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Abstract

This paper considers the missing-labels problem in the extreme multilabel clas-1

sification (XMC) setting, i.e. a setting with a very large label space. The goal in2

XMC often is to maximize either precision or recall of the top-ranked predictions,3

which can be achieved by reducing the multilabel problem into a series of binary4

(One-vs-All) or multiclass (Pick-all-Labels) problems. Missing labels are a ubiqui-5

tous phenomenon in XMC tasks, yet the interaction between missing labels and6

multilabel reductions has hitherto only been investigated for the case of One-vs-All7

reduction. In this paper, we close this gap by providing unbiased estimates for8

general (non-decomposable) multilabel losses, which enables unbiased estimates9

of the Pick-all-Labels reduction, as well as the normalized reductions which are10

required for consistency with the recall metric. We show that these estimators11

suffer from increased variance and may lead to ill-posed optimization problems.12

To address this issue, we propose to use convex upper bounds which trade off an13

increase in bias against a strong decrease in variance.14

1 Introduction15

Extreme multilabel classification (XMC) is a machine learning setting in which the goal is to predict16

a small subset of positive (or relevant) labels for each data instance out of a very large (thousands to17

millions) set of possible labels. Such problems arise for example when annotating large encyclopedia18

[7, 28], in fine-grained image classification [9], and next-word prediction [25]. Further applications of19

XMC are recommendation systems, web-advertising and prediction of related searches [1, 29, 17, 6].20

Typical datasets in these scenarios are very large, resulting in possibly billions of (data, label) pairs21

[4], making it impossible for human annotators to check each pair. Even annotating only a few22

samples fully in order to generate a clean test set can be prohibitively expensive. Therefore, both the23

available training- and test-data are likely to contain some errors. Fortunately, in many cases it is24

possible to constrain the structure of the labeling errors. Consider, for example, the case of tagging25

documents: Here, we can assume that each label with which the document has been tagged has been26

deemed relevant by the annotator, and thus is relatively surely a correct label. On the other hand, the27

annotator cannot possibly check hundreds of thousands of negative labels. This leads to the setting28

of missing labels investigated in this paper, in which only positive labels are affected by noise (they29

can go missing), whereas negative labels remain unchanged (no spurious labels). This model has30

been introduced to the XMC setting by Jain et al. [16], along with estimates for the propensities, the31

chance of a relevant label to be observed. Similar models are using in learning-to-rank[20, 27, 37]32

and recommendation systems[32, 14, 15]. For a formal definition of the setting we refer the reader to33

section 3, and for a more thorough discussion of prior works on missing labels and related settings to34

section 6.35
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A common strategy for learning XMC classifiers is to reduce the multilabel problem [34] into a series36

of binary [8, 3, 40] or multiclass [18, 38, 31] problems, which then can be solved using existing37

techniques. Such loss reductions can be shown to be consistent for the tasks of maximizing precision38

at k or recall at k, but never both at the same time [24]. For one of these methods, One-vs-All,39

adaptation to the missing labels setting has been shown to yield an improvement in propensity-scored40

precision (an unbiased estimate of precision@k) metrics [30]. The reductions consistent for precision41

lead to loss functions that can be decomposed into a sum of contributions from each label, which42

means the results of Natarajan et al. [26] can be applied. In contrast, the reductions consistent for43

recall contain a normalization term that is the inverse of the total number of true labels. This term is44

also necessary for calculating the recall metric itself, demonstrating the need for unbiased estimates45

for true, non-decomposable multilabel loss functions.46

Contributions Our contributions are 1) A mathematical model of the missing labels setting that47

describes the observed labels as a product of an (unknown) mask variable with the true labels.48

Crucially, this mask can be chosen to be independent of the labels (Theorem 1), enabling simple49

proofs for our theorems. 2) The unique unbiased estimate (Theorems 2, 3) for arbitrary multilabel50

losses, and in particular for the loss functions arising from multilabel reductions. The unbiased51

estimate of a lower-bounded loss need not be lower-bounded, and even for bounded losses the52

unbiased estimate leads to an increase in variance. Therefore, we develop 3) a convex upper-bound53

(Theorem 4) for losses based on the normalized Pick-all-Labels reduction. In the missing-labels54

setting, the generalization error is composed of two contributions: the error due to overfitting to55

the specific, observed noise-pattern, and the error because only a finite sample has been observed.56

