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ABSTRACT

Batch normalization plays a crucial role when training deep neural networks. How-
ever, batch statistics become unstable with small batch sizes and are unreliable in
the presence of distribution shifts. We propose MetaNorm, a simple yet effective
meta-learning normalization. It tackles the aforementioned issues in a unified way
by leveraging the meta-learning setting and learns to infer adaptive statistics for
batch normalization. MetaNorm is generic, flexible and model-agnostic, mak-
ing it a simple plug-and-play module that is seamlessly embedded into existing
meta-learning approaches. It can be efficiently implemented by lightweight hyper-
networks with low computational cost. We verify its effectiveness by extensive
evaluation on representative tasks suffering from the small batch and domain shift
problems: few-shot learning and domain generalization. We further introduce an
even more challenging setting: few-shot domain generalization. Results demon-
strate that MetaNorm consistently achieves better, or at least competitive, accuracy
compared to existing batch normalization methods.

1 INTRODUCTION

Batch normalization (Ioffe & Szegedy, 2015) is crucial for training neural networks, and with
its variants, e.g., layer normalization (Ba et al., 2016), group normalization (Wu & He, 2018)
and instance normalization (Ulyanov et al., 2016), has thus become an essential part of the deep
learning toolkit (Bjorck et al., 2018; Luo et al., 2018a; Yang et al., 2019; Jia et al., 2019; Luo et al.,
2018b; Summers & Dinneen, 2020). Batch normalization helps stabilize the distribution of internal
activations when a model is being trained. Given a mini-batch B, the normalization is conducted
along each individual feature channel for 2D convolutional neural networks. During training, the
batch normalization moments are calculated as follows:

µB =
1

M

M∑
i=1

ai, σ2
B =

1

M

M∑
i=1

(ai − µB)2, (1)

where ai indicates the i-th element of the M activations in the batch, M = |B| ×H ×W , in which
H and W are the height and width of the feature map in each channel. We can now apply the
normalization statistics to each activation:

a′i ← BN(ai) ≡ γâi + β, where, âi =
ai − µB√
σ2
B + ε

, (2)

where γ and β are parameters learned during training, ε is a small scalar to prevent division by 0,
and operations between vectors are element-wise. At test time, the standard practice is to normalize
activations using the moving average over mini-batch means µB and variance σ2

B. Batch normalization
is based on an implicit assumption that the samples in the dataset are independent and identically
distributed. However, this assumption does not hold in challenging settings like few-shot learning
and domain generalization. In this paper, we strive for batch normalization when batches are of small
size and suffer from distributions shifts between source and target domains.

Batch normalization for few-shot learning and domain generalization problems have so far been
considered separately, predominantly in a meta-learning setting. For few-shot meta-learning (Finn
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et al., 2017; Gordon et al., 2019), most existing methods rely critically on transductive batch nor-
malization, except those based on prototypes (Snell et al., 2017; Allen et al., 2019; Zhen et al.,
2020a). However, the nature of transductive learning restricts its application due to the require-
ment to sample from the test set. To address this issue, Bronskill et al. (2020) proposes TaskNorm,
which leverages other statistics from both layer and instance normalization. As a non-transductive
normalization approach, it achieves impressive performance and outperforms conventional batch
normalization (Ioffe & Szegedy, 2015). However, its performance is not always performing better
than transductive batch normalization. Meanwhile, domain generalization (Muandet et al., 2013;
Balaji et al., 2018; Li et al., 2017a;b) suffers from distribution shifts from training to test, which makes
it problematic to directly apply statistics calculated from a seen domain to test data from unseen
domains (Wang et al., 2019; Seo et al., 2019). Recent works deal with this problem by learning a
domain specific normalization (Chang et al., 2019; Seo et al., 2019) or a transferable normalization in
place of existing normalization techniques (Wang et al., 2019). We address the batch normalization
challenges for few-shot classification and domain generalization in a unified way by learning a new
batch normalization under the meta-learning setting.

We propose MetaNorm, a simple but effective meta-learning normalization. We leverage the meta-
learning setting and learn to infer normalization statistics from data, instead of applying direct
calculations or blending various normalization statistics. MetaNorm is a general batch normalization
approach, which is model-agnostic and serves as a plug-and-play module that can be seamlessly
embedded into existing meta-learning approaches. We demonstrate its effectiveness for few-shot
classification and domain generalization, where it learns task-specific statistics from limited data
samples in the support set for each few-shot task; and it can also learn to generate domain-specific
statistics from the seen source domains for unseen target domains. We verify the effectiveness
of MetaNorm by extensive evaluation on few-shot classification and domain generalization tasks.
For few-shot classification, we experiment with representative gradient, metric and model-based
meta-learning approaches on fourteen benchmark datasets. For domain generalization, we evaluate
the model on three widely-used benchmarks for cross-domain visual object classification. Last
but not least, we introduce the challenging new task of few-shot domain generalization, which
combines the challenges of both few-shot learning and domain generalization. The experimental
results demonstrate the benefit of MetaNorm compared to existing batch normalizations.

2 RELATED WORKS

Transductive Batch Normalization For conventional batch normalization under supervised set-
tings, i.i.d. assumptions about the data distribution imply that estimating moments from the training
set will provide appropriate normalization statistics for test data. However, in the meta-learning
scenario data points are only assumed to be i.i.d. within a specific task. Therefore, it is critical to
select the moments when batch normalization is applied to support and query set data points during
meta training and meta testing. Hence, in the recent meta-learning literature the running moments
are no longer used for normalization at meta-test time, but instead replaced with support/query set
statistics. These statistics are used for normalization, both at meta-train and meta-test time. This
approach is referred to as transductive batch normalization (TBN) (Bronskill et al., 2020). Competit-
ive meta-learning methods (e.g., Gordon et al., 2019; Finn et al., 2017; Zhen et al., 2020b) rely on
TBN to achieve state-of-the-art performance. However, there are two critical problems with TBN.
First, TBN is sensitive to the distribution over the query set used during meta-training, and as such is
less generally applicable than non-transductive learning. Second, TBN uses extra information for
multiple test samples, compared to non-transductive batch normalization at prediction time, which
could be problematic as we are not guaranteed to have a set of test samples available during training
in practical applications. In contrast, MetaNorm is a non-transductive normalization. It generates
statistics from the support set only, without relying on query samples, making it more practical.

