
Published as a conference paper at ICLR 2021

METANORM: LEARNING TO NORMALIZE FEW-SHOT
BATCHES ACROSS DOMAINS

Yingjun Du1, Xiantong Zhen1,2, Ling Shao2, Cees G. M. Snoek1

1AIM Lab, University of Amsterdam
2Inception Institute of Artificial Intelligence

ABSTRACT

Batch normalization plays a crucial role when training deep neural networks. How-
ever, batch statistics become unstable with small batch sizes and are unreliable in
the presence of distribution shifts. We propose MetaNorm, a simple yet effective
meta-learning normalization. It tackles the aforementioned issues in a unified way
by leveraging the meta-learning setting and learns to infer adaptive statistics for
batch normalization. MetaNorm is generic, flexible and model-agnostic, mak-
ing it a simple plug-and-play module that is seamlessly embedded into existing
meta-learning approaches. It can be efficiently implemented by lightweight hyper-
networks with low computational cost. We verify its effectiveness by extensive
evaluation on representative tasks suffering from the small batch and domain shift
problems: few-shot learning and domain generalization. We further introduce an
even more challenging setting: few-shot domain generalization. Results demon-
strate that MetaNorm consistently achieves better, or at least competitive, accuracy
compared to existing batch normalization methods.

1 INTRODUCTION

Batch normalization (Ioffe & Szegedy, 2015) is crucial for training neural networks, and with
its variants, e.g., layer normalization (Ba et al., 2016), group normalization (Wu & He, 2018)
and instance normalization (Ulyanov et al., 2016), has thus become an essential part of the deep
learning toolkit (Bjorck et al., 2018; Luo et al., 2018a; Yang et al., 2019; Jia et al., 2019; Luo et al.,
2018b; Summers & Dinneen, 2020). Batch normalization helps stabilize the distribution of internal
activations when a model is being trained. Given a mini-batch B, the normalization is conducted
along each individual feature channel for 2D convolutional neural networks. During training, the
batch normalization moments are calculated as follows:

µB =
1

M

M∑
i=1

ai, σ2
B =

1

M

M∑
i=1

(ai − µB)2, (1)

where ai indicates the i-th element of the M activations in the batch, M = |B| ×H ×W , in which
H and W are the height and width of the feature map in each channel. We can now apply the
normalization statistics to each activation:

a′i ← BN(ai) ≡ γâi + β, where, âi =
ai − µB√
σ2
B + ε

, (2)

where γ and β are parameters learned during training, ε is a small scalar to prevent division by 0,
and operations between vectors are element-wise. At test time, the standard practice is to normalize
activations using the moving average over mini-batch means µB and variance σ2

B. Batch normalization
is based on an implicit assumption that the samples in the dataset are independent and identically
distributed. However, this assumption does not hold in challenging settings like few-shot learning
and domain generalization. In this paper, we strive for batch normalization when batches are of small
size and suffer from distributions shifts between source and target domains.

Batch normalization for few-shot learning and domain generalization problems have so far been
considered separately, predominantly in a meta-learning setting. For few-shot meta-learning (Finn

1

Published as a conference paper at ICLR 2021

et al., 2017; Gordon et al., 2019), most existing methods rely critically on transductive batch nor-
malization, except those based on prototypes (Snell et al., 2017; Allen et al., 2019; Zhen et al.,
2020a). However, the nature of transductive learning restricts its application due to the require-
ment to sample from the test set. To address this issue, Bronskill et al. (2020) proposes TaskNorm,
which leverages other statistics from both layer and instance normalization. As a non-transductive
normalization approach, it achieves impressive performance and outperforms conventional batch
normalization (Ioffe & Szegedy, 2015). However, its performance is not always performing better
than transductive batch normalization. Meanwhile, domain generalization (Muandet et al., 2013;
Balaji et al., 2018; Li et al., 2017a;b) suffers from distribution shifts from training to test, which makes
it problematic to directly apply statistics calculated from a seen domain to test data from unseen
domains (Wang et al., 2019; Seo et al., 2019). Recent works deal with this problem by learning a
domain specific normalization (Chang et al., 2019; Seo et al., 2019) or a transferable normalization in
place of existing normalization techniques (Wang et al., 2019). We address the batch normalization
challenges for few-shot classification and domain generalization in a unified way by learning a new
batch normalization under the meta-learning setting.

