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Abstract

Tabular data is characterized by complex, dataset-specific feature interactions.
Graph-based tabular deep learning (GTDL) methods aim to address this by rep-
resenting features and their interactions as a graph. However, existing methods
predominantly optimize predictive accuracy, neglecting accurate modeling of the
graph structure. In this work, we argue that GTDL should move beyond prediction-
centric objectives and prioritize the explicit learning and evaluation of feature
interactions. Using synthetic datasets with known ground-truth graph structures,
we show that existing GTDL methods fail to recover meaningful feature inter-
actions. Moreover, enforcing the true interaction structure improves predictive
performance. This highlights the need for GTDL methods to prioritize quantitative
evaluation and accurate structural learning.

1 Introduction

Deep learning has achieved remarkable success in domains such as natural language processing
and computer vision, yet on tabular data it still struggles to compete with traditional, tree-based
methods [9, |I7]. Tabular data is characterized by heterogeneous features whose semantics differ
and whose relationships (feature interactions) can be complex, indirect, and dataset-specific. By
modeling these interactions, one incorporates an inductive bias (i.e., domain-specific principles
encoded in the model’s architecture 8} [3, 21]]) that features interact differently. A natural way to
encode this bias is with a graph, where nodes denote features and edges represent their interactions.
Graph-based tabular deep learning (GTDL) methods seek to combine deep learning’s expressive
power with graph-structured feature representations. In particular, feature graph neural networks
(GNNG), reviewed by [15]], treat features as nodes and feature interactions as edges but how these
interactions are modeled has not been extensively studied or evaluated, and current methods rarely
assess whether the learned interactions correspond to meaningful relationships in the data.

This state of affairs raises important questions: Are GTDL models actually learning meaningful
feature interactions, or are they merely optimizing predictive performance at the expense of inter-
pretability? Without mechanisms to validate learned feature relationships, can we trust these models
in practical, high-stakes use cases? Most critically, focusing exclusively on predictive accuracy
of a GNN, risks encoding spurious interactions rather than capturing actual feature dependencies,
undermining robustness, generalization, and explainability. We argue that GTDL methods must
prioritize the learning, validation, and use of feature interactions as explicit modeling objectives.
Current methods are predominantly prediction-centric, with little accountability for whether their
learned structures reflect meaningful dependencies.

To support our argument, we take the following steps. In Section 2] we review the existing literature
on GTDL methods and identify their limitations in the evaluation and validation of learned feature
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>This categorization of feature graphs contrasts with instance graphs, where nodes represent instances (rows)
and edges capture relationships between those instances.
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Figure 1: The true underlying graph structure generates tabular data. After training existing GTDL
methods to predict the target feature, the extracted learned graph structure is not similar to the true
graph structure. The predictive performance of GTDL methods improves when the extracted graph
structure is accurate.

interactions. In Section[3] we argue that synthetic datasets and quantitative metrics are necessary to
evaluate the graph structure. In Section[d] we show and discuss the results of controlled experiments
to demonstrate our claims. Specifically, we highlight key reasons why explicitly modeling and
evaluating feature graphs not only enhances predictive performance but also makes models more
interpretable and reliable. In Section[5] we give a concluding discussion and propose future research
directions.

2 Existing GTDL methods

In this section, we briefly review two approaches: attention-based methods and GNNs. We argue that
both can be interpreted as GTDL methods, as they learn feature interactions on a graph structure.

Problem setting and notation. A full tabular dataset D = [z || y] € R™*? consists in a traditional
supervised setting of input features z € R™*(P—1) and a target feature y € R™*!, with n the number
of samples, p the number of features and || indicating concatenation. When we refer to ‘features’, we
mean both input and target features. Features could be either numerical or categorical.

The features and their interactions can be represented as an undirected graph G = (V, E), where
V is the set of nodes and E the set of edges, such that the number of nodes |V| = p. A binary
symmetric adjacency matrix Ayye describes the true graph structure. The absence of an edge between
two nodes indicates the conditional independence of these two nodes conditioned on all other nodes
From trained GTDL methods, we can extract a weighted adjacency matrix Apeq € RP*P, where
0 < A;; < 1lindicates the strength of the interaction between features ¢ and j, with ¢, j € {1,...,p}.