Meta Batch Normalization To address the problem of transductive batch normalization and improve
conventional batch normalization, meta-batch normalization (MetaBN) was introduced (Triantafillou
et al., 2020; Bronskill et al., 2020). In MetaBN, the support set alone is used to compute the
normalization statistics for both the support and query sets at both meta-training and meta-test time.
MetaBN is non-transductive since the normalization of a test input does not depend on other test
inputs in the query set. However, Bronskill et al. (2020) observe that MetaBN performs less well for
small-sized support sets. This leads to high variance in moment estimates, which is similar to the
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difficulty of using batch normalization with small-batch training (Wu & He, 2018). To address this
issue, Bronskill et al. (2020) proposed TaskNorm, which learns to combine statistics from both layer
normalization and instance normalization, with a lending parameter to be learned at meta-train time.
As a non-transductive normalization, TaskNorm achieves impressive performance, outperforming
conventional batch normalization. However, it can not always perform better than transductive
batch normalization. TaskNorm indicates non-transductive batch normalization estimates proper
normalization statistics by involving learning in the normalization process. We also propose to
learn batch normalization within the meta-learning framework, but instead of employing a learnable
combination of existing normalization statistics, we directly learn to infer statistics from data. At
meta-train time, the model learns to acquire the ability to generate statistics only from the support set
and at meta-test time we directly apply the model to infer statistics for new tasks.

Batch Normalization for Domain Adaptation and Domain Generalization Domain adaption
suffers from a distribution shift between source and target domains, which makes it sub-optimal
to directly apply batch normalization (Bilen & Vedaldi, 2017). Li et al. (2016) proposed adaptive
batch normalization to increase the generalization ability of a deep neural network. By modulating
the statistical information of all batch normalization layers in the neural network, it achieves deep
adaptation effects for domain-adaptive tasks. Nado et al. (2020) noted the possibility of accessing
small unlabeled batches of the shifted data just before prediction time. To improve model accuracy
and calibration under covariate shift, they proposed prediction-time batch normalization. Since the
activation statistics obtained during training do not reflect statistics of the test distribution, when
testing in an out-of-distribution environment, Schneider et al. (2020) proposed estimating the batch
statistics on the corrupted images. Kaku et al. (2020) demonstrated that standard non-adaptive feature
normalization fails to correctly normalize the features of convolutional neural networks on held-out
data where extraneous variables take values not seen during training. Learning domain-specific
batch normalization has been explored (Chang et al., 2019; Wang et al., 2019). Wang et al. (2019)
introduced transferable normalization, TransNorm, which normalizes the feature representations
from source and target domain separately using domain-specific statistics. Along a similar vein,
Chang et al. (2019) proposed a domain-specific batch normalization layer, which consists of two
branches, each in charge of a single domain exclusively. The hope is that, through the normalization,
the feature representation will become domain invariant. Nevertheless, these normalization methods
are specifically designed for domain adaptation tasks, where data from target domains are available,
though often unlabelled. This makes them inapplicable to domain generalization tasks where data
from target domains are inaccessible at training time. Seo et al. (2019) proposed learning to optimize
domain specific normalization for domain generalization tasks. Under the meta-learning settings, a
mixture of different normalization techniques is optimized for each domain, where the mixture weights
are learned specifically for different domains. Instead of combining different normalization statistics,
MetaNorm learns from data to generate adaptive statistics specific to each domain. Moreover, we
introduce an even more challenging setting, i.e., few-shot domain generalization, which combines the
challenges of few-shot classification and domain generalization.

Conditional Batch Normalization de Vries et al. (2017) proposed conditional batch normalization
to modulate visual processing by predicting the scalars γ and β of the batch normalization conditioned
on the language from an early processing stage. Conditional batch normalization has also been applied
to align different data distributions for domain adaptation (Li et al., 2016). Oreshkin et al. (2018)
applies conditional batch normalization to metric-based models for the few-shot classification task.
Tseng et al. (2020) proposed a learning-to-learn method to optimize the hyper-parameters of the
feature-wise transformation layers by conditional batch normalization for cross-domain classification.
Unlike conditional batch normalization, we use extra data (the query set) to generate normalization
statistics under the meta-learning setting, rather than the scalars.

3 METHODOLOGY

We view finding appropriate statistics for batch normalization as a density estimation problem. We
need to infer the distribution parameters, such as, µ and σ when a Gaussian distribution is presumed,
as in existing batch normalization approaches. The motivation behind MetaNorm is to leverage the
meta-learning setting and learn from data to generate adaptive normalization statistics. MetaNorm is
generic and model-agnostic, addressing batch normalization in a unified way for different settings by
minimizing the KL divergence, which is a common metric to measure the difference between two

3



Published as a conference paper at ICLR 2021

probability distributions:
DKL

[
qφ(m)|pθ(m)

]
, (3)

where m is a random variable that represents the distribution of activations, pθ(m) and qφ(m)
are defined as Gaussian distributions with different implementations depending on the task of
interest, e.g., few-shot classification or domain generalization. We leverage the amortized inference
technique (Kingma & Welling, 2013) and implement this by inference networks. To be more specific,
for each individual channel in each ` convolutional layer, we infer the moments µ and σ by f `µ(·)
and f `σ(·), respectively, which are realized as multi-layer perceptrons and we call hypernetworks (Ha
et al., 2016). Hypernetworks use one network to generate the weights for another network. Our
hypernetworks generate the statistics from data by using amortization techniques.

We simply incorporate theDKL term into the optimization of the existing model with the cross-entropy
loss LCE, resulting in a general loss function as follows:

L = LCE − λDKL

[
qφ(m)|pθ(m)

]
(4)

where λ > 0 is a regularization hyper-parameter.

MetaNorm for Few-Shot Classification In the few-shot classification scenario, we define the
C-way K-shot problem using the episodic formulation from (Vinyals et al., 2016). Each task Ti is a
classification problem sampled from a task distribution p(T ). The tasks are divided into a training
meta-set T tr, validation meta-set T val, and test meta-set T test, each with a disjoint set of target classes
(i.e., a class seen during testing is not seen during training). The validation meta-set is used for model
selection, and the testing meta-set is used only for final evaluation. Each task instance Ti ∼ p (T ) is
composed of a support set S and a query set Q, and only contains N classes randomly selected from
the appropriate meta-set.

We aim to infer statistics from the support set that better match the query set. Therefore, we adopt a
straightforward criterion for the inference:

DKL

[
qφ(m|S)||pθ(m|Q)

]
, (5)

where we define q(m|S)=N (µS , σS) and p(m|Q)=N (µQ, σQ), which are the distributions inferred
from the support and query sets in a few-shot learning task. By minimizing the KL term in conjunction
with the prime objective of a meta-learning algorithm, we are able to find the appropriate statistics
from limited data samples for batch normalization. The KL term adheres to a closed form, which
makes it easy to implement and computationally efficient. The p(m|Q) can be estimated by directly
calculating statistics using the query set, which however performs inferior to inference by optimization.
We note the inference from the query set only happens during meta-training time and we use the
learned inference network to generate normalization statistics at meta-test time for a test task using
its support set.

To infer µS , we deploy an inference function f `µ(·) that takes activations of a sample as input, and the
outputs from all samples are then averaged as the final µS :

µS =
1

|S|

|S|∑
i=1

f `µ(ai), (6)

where ai ∈ Rw×h is the flattened vector of the activation map of the i-th sample in the support set, w
is the width of activations, and h is the height of the activation map. To infer σS , we use the obtained
µS and deploy a separate inference function f `σ(·):

σS =
1

|S|

|S|∑
i=1

f `σ
(
(ai − µS)2

)
. (7)

It is worth mentioning that we actually use each sample to infer the statistics and take the average of
all inferred statistics as the final normalization statistics. This enables us to fully exploit the samples
to generate more accurate statistics.