We propose MetaNorm, a simple but effective meta-learning normalization. We leverage the meta-
learning setting and learn to infer normalization statistics from data, instead of applying direct
calculations or blending various normalization statistics. MetaNorm is a general batch normalization
approach, which is model-agnostic and serves as a plug-and-play module that can be seamlessly
embedded into existing meta-learning approaches. We demonstrate its effectiveness for few-shot
classification and domain generalization, where it learns task-specific statistics from limited data
samples in the support set for each few-shot task; and it can also learn to generate domain-specific
statistics from the seen source domains for unseen target domains. We verify the effectiveness
of MetaNorm by extensive evaluation on few-shot classification and domain generalization tasks.
For few-shot classification, we experiment with representative gradient, metric and model-based
meta-learning approaches on fourteen benchmark datasets. For domain generalization, we evaluate
the model on three widely-used benchmarks for cross-domain visual object classification. Last
but not least, we introduce the challenging new task of few-shot domain generalization, which
combines the challenges of both few-shot learning and domain generalization. The experimental
results demonstrate the benefit of MetaNorm compared to existing batch normalizations.

2 RELATED WORKS

Transductive Batch Normalization For conventional batch normalization under supervised set-
tings, i.i.d. assumptions about the data distribution imply that estimating moments from the training
set will provide appropriate normalization statistics for test data. However, in the meta-learning
scenario data points are only assumed to be i.i.d. within a specific task. Therefore, it is critical to
select the moments when batch normalization is applied to support and query set data points during
meta training and meta testing. Hence, in the recent meta-learning literature the running moments
are no longer used for normalization at meta-test time, but instead replaced with support/query set
statistics. These statistics are used for normalization, both at meta-train and meta-test time. This
approach is referred to as transductive batch normalization (TBN) (Bronskill et al., 2020). Competit-
ive meta-learning methods (e.g., Gordon et al., 2019; Finn et al., 2017; Zhen et al., 2020b) rely on
TBN to achieve state-of-the-art performance. However, there are two critical problems with TBN.
First, TBN is sensitive to the distribution over the query set used during meta-training, and as such is
less generally applicable than non-transductive learning. Second, TBN uses extra information for
multiple test samples, compared to non-transductive batch normalization at prediction time, which
could be problematic as we are not guaranteed to have a set of test samples available during training
in practical applications. In contrast, MetaNorm is a non-transductive normalization. It generates
statistics from the support set only, without relying on query samples, making it more practical.

Meta Batch Normalization To address the problem of transductive batch normalization and improve
conventional batch normalization, meta-batch normalization (MetaBN) was introduced (Triantafillou
et al., 2020; Bronskill et al., 2020). In MetaBN, the support set alone is used to compute the
normalization statistics for both the support and query sets at both meta-training and meta-test time.
MetaBN is non-transductive since the normalization of a test input does not depend on other test
inputs in the query set. However, Bronskill et al. (2020) observe that MetaBN performs less well for
small-sized support sets. This leads to high variance in moment estimates, which is similar to the

2

Published as a conference paper at ICLR 2021

dif�culty of using batch normalization with small-batch training (Wu & He, 2018). To address this
issue, Bronskill et al. (2020) proposed TaskNorm, which learns to combine statistics from both layer
normalization and instance normalization, with a lending parameter to be learned at meta-train time.
As a non-transductive normalization, TaskNorm achieves impressive performance, outperforming
conventional batch normalization. However, it can not always perform better than transductive
batch normalization. TaskNorm indicates non-transductive batch normalization estimates proper
normalization statistics by involving learning in the normalization process. We also propose to
learn batch normalization within the meta-learning framework, but instead of employing a learnable
combination of existing normalization statistics, we directly learn to infer statistics from data. At
meta-train time, the model learns to acquire the ability to generate statistics only from the support set
and at meta-test time we directly apply the model to infer statistics for new tasks.