We present empirical evidence 4) that the former can be much stronger than the latter, and may be57

reduced by switching to the upper bounds.58

In the main paper, we provide shortened proofs that illustrate the key steps. Detailed step-by-step59

proofs can be found in the appendix.60

Notation Random variables will be denoted by capital letters X,Y, . . ., whereas calligraphic letters61

denote sets and lower case letters their elements, x ∈ X , . . .. Vectors will be denoted by bold font,62

y ∈ Y , if we plan to make use of the fact that they can be decomposed into components y1, . . . , yk,63

with y¬k denoting the vector of all components except the k’th. The letters f , g, h and ` are reserved64

for functions, i, j, k denote integers, [k] is the set {1, . . . , k}. We denote with X the data space,65

Y = {0, 1}l the label space and Ŷ = Rl the prediction space. A dataset is defined through the three66

random variables X ∈ X , Y ∈ Y , and Y∗ ∈ Y , that represent the data, observed label, and ground67

truth label. We mark quantities pertaining to the unobservable ground-truth with a superscript star68

and call (X,Y∗) the clean data.69

2 Multilabel Reductions70

In Menon et al. [24], five different reductions for turning the multilabel learning problem into a sum of71

binary or multiclass problems are presented (cf. appendix). In the following, let `BC : {0, 1}×R −→72

R be a binary loss and `MC : [l]×Rl −→ R be a multiclass loss. Below, we present four of those73

reductions, and rearrange their loss functions so that a common pattern emerges.74

For one-vs-all (OVA) reduction, each label is considered independently, meaning that for each75

instance l binary problems are to be solved. This leads to a loss function76

`∗OvA(y
∗, ŷ) =

l∑
j=1

`BC(y
∗
j , ŷj) =

l∑
j=1

y∗j (`BC(1, ŷj)− `BC(0, ŷj)) + `BC(0, ŷj). (1)

In contrast, pick-all-labels (PAL) considers all the positive labels for each instance and tries to77

minimize their corresponding multiclass loss, leading to78

`∗PAL(y
∗, ŷ) =

∑
j:y∗j=1

`MC(j, ŷ) =
∑
j∈[l]

y∗j `MC(j, ŷ). (2)

Both approaches are consistent for precision at k. In order to make the reductions consistent for recall79

instead of precision, the label value needs to be replaced with a normalized label80
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ỹ∗j :=
y∗j∑l
i=1 y

∗
i

=
y∗j

1 +
∑l

i6=j y
∗
i

, (3)

where the expression on the right has the advantage of being well defined even if there are no positives81

for the sample. This leads to the OVA-N and PAL-N reductions. By moving label-independent parts82

into functions f and gj , the reductions get a common structure83

`∗(y∗, ŷ) = f(ŷ) +

l∑
j=1

z∗j gj(ŷ), (4)

where zj = ỹ∗j for the normalized reductions and z∗j = y∗j otherwise. The functions f and gj are the84

same for the normalized and regular reduction (see appendix).85

3 Unbiased Estimates with Missing Labels86

We are interested in noisy labels where the noise is such that labels can only go missing. This is87

described by the next two definitions, where the first gives a phenomenological characterization of88

the setting, whereas the second defines the mathematical model used to describe it. For this setting89

we then develop unbiased estimates for the preceding loss reductions, in the sense that for a given90

loss `∗ we are looking for a new loss function ` such that E
[
`(Y, Ŷ)

]
= E

[
`∗(Y∗, Ŷ)

]
.91

Definition 1 (Propensity). The missing-labels setting we described informally in the introduction92

leads to the following conditions on the l random variables93

P
{
Yj = 1 | Y ∗j = 1,Y∗¬j , X

}
=: pj(X), P

{
Yj = 1 | Y ∗j = 0,Y∗¬j , X

}
= 0 (5)

The value pj(x) ∈ (0, 1] is called the propensity of the label j at point x.94

Such propensity models have been used in extreme classification [30, 16, 39], learning-to-rank95

[20, 27, 37], and recommendation systems [32, 14, 15].96

The following proposition guarantees that a fixed-propensity unbiased estimator can be used to97

construct a instance-dependent unbiased estimator98

Proposition 1. Let f∗(X,Y ∗) be some function such that for fixed propensity p, an unbiased99

estimate is given by fp, i.e. E[fp(X,Y )] = E[f∗(X,Y ∗)]. For instance-dependent propensity p(x),100

an unbiased estimator of f∗ is given by fp(X).101

Proof. Using the law of total expectation gives102

E[f∗(X,Y ∗)] = E[E[f∗(X,Y ∗) | X]] = E
[
E
[
fp(X)(X,Y

∗) | X
]]

= E
[
fp(X)(X,Y

∗)
]
.