Note that the inference functions f `µ(·) and f `σ(·) are shared by different channels in the same layer
and we will learn L pairs of those functions if we have L convolutional layers in the meta-learning
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model. They are parameterized by feed-forward multiple layer perception networks, which we
call hypernetworks. Using these hypernetworks, we generate support moments (µS , σS) and query
moments (µQ, σQ) from the support and query sets, which are used for calculating the KL term in
Eq. (5) for optimization during meta-training time. At meta-training time, we apply the statistics
inferred from the support set for normalization of both support and query samples:

a′ = γ

(
a− µS√
σ2
S + ε

)
+ β, (8)

where γ and β are jointly learned with parameters of the hypernetworks at meta-training time and
directly applied at meta-test time, as in conventional batch normalization. At meta-test time, given a
test task, we use hypernetworks that take the support set as input to generate normalization statistics
directly used for the query set.

MetaNorm for Domain Generalization In the domain generalization scenario, we adopt the meta-
learning setting from (Li et al., 2018a; Balaji et al., 2018; Du et al., 2020), and divide a dataset into
the source domains used for training and the target domains held out for testing. At meta-training
time, data in the source domains is episodically divided into sets of meta-source Ds and meta-target
Dt domains.

In a similar vein to few-shot classification, we would like to learn to acquire the ability to generate
domain-specific statistics from a single example, which can then be applied to unseen domains. We
assume we can generate reasonable normalization statistics by using only one sample from the new
domain, because, intuitively, a single sample already carries sufficient domain information. We use a
single example and all the examples in the same domain to infer the domain-specific statistics and
minimize the KL term:

DKL

[
qφ(m|ai)||pθ(m|Ds\ai)

]
, (9)

where we define q(m|ai)=N (µa, σa), and p(m|Ds\ai)=N (µD, σD), which are implemented in
a similar way as Eq. (6) and Eq. (7), and ai is an example from its own domain Ds. In both the
meta-source and meta-target domains, each example is normalized using the statistics generated by
itself, like in Eq. (8), in which we make γ and β shared across all domains. The minimization of the
KL term in Eq. (9) is to encourage the model to generate domain-specific statistics for normalization
from only a single example. This enables us to generate domain-specific statistics on target domains
that are never seen at meta-training time.

In practice, we take the sum of all samples in all source domains as follows:

|Ds|∑
i

J∑
j

DKL

[
qφ(m|ai)||pθ(m|Dsj\ai)

]
, (10)

where Dsj denotes the j-th of J meta-source domains. The inference networks are first at meta-
training time learned and then directly used as examples from the target domain at meta-test time.
Note that on the meta-target domain we do not apply the KL term; instead, we simply rely on each
example to generate its statistics for normalization.

MetaNorm for Few-Shot Domain Generalization We introduce an even more challenging setting,
i.e., few-shot domain generalization, that combines the challenges of both few-shot classification
and domain generalization. Specifically, we aim to learn a model from a set of classification tasks,
each of which has only a few samples in a support set for training and test the model on tasks in a
query set, which are in a different domain from the support set. Like few-shot classification, the label
space is not shared between training and testing. Cross-domain few-shot learning has been explored
recently by Tseng et al. (2020) and Guo et al. (2020). However, the setting of our few-shot domain
generalization is different and considered to be more challenging, as the support and query set are
from different domains in the meta-test stage and the target domain is also unseen throughout the
training stage. An example for the few-shot domain generalization setting is provided in Figure 1.

We divide a dataset into the source domains S used for training and the target domains T held out
for testing. During training time, data in the source domains S is episodically divided into sets of
meta-train Ds and meta-test Dt domains. We sample C-way k-shot data as the support set from each
meta-source domain Ds, where k is the number of labelled examples for each of the C classes. We
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Figure 1: Illustration of the novel few-shot domain generalization scenario using the 5-way,
1-shot setting. The training set in the upper box contains the meta-source domains Ds and the
meta-target domain Dt, which are from different domains. Each training task contains meta-source
domains with five different classes and one example of each meta-source domain, and more than four
examples for evaluation in the meta-target domain. The test set is defined in the same way but with
all source domains S covering classes not present in any of the datasets in the training set, and more
than four examples are used for evaluation in the target domain T .

sample C classes from the meta-test Dt domain as the query set. At test time, we sample C-way
k-shot data as the support set from each of the source domains S . The model learned at meta-training
time is then fine-tuned on few-shot tasks samples from the source domains and tested on the target
domain T . To learn the normalization statistics, we minimize the following KL term:

|Ds|∑
i

DKL[qφ(m|ai)||pθ(m|Ds)], (11)

where ai is the activation associated with each sample from the meta-source domain Ds. Likewise,
q(m|ai) and p(m|Ds) are also defined as factorized Gaussian distributions. We also adopt γ and β,
which are shared across tasks and jointly learned. MetaNorm learns to acquire the ability to generate
proper statistics for itself, and applies it to the samples in the meta-target domain.

4 EXPERIMENTAL RESULTS

We conduct an extensive set of experiments on a total of 17 datasets containing more than 15
million images. We use three representative approaches to meta-learning as our base models, i.e.,
MAML (Finn et al., 2017), ProtoNets (Snell et al., 2017), and VERSA (Gordon et al., 2019), which
can verify our MetaNorm is generic, flexible and model-agnostic, making it a simple plug-and-play
module that is seamlessly embedded into existing meta-learning approaches. We further compare
different normalization methods: transductive batch normalization (TBN), “example” that denotes
testing with one example at a time by using TBN, “class” that denotes testing with one class at a time
by using TBN, w/o BN which is not using batch normalization, CBN which is using conventional batch
normalization, RN (Nichol et al., 2018), MetaBN (Bronskill et al., 2020), TaskNorm-L (Bronskill
et al., 2020), and TaskNorm-I (Bronskill et al., 2020). All details about datasets and implementation
settings are provided in the appendix. More experimental results, including convergence analysis, are
also provided in the appendix. Our code will be publicly released. 1

Effect of KL Term We first conduct ablation studies that measure the effectiveness of MetaNorm.
The key of MetaNorm is the introduced KL term for learning to learn statistics. We test the per-
formance of MetaNorm without the KL term by directly using the statistics generated from data.

1https://github.com/YDU-AI/MetaNorm.
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Table 1: Effect of KL Term in MetaNorm for few-shot classification with MAML (Finn & Levine,
2018) on miniImageNet and domain generalization on PACS with ResNet-18. More few-shot
classification results with ProtoNets (Snell et al., 2017) and VERSA (Gordon et al., 2019), as well
as domain generalization results on Office-Home are provided in the appendix. Best performing
methods and any other runs within the 95% confidence margin in bold. The KL term is crucial.