Attention-based methods Most recent tabular deep learning methods are attention-based [2, 11} 23}
13,(7,|10], from which FT-Transformer [7]] has been established as a popular baseline. These methods
are based on multi-head self-attention [25]. In most works, the attention map a is of size p x p, where
each cell a;; corresponds to a feature interaction. Therefore, it can be used for interpretation and
explaining the feature interactions. We note that when the attention map is averaged over the samples,
heads, and layers, it can be interpreted as a weighted adjacency matrix, see Appendix [A]for more
discussion on this. Therefore, we refer to such attention-based methods as implicit GTDL methods.
Due to the nature of the attention map, they do model the feature interactions implicitly.

Tabular foundation models, TabPFEN [10f, TabICL [20] and LimiX [29]], have feature-wise attention
layers that could have been interpreted as implicit GTDL methods. However, TabPFN and LimiX
encode group of features collectively rather than individually. TabICL incorporates rotary positional
embedding [24] independent of the feature permutation, which alters the attention map. Therefore,
we do not consider tabular foundation models in this work.

3For predictive models, the graph of interest is the CI graph. This is different from causal graphs, where the
absence of an edge indicates no direct causal effect between two nodes.



Graph neural networks GNNG architectures operate directly on graph-structured data by propa-
gating information between connected nodes [31]]. Feature GNNs (such as FiGNN [16], T2G-Former
[27], DRSA-Net [30], INCE [26], MPCFIN [28]]) apply this paradigm to tabular data, modeling each
feature as a node and explicitly learning feature interactions through message passing [[15]]. Because
these methods use a graph structure by design, we refer to them as explicit GTDL methods, contrary
to attention-based methods that model the graph structure implicitly. The explicit GTDL methods are
initialized with a fully connected graph and learn the weighted adjacency matrix.

3 Evaluating feature interaction learning in GTDL

The development of GTDL is hindered by the fact that the learned graph structure is only evaluated
heuristically. To solve this, we advocate in the next sections for the use of synthetic datasets and
quantitative metrics to evaluate the learned graph structure.

Synthetic data to evaluate the graph structure Most existing GTDL methods lack rigorous eval-
uation of the learned graph structure. Typically, the learned graph structure is evaluated heuristically,
by reporting a visualization of the learned weighted adjacency matrix of real-world datasets. Feature
interactions are post-hoc explained based on the semantic meaning of the feature names. Evaluating
only on real-world datasets is problematic, as the true graph structure is not known. Therefore, the
feature interactions should be evaluated with synthetic datasets, which are close to real-world tabular
data. Using synthetic data enables GTDL methods to compare the learned graph structure with the
ground-truth underlying graph structure.

We adapt two existing data generation methods from the literature: (i) Multivariate normals (M VNs)
are typically studied by probabilistic graphical models. We follow the default procedure of generating
conditional multivariate data (as described in [18]], for instance). (ii) Structural causal model (SCM)
[19] are used to generate tabular data in tabular foundation models [/10, |20, |29]]. Both methods follow
a three-step process to generate synthetic tabular data, more details are in Appendix [B]

Metric for evaluating feature interactions Current GTDL methods only report the predictive
performance of the target feature, and do not evaluate the learned feature interactions quantitatively.
We advocate that the learned feature interactions should be evaluated with the receiver operating
characteristic area under curve (ROC AUC) [5] to quantify the learned graph structure. This could be
done by comparing edge-wise (ignoring the diagonal) the true binary adjacency matrix Agye with the
learned weighted adjacency matrix Apreq.

Pruning the feature interactions To highlight the importance of learning the feature interactions,
we model the GTDL methods in two different settings. First, we train the GTDL with a fully
connected graph. This is the default setting in GTDL methods, as the true graph in real-world
datasets is not known. Second, we limit feature interactions to only those present in the synthetic
data, effectively pruning the graph to the true edges. This means that the model is only allowed to
learn feature interactions that are present in the true graph. Practically, this is done by masking the
attention map or the learned graph structure within the network architecture.