Batch Normalization for Domain Adaptation and Domain Generalization Domain adaption
suffers from a distribution shift between source and target domains, which makes it sub-optimal
to directly apply batch normalization (Bilen & Vedaldi, 2017). Li et al. (2016) proposed adaptive
batch normalization to increase the generalization ability of a deep neural network. By modulating
the statistical information of all batch normalization layers in the neural network, it achieves deep
adaptation effects for domain-adaptive tasks. Nado et al. (2020) noted the possibility of accessing
small unlabeled batches of the shifted data just before prediction time. To improve model accuracy
and calibration under covariate shift, they proposed prediction-time batch normalization. Since the
activation statistics obtained during training do not re�ect statistics of the test distribution, when
testing in an out-of-distribution environment, Schneider et al. (2020) proposed estimating the batch
statistics on the corrupted images. Kaku et al. (2020) demonstrated that standard non-adaptive feature
normalization fails to correctly normalize the features of convolutional neural networks on held-out
data where extraneous variables take values not seen during training. Learning domain-speci�c
batch normalization has been explored (Chang et al., 2019; Wang et al., 2019). Wang et al. (2019)
introduced transferable normalization, TransNorm, which normalizes the feature representations
from source and target domain separately using domain-speci�c statistics. Along a similar vein,
Chang et al. (2019) proposed a domain-speci�c batch normalization layer, which consists of two
branches, each in charge of a single domain exclusively. The hope is that, through the normalization,
the feature representation will become domain invariant. Nevertheless, these normalization methods
are speci�cally designed for domain adaptation tasks, where data from target domains are available,
though often unlabelled. This makes them inapplicable to domain generalization tasks where data
from target domains are inaccessible at training time. Seo et al. (2019) proposed learning to optimize
domain speci�c normalization for domain generalization tasks. Under the meta-learning settings, a
mixture of different normalization techniques is optimized for each domain, where the mixture weights
are learned speci�cally for different domains. Instead of combining different normalization statistics,
MetaNorm learns from data to generate adaptive statistics speci�c to each domain. Moreover, we
introduce an even more challenging setting, i.e., few-shot domain generalization, which combines the
challenges of few-shot classi�cation and domain generalization.

Conditional Batch Normalization de Vries et al. (2017) proposed conditional batch normalization
to modulate visual processing by predicting the scalars
 and� of the batch normalization conditioned
on the language from an early processing stage. Conditional batch normalization has also been applied
to align different data distributions for domain adaptation (Li et al., 2016). Oreshkin et al. (2018)
applies conditional batch normalization to metric-based models for the few-shot classi�cation task.
Tseng et al. (2020) proposed a learning-to-learn method to optimize the hyper-parameters of the
feature-wise transformation layers by conditional batch normalization for cross-domain classi�cation.
Unlike conditional batch normalization, we use extra data (the query set) to generate normalization
statistics under the meta-learning setting, rather than the scalars.

3 METHODOLOGY

We view �nding appropriate statistics for batch normalization as a density estimation problem. We
need to infer the distribution parameters, such as,� and� when a Gaussian distribution is presumed,
as in existing batch normalization approaches. The motivation behind MetaNorm is to leverage the
meta-learning setting and learn from data to generate adaptive normalization statistics. MetaNorm is
generic and model-agnostic, addressing batch normalization in a uni�ed way for different settings by
minimizing the KL divergence, which is a common metric to measure the difference between two

3

Published as a conference paper at ICLR 2021

probability distributions:
DKL

�
q� (m)jp� (m)

�
; (3)

wherem is a random variable that represents the distribution of activations,p� (m) and q� (m)
are de�ned as Gaussian distributions with different implementations depending on the task of
interest, e.g., few-shot classi�cation or domain generalization. We leverage the amortized inference
technique (Kingma & Welling, 2013) and implement this by inference networks. To be more speci�c,
for each individual channel in each` convolutional layer, we infer the moments� and� by f `

� (�)
andf `

� (�), respectively, which are realized as multi-layer perceptrons and we call hypernetworks (Ha
et al., 2016). Hypernetworks use one network to generate the weights for another network. Our
hypernetworks generate the statistics from data by using amortization techniques.

