rarely, without noise.

• NM=0 uses a fixed clipping norm with no added noise.

• NM=0.01 or 0.3, small noise multipliers for EMNIST and SO respectively.

• NM=0.1 or 0.7, corresponding large noise multipliers.

The large noise multiplier will conceptually result in stronger privacy guarantees, however, for the small
EMNIST dataset of 3400 clients, even NM=0.1 is not large enough to achieve meaningful formal DP guaran-
tees. For SO of ∼0.34M clients, when assuming Poisson sampling and add-or-remove-one adjacency, we use
RDP (Abadi et al., 2016; Mironov, 2017) accounting to compute privacy guarantees measured by (ε, δ)-DP.
Fixing δ = 10−6, the noise multipliers 0.3 and 0.7 can lead to ε = 15.8 and 1.5 respectively.

Fig. 4a (EMNIST) and Fig. 4c (SO) show the running average reward of these approaches, and suggest that
clipping alone does not necessarily degrade the model utility measured by reward, and noise multiplier
controls the privacy-utility trade-off. The observations of the DP effect in bandits settings are similar to the
previous observation in supervised settings (Andrew et al., 2021; Kairouz et al., 2021a). The preliminary
DP results are provided to show the proposed federated bandit algorithms are indeed compatible with
differential privacy. There are many potential tuning strategies to achieve stronger privacy-utility trade-offs
(Ponomareva et al., 2023). A particular useful tuning strategy for DP is to sample large number of clients
per round. Following (McMahan et al., 2018; Kairouz et al., 2021a; Xu et al., 2022), we can extrapolate
the privacy and utility in a more realistic setting by assuming larger number of total clients, and linearly
increasing noise multiplier and clients per round. Figure 4a shows that NM=0.01 can achieve strong utility.
When ∼ 0.34M total clients can participate in training, and scaling up NM from 0.01 to 1, RDP accounting
can achieve (ε = 4.13, δ = 10−6)-DP. If we also linearly scale up clients per round from 64 to 6400, the utility
measured by reward is expected to be similar to the strong utility of NM=0.01 in Fig. 4a.

In Figs. 4b and 4d, we further report the probability of the chosen action (pj(aj) in Algorithm 2) averaged
for data of the sampled clients in each round, which is an indicator of the exploration-exploitation trade-off
of the Softmax algorithm. The Softmax algorithm has an interesting annealing effect of exploration: the
probability of chosen actions gradually increase as the models become more confident in their predictions
after training. DP seems to have a larger effect on the probability at the early stage of training for SO, while
the effect happens at later stage for EMNIST. The relationship of randomness in bandits exploration and the
noise addition of DP can be an interesting topic for future study.

6 A theoretical model

We now present a simple theoretical model to understand some of the key considerations in federated CB
learning. Using the same high-level setup as Section 3.1, we abstract the inference and training periods as
described below.
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Inference: At inference period i, each client c simultaneously uses the currently available model πi to
choose actions for any contexts x ∼ Dc that it observes, and logs (x, a, r, πi(a|x)), with a ∼ πi(·|x) and
r = r(x, a) for (x, r) ∼ Dc.

Training: At each training period i = 1, 2, . . ., the server updates the model using a total of n new training
log entries for this training period, distributed across the clients participating in the training period. To
abstract away the specifics of client sampling and its effects, we consider the n samples to be i.i.d. according
to the choice of a client c ∼ p and (x, r) ∼ Dc.

We make an additional assumption on the problem setup which leads to computationally nicer algorithms.
Concretely, we assume that our CB algorithm models the rewards, and has access to a function class F ⊆
{X ×A → [0, 1]}, so that each f ∈ F predicts rewards, given a context, action pair as the input. To obtain
theoretical justification for the use of such a parameterization, centralized CB algorithms make the so-called
realizability assumption that for some f? ∈ F , E[r|x, a] = f?(x, a) for all x, a. However, in the federated
setting, we have heterogeneous data distributions across clients. Nevertheless, we use a common set of
parameters to predict the rewards at each client, which motivates the following realizability assumption in
the federated setting.

Assumption 1 (Realizability in Federated CBs). There exists f? ∈ F such that EDc [r|x, a] = f?(x, a) for
all x ∈ X , a ∈ A and c ∈ C.

Importantly, this assumption does not contradict the substantial heterogeneity in client preferences that may
naturally arise in federated settings, as such heterogeneity can be modeled via appropriate distributions Dc,
allowing a single f? to effectively behave arbitrarily differently on different clients (e.g., in the extreme case
where the support of the clients Dc is non-overlapping).