4 Evidence for structure-aware learning in GTDL

To demonstrate the effect of using synthetic datasets, quantify the accuracy of the learned graph
structure, and how the models perform when the graph is pruned to its true edges, we evaluate existing
GTDL methods with a standard deep learning experiment. See Appendix [B]for details on the datasets
and Appendix [C|for details on the experimental setup and . We compare all explicit GTDL methods
that have publicly published code. That is, we compare FIGNN [16], T2G-Former [27] and INCE
[26]. The remainder of the explicit GTDL methods, DRSA-Net [30]], MPCFIN [28] and Table2Graph
[32], have not published code. For implicit, attention-based methods, we take FT-Transformer [[7] as
an exemplary example.

Feature interactions The ROC AUC of the feature interactions is shown in Figure 2] For all GTDL
methods, across both datasets, the ROC AUC is approximately 0.5, which is equal to random chance.
There is no difference in the values of the adjacency matrix where there is, and where there is no true



edge. This shows that GTDL methods do not learn an accurate graph structure. Therefore, the
learned feature interactions should not be used for interpretability or explainability. Increasing the
number of training samples does not change the ROC AUC, indicating that the poor performance of
the GTDL methods is not due to insufficient data.

FTTransformer FiGNN INCE T2GFormer

Multivariate
Normal
o
>
1
1
1
1
1
1
1
1
1
f
|
L
§
1
1
1
1
1

ROC AUC

Structural

Causal Model
o =)
IS >

1

1

1

1

1

1

1

1

i 1

1

1

P—

1

1

1

1

1

1

1

1

% 1

1

1

1

1

%

i

1
H¢—| -

|
|-:—0—| 4

1

1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000 1000 2000 3000 4000
Mirain ——- Random guess —@— Fully connected graph

Figure 2: Graph quality in the form of the ROC AUC comparing the learned weighted adjacency
matrix with the true binary one, for two different dataset types.

Predictive performance The R2 score of the prediction of the target feature is shown in Figure 3]
The key takeaway is that, for most methods, pruning the graph to the true edges improves the
predictive performance of GTDL methods. This result indicates the importance of incorporating
accurate structural information into GTDL models. When the graph is pruned to only include true
edges, the models are less likely to overfit to spurious or irrelevant feature interactions. In contrast,
fully-connected models must learn to ignore many false edges, which can introduce noise and make
optimization more difficult, especially when data is limited. This finding suggests that the inability of
current GTDL methods to recover the true graph structure (as shown by the ROC AUC results) is not
just a theoretical issue, but has practical consequences for predictive performance.
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Figure 3: Predictive performance comparing a fully connected graph (default for GTDL methods) to
the graph pruned to its true edges.

5 Conclusion

In this work, we argue that graph-based tabular deep learning (GTDL) must shift from a purely
prediction-centric paradigm toward structure-aware modeling. Current GTDL approaches often
produce graph structures used for interpretation, yet our analysis shows that these structures frequently
fail to reflect the true interactions among features. This disconnect undermines interpretability, limits
generalization, and erodes trust in model explanations. We advocate for the use of synthetic tabular
datasets with known ground-truth graph structures, enabling the GTDL community to quantitatively
assess whether models accurately capture the intended graph structure. Our empirical findings
demonstrate that when models operate on accurate interaction structures, predictive performance
improves, highlighting that structural fidelity is not merely a matter of explainability, but a core driver
of performance. We call for a new generation of GTDL models that incorporate structure-aware
inductive biases, and support principled graph validation.
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A Attention map as adjacency matrix

We use N for the number of samples, L as the number of layers in the network, H as the number of
Transformer heads, and p as the number of features. To indicate values that are ranging between 0
and 1, we define the set R[OJ] as:

Ripp={recR|0<z <1} CR (1)