We simply incorporate theDKL term into the optimization of the existing model with the cross-entropy
lossL CE , resulting in a general loss function as follows:

L = L CE � �D KL
�
q� (m)jp� (m)

�
(4)

where� > 0 is a regularization hyper-parameter.

MetaNorm for Few-Shot Classi�cation In the few-shot classi�cation scenario, we de�ne the
C-wayK -shot problem using the episodic formulation from (Vinyals et al., 2016). Each taskTi is a
classi�cation problem sampled from a task distributionp(T). The tasks are divided into atraining
meta-setT tr , validation meta-setT val, andtest meta-setT test, each with a disjoint set of target classes
(i.e., a class seen during testing is not seen during training). The validation meta-set is used for model
selection, and the testing meta-set is used only for �nal evaluation. Each task instanceTi � p (T) is
composed of a support setS and a query setQ, and only containsN classes randomly selected from
the appropriate meta-set.

We aim to infer statistics from the support set that better match the query set. Therefore, we adopt a
straightforward criterion for the inference:

DKL
�
q� (mjS)jjp� (mjQ)

�
; (5)

where we de�neq(mjS)= N (� S ; � S) andp(mjQ)= N (� Q ; � Q), which are the distributions inferred
from the support and query sets in a few-shot learning task. By minimizing the KL term in conjunction
with the prime objective of a meta-learning algorithm, we are able to �nd the appropriate statistics
from limited data samples for batch normalization. The KL term adheres to a closed form, which
makes it easy to implement and computationally ef�cient. Thep(mjQ) can be estimated by directly
calculating statistics using the query set, which however performs inferior to inference by optimization.
We note the inference from the query set only happens during meta-training time and we use the
learned inference network to generate normalization statistics at meta-test time for a test task using
its support set.

To infer � S , we deploy an inference functionf `
� (�) that takes activations of a sample as input, and the

outputs from all samples are then averaged as the �nal� S :

� S =
1

jSj

jSjX

i =1

f `
� (ai); (6)

whereai 2 Rw� h is the �attened vector of the activation map of thei -th sample in the support set,w
is the width of activations, andh is the height of the activation map. To infer� S , we use the obtained
� S and deploy a separate inference functionf `

� (�):

� S =
1

jSj

jSjX

i =1

f `
�

�
(ai � � S)2�

: (7)

It is worth mentioning that we actually use each sample to infer the statistics and take the average of
all inferred statistics as the �nal normalization statistics. This enables us to fully exploit the samples
to generate more accurate statistics.

Note that the inference functionsf `
� (�) andf `

� (�) are shared by different channels in the same layer
and we will learnL pairs of those functions if we haveL convolutional layers in the meta-learning

4

Published as a conference paper at ICLR 2021

model. They are parameterized by feed-forward multiple layer perception networks, which we
call hypernetworks. Using these hypernetworks, we generate support moments (� S ; � S) and query
moments (� Q ; � Q) from the support and query sets, which are used for calculating the KL term in
Eq. (5) for optimization during meta-training time. At meta-training time, we apply the statistics
inferred from the support set for normalization of both support and query samples:

a0 =

a � � Sp

� 2
S + �

!

+ �; (8)

where
 and� are jointly learned with parameters of the hypernetworks at meta-training time and
directly applied at meta-test time, as in conventional batch normalization. At meta-test time, given a
test task, we use hypernetworks that take the support set as input to generate normalization statistics
directly used for the query set.

MetaNorm for Domain Generalization In the domain generalization scenario, we adopt the meta-
learning setting from (Li et al., 2018a; Balaji et al., 2018; Du et al., 2020), and divide a dataset into
the source domains used for training and the target domains held out for testing. At meta-training
time, data in the source domains is episodically divided into sets of meta-sourceDs and meta-target
D t domains.

