
R-Bind: Unified Enhancement of Attribute and Relation Binding in
Text-to-Image Diffusion Models

Anonymous ACL submission

Abstract001

Text-to-image models frequently fail to achieve002
perfect alignment with textual prompts, par-003
ticularly in maintaining proper semantic bind-004
ing between semantic elements in the given005
prompt. Existing approaches typically require006
costly retraining or focus on only correctly007
generating the attributes of entities (entity-008
attribute binding), ignoring the cruciality of009
correctly generating the relations between enti-010
ties (entity-relation-entity binding), resulting in011
unsatisfactory semantic binding performance.012
In this work, we propose a novel training-013
free method R-Bind that simultaneously im-014
proves both entity-attribute and entity-relation-015
entity binding. Our method introduces three016
inference-time optimization losses that adjust017
attention maps during generation. Compre-018
hensive evaluations across multiple datasets019
demonstrate our approach’s effectiveness, va-020
lidity, and flexibility in enhancing semantic021
binding without additional training.022

1 Introduction023

Text-to-Image (T2I) models have achieved remark-024

able capabilities in synthesizing high-quality, pho-025

torealistic images (Betker et al., 2023; Esser et al.,026

2024). However, these models still face significant027

challenges in faithfully interpreting and following028

user prompts. Common failure modes include inac-029

curacies in object generation, attribute assignments,030

and relationships between entities (Li et al., 2024a),031

highlighting persistent limitations in semantic bind-032

ing.033

Numerous approaches have been proposed to034

address these limitations. Training-based meth-035

ods such as GLIGEN (Li et al., 2023), CoMPaSS036

(Zhang et al., 2024) demonstrate promising results037

but face two critical challenges including high com-038

putational resource requirements and uncertain gen-039

eralization capabilities across diverse scenarios.040

Training-free approaches have also been ex-041

plored to address these limitations. SynGen (Rassin042

A man shaping clay on a wheel in a
cluttered workshop.

a green bench and a blue bowl.

Figure 1: Examples of semantic binding using our
method. The images on the left are the original gen-
eration results by SD-1.5, and the images on the right
are generation results using SD-1.5 equipped with our
method.

et al., 2023) introduces specialized losses for entity- 043

attribute binding (correctly generating the attributes 044

of an entity, e.g., brown cat). Subsequent works 045

like (Li et al., 2024b; Meral et al., 2024) further 046

develop attention-based modifications for this pur- 047

pose. However, these methods focus exclusively 048

on entity-attribute binding, neglecting other crucial 049

prompt semantics, making them unable to address 050

many semantic binding problems. Notably, they 051

fail to address entity-relation-entity binding (cor- 052

rectly generating relations between entities, e.g., a 053

cat chasing a dog), which is equally (if not more) 054

vital for faithful text-to-image generation. 055

In this study, we propose a novel unified ap- 056

proach to enhance both entity-attribute and entity- 057
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relation-entity binding in text-to-image generation058

by manipulating attention maps during inference.059

Our key innovation lies in establishing relation-060

aware attention patterns, where both entities main-061

tain similar attention focus with this relation, while062

preserving distinct attention map between entities063

themselves to prevent entity confusion. Simulta-064

neously, we enforce different image regions attend065

to distinct prompt components, preventing infor-066

mation omission or mixing. These principles with067

other observations are implemented through three068

carefully designed losses to perform inference-time069

optimization during denoising, effectively enforc-070

ing correct semantic bindings while penalizing in-071

correct bindings without requiring additional train-072

ing. As illustrated in Figure 1, our method effec-073

tively handles complex prompts, with extensive074

experiments demonstrating its effectiveness across075

diverse scenarios and both U-Net and DiT-based076

diffusion architectures.077

To summarize, our main contributions are listed078

as follows 1:079

• We introduce a novel semantic binding ap-080

proach which can address both entity-attribute081

and entity-relation-entity semantic binding082

with three carefully designed losses.083

• Our method is training-free and model-084

agnostic, effective in both U-Net based and085

DiT based diffusion models, making it widely086

available.087

• Extensive experiments including both auto-088

matic evaluation and human study demon-089

strate the superiority of our method against090

baselines and comparison methods, with an091

average of 12.8% improvement on SD-1.5092

against the strongest baseline.093

2 Related Works094

2.1 Diffusion Models095

(Ho et al., 2020) first introduced DDPM, which096

serves as the foundation for subsequent diffusion097

models. In diffusion models, there are gener-098

ally two types of conditioning algorithms: clas-099

sifier guidance (Dhariwal and Nichol, 2021) and100

classifier-free guidance (Ho and Salimans, 2022).101

(Rombach et al., 2022) proposes conducting de-102

noising in latent space, a technique that has proven103

highly successful.104

1Our code will be made publicly available to facilitate
future research.