For most methods (FT-Transformer, T2G-Former and FiGNN), the learned graph comes from

averaging the attention map a € ng T]LXHXP P over the samples, layers, and heads. This attention
map is normalized with softmax across the last dimension. We note individual values from the

attention map as a;;pj, where i is the sample index, [ is the layer index, h is the head index, and j, &
. . . . _ 1 ) ) PXp
are the feature indices. So the average attention map is ajx = w7577 > i Githjk € ]R[Q L

We want to interpret the average attention map a, as the weighted adjacency matrix A ;. For this,
we have to ‘denormalize’ the average attention map. As the attention map a is normalized with a
softmax, the last dimension (the rows in the attention map per individual layer and head) sum to 1,
such that ) & Qithjk = Lyn;. This gives a problem, as the maximum value the attention map a;;p
can have cannot have two values close to 1 in the same row, while the weighted adjacency matrix
Aj, should be able to have multiple values close to 1 in the same row.

To ‘denormalize’ the attention map, we add two steps. First, we set the diagonal of the attention
map to zero, as the self-interactions should not be taken into account during evaluation of the feature
interactions:
agnixk =0 V j=k. (2
Second, we divide the attention maps by the maximum value across the row to obtain the adjacency
matrices:
Aithji = ailhjk/m]?«x(ailhjk)- 3)

By doing this, all the values with the highest attention across that row now have a value of 1 in the
weighted adjacency matrix. Ignoring the diagonal in the attention map is a key step in this procedure:
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If the model learns that it should not give high attention to the non-diagonal values (as those features
are not related), the model should learn to give high attention to the diagonal values. The diagonal
values are excluded in the denormalization and do not affect the adjacency matrix.

B Data generation

In this section, we describe the graph and data generation process of the two synthetic dataset
approaches introduced in Section [3]and used in Section 4]

Multivariate normal Structural causal model

i) Guye = % ~ Bernoulli i) DAG = @ ~ DAG generator

G . __moralized and
true - " marginalized DAG
. .
. . . computational ma
(i) Yg = .5: ~ G-Wishart (i) fi(mi,parents) = %C ~ geneI;ator P
@D € R™P ~N(0,Z¢) | GiD) Troots ~ N(0,0)
D S Rnxp = SCMDAG,{fi}(mroots)

Figure 4: Two synthetic data generation pipelines. Both pipelines can roughly be divided into three
steps. (i) Sample a graph structure; (ii) Sample feature interactions; (iii) Sample data given the graph
and feature interactions. Nodes are colored with as - cyan input features z, © orange target feature ,
and © green root nodes Tyoots-

Multivariate normals. We follow the default procedure of generating conditional multivariate data,
(18]

(i) Sample a true graph structure Gy € RP*P from the Bernoulli distribution with an edge
inclusion probability Pegge.

(i1) Sample a covariance matrix Y € RP*P from the G-Wishart distribution [22} |14]], which is
conditioned on the graph structure Gmleﬂ

(iii) Obtain n samples D € R™*? from a multivariate normal distribution N'(0, X¢).

In our experiments, we have p = 10 nodes, and an edge inclusion probability of Pegee = 0.267. This
results in the graph structures as depicted in Figure [5a

Structural causal models. We follow a similar setup as [[10] to generate an SCM and sample data
conditional on the graph. They show that with their setup, the synthesized data is similar to real-world
tabular data.

(1) Randomly sample a DAG, with 7,04 To0t nodes and p child nodes with a probability of Pegge
of an incoming edge. The undirected graph structure Gy, is obtained by moralizing and
marginalizing the DAG [6]. Moralizing makes the graph undirected by dropping the direction
of the existing edges and connecting all parents of a child node. Marginalizing removes
the root nodes from the graph, as they are not part of the dataset D. When marginalizing
a node, we connect all neighbors of the removed node to each other. In this work, only
the root nodes are marginalized. This makes the order of moralization and marginalization
irrelevant. The red lines in Figure [5b|show the new edges that are added by moralization
and marginalization.