Under the realizability assumption, it is natural to learn the regression function using the unweighted re-
gression objective (5). To abstract away the details of the underlying FL algorithms, we assume access to a
federated regression oracle which can optimize such objectives, formally:

Definition 1 (Federated Regression Oracle). Given clients c1, . . . , cm with local datasets Sc1, Sc2, . . . , Scm
satisfying |Sc1 ∪ Sc2 ∪ Scm| = n , a federated regression oracle returns a function f̂ , using a federated learning
protocol, which satisfies:

1
n

m∑
i=1

∑
(x,a,r)∈Scm

(f̂(x, a)− r)2 ≤ 1
n

min
f∈F

m∑
i=1

∑
(x,a,r)∈Scm

(f(x, a)− r)2 + εfed-opt.

The parameter εfed-opt captures the accuracy of solving the regression problem over n examples distributed
over m clients in a federated manner, and will in general depend on the choice of the federated learn-
ing method, settings of hyperparameters such as communication rounds, etc. We assume that the clients
c1, . . . , cm are chosen i.i.d. from the underlying distribution p, and that the effective training set for the
regression problem Sc1 ∪Sc2 ∪Scm (which is never explicitly materialized in one place) is of a fixed size n, with
samples i.i.d. from the ideal sampling distribution c ∼ p and (x, r) ∼ Dc.

Federated inference regret of ε-Greedy With this background, it is straightforward to analyze a simple
regression-based ε-Greedy method for the federated setting. Let f̂i+1 be the regressor computed at the
training period i. Furthermore, for any f ∈ F , let πf (x) = argmaxa f(x, a) denote the greedy policy, with
ties broken in an arbitrary manner, and let πi(x) = (1 − ε)πfi(x) + εUnif(A) denote the inference policy
deployed at inference period i and π? = πf? denote the optimal policy. Since f, r are both bounded in [0, 1]
and we use n fresh training samples at each training period i to have a total of ni samples after i periods, it
can be show that (see e.g. (Agarwal et al., 2012)) with probability at least 1− δ, the following generalization
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bound for the regression performance of f̂u+1 holds:

1
i

i∑
j=1

Ej
[
(f̂i+1(x, a)− r)2 − (f?(x, a)− r)2

]
= O

(
ln(|F|/δ)

ni
+ εfed-opt

)
. (7)

Here we use Ej as a shorthand to denote expectation over random variables c ∼ p, x, r ∼ D and a ∼
πj(·|x). We also assume that the class F is finite for our analysis here for convenience. Using standard
arguments, a similar result can also be obtained for infinite function classes through the use of covering.
Under Assumption 1, the proof of Lemma 4.3 of Agarwal et al. (2012) further implies that

Ec∼pE(x,r)∼Dc

[
r(π?(x))− r(πf̂i+1

(x))
]
≤
√
Ec∼pE(x,r)∼Dc

[(
r(π?(x))− r(πf̂i+1

(x))
)2]

≤

√√√√2K
ε

1
i

i∑
j=1

Ej
[
(f̂i+1(x, a)− r)2 − (f?(x, a)− r)2

]

=O
(√

2K
ε

(
ln(|F|i/δ)

ni
+ εfed-opt

))
, (8)

where the first inequality follows from Jensen’s inequality, the second inequality uses Lemma 4.3 of Agarwal
et al. (2012), and in the last step we use Eq. (7). Since our actual inference policy πi+1 is ε-greedy, the
per-round inference regret after I training rounds is at most

O

(
ε+

√
2K
ε

(
ln(|F|I/δ)

nI
+ εfed-opt

))
.

To better contrast this result with standard CB guarantees in the centralized setting, we make a simplifying
assumption that we have only 1 client in the pool, and that the number of samples per inference period is
the same as the size of our training pool for each period, equal to n. Then the cumulative inference regret
after I periods is at most (

ε+
√

2K
ε
εfed-opt

)
nI + n+

I∑
i=2

√
2K
ε
· n ln(|F|I/δ)

(i− 1) . (9)

In comparison, under the same assumptions, updating the regressor after each inference round yields a regret
of at most (

ε+
√

2K
ε
εopt

)
nI + 1 +

nI∑
j=2

√
2K
ε
· ln(|F|nI/δ)

j − 1 , (10)

where εopt is the accuracy of the centralized regression oracle. Assuming that the two optimization errors
are of a comparable order, then the main difference in the two bounds arises due to the delay of roughly
one inference period in the model updates in the federated setting. Clearly the gap is at most of a constant
factor and decreases over time, which is consistent with prior results on delayed bandit learning. As we have
already observed in the empirical evaluation, however, when the number of inference and training periods,
given by I above, is relatively small, then this delay has a non-trivial effect on the performance (see e.g. the
effect of deployment frequency in Section 5.2). An extreme case of this can be observed by setting I = 1,
whence the bound in (9) becomes vacuously large in the final term, while that in (10) still decreases as
Õ(1/

√
n) in the final term.