Therefore, we will supress the dependence of the propensity on the data point in the rest of the paper.103

The relation between Y∗ and Y can be modeled by a set of independent mask variables M:104

Theorem 1 (Masking Model). Assuming Y∗ and Y follow Definition 1, then then there exists a105

random variable M ∈ {0, 1}l such that Y = M � Y∗ almost surely and Mj is independent of106

(Y∗, X,M¬j) for all j ∈ [l]. It holds that E[Mj ] = pj .107

This can be seen as a multilabel generalization of the similar statement given in Teisseyre et al. [33].108

The independent variables M provide a convenient framework for proving the results that follow,109

because the independence allows to factorize expectations containing M.110

Proposition 2 (Unbiased Estimate for Decomposable Reductions). Assume the setting of Definition 1,111

with the additional condition that the predictions Ŷ are independent of the missing mask M. Then112

the unbiased estimate for the loss (4) with z = y, denoted by ` = P(`∗), is given by113

`(y, ŷ) = f(ŷ) +

l∑
j=1

yj
pj
gj(ŷ). (6)
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The predictions have to be independent of the locations M where the labels go missing. This is114

fulfilled if the predictions Ŷ = h(X,W) are the output of a classifier h whose weights W are115

independent of M.1116

For the normalized reductions, it would suffice to find an unbiased estimate of Ỹ in order to apply117

the same argument as above. However, we are not aware of a derivation for such an estimate that is118

simpler than the fully generic case presented below.119

Theorem 2 (Unbiased Estimate for Non-Decomposable Loss). For a generic multilabel loss function120

`∗, the unbiased estimate ` = P(`∗) under the conditions of Theorem 2 is given by121

`(y, ŷ) =
∑
y′�y

∏
j:yj=1

(
y′j(2− pj) + pj − 1

pj

)
`∗(y′, ŷ), (7)

where y′ � y means {0, 1} 3 y′j ≤ yj .122

This means that for an instance with k positive labels, we need 2k evaluations of the original loss123

function in order to calculate the unbiased estimate. This is only feasible because, despite having a124

very large label space, typical extreme-classification datasets have only few positives per instance.125

Unfortunately, the division by (products of) propensity values means that the unbiased estimates will126

have much larger variance than the original loss function would have on clean data. As an illustrative127

example, consider the binary case in the limit p � 1. We can show that in this case the variance128

grows with p−1 compared to the evaluation on clean data.129

Proposition 3 (Increase in Variance). Setting q∗ := E[Y ∗] and ` = P(`∗), for small propensities130

p� 1, the variance increases with the inverse of the propensity,V[`(Y, ŷ)] ≈ 1
p(1−q∗) V[`∗(Y ∗, ŷ)] .131

This means that in the binary case the variance increases linearly with inverse propensity. In the132

multilabel case, this is amplified further due to the product of propensities.133

The result above raises the question whether there might be other unbiased estimators with reduced134

variance. For example, the conditional expectation E[`∗(Y ∗, X)|Y ] also gives an unbiased estimate135

with lower variance, but cannot be calculated without knowledge of the conditional probabilities136

P{Y | X}. The following theorem states that ` = P(`∗) is unique if we want the loss function to137

work for all possible distributions of data. Thus we cannot reduce the variance.138

Theorem 3 (Uniqueness). Let pj ∈ (0, 1] ∀j ∈ [l]. For an arbitrary loss function `∗, let ` and `′ be139

unbiased versions, in the sense that for all X,Y,Y∗ that fulfill the masking model Theorem 1 with140

propensity p, it holds141

E[`∗(Y∗, X)] = E[`(Y, X)] = E[`′(Y, X)] . (8)
Then, `′ = `.142

The unavoidable increase in variance indicates that there might be a bias-variance trade-off between143

using the unbiased loss that may overfit more strongly on the observed noise, and using the original144

loss function which gives wrong results even if n → ∞. If one calculates a standard Rademacher145

bound for generalization (see appendix), this error bound increases with a factor 2−p
p . 2146