Many studies (Podell et al., 2023; Esser et al., 105

2024; Chen et al., 2024; Ho et al., 2022; Peebles 106

and Xie, 2023) present applicable text-to-image dif- 107

fusion models using classifier-free guidance. De- 108

spite the success of them, current text-to-image 109

diffusion models still suffer from failures in align- 110

ment with text prompts. 111

2.2 Improving Semantic Binding in Diffusion 112

Models 113

Many previous works have discussed ways of im- 114

proving semantic binding in diffusion models. GLI- 115

GEN (Li et al., 2023) utilizes grounded generation, 116

while CoMPaSS (Zhang et al., 2024) proposed a 117

specific module for spatial understanding. ELLA 118

(Hu et al., 2024b) utilizes a large language model 119

for better text understanding, and CoMat (Jiang 120

et al., 2024) utilizes a segmentation model to en- 121

hance training. Ranni (Feng et al., 2024) and To- 122

kenCompose (Wang et al., 2024) are two additional 123

methods. However, these methods are all training- 124

based methods, which face the problem of high 125

cost and a lack of generalization ability. 126

There are also training-free methods. Attent- 127

and-Excite (Chefer et al., 2023) first proposes mod- 128

ifying attention map and increasing the attention 129

score of entities. Divide-and-Bind (Li et al., 2024b) 130

further proposes entity-attribute binding using at- 131

tention map. SynGen (Rassin et al., 2023) and 132

CONFORM (Meral et al., 2024) introduces neg- 133

ative loss to further facilitate semantic binding, 134

while ToMe (Hu et al., 2024a) proposes token merg- 135

ing for entity-attribute binding. However, all of 136

these methods consider only entity-attribute bind- 137

ing, with more complex scenarios containing rela- 138

tion unexplored, limiting their practicability. 139

3 Preliminaries 140

Despite the complexity of text-to-image diffusion 141

models, generally a text-to-image diffusion model 142

contains a denoising network (either U-Net or DiT) 143

ϵθ and a noise scheduler F . Given a text prompt p, 144

at each denoising step t, the denoising network ϵθ 145

makes two predictions ϵθ(xt, t, c) and ϵθ(xt, t, ϕ), 146

where c is the text embedding of the given text 147

prompt p and xt is the noise map at timestep t. 148

The prediction following classifier-free guidance 149

is zt = ϵθ(xt, t, ϕ) + w̃(ϵθ(xt, t, c)− ϵθ(xt, t, ϕ)), 150

where w̃ is a hyper-parameter namely guidance 151

scale. Then, using noise scheduler F , we have 152

xt−1 = F (xt, zt, t). After a total of T denoising 153

2



steps, we reach the final denoising result x0.154

Inspired by previous works (Chefer et al., 2023),155

at a certain denoising step t, if we can find a loss156

function L which measures how well the genera-157

tion process satisfies some constraints that probably158

indicate a good generation result, we can perform159

a gradient descent on xt as:160

x
′
t = xt − α

∂L
∂xt

(1)161

we can use x
′
t in the following inference162

ϵθ(xt, t, c), ϵθ(xt, t, ϕ) to achieve x
′
t−1 instead of163

xt for a better generation result.164

Despite the various design choices of ϵθ, there165

are generally always cross-attention operations166

between the noise map xt and the text embed-167

ding c to help condition on the given text. For-168

mally, given a noise map xt ∈ RC×h×w , text169

embedding c ∈ RL×C
′
, C,C

′
are correspond-170

ing feature dimensions, h,w are the height and171

width of the noise map, L is the length of text172

prompt. For a cross-attention layer with H at-173

tention heads, the corresponding attention map174

is A(0) ∈ RH×I×L, I = h × w. Suppose there175

are K attention layers, the final attention map is176

A(1) ∈ RK×H×I×L. We average the final attention177

map across different layers and heads for further178

discussion, which is A ∈ RI×L179

4 Our Method: R-Bind180

4.1 Background and Motivation181

Inspired by previous work (Chefer et al., 2023;182

Rassin et al., 2023), we similarly identify improper183

attention focus as a factor in failed semantic bind-184

ing. However, while existing studies have exclu-185

sively addressed entity-attribute binding scenarios,186

the critical case of entity-relation-entity binding re-187

mains unexplored. To illustrate this failure in entity-188

relation-entity binding, consider a text prompt “a189

man on the left of a lamp", we visualize the average190

attention map of the relation part “on the left of" in191

Figure 2.192

Our analysis reveals a critical phenomenon dur-193

ing denoising: while two distinct regions initially194

attend to the relational tokens (i.e., “on the left of"),195

this focus gradually collapses to a single region as196

denoising progresses. This directly leads to seman-197

tic binding failures, incorrectly positions “the man198

below the lamp" rather than “on the left of" it. This199

observation demonstrates that maintaining proper200

attention focus throughout the denoising process201

Figure 2: Example of a failure generation. The left
shows the attention map at the first denoising step, the
middle shows the attention map after 10 denoising steps,
and the right shows the final generation result.