Few-shot classification Domain generalization
MetaNorm 5-way, 1-shot 5-way, 5-shot Photo Art Cartoon Sketch Mean
w/o KL 34.3 ± 1.5 50.7 ± 0.8 88.96 71.25 65.37 69.28 73.72
w/ KL 46.8 ± 1.6 60.1 ± 0.8 95.99 85.01 78.63 83.17 85.70

Figure 2: Impact of Target Set Size. The performance increases for larger target sets and plateaus
at around 125 for few-shot classification on miniImageNet and around 256 for domain generalization
on PACS. TBN here is based on VERSA. MetaNorm generates proper normalization statistics with a
reasonable batch size.

In this case, we also use the hypernetworks to generate the moments, µ and σ by simply removing
the KL term in the objective function. In Table 1 we present results for few-shot classification on
miniImageNet (Vinyals et al., 2016) and for domain generalization on PACS (Li et al., 2017a). The
performance of MetaNorm without KL degrades significantly. This is expected, as without the
KL term the generation process of normalization statistics lacks direct supervision from the target
distribution, resulting in improper statistics.

Impact of Target Set Size The other key parameter in MetaNorm is the size of the target set; that
is, the number |Q| of samples in the query set (in few-shot classification) and the number |Ds| of
samples in each domain (in domain generalization). This parameter is important when learning
normalization statistics because we use the statistics generated by the target set as the ‘ground truth’.
We evaluate its impact on the performance of MetaNorm in Figure 2. The experimental results
show that TBN is not affected by the target size, both in the 5-way, 1-shot and 5 way, 5-shot tasks.
MetaNorm performance rises as the size of the target set increases and plateaus at a reasonable size.
In the few-shot setting, the performance reaches its peak at a size of about 125, which is slightly larger
than the standard size of 75, while in the domain generalization setting, the performance plateaus at a
size of about 128. This demonstrates that we are able to generate proper statistics with the mini-batch
gradient descent optimization. In scenarios demanding a very small target set size, we could leverage
image synthesis techniques to generate more samples for the targets sets.

Sensitivity to Algorithm We evaluate MetaNorm using the MAML (Finn et al., 2017), ProtoNets
(Snell et al., 2017) and VERSA (Gordon et al., 2019) algorithms, which are representative gradient,
metric and model based meta-learning approaches for few-shot classification. These experiments
are conducted on the Omniglot and miniImageNet datasets under different settings. The comparison
results on miniImageNet are summarized in Table 2 and the results on Omniglot are provided in the
appendix. For all three meta-learning approaches under all settings, MetaNorm consistently achieves
comparable performance both to the non-transductive and transductive normalization methods. Being
non-transductive, TaskNorm can achieve impressive performance on all the tasks, but its perform-
ance is not always better than transductive batch normalization. MetaNorm achieves comparable
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Table 2: Sensitivity to Algorithm. Few-shot results on miniImageNet using different algorithms.
Results on Omniglot are provided in the appendix. Best performing methods and any other runs within
the 95% confidence margin in bold. Transductive results indicated above dashed line. MetaNorm is a
consistent top-performer, regardless of the meta-learning algorithm.

ProtoNets† MAML† VERSA†

5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot

TBN 45.9 ± 0.6 65.5 ± 0.9 45.5 ±1.8 59.7 ± 0.9 53.4 ±1.8 67.3 ±0.9

example 43.9 ± 1.9 60.1 ± 0.8 26.9 ± 1.5 30.3 ± 0.7 44.1 ± 1.7 60.3 ± 0.7

class 43.1 ± 1.8 59.8 ± 0.8 26.9 ± 1.5 27.2 ± 0.6 43.8 ± 1.8 59.7 ± 0.6

w/o BN 44.1 ± 0.5 60.1 ± 0.6 34.7 ± 1.5 51.3 ± 0.8 48.1 ± 1.5 63.8 ± 0.6

CBN (Ioffe & Szegedy, 2015) 47.8 ± 0.6 66.7 ± 0.5 20.1 ± 0.0 20.2 ± 0.2 45.7 ± 1.4 60.7 ± 0.8

RN (Nichol et al., 2018) 39.7 ± 0.5 63.1 ± 0.5 40.7 ± 1.7 57.6 ± 0.9 - -
MetaBN (Bronskill et al., 2020) 42.6 ± 0.6 64.6 ± 0.5 41.6 ± 1.6 58.6 ± 0.9 50.1 ± 1.7 65.8 ± 0.9

TaskNorm-L (Bronskill et al., 2020) 47.5 ± 0.6 65.3 ± 0.5 42.0 ± 1.7 58.1 ± 0.9 52.1 ± 1.6 66.1 ± 0.7

TaskNorm-I (Bronskill et al., 2020) 43.2 ± 0.6 63.9 ± 0.5 42.4 ± 1.7 58.7 ± 0.9 52.9 ± 1.7 66.5 ±0.8

MetaNorm (|Q| = 75) 47.3 ± 0.6 65.4 ± 0.5 44.7 ± 1.5 59.6 ± 0.8 52.7 ± 1.6 67.5 ± 0.8
MetaNorm (|Q| = 125) 48.1 ± 0.6 65.9 ± 0.9 46.8 ± 1.6 60.1 ± 0.8 53.7 ± 1.6 68.1 ± 0.8

† Results for MAML and ProtoNets (except w/o BN) provided by (Bronskill et al., 2020), and VERSA with TBN provided by (Gordon et al., 2019). All
other results based on our re-implementations.

performance to transductive batch normalization, especially under the 5-way-1-shot setting, which is
challenging since only a few examples are available to generate statistics. Notice that, MetaNorm
performs well with the standard query set size |Q| of 75 (15 per category). It is slightly better than
non-transductive TaskNorm and comparable with TBN. MetaNorm achieves its best performance
with a query size |Q| of 125 (25 per category), only slightly larger than the standard size of 75. This
demonstrates the benefit of leveraging meta-learning by MetaNorm for batch normalization. We
conclude that MetaNorm is general and serves as a plug-and-play module for existing meta-learning
models to improve their performance.

Table 3: Sensitivity to Dataset. Few-shot
classification on Meta-Dataset using Pro-
toNets. MetaNorm performs best overall.

Wins Rank

IN – 10.61
CBN – 9.11
LN 3 8.19
TaskNorm-r – 7.88
BRN 1 6.23
TBN 2 4.81
MetaBN 4 4.78
RN 3 4.73
TaskNorm-L 4 4.19
TaskNorm-I 6 3.07
MetaNorm 10 2.35

Sensitivity to Dataset We evaluate MetaNorm on
a demanding few-shot classification challenge called
Meta-Dataset (Triantafillou et al., 2020), which is com-
posed of thirteen image classification datasets (eight
for training, five testing). To compare with previous
work, we perform experiments with ProtoNets and re-
port the results in Table 3. All thirteen per-dataset
results can be found in the appendix. MetaNorm
achieves high performance in terms of average rank,
with highest accuracy on eight of the thirteen datasets.
MetaNorm outperforms transductive batch normaliza-
tion on eleven datasets. It achieves comparable perform-
ance with transductive batch normalization on Omni-
glot and MNIST, which are relatively less challenging.
Moreover, MetaNorm performs better than TaskNorm
on seven of the thirteen datasets. We conclude that
MetaNorm is effective, outperforming alternative nor-
malizations for most datasets.