In a classical learning setup, the generalization error would be described by the difference between147

the empirical risk and the true risk R̂∗`∗
[
ĥ
]
− R∗`∗

[
ĥ
]
. However, in the case of missing labels, this148

can be decomposed in two ways149

R∗`∗[h]− R̂`[h] =

=0︷ ︸︸ ︷
R∗`∗[h]− R`[h] +R`[h]− R̂`[h] (9)

= R∗`∗[h]− R̂∗`∗[h]︸ ︷︷ ︸
finite sample

+R̂∗`∗[h]− R̂`[h]︸ ︷︷ ︸
noise pattern

, (10)

Whereas the first equation is just a restatement of the unbiasedness, the second contains some new150

insight: The generalization error can be decomposed into the difference between the true risk R∗`∗[h]151

1In this sense, we will use the notation `(y, x) to evaluate a loss also on a data point.
2The bound in this paper corresponds to Natarajan et al. [26, Thm. 9], though that published result is wrong

and missing the increase in the bound due to the increased range of the function.
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and the empirical risk on clean training data R̂∗`∗[h], and the difference between that and the estimated152

empirical risk on observed data R̂`[h]. Because the classifier h depends (through Y = M� Y ∗) on153

the mask variables, ` does not give an unbiased estimate (on training data) and thus the second term154

is non-zero even in expectation. In fact, in the low-regularization regime this term may dominate the155

entire error, as we will demonstrate in section 5.156

4 Convex Upper-Bounds157

The unbiased estimate allows us to calculate the loss even on data with missing labels, but can we158

also use it for training? Ideally, the loss function should be lower-bounded, so the minimization is159

well defined, it should be convex so the minimum is unique. Further, the variance of the unbiased160

estimator should not be too large, so that a reasonable amount of training samples is sufficient.161

If we assume `BC and `MC to be lower-bounded and convex, then only the PAL-reduction results in162

an unbiased estimate that is guaranteed to have the same properties, as it is a positive combination163

of `MC. Due to the uniqueness result, it is not possible to find an unbiased estimate that is always164

convex for the other reductions. Thus, in order to make them amenable for training, we propose to165

switch from unbiased estimates to convex upper-bounds. Below we present solutions for the OvA166

and normalized PAL-reduction. The normalized OVA-reduction remains an open problem.167

Upper-Bound for OvA-Reduction The OvA-reduction is based on a binary loss, which often168

is a convex surrogate for the 0-1 loss. To get a convex loss in the missing-labels case, we thus169

switch the order of operations [30, 5]: Instead of taking an unbiased estimate of a convex surrogate,170

we form a convex surrogate of an unbiased estimate. Taking θ to be a thresholding function (e.g.171

θ(s) = 1{s > 0}), the 0-1-loss can be written as172

`∗0−1(y, ŷ) = yθ(ŷ) + (1− y)(1− θ(ŷ)) (11)
with unbiased estimate173

`0−1(y, ŷ) =

(
2

pj
− 1

)
yθ(ŷ) + (1− y)(1− θ(ŷ)) + y

(
pj − 1

pj

)
. (12)

As the last term does not depend on the predictions, it can be dropped for an optimization objective.174

If `BC(1, ŷ) is a convex upper-bound on θ(ŷ) and `BC(0, ŷ) on (1 − θ(ŷ)), so that overall `BC is a175

convex upper-bound on the 0-1 loss, then performing these substitutions gives a convex loss function176

for the OvA-reduction:177

˜̀OvA(y, ŷ) =

l∑
j=1

(
2

pj
− 1

)
yj`BC(1, ŷj) + (1− yj)`BC(0, ŷj) (13)

Upper-Bound for Normalized PAL-Reduction We have formulated the normalized multilabel178

reductions in terms of the variable Ỹ ∗. A naive attempt of correcting for the noisy labels by replacing179

Y ∗ with Y/p is not unbiased. However, the resulting estimator Ỹ turns out to be an upper bound.180

The two estimators are given by181

Ỹ ∗i =
Y ∗i

1 +
∑

j 6=i Y
∗
j

, Ỹi :=
Yi/pi

1 +
∑

j 6=i Yj/pj
. (14)