is essential for achieving correct semantic binding 202

for entity-relation-entity binding, leading to our 203

method R-Bind. 204

4.2 R-Bind 205

Our method R-Bind operates through two stages: 206

semantic extraction and semantic binding enhance- 207

ment. First, we automatically parse the input 208

prompt to extract semantic information, including 209

entities, attributes, and relations. We then apply 210

three semantic binding losses using extracted se- 211

mantic information to ensure proper semantic bind- 212

ing through inference-time optimization. The com- 213

plete framework of our approach is illustrated in 214

Figure 3. 215

4.2.1 Semantic Extraction 216

We consider a more generalized semantic binding 217

in this work, including both entity-attribute binding 218

and entity-relation-entity binding. The first step is 219

to extract these semantics from the given prompt. 220

For a given prompt p comprising tokens 221

(t1, ..., tL), we categorize semantic components as 222

follows: entity tokens are tokens directly repre- 223

senting objects, like “cat"“car". Attribute tokens 224

are tokens describing entity properties without ref- 225

erencing other entities (e.g., "brown" in "a brown 226

cat"). Note that in the prompt “a cat chasing a dog", 227

“chasing a dog" is not viewed as an attribute, since it 228

contains another entity. Relation tokens are tokens 229

expressing inter-entity connections (e.g., "chasing" 230

in "a cat chasing a dog"). Note that we consider 231

all kinds of relations in this work instead of only 232

spatial relations, further broadening applicability. 233

For any certain entity, attribute, relation, there can 234

be one or more tokens corresponding to it due to 235

the complexity of expression or tokenization. 236

With these definitions, we can extract Entity set 237

Se = (e1, .., eg), where ei represents entity tokens 238

determining one entity, like “cat"“dog"; Entity- 239

Attribute set Sea = {(e1, a1), ..., (en, an)}, 240

where ai represents attribute tokens describ- 241
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Figure 3: Overview of our method R-Bind. We use green in the texts to represent entity tokens, red to represent
attribute tokens, and blue to represent relation tokens. Our method contains two steps: Semantic Extraction (as
shown on the upper part) and Semantic Binding (as shown on the lower part). The left of the lower part shows the
generation result of original model, while the right of the lower part shows the generation result of R-Bind. The
middle part details how semantic binding is performed through inference-time optimization.

ing ei, like ei=“cat" and ai=“brown" given242

“brown cat"; Entity-Relation-Entity set Sere =243

{(e11, r1, e21), ..., (e1m, rm, e2m)}, where ri repre-244

sents the corresponding relation tokens describing245

the relation between e1i and e2i . For example, given246

“cat chasing dog", we have e1i being “cat", ri being247

“chasing" and e2i being “dog". The extraction of248

this semantic information can be performed using249

either a parser or an LLM.250

4.2.2 Enhancing Semantic Binding251

In the following description, we use D as a distance252

measure between two 1-d vectors, which in this253

work is selected as symmetric KL Divergence:254

D(p, q) =
1

2
(DKL(p||q) +DKL(q||p)) (2)255

DKL(p||q) =
∑
x

p(x) log
p(x)

q(x)
(3)256

For simplicity, we take the case that each e, a, or257

r corresponds to only a single token to illustrate our258

method (without loss of generality). For discussion259

about the case containing multiple tokens, please260

refer to Appendix A. We use A[t] = A[:, t] ∈ RI ,261

which is a 1-d vector representing the attention 262

map of a certain token (t is a single token). For two 263

tokens t1, t2, we note 264

Dt(t1, t2) = D(A[t1], A[t2]) (4) 265

Focus Distribution Focus Distribution considers 266

some basic principles that the attention map should 267

follow. First of all, distinct positions in the noise 268

map should attend to different parts in the prompt 269

to prevent information mixing or omission. Posi- 270

tions farther apart in the noise map should exhibit 271

greater divergence in their attention maps. For 272

instance, as shown in Figure 3, the problematic 273

overlap between attention regions for "ball" and 274

"bear" leads to failed generation of the ball object. 275

By strategically separating this attention focus, we 276

achieve more accurate and reliable generation of 277

all specified entities. 278

Secondly, each entity token should be focused 279

by at least one position to avoid missing an entity. 280

This is a similar observation with (Chefer et al., 281

2023). 282

For an attention map A, we note Â[x] = A[x, : 283

] ∈ RL, which is a 1-d vector representing the at- 284
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tention map of a certain position in the noise map.285

Specifically, x corresponds to position (i, j) in the286

noise map where x = i ∗ w + j, i < h, j < w.287

For each position in the noise map x = i ∗ w + j,288

considering another position y = p∗w+ q, we can289

calculate their Manhattan Distance as d(x, y) =290

|i − p| + |j − q|. Therefore, we can construct a291

weight matrix W ∈ RI×I ,Wxy = d(x, y) and W̃292

is obtained by row-normalizing W . Therefore, de-293

note Aw = W̃A, we can maximize the distance294

between A and Aw to achieve our goal of making295

farther positions in the noise map have different at-296

tention focus on the prompt. Combining the above297

analysis, the final focus loss is designed as:298

Lfocus =− 1

I

∑
x

D(Â[x], Âw[x])− min
e∈Se

max
x

A[x, e]

(5)299

Entity-Attribute Binding Entity-attribute bind-300

ing requires attention alignment between entity and301

attribute within an entity-attribute pair while main-302

taining separation between different pairs. Specif-303

ically, an attribute token (e.g., “grey" in Figure304

3) should exhibit high attention similarity with its305

corresponding entity token (“bear"), while show-306

ing low attention similarity with unrelated entities307

(“ball"). This ensures visual attributes correctly308

bind to their target entities without interfering with309

other objects. We formalize this principle through310

our entity-attribute binding loss:311

Lea =
∑

(ei,ai)

[Dt(ei, ai)−
1

|Z|
∑

(ej ,aj)

K((ei, ai), (ej , aj))]

(6)312

where |Z| is a normalizing factor, K is a313

measurement between two entity-attribute pairs.314

K((ei, ai), (ej , aj)) = Dt(ei, ej) + Dt(ei, aj) +315

Dt(ej , ai) + Dt(ai, aj). To avoid separating po-316

tentially related information, we only calculate317

K((ei, ai), (ej , aj)) if and only if ei ̸= ej and318

ai ̸= aj , otherwise K((ei, ai), (ej , aj)) = 0.319

Entity-Relation-Entity Binding Entity-relation-320

entity binding requires coordination of attention321

patterns across three components: two entities and322

their relation. The attention of relation tokens must323

align with both entities to properly generate this324

relation (e.g., "chasing" with both "bear" and "ball"325

in Figure 3), while the entities themselves must326

maintain distinct attention map to preserve their327

individual identities. This dual constraint ensures328

that the relationship is visually represented, and the 329

entities remain clearly differentiated in the gener- 330

ated image. Also, attention of entities and relations 331

within different triples should also be separated to 332

avoid confused generation results. 333

Combining the objectives above, we achieve the 334

entity-relation-entity loss as: 335

Lere =
∑

(e1i ,ri,e
2
i )