Note that our calculations above assume that our regression solution f̂i fits all the training data accumulated
over prior training periods 1, 2, . . . , i−1. In practice, depending on the implementation details, it might only
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incorporate the data from the most recent, or roughly a constant number of past training periods, but where
the optimizer is warm-started from the previous solution. As long as the optimizer does provide guarantees
of approximately fitting the entire data through the warm-start however, our conclusions continue to hold
in this setting.

Federated inference regret of FALCON . While our analysis of the ε-greedy approach above serves to
illustrate most of the key ideas and modifications in the federated setting from a centralized one, it has
the drawback of a weak overall regret bound due to the simplistic uniform exploration. In the centralized
setting, recent algorithms (Foster & Rakhlin, 2020; Simchi-Levi & Xu, 2022) have leveraged Assumption 1
to give statistically optimal CB results, and can be computationally implemented using regression oracles.
For the federated setting, the FALCON algorithm of Simchi-Levi & Xu (2022) is particularly attractive, since
it takes an offline squared loss regression oracle as an input, which can be instantiated with a federated
regression oracle in the federated setting. This combination allows us to get a per-round inference regret
after I training rounds of

O

(√
K

(
ln(|F|I/δ)

nI
+ εfed-opt

))
,

which removes the undesirable scaling of O(1/ε) on a fixed exploration parameter through a more adap-
tive exploration-exploitation tradeoff. The effect of delays and other aspects of the comparison with the
centralized setting remain unchanged.

7 Conclusion

This paper aims to provide a practical perspective on the important problem of federated contextual bandits,
with a goal of both highlighting the relevance of this paradigm to real-world applications, and to demonstrate
the effectiveness of simple strategies when instantiated with the right choices. An additional goal and
contribution of this work is to develop a robust simulation methodology for the federated CB setting, which
incorporates practical concerns such as leveraging small amounts of pre-training data, potentially mis-aligned
with the eventual performance metrics, as well as non-stationarity and distributional shifts. Indeed some
of these factors are rarely incorporated even in the most comprehensive centralized CB evaluation, and are
of independent interest to the bandit community. For practitioners, we hope that the takeaways from our
simulations on which algorithmic choices work well can be a useful guide to applying these ideas.

More generally, as we see an ever increasing focus on personalization and fine-tuning of large, general purpose
models with RL, the availability of technologies such as federated CB and more general forms of federated
RL are essential to our ability to learn in a private and responsible manner. Extending these ideas to more
general forms of RL is an important direction for future work, as is a deeper understanding of the interplay
between privacy and the RL setting.
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A Detailed Hyperparameter Settings

We now give the detailed hyperparameter settings for the different simulation scenarios and algorithms.

Where we discuss choosing hyperparameters from a grid, unless otherwise noted we ran all combinations of
the hyperparameters for each (scenario × algorithm × dataset) configuration, and report the runs which
achieved the best running average reward at the end (last round) of training. As described in Algorithm 4,
the same set of clients are used for bandit inference and federated training. For EMNIST, a client may be
revisited 64× 800/3400 ∼ 15 times while for SO, as the dataset is large, it would be rare to revisit the same
client twice.

A.1 Settings for the exploration parameters

We begin with ε-Greedy and Softmax, which use fixed hyperparameters across all simulations. The preferred
choices which result in the highest CB reward at the end of the experiment are indicated in bold.

• ε for ε-Greedy: ε ∈ {0.05, 0.1}.

• β for Softmax: β ∈ {0.02,0.05, 0.1}.

For the FALCON algorithm, we found setting the two hyperparameters of γ and µ to be significantly
more challenging. To have a standardized way of setting these across both the datasets, we first chose
µ ∈ {1, 0.1, 0.01}K/ε with ε = 0.05, so that the contribution of this term is in various multiples of our
preferred parameter in ε-Greedy. Since the number of actions is different in the two cases, this results in
µ ∈ {12, 124, 1240} and µ ∈ {10, 100, 1000} for EMNIST and SO respectively. For γ, we further tune it in the
set γ ∈ {1000, 5000}, which we found to be reasonable for both the datasets.