Theorem 4 (Normalized Label Upper-Bound). Under the conditions of Theorem 2, replacing the182

true label with the unbiased estimate of the observed label as shown in Equation 14 results in an183

upper bound, whose error itself can be bounded by a data-dependent term184

E
[
Ỹ ∗i

]
+
∑
j 6=i

(
1− pj
pj

)
E

[
Yi
pi
· Yj
pj

]
≥ E

[
Ỹi

]
≥ E

[
Ỹ ∗i

]
. (15)

Proof. For convenience denote S∗i :=
∑

j 6=i Y
∗
j and Si :=

∑
j 6=i Yj/pj , and note that Si is indepen-185

dent of Mi. By pulling out known factors and using the independence of M and Y∗ we can show186

that187

E[Si | Y∗] =
∑
j 6=i

E
[
MjY

∗
j /pj | Y∗

]
=
∑
j 6=i

Y ∗j E[Mj/pj | Y∗] = S∗i . (16)
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Expanding terms and using independence of Mi, then applying the tower property and pulling out188

the measurable factor results in189

E
[
Ỹi

]
= E

[
MiY

∗
i /pi

1 + Si

]
= E

[
Mi

pi

]
E

[
Y ∗i

1 + Si

]
= E

[
E

[
Y ∗i

1 + Si

∣∣∣ Y∗]] = E[Y ∗i E[ 1

1 + Si

∣∣∣ Y∗]] .
The function h : R≥0 −→ R given by t 7→ 1/(1 + x) is convex, because its second derivative is
2(1 + t)−3, which is larger than zero for non-negative t. Because Si ≥ 0 almost surely, we can apply
Jensen’s inequality to the inner expectation and use (16)190

E
[
Ỹi

]
≥ E

[
Y ∗i

1 + E[Si | Y∗]

]
= E

[
Y ∗i

1 + S∗i

]
= E

[
Ỹ ∗i

]
.

On the other hand, we can use the Taylor formula with intermediate point ζ ∈ [Si, S
∗
i ] to expand191

1

1 + Si
=

1

1 + S∗i
− Si − S∗i

(1 + S∗i )
2 +

(Si − S∗i )2

(1 + ζ)
3 . (17)

Using ζ ≥ 0 to bound the denominator, then multiplying with Y ∗i and taking the expectation gives192

E

[
Y ∗i

1 + Si

]
≤ E

[
Y ∗i

1 + S∗i

]
+ E

[
Y ∗i (Si − S∗i )2

]
. (18)

The variance term can be calculated by substituting Si and S∗i , expanding the sum, and using the193

independence of M to show that the mixed terms are zero:194

E
[
Y ∗i (Si − S∗i )2

]
= E

Y ∗i
∑

j 6=i

Y ∗j

(
Mj

pj
− 1

)2


=
∑
j 6=i

E

[
Y ∗i (Y

∗
j )

2

(
Mj

pj
− 1

)2
]
+
∑
j 6=i

∑
k/∈{i,j}

E
[
Y ∗i Y

∗
j Y
∗
k

]
E

[
Mj

pj
− 1

]
E

[
Mk

pk
− 1

]

=
∑
j 6=i

E
[
Y ∗i Y

∗
j

]
E

[
Mj

p2j
− 2

Mj

pj
+ 1

]
=
∑
j 6=i

(
1− pj
pj

)
E

[
Yi
pi
· Yj
pj

]
. (19)

Table 1: Error bound for XMC datasets
Dataset Average Worst Case

Eurlex-4K 0.02 0.51
AmazonCat-13K 0.0006 0.24

Note that the transformation of equation (3) was195

crucial for this calculation, because it makes the196

mask variables in the numerator and denomina-197

tor independent.198

In practice, most entries of the co-occurrence199

matrix E[Yi · Yj ] will be extremely small, caus-200

ing only a minute contribution to the error bound. This can be illustrated by calculating, on two real201

datasets, the upper-bound for the error of the proposed estimator, by approximating E[Yi · Yj ] with202

the label co-occurrence frequency. The propensities are estimated as in Jain et al. [16]. Looking at203

the mean value, and the worst case for any label (Table 1), We can see that the error on average is204

very small, indicating that the worst-case bound only applies to very few labels.205