[Dt(e
1
i , ri) +Dt(e

2
i , ri)−min

(Dt(e
1
i , e

2
i ),

1

|Z|
∑

(e1j ,rj ,e
2
j )

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )))]

(7) 336

Similarly, |Z| is a normalizing factor and K 337

is a distance measurement between two entity- 338

relation-entity pairs. K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) = 339

Dt(e
1
i , rj)+Dt(e

2
i , rj)+Dt(e

1
j , ri)+Dt(e

2
j , ri)+ 340

Dt(e
1
i , e

1
j ) +Dt(e

2
i , e

2
j ). 341

We also calculate K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) if 342

and only if e1i ̸= e1j , ri ̸= rj , e
2
i ̸= e2j , otherwise 343

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) = 0. 344

Based on these above analysis, our final loss is: 345

L = Lfocus + Lea + Lere (8) 346

With our final loss (Equation 8), we can per- 347

form inference-time optimization with Equation 1. 348

Details about our method design can be found in 349

Appendix A. 350

5 Experiment Setup 351

5.1 Baseline Methods 352

To comprehensively evaluate our method, we im- 353

plement it on two distinct base models: Stable- 354

Diffusion-1.5 (SD-1.5) (Rombach et al., 2022) 355

and Stable-Diffusion-3 (SD-3) (Esser et al., 2024), 356

which differ in both architecture and capability. 357

On SD-1.5, we compare against five training-free 358

baselines: Attend-and-Excite (A&E) (Chefer et al., 359

2023), SynGen (Rassin et al., 2023), ToMe (Hu 360

et al., 2024a), Divide-and-Bind (D&B) (Li et al., 361

2024b), and CONFORM (Meral et al., 2024). No- 362

tably, these baselines cannot be directly applied to 363

SD-3 due to architectural differences, limiting their 364

comparison to SD-1.5 only. For fair evaluation, 365

we exclude all training-based methods from our 366

comparisons. 367

5.2 Benchmarks and Metrics 368

We employ both constructed structured prompts 369

and more natural prompts across multiple bench- 370
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Model Base Method Name T2ICompBench
(Color)

T2ICompBench
(Spatial)

GenAIBench
(Attribute)

GenAIBench
(Spatial)

SD-1.5

Base model 37.6 8.7 63.4 62.0
A&E 54.4 10.3 66.2 64.7

SynGen 55.7 10.9 65.1 62.4
ToMe 40.6 8.8 63.7 61.4
D&B 55.3 10.4 64.5 61.7

CONFORM 68.7 10.2 63.6 61.9
R-Bind (Ours) 68.8 15.6 68.2 67.9

SD-3 Base Model 80.3 31.2 80.1 78.4
R-Bind (Ours) 82.5 32.0 80.7 79.4

Table 1: Main Results of our method and compared baselines on test datasets. We use the evaluation met-
rics proposed corresponding to each test set, which means BLIP-VQA for T2ICompBench(Color), UniDet for
T2ICompBench(Spatial), and VQAScore for GenAIBench.