Sensitivity to Domains For this experiment we adopt two widely-used benchmarks for domain
generalization of visual object recognition, i.e., PACS (Li et al., 2017a) and Office-Home (Ven-
kateswara et al., 2017). Detailed descriptions on the experimental settings and implementations are
provided in the appendix. For fair comparison with prior methods (Balaji et al., 2018; Li et al., 2018b;
Seo et al., 2019), we employ ResNet-18 as the backbone network in all experiments. As shown in
Table 4, MetaNorm achieves the best performance on PACS and Office-Home in terms of average
accuracy. On PACS, MetaNorm consistently outperforms other normalization approaches including
domain-specific normalization (Seo et al., 2019), on all four domains. It is worth mentioning that
the baseline normalization uses the statistics from the source domains for the batch normalization
of the target domain. As expected, the baseline method produces relatively poor performance on
most domains, since the source domains cannot provide proper statistics for target domains due to
the distribution shift. We have also done an experiment using standard batch normalization. In the
training stage, we compute the ground truth statistics using all the test data on the meta-target domain
Dt instead of using inferred statistics p(m|Ds\ai). MetaNorm is still better on most domains and on
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Table 4: Sensitivity to Domains. Performance comparison on domain generalization. MetaNorm
consistently achieves the best performance among all normalization methods.

PACS Office-Home
Photo Art Cartoon Sketch Mean Art Clipart Product Real-World Mean

Baseline 95.87 78.47 70.41 70.68 78.86 58.71 44.20 71.75 73.19 61.96
IBN (Pan et al., 2018) 92.04 75.29 72.95 77.42 79.43 55.41 44.82 68.28 71.95 60.09
DSBN (Chang et al., 2019) 95.51 78.61 66.17 70.15 77.61 59.04 45.02 72.67 71.98 62.18
SN (Luo et al., 2018a) 93.47 82.50 76.80 80.77 83.38 54.10 44.97 64.54 71.40 58.75
DSON (Seo et al., 2019) 95.87 84.67 77.65 82.23 85.11 59.37 45.70 71.84 74.68 62.90
Ground truth statistics 95.78 85.17 78.15 82.91 85.50 59.35 46.12 72.77 75.08 63.33
MetaNorm 95.99 85.01 78.63 83.17 85.70 59.77 45.98 73.13 75.29 63.55

average. This is reasonable because ground truth statistics from the test data do not necessarily reflect
the true data distribution. The experimental results demonstrate MetaNorm can generate reasonable
normalization statistics from only one sample in its domain. We conclude that MetaNorm is effective
for domain generalization.

Few-Shot Domain Generalization In our final experiment, we adopt the DomainNet dataset (Peng
et al., 2019) and introduce a new, more challenging setting to evaluate the performance for few-shot
domain generalization. Detailed descriptions on the dataset and experimental settings are provided
in the appendix. We conduct the experiments with the MAML and ProtoNets algorithms under
both 5-way 1-shot and 5-way 5-shot settings, and the results are reported in Table 5. We implement
transductive batch normalization, MetaBN and the variants of TaskNorm for direct comparison.
Under both settings, our MetaNorm produces the best performance and surpasses the transductive
batch normalization by large margins of up to 4.0% on the challenging 5-way 1-shot setting with
MAML. MetaNorm also achieves better results than the non-transductive TaskNorm approaches. At
the same time, with ProtoNet our MetaNorm again consistently delivers the best performance and
surpasses both transductive and non-transductive normalizations, The performance on the challenging
few-shot domain generalization scenario with different meta-learning algorithms again demonstrates
the effectiveness of MetaNorm in handling the challenges of batch normalization for small batches
and across domains.

Table 5: Few-Shot Domain Generalization. Comparison with different normalizations using
MAML and ProtoNets on the Few-shot DomainNet dataset. Best performing methods and any
other runs within the 95% confidence margin denoted in bold. Reported results use “Painting” as the
target domain, all based on our implementations. MetaNorm consistently achieves top performance.

MAML ProtoNets

5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot

TBN 28.7 ± 1.8 49.3 ± 0.8 27.9 ± 1.8 47.1 ± 0.8

w/o BN 23.5 ± 1.7 45.4 ± 0.7 23.8 ± 1.8 45.9 ± 0.7

CBN 20.0 ± 0.0 20.1 ± 0.2 28.4 ± 1.8 47.9 ± 0.7

MetaBN 24.7 ± 1.6 46.1 ± 0.8 25.1 ± 1.8 46.1 ± 0.8

TaskNorm-L 26.9 ± 1.7 47.4 ± 0.8 29.5 ± 1.6 48.3 ± 0.8

TaskNorm-I 27.5 ± 1.6 48.8 ± 0.6 26.8 ± 1.8 46.9 ± 0.7

MetaNorm 32.7 ± 1.7 51.9 ± 0.9 30.7 ± 1.8 49.1 ± 0.9

5 CONCLUSION

In this paper we present MetaNorm, a meta-learning based batch normalization. MetaNorm tackles
the challenging scenarios where the batch size is too small to produce sufficient statistics or when
training statistics are not directly applicable to test data due to a domain shift. MetaNorm learns to
learn adaptive statistics that are specific to tasks or domains. It is generic and model-agnostic, which
enables it to be used with various meta-learning algorithms for different applications. We evaluate
MetaNorm on two well-known existing tasks, i.e., few-shot classification and domain generalization,
and we also introduce the challenging evaluation scenario of few-shot domain generalization that
addresses the small batch and distribution shift problems simultaneously. An extensive evaluation on
17 datasets reveals that MetaNorm consistently achieves results that are better, or at least competitive,
compared to other normalization approaches, verifying its effectiveness as a new meta-learning based
batch normalization approach.
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A ALGORITHMS DESCRIPTIONS

In this Appendix we provide the detailed MetaNorm algorithm descriptions to conduct batch normal-
ization for few-shot classification (Algorithm 1), domain generalization (Algorithm 2) and few-shot
domain generalization (Algorithm 3). The dataflow of the implementation is shown in Figure 3.

Algorithm 1 MetaNorm for Few-Shot Classification

Meta-train: Input values of a over support set aS,i and query set aQ,i;
γ, β← Initialize parameters.