Corollary 1 (PAL Upper-Bound). Under the assumptions of Theorem 2, if the underlying multiclass206

loss `MC is a non-negative convex function, the expression207

˜̀(y, ŷ) :=

l∑
j=1

yi/pi
1 +

∑
j 6=i yj/pj

`MC(j, ŷ) (20)

gives a nonnegative, convex upper-bound on the true normalized PAL loss in expectation.208

5 Experimental Results209

In this section we present some empirical evidence that illustrates the influence of missing labels and210

the unbiased estimates and upper bounds on overfitting and bias-variance trade-off. Additional results211

and a more detailed description of the procedure can be found in the appendix.212
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Figure 1: Unbiased estimate of per-example recall with artificial data as described in the main text.
The shaded region corresponds to one standard deviation, estimated over 100 repetitions. The black
line denotes the true recall.

Prediction Setting First, we want to demonstrate the variance problem in a simple prediction213

setting, where the classifier is fixed and we want to determine its performance. Consider a setting214

in which there are 100 different labels, which are independent and each has a probability of 10%.215

We randomly draw 10 000 ground-truth label vectors, and generate observed labels by removing216

according to a propensity p that is identical for all labels. The predictions are generated by randomly217

choosing a label from the ground-truth. We calculate the average per-example recall using the218

standard estimator, the unbiased estimator, and the upper bound, and plot the results in Figure 1.219

As can be seen, for moderate propensities the unbiased estimator works well, but for propensities220

below 0.45 the 10 000 samples are not sufficient to get an accurate estimate. In this setting, the221

upper-bound results in a larger error than using the standard estimator.222

Training Setting Ideally, we would benchmark our loss functions on a real XMC task. However,223

for those we neither know the exact propensities, nor can we validate that the unbiased estimates and224

upper bounds produce reasonable results, since the fully-labeled ground truth is unknown.225

Instead of using fully artificial data, we chose to construct a dataset based on existing data: We took226

AmazonCat-13k[22] and consider only the 100 most common labels, which are the ones with the227

highest propensity according to Jain et al. [16]. We artificially remove labels according to inverse228

propensity, which increases linearly based on the ordering of label frequencies, such that the most229

common label has an inverse propensity of 2 and the 100th most common one of 20. This process230

partially preserves the strong imbalances that are typical of extreme classification datasets.231

On this data, we train a linear classifier with L2-regularization using different basis loss functions232

with a) the original (standard) loss on clean training data and b) noisy training data, as well as c) the233

unbiased version and d) the upper-bound version on noisy data. For each training run, we evaluate234

the loss on noisy and clean training and test data. For the evaluation on noisy data, the corresponding235

unbiased estimators are used.236

In this linear-classifier experiment, the noise-pattern overfitting is much stronger than the overfitting237

due to finite sampling (10). Figure 2 shows this for the case of the BCE loss in OvA-reduction and238

CCE loss in normalized PAL reduction. For the classifier trained on clean data (blue), the weights are239

independent of the noise pattern and thus the dashed and dotted lines coincide in expectation. For240

the case of OvA reduction using the BCE loss, the training loss gets reduced much further using the241

unbiased loss function or the upper-bound loss function than using the standard loss. This decrease242

more than compensates the increase in generalization gap, and as such the minimal test loss is better243

with these two variants of the loss function. In contrast, in the non-decomposable case, even though244
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Figure 2: Binary cross-entropy (top) and normalized categorical cross-entropy (bottom) for different
regularization strengths, evaluated on noisy training data, clean training data, and clean test data. The
gaps between dashed and dotted lines correspond to overfitting to the noise pattern, the smaller gaps
between dotted and solid lines show the generalization gaps due to the finite training sample. As the
dashed lines are for noisy data, they are calculated using the unbiased estimate (6).

the observed training loss decreases drastically with the unbiased loss, the increase in overfitting245

makes the test loss worse than using the biased standard loss function.246

In this case, using the upper-bound (20) can mitigate the effect, though there is still significant247

overfitting, as evidenced by the estimated training loss being less than zero. This is possible because248

even though the loss we use for training is a non-negative upper bound on the expected unbiased loss,249

the dashed curves show the value estimated for the loss using the unbiased estimator, which can be250

negative due to overfitting. For the OVA case, the upper bound (13) also reduces overfitting, but does251

not result in an overall better classifier on test data.252

In terms of the bias-variance trade-off, the graphs show a clear trend: The optimal regularization253

for training on noisy data is larger than on clean data. It is also larger when using the unbiased or254

upper-bound loss as compared to standard loss. This is as expected from the variance analysis and255

generalization bound presented in the theory.256
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6 Related Work257