marks. For constructed structured prompts, we371

utilize the color and spatial splits from T2I-372

CompBench (Huang et al., 2023), adopting their373

original metrics (BLIP-VQA and UniDet)(Huang374

et al., 2023). We also leverage GenAIBench375

(Li et al., 2024a), organizing its prompts into376

two test sets: GenAIBench(attribute) containing377

all prompts testing attribute binding skill, and378

GenAIBench(spatial) comprising prompts evalu-379

ating spatial relation skill. While these sets are380

not mutually exclusive and involve multiple skills,381

this categorization enables clearer analysis of spe-382

cific capabilities. We employ VQAScore (Li et al.,383

2024a) for GenAIBench evaluation.384

5.3 Implementation Details of Our Method385

We select the first 50% of total inference steps per-386

forming R-Bind following (Rassin et al., 2023), and387

perform gradient descent (Equation 1) twice each388

step. For SD-1.5, since it is a U-Net architecture389

and the resolution of attention map changes, we390

gather and average all attention maps at resolution391

16×16 to calculate L, still following (Rassin et al.,392

2023). For SD-3, since it uses a DiT architecture393

and the resolution of attention maps remains the394

same, we gather and average all cross attention395

maps. To maintain a fair comparison, we use the396

same noise prior for the same base model. The se-397

mantic extraction can be performed with any pow-398

erful LLMs, and we use Gemma-3 (Team, 2025)399

for semantic extraction (without the loss of gen-400

erality). More details about our experiments and401

implementation can be found in Appendix B.402

6 Experiment Results and Analysis403

6.1 Main Results404

The experimental results in Table 1 demonstrate405

R-Bind’s superior performance across all datasets406

against all baseline when implemented on SD-1.5, 407

directly supporting the effectiveness of R-Bind. We 408

would also like to note that, while baseline methods 409

are specifically designed for entity-attribute bind- 410

ing, they nevertheless show slight improvements 411

over the base SD-1.5 model on the entity-relation- 412

entity focused T2ICompBench(Spatial) dataset. 413

We attribute this unexpected gain to their implicit 414

enhancement of entity generation or treatment of 415

relations as attributes. However, this implicit en- 416

hancement is not enough for performing correct 417

entity-relation-entity binding, indicating that previ- 418

ous baselines are unable to address entity-relation- 419

entity binding effectively. 420

CONFORM emerges as a strong competitor on 421

T2ICompBench(Color), matching our method’s 422

performance on this entity-attribute focused dataset. 423

However, its superiority diminishes on other 424

datasets, revealing limitations in complex appli- 425

cations. In contrast, R-Bind maintains consistently 426

high performance across all scenarios, demonstrat- 427

ing robust practical applicabiliy. 428

Notably, several baselines eve exhibit perfor- 429

mance degradation on GenAIBench(Spatial), sug- 430

gesting that over-optimization for entity-attribute 431

binding may actually impair model performance in 432

some scenarios. This finding underscores the im- 433

portance of jointly addressing both entity-attribute 434

and entity-relation-entity binding, as implemented 435

in our approach. 436

SD-3 is built with different architecture with 437

SD-1.5, with no prior work having explored seman- 438

tic binding methods on this state-of-the-art model. 439

Our results demonstrate that attention-based seman- 440

tic binding remains effective even for SD-3’s DiT 441

architecture, with consistent performance gains 442

across all datasets. These findings validate both 443

the generalizability of our approach and its poten- 444

6



Lfocus Lea Lere
T2ICompBench

(Color)
T2ICompBench

(Spatial)
GenAIBench

(Attribute)
GenAIBench

(Spatial)

✗ ✗ ✗ 37.6 8.7 63.4 62.0
✓ ✗ ✗ 55.0 10.8 68.1 65.6
✗ ✓ ✗ 64.4 8.7 65.9 63.5
✗ ✗ ✓ 39.0 12.8 64.7 63.3
✓ ✓ ✗ 68.2 10.8 68.2 66.1
✓ ✗ ✓ 55.6 15.6 68.0 67.4
✗ ✓ ✓ 64.4 12.8 65.7 65.1
✓ ✓ ✓ 68.8 15.6 68.2 67.9

Table 2: Ablation study of our method using SD-1.5. ✓ refers to the corresponding loss is applied to the final loss
L, while ✗ indicates the loss is not applied to L. The first line corresponds to the base model, and the last line
corresponds our whole method R-Bind. The evaluation metrics remain the same as before.

tial applicability to cutting-edge diffusion models.445

The observed improvements are further corrobo-446

rated by our human evaluation study (Section 6.3),447

which provides additional evidence of the method’s448

practical benefits.449

6.2 Ablation Study450

While the design of our three losses is intuitive, we451

conduct comprehensive ablation studies on SD-1.5452

to rigorously evaluate each component’s contribu-453

tion. The results are shown in Table 2.454

The ablation studies yield several key insights.455

First, any combination of Lfocus,Lea,Lere pro-456

duces better results than the base SD-1.5 model,457

with some combinations even matching or surpass-458

ing the baseline methods in Table 1. This confirms459

the effectiveness of each individual loss compo-460

nent. Second, we observe consistent performance461

gains when adding additional losses. For example,462

Lfocus + Lea outperforms Lfocus alone, and the463

full combination Lfocus+Lea+Lere achieves the464

best results. This observation clearly demonstrates465

that the three losses work jointly to provide a better466

result instead of interfering with each other.467

Third, we reach an interesting observation that468

the relative importance of losses varies much469

between the structured T2ICompBench prompts470

and more natural GenAIBench prompts. On471

T2ICompBench, the specialized binding losses472

(Lea for attribute and Lere for relation) prove473

most crucial, outperforming the general focus loss474

Lfocus alone, though there is still improvement475

using Lfocus only. However, the behavior shifts476

notably on GenAIBench, where Lfocus provides477

more substantial improvements than either Lea or478

Lere alone. This finding aligns with the results in479

Table 1, where Attend-and-Excite (A&E) emerges480

as the strongest baseline for GenAIBench.481

It is important to emphasize that while Lfocus482

drives the most significant gains on GenAIBench, 483

incorporating Lea,Lere still yields additional per- 484

formance improvements. Moreover, on struc- 485

tured benchmarks like T2ICompBench, Lfocus 486

alone proves insufficient. These results collectively 487

demonstrate that all three losses play vital though 488

distinct roles in enhancing semantic binding. 489

Two additional insights emerge from our anal- 490

ysis. First, while Lfocus shares some similarity 491

with A&E, its standalone performance surpasses 492

A&E, demonstrating the superiority of our formu- 493

lation. Secondly, T2ICompBench(Spatial) contains 494

no entity-attribute prompts, making Lfocus + Lere 495

equivalent to the full combination Lfocus + Lea + 496

Lere. In contrast, T2ICompBench(Color) includes 497

some entity-relation-entity prompts, resulting in 498

slight performance differences between Lfocus + 499

Lea + Lere and Lfocus + Lea, a small evidence 500

proving the usefulness of Lere. 501

6.3 Human Evaluation 502

To validate that our improvements reflect genuine 503

quality gains rather than metric exploitation, we 504

conduct comprehensive human evaluations across 505

both models. For SD-3, we randomly select 100 506

output pairs from GenAIBench(Attribute), com- 507

paring base model against SD-3 enhanced with 508

R-Bind. Three independent annotators assessed 509

each pair, selecting the preferred output or marking 510

"draw" for indistinguishable quality through ma- 511

jority voting. We repeat this evaluation on SD-1.5, 512

comparing against two strongest baselines Attend- 513

and-Excite (A&E) and CONFORM. In SD-1.5 514

“Draw" refers to R-Bind generates one of but not 515

only the preferred results. Details of human evalu- 516

ation is in Appendix B. 517

The human evaluation results in Table 4 demon- 518

strate R-Bind’s consistent superiority. For SD-3, 519

our method produces preferred outputs in over 50% 520
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Table 3: Generated results of different methods.