µS = 1
|S|

|S|∑
i=1

f `µ(aS,i); µQ = 1
|Q|

|Q|∑
i=1

f `µ(aQ,i);

σS = 1
|S|

|S|∑
i=1

f `σ
(
(aS,i − µS)2

)
; σQ = 1

|Q|

|Q|∑
i=1

f `σ
(
(aQ,i − µQ)2

)
;

a′S,i = γ

(
aS,i−µS√
σ2
S
+ε

)
+ β; a′Q,i = γ

(
aQ,i−µS√

σ2
S
+ε

)
+ β;

LKL = DKL

[
N (µS , σS)||N (µQ, σQ)

]
return a′S,i = MetaNorm(aS,i); a′Q,i = MetaNorm(aQ,i); LKL

Meta-test: Input values of a over support set aS,i and query set aQ,i;

µS = 1
|S|

|S|∑
i=1

f `µ(aS,i);

σS = 1
|S|

|S|∑
i=1

f `σ
(
(aS,i − µS)2

)
;

a′Q,i = γ

(
aQ,i−µS√

σ2
S
+ε

)
+ β;

return a′Q,i = MetaNorm(aQ,i)

Algorithm 2 MetaNorm for Domain Generalization

Train: Input values of a over meta-source domain aS,i and meta-target domain aT,i;
γ, β← Initialize parameters.

µS,i = f `µ(aS,i); µS = 1
|S|

|S|∑
i=1

f `µ(aS,i);

σS,i = f `σ
(
(aS,i − µS,i)2

)
; σS = 1

|S|

|S|∑
i=1

f `σ
(
(aS,i − µS)2

)
;

µT,i = f `µ(aT,i); σT,i = f `σ
(
(aT,i − µT,i)2

)
;

a′T,i = γ

(
aT,i−µT,i√
σ2
T,i

+ε

)
+ β;

LKL = DKL

[
N (µS,〉, σS,〉)||N (µS , σS)

]
return a′T,i = MetaNorm(aT,i); LKL

Test: Input values of a over test domain ai;
µi = f `µ(ai);
σi = f `σ

(
(ai − µi)2

)
;

a′i = γ

(
ai−µi√
σ2
i +ε

)
+ β;

return a′i = MetaNorm(ai)

B DATASETS

We conduct an extensive set of experiments on a total of 17 datasets containing more than 15 million
images. All dataset details and settings are provided in this Appendix.

miniImageNet. The miniImageNet is originally proposed in (Vinyals et al., 2016) and has been
widely used for evaluating few-shot learning algorithms. It consists of 60,000 color images from 100
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Algorithm 3 MetaNorm for Few-Shot Domain Generalization

Meta-train: Input values of a over meta-source domain set aS,i and meta-target domain set aQ,i;
γ, β← Initialize parameters.

µS = 1
|S|

|S|∑
i=1

f `µ(aS,i); µQ = 1
|Q|

|Q|∑
i=1

f `µ(aQ,i);

σS = 1
|S|

|S|∑
i=1

f `σ
(
(aS,i − µS)2

)
; σQ = 1

|Q|

|Q|∑
i=1

f `σ
(
(aQ,i − µQ)2

)
;

a′S,i = γ

(
aS,i−µS√
σ2
S
+ε

)
+ β; a′Q,i = γ

(
aQ,i−µS√

σ2
S
+ε

)
+ β;

LKL = DKL

[
N (µS , σS)||N (µQ, σQ)

]
return a′S,i = MetaNorm(aS,i); a′Q,i = MetaNorm(aQ,i); LKL

Meta-test: Input values of a over support set aS,i and query set aQ,i;

µS = 1
|S|

|S|∑
i=1

f `µ(aS,i);

σS = 1
|S|

|S|∑
i=1

f `σ
(
(aS,i − µS)2

)
;

a′Q,i = γ

(
aQ,i−µS√

σ2
S
+ε

)
+ β;

return a′Q,i = MetaNorm(aQ,i)
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Figure 3: The dataflow of the implementation for few-shot learning. “N” indicates support size,
“M” indicates query size, “C” indicates the channel of activations, “W” indicates the width of
activations, “H” indicates the height of activations.

classes with 600 examples per class. The images have dimensions of 84×84 pixels. We follow the
train/val/ test split introduced in (Ravi & Larochelle, 2017), which uses 64 classes for meta-training,
16 classes for meta-validation, and the remaining 20 classes for meta-testing.

Omniglot. Omniglot (Lake et al., 2015) is a few-shot learning dataset consisting of 1,623 handwritten
characters (each with 20 instances) derived from 50 alphabets. We follow the pre-processing and
training procedure defined in (Vinyals et al., 2016). We resize images to 28×28. The training,
validation and test sets consist of a random split of 1,100, 100, and 423 characters.

PACS (Li et al., 2017a) contains a total of 9,991 images of the size 224×224 from 4 domains,
i.e., photo, art-painting, cartoon and sketch, which demonstrate huge domain gaps. Images are
from 7 object classes, i.e., dog, elephant, giraffe, guitar, horse, house, and person. We follow the
“leave-one-out” protocol in (Li et al., 2017a; 2018b; Carlucci et al., 2019), where the model is trained
on any three of the four domains, which we call source domains, and tested on the last (target) domain.
The train-val-test splits are the same as in (Li et al., 2017a).

Office-Home (Venkateswara et al., 2017) also has 4 domains: art, product, clipart and real-world.
For each domain, the dataset contains images of 65 object categories found typically in office and
home settings. We use the same experimental protocol as for PACS.

DomainNet (Peng et al., 2019) contains 6 distinct domains, i.e., clipart, infograph, painting, quick-
draw, real, and sketch for 345 categories. The categories are from 24 divisions, which are: Furniture,
Mammal, Tool, Cloth, Electricity, Building, Office, Human Baby, Road Transportation, Food, Nature,
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Cold Blooded, Music, Fruit, Sport, Tree, Bird, Vegetable, Shape, Kitchen, Water Transportation, Sky
Transportation, Insect, Others.

Meta-Dataset (Triantafillou et al., 2020) is composed of ten (eight train, two test) existing image clas-
sification datasets. These are: ILSVRC-2012 (ImageNet, (Russakovsky et al., 2015)), Omniglot (Lake
et al., 2015), Aircraft (Maji et al., 2013), CUB-200-2011 (Birds, (Wah et al., 2011)), Describable
Textures (Cimpoi et al., 2014), Quick Draw, Fungi, VGG Flowr (Nilsback & Zisserman, 2008), Traffic
Signs (Houben et al., 2013) and MSCOCO (Lin et al., 2014). Each episode generated in Meta-Dataset
uses classes from a single dataset. Two of these datasets, Traffic Signs and MSCOCO, are fully
reserved for evaluation, it means no classes from these sets participate in the training set. Except
for Traffic Signs and MSCOCO, the remaining datasets contribute some classes to each of training,
validation and test splits of classes. There are about 14 million images in total in Meta-Dataset.

C FEW-SHOT DOMAINNET

To construct Few-shot DomainNet, we chose 200 random classes from DomainNet and used 140 for
training, 20 for validation and the last 40 for testing. Note that the last 40 object classes were never
seen during training. The dataset consists of 200,000 colour images of size 84×84 with each of the
200 classes having 1,000 examples. Please see Table 6, Table 7 and Table 8 for training, validation,
and test classes.