(i) Randomly sample deterministic computational mappings f; for each child node 7 in the
graph, where the mappings are smooth nonlinear functions, randomly picked from the set of
maps listed in Table[I] A computational map defines how a child node i is computed from

“In fact, we sample the precision matrix Kg = 251 form the G-Wishart distribution, and invert it to obtain
the covariance matrix X . The underscore - indicates that the matrix is conditioned on the graph structure
Glrue-



(b) Top: directed acyclic graph (DAG) used in ex-

periment. Bottom: Corresponding undirected graph

structure G after moralization and marginalization.
(a) MVN used in experiments. Moralized edges are depicted in red.

Figure 5: Graph structures used in experiments.

its parents. They take all the values of the incoming edges as input, and the output is the
value of the child node i.

(iii) Randomly sample root nodes Typop ~ N(0,1) € R™>"oo and traverse the DAG in a

topological order, z; = f;(Z; parenss) € R™*!. Each output z; is normalized, clipped
between (—3, 3), and Gaussian noise A/ (0, 0.5) is added. This is summarized by
x; = clip(normalize( f; (; parenss)) + N(0,0.5), —3, 3). 4)

We consider all the traversed outputs x; as the dataset D € R™*P,

Each DAG has p = 10 nodes. These p nodes are evenly distributed over npag iayers = 3 layers, where
each layer has a minimum of 3 nodes. The DAG has a ‘zeroth’ layer of n,,; = 3 root nodes. This
means that each layer has 3 or 4 nodes. Each node has a F.4oe = 0.5 probability of having an edge to
the nodes in the next layer. With these hyperparameters, the DAG that is used in Section[d]is shown

in Figure 5b]

Table 1: Computational maps used in the SCM data generation process.
# parents  f(Zparents)

1 2?/3
0,522 + 31
—|zy| + 41y

2 (v129 + 22)/2

xf + x% — X1X2
—(.’L‘l + x2)2 + x122
3 (v122 + 23)/3
fac% + Zox3 + X3
(1‘1 “+ x9 + $3) + x123

For both approaches we randomly select a target feature y € R™*! from D, with the remaining
columns serving as input features 2 € R™* (=1,

C Experiment details
Data splitting. We adapt our train, validation, and test splitting and our tuning strategy to balance
between a fair comparison between different dataset sizes and an efficient hyperparameter tuning.

Following [9]], we differentiate between a validation set used for early stopping Dy, early stop and a
validation set used for hyperparameter tuning Dy, hparam, Such that we have four disjoint sets: Dypin,



Dy, early stops Dval, hparam»> and Diei. We vary the number of training samples 1y in our experiments
between 1000 and 4000, and set both 1iese = 1var, hparam = 2500 and 7yay, early stop = 0-257rain.

In our experiments, we do not change Dy, hparam and Dieg; to limit the number of cross-validation and
iterations we have to do. We randomly sample Dyain and Dyay, carly siop fOr €ach fold. For nyrin = 1000
samples we evaluate over 4 folds, ng,in = 2000 over 3 fold, for ny.im, = 3000 over 2 folds and for
Nain = 4000 over 1 fold.

Training and evaluation. We minimize the mean squared error (MSE) loss function and optimize
using Adam [[12] with a fixed batch size of 256 and tune the learning rate together with the other
model hyperparameters. We continue training until the validation loss does not improve for 10 epochs.
There is a theoretical upper bound of 400 epochs, which is not reached in practice. We select the
best hyperparameters that minimize the MSE on the separate hyperparameter validation set. After
tuning, we run 10 runs per cross-validation fold. We report the R2 score to evaluate the predictive
performance of the target feature, and the ROC AUC to evaluate the learned feature interactions.

Hyperparameter tuning. For every combination of network, dataset, and n,i,, we tune the model’s
hyperparameters and the learning rate. For all models, we use tree-structured Parzen estimator (TPE)
[4]], a Bayesian optimization technique, within the Optuna library [1]]. We run a total of 50 trials for
each setting, where the first trial has the default hyperparameters of the implementation. We keep the
default setting of the Optuna implementation, where the first 10 trials are done with random search.

For all models, the search space and default values are taken from the original implementations. The
search space of layer count and embedding size is set the same for fairer comparison across models.
The distribution space of the learning rate is LogUniform[10~5, 10~3] with a default value of 10~3
for all models.
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