A.2 Settings for the optimization hyperparameters

Next we describe the optimization hyperparameters which are more sensitive to the dataset and the simula-
tion setting used. We always choose learning rates from a grid of the form {1, 2, 5} ∗ 10−n, where n is chosen
appropriately for each setting. We used a fixed grid across algorithms and scenarios for each dataset, and
when the best settings fell on the edge for an algorithm in a setting, we ran additional runs to confirm that
expanding the grid does not improve the results. We start with the parameters for EMNIST.

• learning rate for client optimizer (SGD) ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

• learning rate for server optimizer (ADAM) ∈ {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05}.

22



Algorithm Server learning rate Client learning rate Exploration param
Softmax 0.002 0.1 β = 0.05
FALCON 0.002 0.1 µ = 12, γ = 1000
Greedy 0.001 0.2 ·
ε-Greedy 0.01 0.1 ε = 0.05

Table 1: Hyperparameter settings for the EMNIST dataset and the scratch scenario (Fig. 1a)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.1 β = 0.05
FALCON 0.002 0.2 µ = 12, γ = 5000
Greedy 0.002 0.1 ·
ε-Greedy 0.002 0.1 ε = 0.05

Table 2: Hyperparameter settings for the EMNIST dataset and the init scenario (Fig. 1b)

The corresponding settings for SO are:

• learning rate for client optimizer (SGD) ∈ {0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}.

• learning rate for server optimizer (ADAM) ∈ {0.0002, 0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05}

We use the default values in Keras for the remaining ADAM hyperparameters such as β1, β2 and ε. The
large grids for the server optimizer are primarily because the init setting prefers a much smaller learning
rate at the server than the other settings.

We fix other federated optimization parameters in all experiments: each client run one epoch on their local
logged data for training; minibatch size of 16 is used on clients; 64 clients are sampled per round; the
maximum number of samples per client on SO is capped at 256.

We conclude this section by giving tables of learning rate settings for each of the plots in Figures 1, 2 and 4.

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.1 β = 0.05
FALCON 0.005 0.2 µ = 12, γ = 5000
Greedy 0.001 0.1 ·
ε-Greedy 0.01 0.1 ε = 0.05

Table 3: Hyperparameter settings for the EMNIST dataset and the init-shift scenario (Fig. 1c)
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Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.5 0.5 ·

Softmax 0.005 0.2 β = 0.05
FALCON 0.005 0.1 µ = 12, γ = 5000
Greedy 0.002 0.1 ·
ε-Greedy 0.005 0.2 ε = 0.05

Table 4: Hyperparameter settings for the EMNIST dataset and the init-shift scenario with deploy_freq =
40 (Fig. 1d)

Algorithm Server learning rate Client learning rate Exploration param
Softmax 0.01 1 β = 0.05
FALCON 0.01 0.05 µ = 10, γ = 5000
Greedy 0.01 0.1 ·
ε-Greedy 0.01 0.2 ε = 0.05

Table 5: Hyperparameter settings for the SO dataset and the scratch scenario (Fig. 2a)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.2 ·

Softmax 0.005 0.05 β = 0.05
FALCON 0.0005 0.1 µ = 10, γ = 5000
Greedy 0.001 0.02 ·
ε-Greedy 0.005 0.1 ε = 0.05

Table 6: Hyperparameter settings for the SO dataset and the init scenario (Fig. 2b)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.05 ·

Softmax 0.02 2 β = 0.1
FALCON 0.05 0.2 µ = 100, γ = 1000
Greedy 0.05 1 ·
ε-Greedy 0.05 0.2 ε = 0.05

Table 7: Hyperparameter settings for the SO dataset and the init-shift scenario (Fig. 2c)

Algorithm Server learning rate Client learning rate Exploration param
Init (supervised) 0.05 0.05 ·

Softmax 0.05 1 β = 0.1
FALCON 0.05 0.05 µ = 10, γ = 1000
Greedy 0.05 0.1 ·
ε-Greedy 0.05 0.05 ε = 0.05

Table 8: Hyperparameter settings for the SO dataset and the init-shift scenario with deploy_freq = 40
(Fig. 2d)
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Dataset Clip Norm Noise Multiplier Server learning rate Client learning rate

EMNIST 0.1
0 0.002 0.2

0.01 0.002 0.1
0.1 0.002 0.2

SO 0.8
0 0.02 0.5
0.3 0.01 2
0.7 0.01 2

Table 9: Hyperparameter settings for the DP experiments using Softmax β = 0.05 in the scratch scenario
(Fig. 4).
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