Table 6: Training classes of Few-shot DomainNet

Furniture: bathtub, ceiling fan, couch, fence, hot tub, mailbox

Mammal: tiger, rhinoceros, bat, cat, lion, panda

Tool: anvil, basket, broom, sword, pliers

Cloth: belt, camouflage, eyeglasses, crown, bowtie

Electricity: calculator, computer, camera, cooler, dishwasher

Building: bridge, jail, pool, tent, castle

Office: alarm clock, binoculars, backpack, book, bandage

Human Body: arm, ear, face, beard, elbow, finger, brain, eye, foot, knee

Road Transportation: ambulance, bus motorbike, bicycle, train

Food: birthday cake, cookie, hot dog, peanut, sandwich, bread, donut, pizza, steak, lollipop

Nature: beach, lightning, ocean, river, sun, cloud, moon, rain, tornado

Cold Blooded: crab, frog, crocodile, lobster, fish, octopus, shark

Music: cello, guitar, saxophone, violin, clarinet, harp, trombone

Fruit: apple, banana, blackberry, blueberry, grapes, pear

Sport: baseball, baseball bat, basketball, snorkel, yoga, tennis racquet

Tree: bush, grass, cactus, tree, flower

Bird: bird, owl

Vegetable: asparagus, broccoli, carrot, mushroom, onion

Shape: circle, hexagon

Kitchen: fork, frying pan, hourglass, knife, lighter

Water Transportation: aircraft carrier, canoe, cruise ship, submarine

Sky Transportation: airplane, helicopter

Insect: ant, bee

Others: angel, cannon, dragon, mermaid, stop sign, snowman, feather
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Table 7: Validation classes of Few-shot DomainNet

Furniture: stairs, ladder

Mammal: monkey

Tool: paint can

Cloth: purse, t-shirt

Electricity: radio

Building: pond

Office: nail

Human Body: skull, tooth

Road Transportation: firetruck

Food: -

Nature: star, hurricane

Cold Blooded: sea turtle

Music: -

Fruit: strawberry

Sport: hockey stick

Tree: -

Bird: penguin

Vegetable: -

Shape: -

Kitchen: wine bottle

Water Transportation: -

Sky Transportation: -

Insect: –

Others: teddy-bear

D IMPLEMENTATION DETAILS.

In the few-shot learning task, MAML and ProtoNets use a simple CNN containing 4 convolutional
layers, each of which is a 3×3 convolution with 32 filters, followed by MetaNorm, a ReLU non-
linearity, and finally a 2×2 max-pooling. VERSA uses a CNN containing 5 convolutional layers,
each of which is a 3×3 convolution with 64 filters, followed by MetaNorm, a ReLU non-linearity,
and finally a 2×2 max-pooling. In the domain generalization task, we rely on ResNet-18 as backbone
for fair comparison with previous work. Each convolutional layer is followed by MetaNorm. The
hypernetwork is a 3-layer MLP with 128 units per layer and rectifier nonlinearities. We implemented
all models in the Tensorflow framework and tested on an NVIDIA Tesla V100. All code will be
available at: https://github.com/YDU-AI/MetaNorm.

D.1 MAML EXPERIMENTS

For MAML experiments, we used the codebase by Finn (Finn, 2017). We use the Adam optimizer
with default parameters, and a meta batch size of 4 tasks. The number of test episodes is set as 600.
The number of training iterations is 60,000. We set λ=0.001. The other hyper-parameters we use are
the default MAML parameters. No early stopping was used. We used the first-order approximation
of MAML for the experiments.
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Table 8: Test classes of Few-shot DomainNet

Furniture: teapot, toothpaste, stove, umbrella

Mammal: mouse,

Tool: bucket, paint can

Cloth: sweater, shoe, flip flops

Electricity: television, stereo, toaster, flashlight

Building: waterslide, garden

Office: map, clock, calendar, scissors

Human Body: finger, nose, toe

Road Transportation: bulldozer

Food: peanut

Nature: mountain, sun

Cold Blooded: lobster, scorpion

Music: harp

Fruit: pineapple

Sport: soccer ball, hockey stick

Tree: house plant, leaf

Bird: swan

Vegetable: string bean

Shape: squiggle

Kitchen: -

Water Transportation: -

Sky Transportation: -

Insect: –

Others: feather, snowman

D.2 PROTONETS EXPERIMENTS

For ProtoNets, we used the codebase by Fatir (Fatir, 2018). For miniImageNet, we used the following
ProtoNets options: a learning rate of 0.001, 60,000 training iterations, 200 validation episodes, 600
test episodes and λ=0.0001. We choose the units of hidden layers and λ by cross-validation. For
Meta-Dataset, we reproduce the code provided by CNAPS (Requeima et al., 2019) with TensorFlow.
We simply replace its normalization method with our MetaNorm method and add the KL term to
the final loss. We are consistent with the dataset configuration and follow the training process as
specified in (Triantafillou et al., 2020). The number of training iterations is 80,000. We use a constant
learning rate of 0.0001. We set λ=0.001. We follow TaskNorm’s (Bronskill et al., 2020) options:
they do not use feature adaptation, and allow updates pre-trained feature extractor weights during
meta-training stage.

D.3 VERSA EXPERIMENTS

For VERSA, we used the codebase by Gordon (Gordon, 2019). For the 5-way 5-shot model, we train
using the setting of 8 tasks per batch for 100,000 iterations and use a constant learning rate of 0.0001,
λ= 0.001. For the 5-way 1-shot model, we train with the setting of 8 tasks per batch for 150,000
iterations and use a constant learning rate of 0.00025, λ=0.01. We set validation episodes as 200,
and test episodes as 600. The units of hidden layers and λ were chosen by cross-validation.

18



Published as a conference paper at ICLR 2021

Table 9: Inference function f lµ(·)

Output size Layers
w × h Input flattened vector of the activation map
128 fully connected, ELU
128 fully connected, ELU
w × h fully connected to µ

Table 10: Inference function f lσ(·)

Output size Layers
w × h Input flattened vector of the activation map and µ
128 fully connected, ELU
128 fully connected, ELU
w × h fully connected to σ

E EXTRA RESULTS FOR EFFECT OF KL TERM

In this Appendix we consider extra results for the ablation on measuring the effect of the KL term.
We report results for few-shot classification on miniImageNet with ProtoNets (Snell et al., 2017)
and VERSA (Gordon et al., 2019) in Table 11. We also report domain generalization results on
Office-Home in Table 12. In all cases the KL term is crucial.

Table 11: Effect of KL Term in MetaNorm for few-shot classification on miniImageNet with
ProtoNets and VERSA. Best performing methods and any other runs within 95% confidence margin
denoted in bold.

ProtoNets VERSA
MetaNorm 5-way, 1-shot 5-way, 5-shot 5-way, 1-shot 5-way, 5-shot

w/o KL 40.1 ± 1.6 58.7 ± 0.8 48.7 ± 1.6 64.3 ± 0.8

w/ KL 48.1 ± 1.6 65.9 ± 0.9 53.7 ± 1.6 68.1 ± 0.8

Table 12: Effect of KL Term in MetaNorm for domain generalization on Office-Home.