SD-3 R-Bind SD-3 Draw -
0.53 0.05 0.42 -

SD-1.5 R-Bind A&E CONFORM Draw
0.61 0.15 0.08 0.16

Table 4: Preference rate of generation results on differ-
ent models and methods.

of cases while matching the base model’s quality521

in 42% of instances ("Draw"). This high Draw522

rate primarily occurs when SD-3 already gener-523

ates near-perfect results, leaving minimal room for524

improvement. Nevertheless, R-Bind still achieves525

measurable gains in the majority of cases where526

enhancement is possible.527

The SD-1.5 comparisons reveal even more pro-528

nounced advantages, with lower Draw rates (indi-529

cating more discernible differences) and clear pref-530

erence for R-Bind over the baselines (A&E and531

CONFORM). These consistent results across mod-532

els provide robust evidence that R-Bind’s improve-533

ments represent genuine quality enhancements.534

6.4 Case Study535

Firstly, we present the case after our method is536

applied in Figure 4 as a comparison with Figure 2.537

As can be seen from Figure 4, after 10 denois-538

ing steps, the attention map clearly shows two dis-539

tinct regions attending to the relation "on the left540

of", each corresponding to one of the entities (man541

and lamp). This observed behavior matches our542

intended design, revealing that the method success-543

fully maintains correct attention focus for relation544

and their associated entities.545

We present more cases in Table 3. As can be546

Figure 4: Example of the generation process after R-
Bind is applied. The left shows the attention map at the
first denoising step, the middle shows the attention map
after 10 denoising steps, and the right shows the final
generation result.

seen from the cases, the generation results of our 547

method consistently aligns with the text prompt bet- 548

ter. For example, in the first line, all methods except 549

ours fail to generate moldy oranges on the left on 550

SD-1.5, and the original SD-3 fails to distinguish 551

moldy oranges on the left and the fresh orange 552

on the right. Our method successfully addresses 553

these problems, showing better performance. More 554

results and analysis can be found in Appendix C. 555

7 Conclusion 556

Our work introduces R-Bind, a novel training-free 557

method that improves semantic binding consider- 558

ing entity-relation-entity binding scenarios. By 559

simultaneously optimizing entity-attribute binding 560

and entity-relation-entity binding, our method out- 561

performs all existing baselines on comprehensive 562

benchmarks. R-Bind’s effectiveness applies to both 563

UNet-based and DiT-based architectures, demon- 564

strating its practical value for state-of-the-art sys- 565

tems. Rigorous validation through ablation studies, 566

human evaluations, and qualitative analyses further 567

support the effectiveness of R-Bind. 568
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Limitations569

Our method is a inference-time optimization570

method, leading to a higher inference cost com-571

pared with base models, yet this is a common prob-572

lem of all inference-time optimization methods.573

Also, if the model starts at a really “bad" attention574

map, our method cannot fix this problem, which is575

also a common problem of this kind of method.576

Ethics Statement577

Our method aims at improving alignment between578

generated image and text prompt, so as long as the579

text prompt is not harmful, our method will not580

produce any harmful content. And since we use581

open-source models and datasets for experiments,582

the safety of contents in our experiment is gener-583

ally guaranteed. LLM is used to extract semantics,584

which is a quite normal use. We conduct human585

evaluation on the basis of voluntary and each an-586

notator is paid fairly. We also use LLM to assist587

writing.588
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A Details of Our Method711

A.1 Multiple Tokens712

As is mentioned, given an entity-attribute pair713

(e, a), the entity may contain multiple tokens e =714

(et1, ..., etk), and the attribute may also contain715

multiple tokens a = (at1, ..., atl). The formulation716

mentioned in Section 4 is a conceptual simplified717

representation, and we would like to present details718

on how to handle these as follows:719

Firstly, these multiple entity tokens e =720

(et1, ..., etk) jointly represent a certain entity, so721

we average the attention map of all these tokens, in722

this case we have Ã[e] =
1

k

∑k
i=1A[eti].723

Secondly, these attribute tokens may present dif-724

ferent attributes. For example, consider a prompt “a725

brown fat cat", the attribute tokens are (brown, fat).726

Therefore, we would like to optimize the worst727

semantic binding of all attributes. Formally, we 728

have: 729

D(Ã[e], A[a]) = max
i

D(Ã[e], A[ati]) (9) 730

However, when calculating K((ei, ai), (ej , aj)), 731

separating all these tokens can be rather compli- 732

cated. Therefore, when calculating K, we also 733

average the attention map of all attribute tokens, 734

which is Ã[a] =
1

l

∑l
i=1A[ati]. 735

For clearer notation, we use: 736

D̃t(t1, t2) = D(Ã[t1], Ã[t2]) (10) 737

Thus we have: 738

K((ei, ai), (ej , aj)) = D̃t(ei, ej)+

D̃t(ei, aj) + D̃t(ej , ai) + D̃t(ai, aj)
(11) 739

The calculation of K follows the same require- 740

ment as mentioned in Section 4. 741

The final Lea considering multiple tokens is rep- 742

resented as: 743

Lea =
∑

(ei,ai)∈Sea

[D(Ã[e], A[a])−

1

|Z|
∑

(ej ,aj)∈Sea

K((ei, ai), (ej , aj))]
(12) 744

Similarly, given an entity-relation-entity triplet 745

(e1, r, e2), the entity may contain multiple tokens, 746

which we deal with as before. The relation may 747

also contain multiple tokens (rt1, ..., rtu). Simi- 748

larly, we would like to optimize the worst semantic 749

binding, which is: 750

max
i

(D(Ã[e1], A[rti]) +D(A[rti], Ã[e2])) (13) 751

Denote Ã[r] =
1

u

∑u
i=1A[rti], we have: 752

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )) = D̃t(e

1
i , rj) + D̃t(e

2
i , rj)+

D̃t(e
1
j , ri) + D̃t(e

2
j , ri) + D̃t(e

1
i , e

1
j ) + D̃t(e

2
i , e

2
j )