In a similar vein to few-shot classi�cation, we would like to learn to acquire the ability to generate
domain-speci�c statistics from a single example, which can then be applied to unseen domains. We
assume we can generate reasonable normalization statistics by using only one sample from the new
domain, because, intuitively, a single sample already carries suf�cient domain information. We use a
single example and all the examples in the same domain to infer the domain-speci�c statistics and
minimize the KL term:

DKL
�
q� (mjai)jjp� (mjD snai)

�
; (9)

where we de�neq(mjai)= N (� a ; � a), andp(mjD snai)= N (� D ; � D), which are implemented in
a similar way as Eq. (6) and Eq. (7), andai is an example from its own domainDs. In both the
meta-source and meta-target domains, each example is normalized using the statistics generated by
itself, like in Eq. (8), in which we make
 and� shared across all domains. The minimization of the
KL term in Eq. (9) is to encourage the model to generate domain-speci�c statistics for normalization
from only a single example. This enables us to generate domain-speci�c statistics on target domains
that are never seen at meta-training time.

In practice, we take the sum of all samples in all source domains as follows:

jD s jX

i

JX

j

DKL
�
q� (mjai)jjp� (mjD s

j nai)
�
; (10)

whereDs
j denotes thej -th of J meta-source domains. The inference networks are �rst at meta-

training time learned and then directly used as examples from the target domain at meta-test time.
Note that on the meta-target domain we do not apply the KL term; instead, we simply rely on each
example to generate its statistics for normalization.

MetaNorm for Few-Shot Domain Generalization We introduce an even more challenging setting,
i.e., few-shot domain generalization, that combines the challenges of both few-shot classi�cation
and domain generalization. Speci�cally, we aim to learn a model from a set of classi�cation tasks,
each of which has only a few samples in a support set for training and test the model on tasks in a
query set, which are in a different domain from the support set. Like few-shot classi�cation, the label
space is not shared between training and testing. Cross-domain few-shot learning has been explored
recently by Tseng et al. (2020) and Guo et al. (2020). However, the setting of our few-shot domain
generalization is different and considered to be more challenging, as the support and query set are
from differentdomains in the meta-test stage and the target domain is also unseen throughout the
training stage. An example for the few-shot domain generalization setting is provided in Figure 1.

We divide a dataset into the source domainsS used for training and the target domainsT held out
for testing. During training time, data in the source domainsS is episodically divided into sets of
meta-trainD s and meta-testD t domains. We sampleC-way k-shot data as the support set from each
meta-source domainDs, wherek is the number of labelled examples for each of theCclasses. We

5

Published as a conference paper at ICLR 2021

Figure 1: Illustration of the novel few-shot domain generalization scenariousing the 5-way,
1-shot setting. The training set in the upper box contains the meta-source domainsDs and the
meta-target domainD t , which are from different domains. Each training task contains meta-source
domains with �ve different classes and one example of each meta-source domain, and more than four
examples for evaluation in the meta-target domain. The test set is de�ned in the same way but with
all source domainsS covering classes not present in any of the datasets in the training set, and more
than four examples are used for evaluation in the target domainT .

sampleC classes from the meta-testD t domain as the query set. At test time, we sampleC-way
k-shot data as the support set from each of the source domainsS. The model learned at meta-training
time is then �ne-tuned on few-shot tasks samples from the source domains and tested on the target
domainT . To learn the normalization statistics, we minimize the following KL term:

jD s jX

i

DKL [q� (mjai)jjp� (mjD s)]; (11)

whereai is the activation associated with each sample from the meta-source domainDs. Likewise,
q(mjai) andp(mjD s) are also de�ned as factorized Gaussian distributions. We also adopt
 and� ,
which are shared across tasks and jointly learned. MetaNorm learns to acquire the ability to generate
proper statistics for itself, and applies it to the samples in the meta-target domain.