Office-Home

MetaNorm Art Clipart Product Real-World Mean

w/o KL 51.25 39.27 69.75 68.19 57.12
w/ KL 59.77 45.98 73.13 75.29 63.55

F SENSITIVITY TO ALGORITHM ON OMNIGLOT

The experiments on Omniglot for few-shot classification under the meta-learning settings of MAML,
VERSA and ProtoNets are reported in Tables 13, 14 and 15. MetaNorm consistently outperforms
both transductive and non-transductive normalization approaches.

G SENSITIVITY TO DATASET

The complete set of results for each of the thirteen datasets in Meta-Dataset are provided in Table 16.
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Table 13: Sensitivity to Algorithm. Few-shot results on Omniglot using MAML. Best performing
methods and any other runs within the 95% confidence margin in bold. Transductive results indicated
above dashed line.

Omniglot†

5-way, 1-shot 5-way, 5-shot 20-way, 1-shot 20-way, 5-shot

TBN 98.4 ± 0.7 99.2 ± 0.2 90.9 ± 0.5 96.6 ± 0.2
example 21.6 ± 1.3 22.0 ± 0.5 3.7 ± 0.2 5.5 ± 0.2
class 21.6 ± 1.3 23.2 ± 0.5 3.7 ± 0.2 14.5 ± 0.3
w/o BN 92.6 ± 0.9 90.7 ± 0.1 84.3 ± 0.4 91.7 ± 0.2
CBN (Ioffe & Szegedy, 2015) 20.1 ± 0.0 20.0 ± 0.0 5.0 ± 0.0 5.0 ± 0.0
RN (Nichol et al., 2018) 92.6 ± 0.9 98.2 ± 0.2 89.0 ± 0.6 96.8 ± 0.2
MetaBN (Bronskill et al., 2020) 91.8 ± 0.9 98.1 ± 0.3 89.6 ± 0.5 96.4 ± 0.2
TaskNorm-L (Bronskill et al., 2020) 94.0 ± 0.8 98.0 ± 0.3 89.6 ± 0.5 96.4 ± 0.2
TaskNorm-I (Bronskill et al., 2020) 94.4 ± 0.8 98.6 ± 0.2 90.0 ± 0.5 96.3 ± 0.2
MetaNorm 98.8 ± 0.5 99.3 ± 0.2 91.3 ± 0.5 97.1 ± 0.2
† Results (except w/o BN and our MetaNorm) provided by (Bronskill et al., 2020).

Table 14: Sensitivity to Algorithm. Few-shot results on Omniglot using VERSA. Best performing
methods and any other runs within the 95% confidence margin in bold. Transductive results indicated
above dashed line.

Omniglot†

5-way, 1-shot 5-way, 5-shot 20-way, 1-shot 20-way, 5-shot

TBN 99.7 ± 0.2 99.8 ± 0.2 97.7 ± 0.2 98.8 ± 0.1
example 94.9 ± 0.2 95.1 ± 0.3 92.9 ± 0.2 95.9 ± 0.2
class 94.3 ± 0.3 94.8 ± 0.1 91.8 ± 0.3 95.1 ± 0.4
w/o BN 95.6 ± 0.7 96.5 ± 0.1 93.1 ± 0.3 96.3 ± 0.2
CBN (Ioffe & Szegedy, 2015) 94.3 ± 0.3 95.7 ± 0.0 92.7 ± 0.2 95.2 ± 0.3
MetaBN (Bronskill et al., 2020) 96.7 ± 0.3 98.1 ± 0.3 95.8 ± 0.2 97.1 ± 0.2
TaskNorm-L (Bronskill et al., 2020) 97.9 ± 0.3 99.2 ± 0.2 96.1 ± 0.2 98.0 ± 0.2
TaskNorm-I (Bronskill et al., 2020) 98.3 ± 0.2 99.5 ± 0.2 96.7 ± 0.2 98.1 ± 0.1
MetaNorm 99.8 ± 0.1 99.9 ± 0.1 97.9 ± 0.2 98.8 ± 0.2
† Results of TBN provided by (Gordon et al., 2019). All other results based on our re-implementations.

Table 15: Sensitivity to Algorithm. Few-shot results on Omniglot using ProtoNets. Best performing
methods and any other runs within 95% confidence margin denoted in bold. Transductive results
indicated above dashed line.

Omniglot†

5-way, 1-shot 5-way, 5-shot 20-way, 1-shot 20-way, 5-shot

TBN 98.4 ± 0.2 99.6 ± 0.2 94.5 ± 0.2 98.6 ± 0.1
example 98.4 ± 0.2 99.5 ± 0.2 94.3 ± 0.2 98.5 ± 0.1

class 98.4 ± 0.2 99.3 ± 0.2 94.2 ± 0.2 98.4 ± 0.1

w/o BN 94.6 ± 0.7 95.5 ± 0.1 91.7 ± 0.3 94.3 ± 0.2

CBN (Ioffe & Szegedy, 2015) 98.5 ± 0.2 99.6 ± 0.1 94.5 ± 0.2 98.6 ± 0.1
RN (Bronskill et al., 2020) 98.0 ± 0.2 99.6 ± 0.1 94.1 ± 0.2 98.6 ± 0.1
MetaBN (Bronskill et al., 2020) 98.4 ± 0.2 99.6 ± 0.1 94.5 ± 0.2 98.6 ± 0.1
TaskNorm-L (Bronskill et al., 2020) 98.6 ± 0.2 99.6 ± 0.1 95.0 ± 0.2 98.7 ± 0.1
TaskNorm-I (Bronskill et al., 2020) 98.4 ± 0.2 99.6 ± 0.2 93.4 ± 0.2 98.6 ± 0.1
MetaNorm 98.9 ± 0.2 99.7 ± 0.2 95.8 ± 0.2 98.9 ± 0.2

† Results (except w/o BN and our MetaNorm) provided by (Bronskill et al., 2020).
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Figure 4: Training loss. Results of using the ProtoNets algorithm on miniImageNet with respect to
training loss versus iterations. Our MetaNorm achieves fastest training convergence.

H TRAINING SPEED

We plot the training loss versus training iterations by using the ProtoNets algorithm in Figure 4.
MetaNorm achieves fastest training convergence. From Table 2 and Figure 4, MetaNorm achieves
best classification accuracy and training efficiency, which demonstrates the benefit of leveraging
meta-learning by MetaNorm for batch normalization.
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Table 17: Effect of number of units of hidden layers in MetaNorm for few-shot classification with
MAML (Finn & Levine, 2018) on miniImageNet. The ± sign indicates the 95% confidence interval
over tasks. We achieve best results with 128 units of hidden layers.

MAML
5-way, 1-shot 5-way, 5-shot

n = 64 44.3 ± 1.5 58.1 ± 0.8

n = 128 46.8 ± 1.6 60.1 ± 0.8

n = 256 46.2 ± 1.6 59.8 ± 0.8

n = 512 45.9 ± 1.5 59.5 ± 0.9

n = 1024 44.9 ± 1.5 58.7 ± 0.8
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