Unbiased Estimates for Noisy Labels Learning with missing labels is a specific instance of258

learning with class-conditional noise. For the case of binary labels, unbiased estimates of the loss259

function can be found in Natarajan et al. [26]. A more general approach is given in Van Rooyen and260

Williamson [35]. In their notation, f is a function and P the probability distribution over clean data,261

that is transformed by the invertible operator T into a corrupted probability distribution. Let R be the262

inverse of T, and R∗ its adjoint, then 〈P, f〉 = 〈R ◦ T(P), f〉 = 〈T(P),R∗(f)〉. This equation forms263

the basis for their “Theorem 5 (Corruption Corrected Loss)”, which states that a corruption corrected264

function lR is given ∀a ∈ A by lR(·, a) = R∗(l(·, a)), where A denotes the set of possible actions265

that will be evaluated by the loss functions. For a finite label space with n possible, the operator266

R∗ can be represented with an n × n matrix. For the multilabel case here, applying this naively267

would require 2l evaluations of the original loss function. In contrast, the direct approach presented268

in section 3 is much more efficient.269

Alternatives In some settings with noisy labels, it is possible to use a learning algorithm that is270

inherently noise tolerant [12, 36]. Certain performance objectives such as the balanced error or the271

AUC are noise robust even under the more general setting of mutually contaminated distributions as272

shown in Menon et al. [23]. A data re-calibration approach tries to identify from the training data273

which samples are corrupted, e.g. by looking at samples for which the network is very unsure, and274

adapt the training process correspondingly [13, 42, 19] It is also possible to first train a scorer on the275

noisy data naively, from which a classifier adapted to a given rate of missing labels can be constructed276

by choosing an appropriate threshold [23]. Similarly, the inference procedure of PLTs can be adapted277

to take into account a propensity model [39].278

Related Learning Settings Learning with missing labels is highly related to learning from positive279

and unlabeled (PU) data [11]. An unbiased loss function for this setting is given in Du Plessis et al.280

[10]. The appearing difficulties, that non-negativity and convexity need not be preserved, are the same281

as in our setting [21]. A slightly different setting with missing labels is given by semi-supervised282

learning, where it is know for which labels are missing [41].283

7 Summary and Discussion284

This paper provides unbiased estimates for four cases of multilabel reductions given in Menon285

et al. [24]. Except for the PAL reduction, these estimators can be non-convex and even negatively286

unbounded. The unbiased estimates come with an increase in variance. This is unavoidable if287

unbiasedness is required, as the estimators can be shown to be unique. If sufficient training data is288

available, then the unbiased loss functions can be used, but for the normalized reductions we found289

that even 1.2 million instances in AmazonCat are not enough. Much fewer data points are needed290

in order to estimate the overall loss of a classifier. This is because for training, an accurate estimate291

for E[`(Y ∗, h(X) | X] needs to be formed, whereas for evaluation this is averaged over the entire292

dataset, E[`(Y ∗, h(X)]. This indicates that the unbiased estimates can be useful for hyperparameter293

tuning and model selection.294

For training, however, another approach is needed. A method that fixes the negative unboundedness295

and non-convexity and also reduces the variance is to switch to a convex upper-bound. We have296

shown that this can stabilize the training and improve the results.297

Furthermore, the data in section 5 suggest training with missing labels requires more regularization,298

irrespective of whether training uses standard-, unbiased-, or convex upper-bound losses. Our findings299

agree with Arpit et al. [2] who found that typical regularizers prevent a deep network from memorizing300

noisy examples, while not hindering the learning of patterns from clean instances.301

All in all, our results show that a) unbiasedness can be achieved for generic multilabel losses, and302

in particular the losses resulting from multilabel reduction, but also that b) these losses might not303

be suitable for optimization. We have presented one method that trades away unbiasedness for the304

ability to handle training with lower amounts of data. An exciting future research prospect would be305

to investigate families of loss functions that can continuously trade off bias and variance, and thus306

allow for optimal training with different amounts of available data.307
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