(14) 753

This calculation of K also follows the same re- 754

quirement as mentioned in Section 4. 755

So the final Lere considering multiple tokens is: 756

Lere =
∑

(e1i ,ri,e
2
i )

max
i

(D(Ã[e1], A[rti]) +D(A[rti], Ã[e2]))−

min(D̃t(e
1
i , e

2
i ),

1

|Z|
∑

(e1j ,rj ,e
2
j )

K((e1i , ri, e
2
i ), (e

1
j , rj , e

2
j )))

(15) 757
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Algorithm 1 Denoising with R-Bind
1: Input total denoising steps T , noise prior xT ,

denoising network ϵθ, text prompt p, noise
scheduler F , guidance scale w̃, text encoder E,
R-Bind step threshold T0, optimization steps
T1, optimization step size α.

2: Get text embedding c = E(p)
3: Extract semantics Se, Sea, Sere from p.
4: for t = T, ..., 1 do
5: if t ≤ T0 then
6: for s = 1, ..., T1 do
7: Run forward ϵθ(xt, t, c) to achieve at-

tention map A
8: Calculate Lfocus,Lea,Lere using

A,Se, Sea, Sere

9: L = Lfocus + Lea + Lere
10: Update xt ← xt − α

∂L
∂xt

11: end for
12: end if
13: Predict ϵθ(xt, t, c), ϵθ(xt, t, ϕ)
14: Classifier-Free Guidance: zt ←

ϵθ(xt, t, ϕ) + w̃(ϵθ(xt, t, c)− ϵθ(xt, t, ϕ))
15: Denoising Step: xt−1 ← F (xt, zt, t)
16: end for
17: Output denoising result x0

A.2 Algorithm758

To provide a more comprehensive understanding759

of our algorithm, we present a pseudo code in Al-760

gorithm 1:761

B Details of Experiment Setup762

B.1 Models, Benchmarks and763

Hyper-Parameters764

We use SD-3 and SD-1.5 using their default hyper-765

parameters. The checkpoints and hyper-parameter766

used are as follows:767

Model Name Checkpoint T w

SD-3 SD-3-Medium 1 28 7.0
SD-1.5 SD-1.5 2 50 7.5

Table 5: Details of our inference hyper-parameter.

1https://huggingface.co/stabilityai/
stable-diffusion-3-medium-diffusers

2https://huggingface.co/
stable-diffusion-v1-5/stable-diffusion-v1-5

T2ICompBench
(Color)

T2ICompBench
(Spatial)

GenAIBench
(Attribute)

GenAIBench
(Spatial)

300 300 1215 831

Table 6: Benchmark statistics.

For our method, we perform optimization in the 768

first 50% steps in the inference following previ- 769

ous practice (Rassin et al., 2023), corresponding 770

to T0 =
T

2
. We perform optimization twice per 771

denoising step, corresponding to T1 = 2. The opti- 772

mization step size is set to α = 6 for SD-1.5 and 773

α = 8 for SD-3 since SD-3 is a larger model. 774

We also list benchmark statistics in Table 6: 775

B.2 Details of Semantic Extraction 776

We utilize Gemma-3-27B (Team, 2025) to perfor- 777

man semantic extraction since it is a powerful LLM. 778

Note that this semantic extraction is a text-only 779

task. 780

The Semantic Extraction process involves two 781

stages: parsing the input prompt to identify and 782

categorize semantic information (entities, entity- 783

attribute, and entity-relation-entity), and token map- 784

ping of these elements according to the diffusion 785

model’s text tokenizer to produce the token se- 786

quences required for attention map manipulation. 787

This dual-stage approach ensures that our binding 788

losses operate on precisely the same textual rep- 789

resentations used by the diffusion model’s cross- 790

attention mechanisms during image generation. 791

In our work, both steps are conducted by the 792

LLM. For the first step, the prompt used is as fol- 793

lows: 794

Correctness Verification To validate the relia- 795

bility of our semantic extraction pipeline, we per- 796

formed manual verification on 100 randomly sam- 797

pled prompts from GenAIBench(Spatial), finding 798

93% exact match accuracy between the LLM’s ex- 799

traction results and ground truth annotations. This 800

high accuracy confirms the LLM’s effectiveness 801

for semantic extraction in our context. Also, for 802

the structured prompts in T2ICompBench(Color) 803

and T2ICompBench(Spatial), the structure of the 804

prompts guarantees perfect (100%) extraction ac- 805

curacy. 806

Discussion of LLM Usage While prior works 807

rely on custom parsers for semantic extraction, 808

such approaches face significant challenges in han- 809

dling the full complexity of real-world prompts, 810
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Extraction Prompt