4 EXPERIMENTAL RESULTS

We conduct an extensive set of experiments on a total of 17 datasets containing more than 15
million images. We use three representative approaches to meta-learning as our base models, i.e.,
MAML (Finn et al., 2017), ProtoNets (Snell et al., 2017), and VERSA (Gordon et al., 2019), which
can verify our MetaNorm is generic, �exible and model-agnostic, making it a simple plug-and-play
module that is seamlessly embedded into existing meta-learning approaches. We further compare
different normalization methods: transductive batch normalization (TBN), “example” that denotes
testing with one example at a time by using TBN, “class” that denotes testing with one class at a time
by using TBN, w/o BN which is not using batch normalization, CBN which is using conventional batch
normalization, RN (Nichol et al., 2018), MetaBN (Bronskill et al., 2020), TaskNorm-L (Bronskill
et al., 2020), and TaskNorm-I (Bronskill et al., 2020). All details about datasets and implementation
settings are provided in the appendix. More experimental results, including convergence analysis, are
also provided in the appendix. Our code will be publicly released.1

Effect of KL Term We �rst conduct ablation studies that measure the effectiveness of MetaNorm.
The key of MetaNorm is the introduced KL term for learning to learn statistics. We test the per-
formance of MetaNorm without the KL term by directly using the statistics generated from data.

1https://github.com/YDU-AI/MetaNorm .

6

Published as a conference paper at ICLR 2021

Table 1:Effect of KL Term in MetaNorm for few-shot classi�cation with MAML (Finn & Levine,
2018) onminiImageNet and domain generalization on PACS with ResNet-18. More few-shot
classi�cation results with ProtoNets (Snell et al., 2017) and VERSA (Gordon et al., 2019), as well
as domain generalization results on Of�ce-Home are provided in the appendix. Best performing
methods and any other runs within the 95% con�dence margin in bold. The KL term is crucial.

Few-shot classi�cation Domain generalization

MetaNorm 5-way, 1-shot 5-way, 5-shotPhoto Art Cartoon SketchMean

w/o KL 34.3 � 1.5 50.7 � 0.8 88.96 71.25 65.37 69.28 73.72
w/ KL 46.8 � 1.6 60.1 � 0.8 95.99 85.01 78.63 83.17 85.70

Figure 2:Impact of Target Set Size.The performance increases for larger target sets and plateaus
at around 125 for few-shot classi�cation onminiImageNet and around 256 for domain generalization
on PACS. TBN here is based on VERSA. MetaNorm generates proper normalization statistics with a
reasonable batch size.

In this case, we also use the hypernetworks to generate the moments,� and� by simply removing
the KL term in the objective function. In Table 1 we present results for few-shot classi�cation on
miniImageNet (Vinyals et al., 2016) and for domain generalization on PACS (Li et al., 2017a). The
performance of MetaNorm without KL degrades signi�cantly. This is expected, as without the
KL term the generation process of normalization statistics lacks direct supervision from the target
distribution, resulting in improper statistics.

Impact of Target Set Size The other key parameter in MetaNorm is the size of the target set; that
is, the numberjQj of samples in the query set (in few-shot classi�cation) and the numberjD s j of
samples in each domain (in domain generalization). This parameter is important when learning
normalization statistics because we use the statistics generated by the target set as the `ground truth'.
We evaluate its impact on the performance of MetaNorm in Figure 2. The experimental results
show that TBN is not affected by the target size, both in the 5-way, 1-shot and 5 way, 5-shot tasks.
MetaNorm performance rises as the size of the target set increases and plateaus at a reasonable size.
In the few-shot setting, the performance reaches its peak at a size of about 125, which is slightly larger
than the standard size of 75, while in the domain generalization setting, the performance plateaus at a
size of about 128. This demonstrates that we are able to generate proper statistics with the mini-batch
gradient descent optimization. In scenarios demanding a very small target set size, we could leverage
image synthesis techniques to generate more samples for the targets sets.

Sensitivity to Algorithm We evaluate MetaNorm using the MAML (Finn et al., 2017), ProtoNets
(Snell et al., 2017) and VERSA (Gordon et al., 2019) algorithms, which are representative gradient,
metric and model based meta-learning approaches for few-shot classi�cation. These experiments
are conducted on the Omniglot andminiImageNet datasets under different settings. The comparison
results onminiImageNet are summarized in Table 2 and the results on Omniglot are provided in the
appendix. For all three meta-learning approaches under all settings, MetaNorm consistently achieves
comparable performance both to the non-transductive and transductive normalization methods. Being
non-transductive, TaskNorm can achieve impressive performance on all the tasks, but its perform-
ance is not always better than transductive batch normalization. MetaNorm achieves comparable

7