[System Prompt]: You are a helpful assistant good at extracting information from complex text.
You will be given a text and your task is to extract three types of information from the given text.
The three types of information are:
Entity Information, which is the entities mentioned in the text.
Entity-Attribute information, which is a tuple containing an entity and the attribute describing it.
Entity-Relation-Entity information, which is a tuple containing two entities and the relation
between them.
Please extract the three types of information from the given text. You should output them as:
Entity Information: [Entity information], Entity-Attribute Information: [entity-attribute informa-
tion], Entity-Relation-Entity Information: [entity-relation-entity information]. If there is no such
information belonging to such category, you should output [None].
If there are pronouns in the text, you should correctly replace them with the corresponding entities
in the extracted information.
Entities with no attribute should not appear in Entity-Attribute information, same for Entity-
Relation-Entity information.
Do not mix entity-attribute information and entity-relation-entity information. If the attribute of an
entity is a verb, please check whether it is entity-relation-entity information.
Do not miss any entity-attribute information and entity-relation-entity information. You should
output all reasonable extracted information.
[In-Context Examples]
[User Prompt]: The provided text prompt is {text}.
[Model Output]:

Token Matching Prompt

[System Prompt]: You are a helpful assistant good at matching token id with extracted information
from a complex text.
You will be given the text and extracted information from the text and a corresponding token list.
Your task is to replace the information in the extracted information with correct token id using the
token list.
There are three types of information: Entity Information, which describes the entities mentioned in
the text.
Entity-Attribute information, which is a tuple containing an entity and the attribute describing it.
Entity-Relation-Entity information, which is a tuple containing two entities and the relation
between them.
You should output them as: Entity Information: [Entity information], Entity-Attribute Informa-
tion: [entity-attribute information], Entity-Relation-Entity Information: [entity-relation-entity
information]. If there is no such information belonging to such category, you should output [None].
You should use token ids to represent, entity, attribute and relation as your final output. Each entity,
attribute, relation can be represented using one or multiple token ids.
The Entity-Attribute information should be represented as: (token ids of entity, token ids of
attribute). The Entity-Relation-Entity information should be represented as: (token id of entity 1,
token id of relation, token id of entity 2). The Entity Information should be represented as: (token
ids of entites). [None] should not appear in an certaininformation tuple.
[In-Context Examples]
[User Prompt]: The provided text prompt is {text}. The extracted information is {information}.
The token list is {tokens}.
[Model Output]:
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particularly when dealing with intricate relations811

and tokenization (e.g., splitting one word into mul-812

tiple tokens). To ensure robust generalization, we813

instead employ an LLM (Gemma-3-27B) as our814

semantic extractor. Crucially, our experiments con-815

firm that the performance gains stem from our816

novel binding framework rather than the use of817

LLM. In fact, CONFORM (Meral et al., 2024) and818

D&B (Li et al., 2024b) do not open-source the819

parser their used, so we also equip these methods820

with the same LLM (Gemma-3-27B) when testing821

them. However they still underperform compared822

with our method R-Bind as can be seen from Table823

1. Also, on T2ICompBench, where LLM and parser824

extractions yield identical results, our method main-825

tains clear superiority. These results demonstrate826

that our semantic binding methods, not the use of827

LLM, drive the observed improvements.828

B.3 Details of Human Evaluation829

We ask three human annotators to rank the images830

based on the alignment between image and text831

prompt only. The inter-annotator agreement is 0.93.832

All annotators are college students and are capable833

and responsible of conducting this task. A simpli-834

fied evaluation criteria is shown as follows:835

Human Evaluation Criteria

Please select the image that aligns with the
text best from the given images. You can se-
lect more than one image if you believe the
consistency between your selected images
and the text is comparable. The consistency
between image and text indicates whether
the image faithfully describes the contents
mentioned in the text.

836

Our annotation protocol applies majority voting837

to achieve the final result. The images selected838

by most annotators are viewed as the winner. If839

R-Bind and another baseline are selected the same840

times, we label this a “Draw". There are no cases841

where both baselines are selected the same times.842

C More Results and Analysis843

C.1 Discussion on Efficiency844

Inference-time optimization bear a natural worry845

of efficiency. We admit that our method does make846

inference slower, yet we argue that this efficiency847

decrease is acceptable and not significantly beyond848

Figure 5: A failure case using R-Bind. The left images
are attention maps of corresponding tokens at certain
steps. The right is the generation result. The prompt is
“a chicken of on the left of a girl".

other inference-time optimization methods. We 849

present the efficiency comparison in Table 7. 850

Method Name Seconds Per Image

Base Model 2.12
A&E 8.31

SynGen 5.79
ToMe 6.78
D&B 13.75

CONFORM 9.71
R-Bind(Ours) 11.69

Table 7: Average seconds required for generating one
image.

As can be seen from Table 7, our method, though 851

a lot slower than base model, bear similar inference 852

time with most other baseline methods, indicating 853

that our method does not bear severe efficiency 854

problem compared with other baseline methods. 855

C.2 Failure Case Analysis 856

No method is perfect and it is natural for any 857

method to fail on some cases. Here we would 858

like to analyze why our method fails on a certain 859

case. The failure case is shown in Figure 5. 860

We attribute the failure of this case to the bad 861

initial attention map. As can be seen from the 862

attention map of “girl" at t = T , which is the first 863

denoising step, the attention map is rather scattered 864

and has no focus on the entity “girl" itself. After 865

our method is applied 20 steps, the attention map 866

is still scattered, though slightly better than the 867

original. As a result, the model actually has no 868
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Table 8: Preference of generation results on different models and methods.

idea how to generate the entity “girl", let alone the869

relation “on the left of". This example shows that870

if the original attention map is much flawed, our871

method, though still able to improve the attention872

map, fails to completely address the problem since873

it is just an inference-time optimization method.874

C.3 More Case Study875

We present more generated examples in Table 8.876
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